
LıE MANUAL
describing LıE version 2.2.2

Marc A. A. van Leeuwen
Arjeh M. Cohen

Bert Lisser

LıE is a software package for Lie group theoretical computations

developed by the

Computer Algebra Group of
CWI

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

LıE LıE LıE LıE LıE LıE LıE LıE
LıE LıE LıE LıE LıE LıE LıE LıE
LıE LıE LıE LıE LıE LıE
LıE LıE LıE LıE LıE LıE
LıE LıE LıE LıE LıE LıE LıE LıE
LıE LıE LıE LıE LıE LıE LıE LıE
LıE LıE LıE LıE LıE LıE
LıE LıE LıE LıE
LıE LıE LıE LıE LıE LıE LıE LıE LıE
LıE LıE LıE LıE LıE LıE LıE LıE LıE

Chapter 1 Introduction 1

LıE Manual

Chapter 1. INTRODUCTION

LıE is the name of a software package under development at CWI since January 1988.
Its purpose is to enable mathematicians and physicists to obtain on-line information
as well as to interactively perform computations of a Lie group theoretic nature. It
focuses on the representation theory of complex semisimple (reductive) Lie groups
and algebras, and on the structure of their Weyl groups and root systems.

The basic objects of computation are vectors and matrices with integer en-
tries, and polynomials with integral coefficients. These objects are used to represent
weights, (sets of) roots, characters and similar objects relating to Lie groups and al-
gebras. LıE does not compute directly with elements of the Lie groups and algebras
themselves, but the computations may be parametrised by the type of the Lie group
or algebra for which they should be performed. Our primary goal in realising the
present version has been to cover (on-line) the mathematical content of the following
three books:

[Tits] J. Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Lecture
Notes in Math. 40, Springer, Berlin, 1967.

[BMP] M. R. Bremner, R. V. Moody, J. Patera, Tables of dominant weight multiplicities
for representations of simple Lie algebras, Monographs and Textbooks in Pure
and Appl. Math. 90, Dekker, New York, 1985.

[McKPa] W. G. McKay & J. Patera, Tables of dimensions, indices and branching rules for
representations of simple Lie algebras, Lecture Notes in Pure and Appl. Math.
69, Dekker, New York, 1981.

The package establishes an interactive environment from which commands can
be given, involving basic programming primitives as well as powerful built-in mathe-
matical functions (the package can be run in batch mode as well.) These commands
are read by an interpreter built into the package and passed through to the core of
the system: a collection of programs representing the various available mathemati-
cal functions. Furthermore, the interpreter offers on-line facilities which explain the
operations and functions available, give background information about Lie group the-
oretical concepts, and give information about currently valid definitions and values.

LıE is written in C, and can be made available on any system running UNIX or
comparable operating systems, and (with a little more effort) on many other ma-
chines with a C-compiler. The interpreter has been set up with the help of the
UNIX program “yacc”. The present version has been tested on following com-
puters: SGI and SUN workstations. Since August 1996, LıE is available for free

2 LıE Manual

through the WWW, or by anonymous ftp. For information about acquiring LıE see
the WWW page http://www.cwi.nl/~maavl/LiE, or contact by anonymous ftp the
machine ftp.cwi.nl and go to the directory pub/maavl. You may also contact the
authours by electronic mail: Arjeh M. Cohen amc@win.tue.ln or Marc van Leeuwen
M.van.Leeuwen@cwi.nl.

1.1. About the content of this manual

Chapter 2 explains the environment offered by the LıE interpreter. It explains how to
evaluate expressions, call built-in functions, and invoke the on-line help facilities. It
also defines a programming language in which users may define their own algorithms,
making use of the built-in operations and functions. The interpreter recognises the
following types of objects.

type name example comment
integer int -12344321267 arbitrary size
vector vec [1,2,-7,6,9,8] machine size integer entries
matrix mat [[1,2],[3,-4]] row length should not vary
polynomial pol X[1,0]-7X[3,-5] multivariate Laurent polynomials
group grp A6A6E8F4T4 types of simple factors (T4 = (C∗)4)
text tex "any string" quotes are required
void vid to unify functions and procedures

The about 100 mathematical functions which form the heart of the LıE package are
described in detail in Chapter 4; they involve root systems, Weyl groups, multiplicities
and degrees of highest weight modules, tensor product decompositions, branching (i.e.,
restriction of modules) to reductive subgroups, centralisers of semisimple elements,
and the spectra of such elements on modules. In order to describe these functions, it
is necessary to introduce the relevant mathematical terms and concepts, and the way
in which they are represented in LıE; these matters are described in Chapter 3.

The LıE programming language makes it possible to customise and extend the
package with more mathematical functions; examples of how this can be done are
given in Chapter 5.

