M3D PACKAGE MANUAL

Anthony Phan, October 5, 2011

INTRODUCTION

In the second half of the nineties (of the past century), I discovered TEX, MetaFont and,
then, MetaPost. I was truly enthousiastic about this last tool since it allows a very simple
inclusion of images produced by some MetaFont-like language into TEX documents. My first
attempt in 3D pictures with MetaPost was very simple: the projection system was absolutely
rigid and the picture was composed of a few lines and labels and only 4 filled flat surfaces whose
colors where static. Then I understood that it is necessary to have a parametrizable frame
since one does not always know if a picture, viewed from a certain angle, will be meaningfull
or not. So the first and main step was done: having a parametrizable frame, dealing with
space coordinates, drawing contours if their projection on the screen is well-oriented.

Then I heard of Denis Roegel’s package “3D”. Its syntax didn’t fit what I could have in
mind about 3D-programming in MetaPost, but it features facilities for eps to gif conversion
and animation. I stolled these animation facilities in order to have fun and also to find the
best angle for my picture. Then I began to make more complex designs intended to illustrate
my web pages. ..

What was my leitmotiv was to keep the closest as possible to usual MetaFont/MetaPost
programming, but also to consider every 3-dimensional object as enough complex to deserve a
quite technical code. So I've come to think that what could be nice should be to have a stable
and powerfull basic program and add to it libraries of common objects. Some more complex
objects could then be build up from those more basic ones by moving them, rotating them
and rescaling them. My idea about objects is certainly not related to object-programming, it
is just the naive notion of solid bodies.

The aim one can have with such a project is boundless. The package “m3D” remains still
in progress. I'm only glad to be able to use it when a friend ask me if I can draw a better
picture than he does.

Also one of my believes is that any MetaPost programmer prefers to build his/her own
macros’ system than relying on someone else’s programs—especially when these ones are
claimed to be unstable. Such a programmer would simply have an overview of the syntax, of
some special hacks, may publish his/her own programs on Internet and in this way give some
feed back to every other people interested in such programming.

§ 1. BASIC CONCEPTS

As anyone knows, MetaPost provides standard facilities for manipulating 3 dimensional
vectors with the variable type “color”: type-check, addition, substraction, scalar multipli-
cation. What may be seen as missing is affine transformations of 3 dimensional vectors or
pictures but no one would complain about that since MetaPost is a 2-dimensional oriented
programming language and anyone would accept using some higher level control sequences
for such tasks.



§ 2. COORDINATES SYSTEM

Qreen

§ 3. EULER ANGLES

Given to orthonormal frames (Ox, Oy, Oz) and (Ox’, Oy’, Oz'), Euler angles (0, ¢, 1)) are
real numbers such that

((Ox’ = cos pcosf x Ox + cos ¢sinf x Oy + sin ¢ x Oz
Oy’ = —(cos 1) sin 6 + sin ) sin ¢ cos ) x Ox

+ (cospcosf — sinysin psinf) x Oy + sin ) cos ¢ x Oz
Oy’ = (sin® sin @ — cos v sin ¢ cos f) x Ox

— (sin® cos @ + cospsin @ sin f) x Oy + cos ) cos ¢ x Oz

\

They can be determined by the knowledge of the direction of Ox’ expressed in terms of
(Ox, Oy, Oz)-coordinates—one gets 6 and ¢—, and of the plane generated by (Ox’, Oy’)
which can be expressed by the (Ox, Oy, Oz)-coordinates of a vector lying the (Ox’, Oy’)-
plane which is not colinear to Ox’—one gets finally 1.

So, a control sequence named Angles is defined in m3Dplain.mp. Its parameters are two
vectors (or colors), say p and ¢, and it returns the triple (or color), say (60, ¢,) of the
corresponding Euler angles in the following way: if p is the null or a too small vector, it
returns (0,0,0); else, § and ¢ are computed in such way that Ox’ would have the same
direction as p; then again, if ¢ appears to be quite colinear to p, v is set to 0, or else 1 is set
to the correct value that helps to define the whole (Ox’, Oy’, Oz’)-orthonormal frame such
that the (p, q)-vector plane is equal to the (Ox’, Oy’)-vector plane with Ox’ sharing the same
direction as p.

