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Abstract. We present a numerical framework for the simulation of multiphase flows with
free surfaces, thus considering N incompressible liquid phases together with a vacuum.
An Eulerian model is favored to track the liquid phases, based on several characteristic
functions. The numerical algorithm relies on a time splitting strategy, together with a
two-grid discretization method. Numerical experiments are presented for impulse waves,
and for rigid bodies falling into an incompressible liquid.

1 INTRODUCTION
We address the numerical simulation of three-dimensional multiphase flows with free

surfaces. A model for several liquid phases interacting with one gas phase is presented.
This model is an extension of the one described in [2, 9] and has been originally presented
in [8]. Among all possible approaches (see, e.g., [12, 13]), an Eulerian approach is chosen
to efficiently solve situations with large changes of topologies.

Thus we consider the density-dependent incompressible Navier-Stokes equations mod-
eling the flow of N immiscible incompressible liquid phases separated by interfaces and
one additional gas phase (modeled by a vacuum) separated from the liquids by a free
surface. Such three-dimensional multi-phase flows involves thus a total of N + 1 phases.
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A volume-of-fluid (VOF) formulation involving N indicator functions (one per phase,
identified by its density) is favored for mass conservation. The governing equations of
the model include the density-dependent Navier-Stokes equations for the velocity u and
pressure p, together with N advection equations for the volume fractions ϕ�. The complete
system of partial differential equations is solved by means of a flexible operator splitting
strategy [6], which decouples advection and diffusion phenomena at each time step. A
two-grid method allows to solve transport equations on a fine structured Cartesian grid,
and a Stokes problem, with a variable density and a density-dependent viscosity, on a
coarser mesh of the liquid domain. As also highlighted, e.g., in [1, 3, 4, 10], where several
algorithms are described for interface reconstruction, a particular emphasis is paid on the
numerical approximation of the interfaces between liquid phases and of the free surface
between liquid and the gas phase.

Numerical experiments focus on the numerical simulation of impulse water waves cre-
ated by landslides falling into a lake [11], and the interaction between a rigid body,
modeled as a very viscous incompressible fluid, and an incompressible liquid. All these
examples involve typically two liquid phases and a vacuum.

2 MATHEMATICAL MODEL
Consider Λ a bounded cavity of R3, that contains N immiscible liquids (with N ≥ 2),

whose densities and viscosities are respectively denoted by ρ� and µ�, � = 1, . . . , N . It
is assumed that the region in the cavity not occupied by liquid contains vacuum. For
each phase �, the subset of Λ occupied by the �-th liquid is denoted by Ω�(t), and defined
by a characteristic function ϕ� : Λ × [0, T ) → R. The function ϕ :=

∑N
�=1 ϕ� is the

characteristic function of the global liquid domain Ω(t) =
⋃N

�=1 Ω�(t).
The model problem is to find u : Ω(t) → R3, p : Ω(t) → R, and ϕ� : Λ → R satisfying

the following set of equations:

ρ

(
∂u
∂t

+ (u · ∇)u
)
−∇ · (2µ(ρ)D(u)) + ∇p = ρf (1)

∇ · u = 0 , (2)
∂ϕ�

∂t
+ u · ∇ϕ� = 0 , � = 1 . . . N , (3)

where the density is expressed as ρ =
∑N

�=1 ϕ� ρ� in the liquid space-time domain
{(x, t) | x ∈ Ω(t), t ∈ (0, T )} (ρ = ρ� and µ = µ� in the region occupied by the �-th
liquid). We add appropriate initial and boundary conditions to the equations (1)–(3),
namely no-slip or pure-slip boundary conditions along impermeable walls ∂Ω(t) ∩ ∂Λ.
On the free surface Γ(t) := ∂Ω(t) \ ∂Λ, we enforce a free force condition that reads
−pn + 2µ(ρ)D(u)n = 0. Note that for the impulse waves applications we are interested
in, surface tension effects can be negligible.
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3 NUMERICAL ALGORITHMS
3.1 Generalities

The numerical method for the solution of (1)–(3) relies on an operator splitting algo-
rithm for time discretization and a two-grid method for space discretization. The under-
lying principle in the time discretization is to decouple advection and diffusion operators,
while taking a higher resolution when dealing with the interfaces reconstruction and ap-
proximation. This approach leads to a two-grid method (see Figure 1): the transport
equations are solved on a fine structured Cartesian grid Ch of typical size h (to reduce
numerical diffusion thanks to a small mesh size). On the other hand, the diffusion oper-
ators are solved on a coarse finite element mesh TH of Λ of typical size H. Following [9],
in numerical experiments the sizes of the two grids satisfy H � 5h.