1.2. Theoretical aspects

The package is mainly intended for computations concerning semisimple Lie groups
and algebras. Since reductive groups provide a more general and at the same time
more convenient setting, they form the class of groups we have chosen to work with.
For notational convenience, we give names only to groups whose semisimple part is
simply connected. Since all other reductive groups are quotients of these by finite
central subgroups, we feel that this is not a major limitation.

Most mathematical functions implemented in LıE have a Lie group as argument.
No multiplication of Lie algebra or Lie group elements is available. The notion of group
we use is hardly more than an indication of its isomorphism class. The computations

Chapter 1 Introduction 3

are mainly done on the level of vectors, matrices and polynomials corresponding
to various relevant objects in Lie group theory. For instance, representations are
parametrised by vectors via the so-called highest weights, and the elements of the
Weyl group of a Lie group appear in different guises (they can be represented both as
vectors, indicating a product of fundamental reflections, and as matrices, indicating
the image in the reflection representation).

The emphasis has been on the development of basic routines that perform the
mathematical operations in the greatest generality. Therefore, it is quite likely that
greater speed could have been achieved in specific cases with more specialised pro-
grams. In one instance we have also realised algorithms specific for certain types of
groups, namely the Young tableau techniques, giving fast implementations for certain
computations in the special linear groups (notably the Littlewood-Richardson rule).

1.3. The authors

Arjeh M. Cohen developed the idea, wrote some of the mathematical functions and a
first version of this manual, and is the project leader. Marc van Leeuwen is the main
author of this manual, has implemented a number of algorithms, has rewritten most
of the mathematical functions to comply with the standards of version 2.0, and has
since reworked most of the code, improving algorithms and documenting it according
to the literate programming paradigm. Bert Lisser has built the interpreter, provided
the information for Chapter 2 of this manual, and has been the main engineer of the
project throughout. An earlier version of the package was constructed with aid of
Ron Sommeling, Bart de Smit and Bert Ruitenburg, who are no longer involved in
the project; we hope that they still appreciate what we have done to LıE.

4 LıE Manual

LıE Manual

Chapter 2. THE INTERPRETER

In this chapter, the facts needed to run a successful LıE session are described. We
discuss the features of the interactive shell, which interprets the commands entered
during a session. After an introductory session, we give more details of the types
of objects the interpreter recognises. Then, in Section 2.3, the operators defined in
the package are listed, and in Section 2.4, the functions which are not related to Lie
groups. Section 2.5 discusses the ingredients needed to construct larger programs,
and Section 2.6 shows how to define ones own functions. Finally Section 2.7 describes
some features providing the user with additional control over LıE. A note about the
typography: in the introductory section of this chapter, all commands as typed by the
user and the responses of LıE are reproduced in typewriter type style, to indicate the
exact appearance on the screen, but in the remainder of this manual a more aestheti-
cally pleasing form of rendering expressions is chosen, distinguishing identifiers (italic
type), keywords (bold type) and commands directly addressed to the interpreter of
LıE (typewriter type).

2.1. A first look

After LıE has been installed on your computer (see the leaflet accompanying the soft-
ware package for instructions about how to do this) an interactive session of LıE can be
started by entering the command LiE to the computer (or by whatever other means
the operating environment may provide for starting up programs). You will then
enter the Lie shell, a sign-on message will be printed, followed by the prompt ‘>’. In
this mode, you can enter commands. A command will be executed upon completion
of the line by hitting 〈Return〉. The command will be read by an interpreter built
into LıE, which if necessary will invoke some of the mathematical functions, or per-
form some other action. The system will respond to the command by returning an
answer if relevant. In the examples given below, the lines starting with the prompt
character ‘>’ are the commands as typed by the user, the other lines are LıE’s response.

A first concern after entering LıE is of course how one can get out again; to this
end it suffices to type

> quit

and LıE will sign off with ‘end program’ and stop (synonyms for quit are exit and @).
Should you at any moment find that LıE has embarked on a (seemingly) endless com-
putation, then you can always force it to abort the computation and prompt for a new
command by typing 〈control〉C, i.e., press the control key and the c simultaneously.

Chapter 2 The Interpreter 5

The simplest form of commands are those instructing LıE to perform arithmetic
computations; the interpreter then behaves like a pocket calculator, except that it
only deals with integral values, which may on the other hand be arbitrarily large. So
one may simply enter an arithmetic expression, which will then be evaluated and the
resulting value is printed.

> 19+68

87

> 1111111111*1111111111

1234567900987654321

> $/1111111111

1111111111

> -$ % 1000003

892225

>

Here $ means “the previous result”, and % means “modulo”. Variables may be used
to save values in a more permanent way than in $.