§ 4. PROJECTION SYSTEM

§ 5. RENDERING PARAMETERS

There are many parameters used by m3D, they are described below. We put a dagger mark
(T) in the descriptions of the parameters which should not be changed—mostly for sesthetic
reasons—within a figure.

ObsZ := internal numeric’. It is the distance between the screen or the sheet of paper and
the observer. It should be given with metrical units.

2



Resolution := internal numeric’. Some predefined objects use this paramer to determin the
number of steps for their drawing. It should be given with metrical units.

LightSource := colorf. It is the location of the light source.

LightColor := color’. It is the color of the light source (used with specularity only).

LightAtInfinity := boolean'. It indicates whether the light source is a true point in space
or a direction.

Luminosity := internal numeric’. It is the intensity of the incident light. It should lie bet-
ween 0 and 1.

Contrast := internal numeric’. It is the usual contrast parameter. It should lie between 0
and 1.

Specularity := internal numeric. It quantifies what fraction of incident light is reflected
by objects. It should lie between 0 and 1 and can be changed within a figure in order to
render different kinds of matter.

Phong := internal numeric. It quantifies the spread of reflected light on objects. It should be
a small integer and can be changed within a figure in order to render different kinds of
matter.

Fog := internal numeric’. A “fog” can be applied when rendering objects. The value 0 means
no fog, 1 a linear fog with exponential decay, 2 a spherical fog with exponential decay.
Colors fade to the background color.

FogHalf := internal numeric’. It is the rate of the exponential decay of the fog. It should be
a positive number given with metrical units.

FogZ := internal numeric’. It is the z-coordinate relative to the screen below which fog can
be applied. It should be given with metrical units.

FinePlotFlag := boolean. This boolean is used by some control sequence like plot3D.

mthreeDfont := string!. The name of the (vector) font that should be used for text in the
3 dimensional space.

ShadedTextFlag := boolean. This boolean indicates whether special effects are applied when
rendering a text in the 3 dimensional space or not.

ObjectColor := color. This the color which is used when filling a facet in space. It can be
changed at any time in order to get figures with plenty of colors.

§ 6. ABOUT THE LIGHT SOURCE

There is only one light source defined in m3Dplain.mp. It can be located at infinity (Ligh-
tAtInfinity := true) or at some point in the scenery (LightAtInfinity := false). In
both cases its coordinates LightSource refer to the global screen frame and are not modified
when objects are translated or rotated, that is that the light is fixed for the observer.

If one wants to link the light source to a peculiar object, one has to write within the
definition of the object something like

LightSource := GDir(x,y,z)
if the light source is located at infinity, or
LightSource := GCoord(x,y,z)

if the light source is located at some point in space ((x,y,z) are here local coordinates). One
should notice that it is barely the only direct use of the control sequences GDir and GCoord.

If one needs more than one light source, one has to define anew the control sequence Light
of m3Dplain.mp (good luck since it is already a heavy machinery).

3



§ 7. LOOKING AT OBJECTS FROM OUTSIDE, INSIDE OR BOTH

Usually the observer looks at solid objects from their outsides. Thus, their facets are
drawn if the projection of their oriented contours appears to be positively oriented. This is
why the default meaning of the control sequence Orientation is Outside. One can reverse
the situation by telling

Inside;

and later turn back to the default situation with
Outside;
One can also try the following
Outsideln; or InsideOut;

In these cases, facets are always drawn. The difference between the two is that light effects are
reverted in the last case. If one wishes to achieve even weirder effects, he/she can play with
the definition of Orientation and the value of Outside_ with the basis of what is written in
m3Dplain.mp. For instance,

def OutsideQut =
vardef Orientation tertiary c =
Outside_ := if turningnumber c < 0: - fi 1; 1
enddef;
Outside_:=1
enddef;

which is defined in m3Dplain.mp solves some difficulties with the Klein bottle.