On one hand, the use of a fine Cartesian grid allows numerical diffusion, when solving
the transport equations, to be reduced as much as possible. On the other hand, the use
of a coarse finite element mesh allows the diffusion problem to be solved with sufficient
accuracy and reasonable CPU time.

Figure 1: Illustration of the two-grids method in two space dimensions for liquid 1 (a rigid body in the
limit case when the viscosity is large) falling onto liquid 2 (a flat water surface for instance): a Cartesian
grid of structured cubic cells Ch of typical size h (left) is superimposed with a finite element unstructured
tetrahedral mesh TH of typical size H (right).

For n ≥ 0, let tn = nτ be a sequence of discrete times. Let Ωn
� and Ωn be ap-

proximations of Ω�(tn) and Ω(tn) respectively, defined by Ωn = {x ∈ Λ : ϕn(x) = 1} and
Ωn

� = {x ∈ Λ : ϕn
� (x) = 1}.

3.2 Advection operators
First, we solve the advection operators
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∂u
∂t

+ u · ∇u = 0 , ∂ϕ�

∂t
+ u · ∇ϕ� = 0 , � = 1 . . . N ,

with a forward characteristics method:

un+1/2(x + τun(x)) = un(x), x ∈ Ωn, (4)
ϕn+1
� (x + τun(x)) = ϕn

� (x), x ∈ Ωn
� , � = 1 . . . N. (5)

It allows to obtain the new value of the volume fractions ϕn+1
� (thus to define the new

location Ωn+1
� of each liquid phase), and a predicted value of the liquid velocity un+1/2 in

Ωn+1.
More precisely, the approximations ϕn

� and un at time tn at the center of each cell (ijk)
of Ch are approximated by the piecewise constant values (ϕn

� )ijk and un
ijk. These quantities

are translated by τun
ijk on the time interval (tn, tn+1) along the straight line characteristics

starting in the middle of each cell, and projected onto the fixed grid Ch. This step defines
new cell values (ϕn+1

� )ijk and un+1/2
ijk . The stability of this forward characteristics method

is not restricted by any CFL condition, although accuracy is CFL dependent. A CFL
number up to 5 is used in practice. Details can be found in [8, 9].

The drawbacks of the method include the projection error that spreads (ϕn
� )ijk onto

all the cells overlapped by the transported cell (ijk) leading the numerical diffusion, and
the compression error that comes from values of the volume fraction potentially greater
than one in some cells. To reduce the numerical diffusion or the unphysical mixing of
phases, we use a multiphase version of the SLIC algorithm [2, 9, 14]. On the other hand,
a taylored DECOMPRESSION algorithm is used to reduce the compressibility effect and
guarantee mass conservation. Both algorithms are described in details in [8] and briefly
summarized in the next section.

3.3 Interface reconstruction
Maintaining the accuracy of each sharp interface between phases is important in the

context of immiscible liquid flows to prevent numerical diffusion. There exist various
ways of preventing the numerical diffusion of a transported characteristic function, see,
e.g., [1, 3, 4, 12, 13]. Here, we use a SLIC algorithm before the advection step (4)(5)
Whenever (ϕn

� )ijk ∈ (0, 1), the location of the liquid is condensed to a portion of the cell
(ijk) with relative volume (ϕn

� )ijk. The SLIC procedure has been chosen, over the PLIC
procedure for instance, for its simplicity to be handled within the two-grid framework.
The fact that SLIC is less accurate is compensated by working on a finer structured grid
(for the advection only). We apply recursively the SLIC algorithm described in [14] for
each of the liquid phases: we push the first liquid phase onto the sides or onto the corners
of the cell before advecting it and projecting on the grid, then the second liquid phase,
etc. Details can be found in [8].
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After the interface reconstruction and advection steps, it may happen that some cell
(ijk) in the grid Ch is over-filled, i.e. ϕn+1

ijk =
∑N

�=1(ϕ�)n+1
ijk > 1. Such physically non-

admissible values can indeed occur since the transport-and-project algorithm is not a
divergence-free process. The DECOMPRESSION algorithm is a post-processing tech-
nique used in [9], which has been extended to multiple phases in [8]. The principle is in
two steps: first, we compute the excess of each liquid phase in each cell after advection,
second, we redistribute these amounts proportionally to the amount already included in
the cell in a given arbitrary order. Details can be found in [8].

After the advection, approximations of the velocity un+1/2
H and volume fraction ϕn+1

at tn+1 are numerically interpolated by continuous, piecewise linear functions on TH . An
approximation Ωn+1

H of the liquid domain can then be defined as the union of elements in
TH where ϕn+1

H is greater than 1/2 at at least one vertex.

3.4 Diffusion operators
The final value of the liquid velocity un+1 and pressure pn+1 in Ωn+1 at each time step

is obtained via the solution of an implicit Stokes problem in Ωn+1:

ρn+1 un+1 − un+1/2

τ
− 2∇ ·

(
µ(ρn+1)D(un+1)

)
+ ∇pn+1 = ρn+1fn+1, (6)

∇ · un+1 = 0, (7)

where ρn+1 =
∑N

�=1 ϕ
n+1
� ρ�. The discretization of (6) (7) with a stabilized finite element

(FE) discretization [5] is completed with suitable boundary conditions, at the boundary
of a polyhedral approximation Ωn+1

H of Ωn+1. In particular, the density and viscosity are
defined respectively by constant approximations ρn+1

H and µn+1
H , on each element of the

mesh TH by averaging the values at the vertices of the element.

4 NUMERICAL EXPERIMENTS
We present two types of numerical experiments. First the simulation of a landslide wave

acts as a validation and benchmark example. Second the simulation of waves created by
the fall of rigid bodies is discussed.

4.1 Landslide wave
The simulation of a landslide wave created by a granular slide on an inclined plane

is presented. The landslide is modeled by a Newtonian fluid, with a large viscosity µ =
105 [Pa s]. Following [7], we consider a bulk slide of dimensions 0.6 × 0.118 × 0.472 [m3]
with density 1678 [kg m−3], which slides on a 45 degree ramp that ends in a channel with
0.5 [m] width and 3.43 [m] length. The slide impact velocity value, v = 4.67 [m s−1],
is determined by the experimental process and used as initial condition of the numerical
simulations, and the water depth is initially equal to 0.3 [m].
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A probe is located in the channel at x = 1.43 [m] and is used to compare experimental
and calculated results. Figure 2 shows snapshots of a three-dimensional view of the
simulation. Figure 3 (left) illustrates the relative wave elevation versus the relative time
and a comparison with experimental results. Figure 3 (right) illustrates the convergence
when the discretization mesh size tends to zero (three discretizations with (h = 0.005, H =
0.025, τ = 0.02), (h = 0.0025, H = 0.0167, τ = 0.01), (h = 0.0025, H = 0.0125, τ =
0.005), have been considered).

Figure 2: Wave generated by a landslide; snapshots of the simulation at times t = 4 and t = 8 [s].
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Figure 3: Wave generated by a landslide; free surface elevation at x = 1.43 m. Numerical results on the
finest mesh. Left: Comparison between experimental data and numerical results with µ = 105. Right:
Grid convergence.

4.2 3D rigid bodies impact
We consider a rigid body falling into a water tank under the influence of gravity forces

and initial conditions, that create a full three-dimensional wave that generalizes the im-
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pulse waves simulation in pseudo-two-dimensional geometries from the previous section.
In the first example, we consider a rigid ball (ρ = 2000 [kg/m3] , µ = 106 [Pa s]) falling

into a flat surface of water. The cavity dimensions are 2 × 2 × 10 [m3], while the ball
is initially located at (0, 0, 8) with radius 1.0 [m], and zero initial velocity. In this case,
the capillary distance is approximately equal to 1 [cm], and thus surface tension effects
are impossible to track with a reasonable mesh size and can be neglected. The water
surface is located at height z = 4 [m]. The time step is 0.05 [s]. The results are illustrated
in a cut in the middle of the computation domain. Figure 4 visualizes snapshots of the
solid motion and the resulting, centrally located, impulse wave (or jet). The secondary
droplets (the so-called wedding cake effect) are not tracked on this scale due to the mesh
resolution.

Next we consider the same rigid body falling into two layers of liquid. The upper layer
of fluid, located between z = 2 [m] and z = 4 [m], has density ρ = 1000 [kg/m3] and
viscosity µ = 10−2 [Pa s]. The lower layer of fluid, located below z = 2 [m], has density
ρ = 2000 [kg/m3] and viscosity µ = 10 [Pa s]. Since the second layer of fluid is as dense
as the rigid body, the rigid ball is going through both layers and eventually stabilizes in
an equilibrium state that is approximately at the same height as the second layer of fluid
(although this equilibrium position is not well-known from the modeling point of view to
the best of our knowledge) (see Figure 5 for an illustration)

Finally we consider the same setup with two layers of fluid. However we consider a
lower layer of fluid, located below z = 2 [m], with density ρ = 3000 [kg/m3] and viscosity
µ = 1 [Pa s]. Since the second layer of fluid is more dense than the rigid body, the rigid
ball does not go through the bottom layer. Figure 6 shows how the ball ends up between
the two fluids in an equilibrium state in which the materials are ordered from the smallest
to the highest density. Still a jet appears due do the reaction of the lighter fluid on top.