§ 8. ORDERING AND HIDDEN BODIES

Drawing a single convex body is an easy task: one just have to draw every facet which
contour is seen, or projected, as a positively (resp. negatively) oriented path when drawing
its exterior (resp. interior) side. So, hidden facets are no problem in these cases. Switching
between inside and outside can be done with Inside and Outside control sequences. They
simply reverse the condition about orientation.

When dealing with non-convex bodies, one has to decompose these bodies into their convex
parts and draw them in a proper order. Thus, we come to ordering. A fairly tricky control
sequence named QuickSort has been designed for this purpose. Its argument is some text
that must contain at least two terms and its output is a control sequence named SortedList
which content is the previous (expanded) list ordered with respect to a SortCriterion.
SortCriterion is a control sequence with two arguments (members of the list which is to be
sorted) whose replacement text is a boolean. By default, these arguments are triples and the
condition is about their actual depth relatively to the current observer. Thus QuickSort (list
of triples) would output SortedList whose replacement text is just the expected ordered list
of triples. One can change this just by adapting SortCriterion in order to sort numerics,
pairs, strings, ...

It wouldn’t be very elegant to sort things this way if one wants to perform a list of actions
with respect to the depth of a list of points in space. A more natural way to do so is to use
the following procedure:

OnDepth;

Refpoint triple;

Action (delimited control sequences) ;



endOnDepth;

What this procedure does is the following: save and reset a few things at the OnDepth sta-
tement; increase the Action_counter and stores the current reference point (a triple) at
Refpoint invocation; stores the delimited control sequences into a variable control sequence
numbered (here there is a little trick that I have been looking for a very very long time)
with the current Action_counter; at endOnDepth orders the list 1,...,Action_counter with
respect to the depth of the reference points and then performs actions with respect to the
sorted list. The most interesting thing with this procedure is that actions may depend on
some parameters just as loop or macro parameters. Note that the SortCriterion has a spe-
cial and temporary meaning when performing endOnDepth: its two arguments are then some
indexes in 1,...,Action_counter and the comparison is done between the depths of the two
corresponding reference points.

§ 9. INTEGRATING TEXT

This is clear that for some nice and funny pictures, one has to integrate text in the three
dimensional space, for instance when moving a text around a picture as I've done once or
twice. This is rather particular. Defining any general scheme for doing so seems to me rather
pointless: it is too complicated, it is hard to imagine what people would like to do, etc.
Anyway, some control sequence that allows to move flat text around would be a basic stuff.
Also, basic programming of such things may help to design special control sequences for more
complicated tasks.

9.1. Simple text. — An object named simpletext is defined in m3Dplain.mp. Its specific
parameters consist, first, in a string describing the alignment ("left", "justify", "center"
or "right") and a string telling where on the text the reference point should be (typically
"right", "urt", "top", "ulft", "left", "11ft", "bot", "1rt" or [say!] "center"), then, in
a list of strings which would be displayed one above another.

For instance, at a top most level (see further on about the scale parameter),

UseObject(simpletext, Origin, (90, O, 90), 10pt, "justify", "ulft",
"Come let me sing into your ear;",
"Those dancing days are gone,",
"All that silk and satin gear;",
"Crouch upon a stone,",
"Wrapping that foul body up",
"In as foul a rag:",
"I carry the sun in a golden cup;",
"The moon in a silver bag."));

would display, at basepoint Origin, with frame the current one rotated by (90, 0,90), with
scale 10 pt, the first part of J.B. Yeats’ poem “Those dancing days are gone”. If it is reasonable,
each line would be justified and the basepoint would correspond to the upper left corner of
the text.