5 CONCLUSIONS
We have presented a numerical model for the density-dependent incompressible Navier-

Stokes equations based on a VOF formulation. This model allows for the numerical
simulation of multiphase flows involving an arbitrary number of immiscible liquid phases,
together with a vacuum phase separated with a free surface. The numerical algorithm
is based on an operator splitting strategy and a two-grid method. Numerical results
have been presented for impulse waves (i) to validate the method with one example
having experimental data available, and (ii) to show the efficiency of a model based
on incompressible liquids for the numerical simulation of three-dimensional rigid bodies
interacting with liquids.
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Figure 4: Nearly rigid ball falling into a water tank. Snapshots of the solution at times t = 0 [s]
(three-dimensional view) and t = 0.5, 1, 1.5, 2 and 2.5 [s] (view along a vertical cut in the middle of the
computational domain). Visualization of the ball location and wave propagation.
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Figure 5: Rigid ball falling into a water tank with two layers of two liquids (bottom: light fluid).
Snapshots of the solution at times t = 0 [s] (three-dimensional view) and t = 1, 2, 3, 4 and 5 [s] (view
along a vertical cut in the middle of the computational domain). Visualization of the ball location and
wave propagation.

REFERENCES
[1] H. T. Ahn and M. Shashkov. Multi-material interface reconstruction on generalized

polyhedral meshes. J. Comput. Phys., 226(2):2096–2132, 2007.

[2] A. Caboussat, M. Picasso, and J. Rappaz. Numerical simulation of free surface incom-

9

5389



A. Caboussat, N. James, S. Boyaval and M. Picasso

Figure 6: Rigid ball falling into a water tank with two layers of two liquids (bottom: dense fluid).
Snapshots of the solution at times t = 0 [s] (three-dimensional view) and t = 1, 2, 3, 4 and 5 [s] (view
along a vertical cut in the middle of the computational domain). Visualization of the ball location and
wave propagation.

pressible liquid flows surrounded by compressible gas. J. Comput. Phys., 203(2):626–
649, 2005.

[3] B. Y. Choi and M. Bussmann. A piecewise linear approach to volume tracking a
triple point. Int. J. Numer. Methods Fluids, 53(6):1005–1018, 2007.

10

5390



A. Caboussat, N. James, S. Boyaval and M. Picasso

[4] V. Dyadechko and M. Shashkov. Reconstruction of multi-material interfaces from
moment data. J. Comput. Phys., 227(11):5361–5384, 2008.

[5] L. P. Franca and S. L. Frey. Stabilized finite element methods: II. the incompressible
Navier-Stokes equations. Comp. Meth. Appl. Mech. Engrg, 99(2-3):209–233, 1992.

[6] R. Glowinski. Finite Element Method For Incompressible Viscous Flow, volume IX
of Handbook of Numerical Analysis (P.G. Ciarlet, J.L. Lions eds), pages 3–1176.
Elsevier, Amsterdam, 2003.

[7] V. Heller and W. H. Hager. Impulse product parameter in landslide generated impulse
waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 136:145–155,
2010.

[8] N. James, S. Boyaval, A. Caboussat, and M. Picasso. Numerical simulation of 3d
free surface flows: the case of multiple incompressible liquid phases. Int. J. Numer.
Meth. Fluids, submitted, 2014.

[9] V. Maronnier, M. Picasso, and J. Rappaz. Numerical simulation of three-dimensional
free surface flows. Int. J. Numer. Meth. Fluids, 42(7):697–716, 2003.

[10] S. P. Schofield, M. A. Christon, V. Dyadechko, R. V. Garimella, R. B. Lowrie, and
B. K. Swartz. Multi-material incompressible flow simulation using the moment-of-
fluid method. Int. J. Numer. Meth. Fluids, 63(8):931–952, 2010.

[11] A. Serrano-Pacheco, J. Murillo, and P. Garcia-Navarro. A finite volume method for
the simulation of the waves generated by landslides. Journal of Hydrology, 373(3-
4):273–289, 2009.

[12] M. Sussman. A second order coupled level set and volume-of-fluid method for com-
puting growth and collapse of vapor bubbles. J. Comput. Phys., 187(1):110–136,
2003.

[13] G. Tryggvason, R. Scardovelli, and S. Zaleski. Direct numerical simulations of gas-
liquid multiphase flows. Cambridge University Press, Cambridge, 2011.

[14] Noh W.F. and Woodward Paul. SLIC (simple line interface calculation). Proceed-
ings of the Fifth International Conference on Numerical Methods in Fluid Dynamics,
59:330–340, 1976.

11

5391