The simpletext object uses a font named by the string mthreeDfont (default value:
"rphvb"). Its design size is defined by the numerical variable named mtheeDfontsize (default
value: 10pt). The numerical parameter baselineskip parameter has its usual role (default
value: 12pt). These parameters are only related to the font, not to the CurrentScale. Thus,
when using simpletext into an object, beware of the scale given in statements like

UseObject(simpletext, origin, Euler angles, scale,

alignment string, location string, list of strings)

5



since scale must be a local scale.

Justification is obtained by stretching the normal space width of the font up to a TextS-
tretchFactor (whose default value is 2 which is quite large). Many successive spaces into a
sentence count as as many spaces: they are not reduced into a single space.

Each character is drawn separately just to make sure that the affine transformation acting
on the character would be approximatively correct if the projection is not linear. Since every
character would have a special scaling, one must set prologues to 1 or 2 in order to not
overflow MetaPost capacities (the whole font will simply be declared at the beginning of the
eps figure and not every character with its own transformation). Of course, one should use
PostScript™ fonts for such use. This is why we have introduced mthreeDfont.

9.2. Curved text. — Planned but not released.

Remark. — Remember that annotating graphics can still be done with usual control sequence
like
label.loc(label, proj(x, y, 2))

since things like simpletext or curvedtext are rather for very special effects.

§ 10. ANIMATIONS

10.1. Introduction. — Denis Roegel demonstrated that it is possible to use usual Unix
tools to merge a list of MetaPost outputs into an animated GIF image (3D package). I've
learned a lot from his “metapost to shell” script. The idea is the following: first, keep track
of the maximum boundary limits of every eps outputs; then convert these eps outputs into
PostScript™ or eps files with these maximum boundary limits; convert these last files to,
say, simple GIF images; then merge all these images into an animation.

10.2. How-to with m3D. — With m3Dplain (as for 3D), (hidden) numerics named xmin_,
xmax_, ymin_ and ymax_ are updated at every figure ends through a control sequence named
compute_bbox (embedded by m3Dplain.mp into extra_endfig). Executing

Animate (numeric, boolean or color)

at the end of the file would produce an external file whose name is, by default, animate-
script. Once the MetaPost job finished, under Unix-like system, execute

bash animate-script

from a console (xterm or such) in the right directory. The final output is jobname.gif where
jobname is the actual name of the MetaPost program.

10.3. Ezxternal programs. — This script requires the following programs: sed and convert.
We choose to use sed to change the boundary parameters of every MetaPost output—the
resulting temporary files are named jobname.xxx.eps where jobname.xxx is the name of
one of the MetaPost outputs. The PostScript™ to GIF conversion was performed with the
Netpbm library in Roegel’s macros and their merging into an animation was performed by
gifmerge (a non standard but very nice Unix program freely available on the web). These
last years, ImageMagick (copyrighted first by Dupont de Nemours, then by ImageMagick
Studio, but quite free in fact) has spread over almost every Linux distribution. It is a very
high quality tool that converts anything into everything, even animations. One of the basic
control sequence is convert which is the one called by the former script.

10.4. Details. — The following provides more detailed explanations.

6



Animate (numeric, boolean or color) Control sequence whose first parameter is the border
in bp provided with no units, and the second one is a color or a boolean. When the second
parameter is a color, this color will be made transparent in the animation. When it is
a boolean, background (color) will be made transparent if the boolean is true, and no
transparency will be made if this boolean is false.

AnimateScript String variable, name of the (bash) script file which is output by Animate.

AnimateFormat String variable, format of the animated image to be constructed. Its default
value is "gif", but one can change it to, say, "mpg" or "mng". The format must be un-
derstood by the convert command, and also some other programs should be available
(mpg2encode for "mpg" format).

AnimateQuality Numerical variable, typical values are 1, 2, 4. ..

AnimateDelay Numerical variable, time in 1/100 seconds between every image in the anima-
tion.

AnimateLoop Numerical variable, parameter for the animation, its default value is equal to
0 (infinite loop).

compute_bbox and also xmin_, xmax_, ymin_, ymax_ have been explained before.

§ 11. OUTPUTTING ENCAPSULED POSTSCRIPT DIRECTLY
DirectEPS filename;

endDirectEPS;

§ 12. SOME SAMPLES

The first picture is made with Fill equal to TechnoFill (I have to change this name one
day), the next one with Fill equal to WireFill (more conventional). I have also added a text
(W.B. Yeats) for testing the simpletext object. There is, in the second picture, a cylinder
but the most important is the use of an object named tube: given a path in space through
x(t), y(t), z(t), a radius r, a range for ¢, this object is what one can expect it to be. Also
computations are quite fragile (second order) and may leads to unexpected and ugly effects.
If the object cylinder is defined in m3D1ib0O1.mp, tube is defined in m3Dplain.mp since I
think it may be a basic tool.

let Fill = SolidFill;%TechnoFill;
ShadedTextFlag := true;

TextColor := red; %
beginfig(thisfig); i e M

0 "Qa'}gqﬁuouy ip

interim prologues := 1; i ggﬁy Py
OnDepth; o o W“r “" ‘Wc @a;
Refpoint(1,0,0); .
Action _— Thagh Uy,

(UseObject(etube, Origin, (0, 90, 0), 1cm,
"(cosd(t*90), 0, t)", 0.25, -3, 0, true, false));

Refpoint(-1,0,0);

Action

(UseObject(etube, Origin, (0, 90, 0), 1cm,
"(cosd(t*90), 0, t)", 0.25, 0, 3, false, true));

7



for a = 0 step 45 until 315:
Refpoint Dir(a+95,0);
Action
(UseObject(simpletext, Origin, (a+95, 0, 90), 5pt, "left", "ulft",
"Come let me sing into your ear;",
"Those dancing days are gone,",
"All that silk and satin gear;",
"Crouch upon a stone,",
"Wrapping that foul body up",
"In as foul a rag:",
"I carry the sun in a golden cup;",
"The moon in a silver bag."));
endfor
endOnDepth;
endfig;

let Fill = WireFill;
beginfig(thisfig);
ObjectColor := (1, 215/255, 0);
for i = -2 upto 2:

UseObject(tube, Origin, (0, -90, 0), 0.75cm,
"(cosd(t*360), sind(t*360), t)", 0.25, i-0.5, i,
if i = -2: true else: false fi, false); endfor

ObjectColor := 0.bwhite;
UseObject(cylinder, (-2.5, 0, 0)*0.75cm, (0, -90, 0), 0.75cm, 0.4, 5);
ObjectColor := (1, 215/255, 0);
for i = -2 upto 2:
UseObject(tube, Origin, (0, -90, 0), 0.75cm,
"(cosd(t*360), sind(t*360), t)", 0.25, i, i+0.5,
if i = 2: true else: false fi, false); endfor
endfig;

Here there are two Sierpinski—-Menger objects: the sponge (object named sierpinskip_sponge)fj
and the gasket (object named sierpinskip_gasket). The sponge is drawn with Fill equal
to SolidFill and the gasket with Fill equal to SolidWireFill. Both objects are defined
in m3D1ib01.mp. The gasket—since it grows as 4™ where n is the level of recursion—is a lot
easier to draw than the sponge—which grows as 20". Reaching the level 3 on my current
MetaPost implementation for the sponge was not an easy task.

ObjectColor:=0.75white;
let Fill = SolidFill;
beginfig(thisfig);
UseObject (sierpinski_sponge, Origin, (10,0,0), 1.5cm, 2);
endfig;

v

beginfig(thisfig);
UseObject(sierpinski_gasket, Origin, (30,0,0), 1.5cm, 5);
endfig;




let Fill = SolidFill;
beginfig(thisfig);
save u; u=3cm;
ObjectColor := (1, 215/255, 0);
ObjectPath :=
(eps, 0.65){right}
.. .{up}(0.45, 1)
--(0.5, 1){down}
...{1left}(0.1,0.6)% bowl
{right}...{down}(0.15,0.55)
...{down}(0.075,0.35){down}
...{down}(0.075, 0.2)
...(0.15,0.15){down}
...{left}(0.1,0.1){right}
...{right}(0.4,0.05)
--(0.4,0){left}
...{left}(eps,0.05);
OnDepth;
% contents
Refpoint (0,0,0.8u);
Action (ObjectColor := red;
UseObject(revolution, (0, O, 0), Origin, u,
(eps, ypart point 0.8 of ObjectPath)..point 0.8 of ObjectPath);
ObjectColor := (1, 215/255, 0););
% bowl
Refpoint (0,0,u);
Action (UseObject(revolution, (0, O, 0), Origin, u,
subpath (0.75,3) of ObjectPath););
% stem
Refpoint (0,0,0.5u);
Action (UseObject(revolution, (0, O, 0), Origin, u,
subpath (3,8) of ObjectPath));
% foot
Refpoint (0,0,0.25u);
Action (UseObject(revolution, (0, O, 0), Origin, u,
subpath (8,11) of ObjectPath));
endOnDepth;
endfig;

Object molecule =
M1 = (0, O, 1); M2 = (1, 0, 0); M3 = (0, 1, 0);
M4 = (-1, 0, 0); M5 = (0, -1, 0); M6 = (0, 0, -1);
save srad, lrad, j; srad := 0.25; lrad := 0.1;
OnDepth;
for i = 1 upto 6:
Refpoint M[i];
Action(ObjectColor:=red;
UseObject (sphere, M[i], Origin, srad));
endfor




for i = 1, 6:
for j =2, 3, 4, 5:
Refpoint 0.5[M[i], M[jI1];
Action(ObjectColor := 0.375white;
SpheresLink(M[i], M[j], srad, srad, lrad));
endfor
endfor
for i = 2 upto 5:
Refpoint 0.5[M[i], M[if i = 5: 2 else: i+l fil];
Action(ObjectColor := 0.375white;
SpheresLink (M[i], M[if i = 5: 2 else: i+1 fi], srad, srad, lrad));
endfor
endOnDepth;
endObject;
let Fill = SolidFill;
beginfig(thisfig);
UseObject(molecule, Origin, Origin, 2cm);
endfig;

This last example shows the use of the object named cylinderlike which is defined in
m3Dplain.mp.

Resolution := 2mm;

let Fill = SolidWireFill;

ObjectColor := 0.b5white;

PenColor := green; 6

YFinePlotFlag:=true; 4

beginfig(thisfig); 2
interim prologues := 1;
pickup thin.nib;
Euler(0,0,0,0.2cm); -10
Frame(-15 step 5 until 15)(-10 step>
Plot3D("4cosd(180/3.14159% (x++y) ) *mexp @
FrameMark (0,0,4);
endFrame;

endfig; 10 15

Its specific parameters are an xOy-cycle path and the height of the cyclinder. Thus, former
picture as be obtained with

let Fill = SolidFill;

ObjectColor := (1, 215/255, 0);
beginfig(thisfig);

UseObject(cylinderlike, (0,0,0),(0,0,0),1cm,
for i= 0 upto 4:
2dir(i/5%360)--dir((i+0.5)/5%360)--
endfor cycle, 1);

endfig;

which is rather simple. Then a complex example of the object revolution

10



beginfig(thisfig);
interim prologues:=1;
Euler(0,0,0,0.5cm);
save h, dh, r; h=4; dh = 1; r=0.75;
Frame(-4 step 2 until 4)
(-4 step 2 until 4)
(-4 step 2 until 4);
Inside;
% hyperboloide une nappe
ObjectColor := (0, 215/255, 1);
UseObject(revolution,Origin,Origin,1,
(r*sqrt(h*h+1), h){-r*h/sqrt(h*h+1),-1}
for y = h-dh step -dh until -h-eps: 0
.. (rxsqrt(yxy+1), y){-r*xy/sqrt(y*xy+1), -1} endfyoyg
% cone 2
ObjectColor := (215/255, 1, 0); 4”4
UseObject(revolution,Origin,Origin,1, (r*h, h)--(eps, 0)--(r*h,-h));
% hyperboloide deux nappes
ObjectColor := (1, 215/255, 0);
for side = "Inside", "Outside":
scantokens side;
UseObject(revolution,Origin,Origin,1,
reverse((eps, 1){right} for y = 1+dh step dh until h+eps:
... (r*xsqrt(y*xy-1), y){r, sqrt(y*y-1)/y} endfor));
endfor
UseObject(revolution,Origin,Origin,1,
(eps, -1){right} for y = 1+dh step dh until h+eps:
... (r*xsqrt(y*y-1), -y){r, -sqrt(y*y-1)/y} endfor);
endFrame;
endfig;

and a Bézier patch which is obtained with the control sequence BezierPatch (control points
are shown if an only if tracingchoices > 0).

tracingchoices:=1;
beginfig(thisfig);
interim prologues := 1
interim CurrentScale :
- 41%
BezierPatch(10, ’
(-1,-1,-0.5), (-1,-0.3,0), (-1,0.3,0), (-1,1,-0.5),
(-0.3,-1,0), (-0.3,-0.3,0.5), (-0.3,0.3,0.5), (-0.3,1,0),

[

1.5cm;

(0.3,-1,0), (0.3,-0.3,0.5), (0.3,0.3,0.5), (0.3,1,0), 4.4
(1,-1,-0.5), (1,-0.3,0), (1,0.3,0), (1,1,-0.5));
endfig;

The object named tube may be too simple in some complex situations like drawing knots:

Resolution:=1mm;

0x:=(1,0,0);
Oy:=(0,1,0);
0z:=(0,0,1);

11




beginfig(thisfig);

UseObject (tube,Origin,0rigin,0.5cm,
"(cosd(t)+2cosd(2t), sind(t)-2sind(2t), 2sind(3t))",
0.5, 360, 0, false, false);

endfig;

That’s why more complex version of this object has been defined: etube (enhanced tube).

beginfig(thisfig);

UseObject(etube,0rigin,Origin,0.5cm,
"(cosd(t)+2cosd(2t), sind(t)-2sind(2t), 2sind(3t))",
0.5, 360, 0, false, false);

endfig;

At last an example of direct EPS output with the use of smooth shadi o

Resolution:=1cm;

0x := (-sqrt(1/2), -sqrt(1/6), sqrt(1/3));
Oy := (sqrt(1/2), -sqrt(1/6), sqrt(1/3));
0z := (0, sqrt(2/3), sqrt(1/3));

ObjectColor := 0.75white;
DirectEPS jobname&"."&decimal (thisfig);
Euler (120, 0, 0, 0.5cm);

OutsideOut;
UseObject(klein_bottle, Origin, Origin, 1);
endDirectEPS;
TABLE OF CONTENTS
INTRODUCTION .

. BASIC CONCEPTS .
. COORDINATES SYSTEM
. EULER ANGLES

. PROJECTION SYSTEM .

. ABOUT THE LIGHT SOURCE
. LOOKING AT OBJECTS FROM OUTSIDE, INSIDE OR BOTH .

1
2
3
4
5. RENDERING PARAMETERS .
6
7
8. ORDERING AND HIDDEN BODIES
9

. INTEGRATING TEXT
9.1. Simple text
9.2. Curved text

10. ANIMATIONS
10.1. Introduction
10.2. How-to with m3D .
10.3. External programs .
10.4. Details

11. OUTPUTTING ENCAPSULED POSTSCRIPT DIRECTLY

N N OO O OOy Oy UL Ot s R WD NN =

12. SOME SAMPLES

12