> a=345

> a^2+3*a-5

120055

> $/7*a

5916750

Besides integer arithmetic, LıE also performs calculations with vectors and matrices
with integer entries. The ordinary arithmetic operators can be used to indicate vector
and matrix addition and multiplication. In addition an interpretation is often given
to these operators when used with certain other combinations of operands, including
some cases where no such meaning is generally accepted. It has been proven quite
useful however to have a simple notation for certain frequently used operations (mostly
with operands of mixed types); the arithmetic operators lend themselves well to the
purpose, even if these operations do not always satisfy the same laws as the arithmetic
operations usually associated with the operators. Here are a few operations with
vectors; rather than giving complete definitions of the operations invoked—this will
be done further on in this chapter—we invite the reader to try to guess the definitions
from the examples.

> v=[3,2,6873,-38]

> v

[3,2,6873,-38]

> v[3]

6873

> v[5]

Index (= 5) out of range

(in _select)

6 LıE Manual

> v+v

[6,4,13746,-76]

> v*v

47239586

> v+234786

[3,2,6873,-38,234786]

> v-3

[3,2,-38]

> v^v

[3,2,6873,-38,3,2,6873,-38]

We can play similarly with matrices.

> [[1,0,3,3], [12,4,-4,7], [-1,9,8,0], [3,-5,-2,9]]

[[1, 0, 3,3]

,[12, 4,-4,7]

,[-1, 9, 8,0]

,[3,-5,-2,9]

]

> m=$

> *m

[[1,12,-1, 3]

,[0, 4, 9,-5]

,[3,-4, 8,-2]

,[3, 7, 0, 9]

]

> m^3

[[220, 87, 81, 375]

,[-168,-1089, 13,1013]

,[1550, 357,-55,1593]

,[-854, -652, 98,-170]

]

> v*m

[-6960,62055,55061,-319]

> m*v

[20508,-27714,54999,-14089]

> v*m*v

378549605

> m+v

Chapter 2 The Interpreter 7

[[1, 0, 3, 3]

,[12, 4, -4, 7]

,[-1, 9, 8, 0]

,[3,-5, -2, 9]

,[3, 2,6873,-38]

]

> m-2

[[1, 0, 3,3]

,[-1, 9, 8,0]

,[3,-5,-2,9]

]

Apart from integers, vectors and matrices, LıE can also calculate with (multivari-
ate) polynomials. Because of the specific intended applications to Lie group theory,
polynomials are represented in a way that may seem a bit unusual. First of all, there
are no formal names such as x, y, . . . , for the polynomial indeterminates: the indeter-
minates are simply discriminated by their position in a fixed ordering, and monomials
are represented by the symbol ‘X’ followed by a vector as “exponent”, whose first entry
gives the exponent of the first indeterminate, the second entry the exponent of the
second indeterminate, etc. Moreover, LıE will not mix terms with different numbers
of indeterminates, so zeros should be added if necessary to make all exponents the
same size. Finally negative integer entries are allowed in the exponents, so we are in
fact dealing with Laurent polynomials with coefficients in Z. Here is a session with
some simple polynomial calculations.

> X[1,2]

1X[1,2]

> -3*$

-3X[1,2]

> $+4X[-1,4]

4X[-1,4] - 3X[1,2]

> $^2

16X[-2,8] - 24X[0,6] + 9X[2,4]

> $+X[6,7,8]

Number of variables in polynomials unequal

(2 <-> 3 variables).

(in +)

> (4X[-1,4]-3X[1,2])*(X[2,0]-X[0,-4])

-4X[-1, 0] + 3X[1,-2] + 4X[1, 4] - 3X[3, 2]

> $-$

0X[0,0]

8 LıE Manual

The core of LıE is a batch of built-in functions which can be called by the inter-
preter. We give two simple examples of such calls:

> partitions(6)

[[6,0,0,0,0,0]

,[5,1,0,0,0,0]

,[4,2,0,0,0,0]

,[4,1,1,0,0,0]

,[3,3,0,0,0,0]

,[3,2,1,0,0,0]

,[3,1,1,1,0,0]

,[2,2,2,0,0,0]

,[2,2,1,1,0,0]

,[2,1,1,1,1,0]

,[1,1,1,1,1,1]

]

> diagram(E8)

O 2

|

|

O---O---O---O---O---O---O

1 3 4 5 6 7 8

E8

The former call returns the matrix whose rows represent partitions of 6; the latter
call prints the diagram shown, but does not deliver a resulting value (for this reason
some people might wish to call diagram a procedure rather than a function).

The user may also define in functions that are not built into LıE, for example

> f(int x)=2*x

> f(984)

1968

Instead of giving the resulting value at once, as in this example, one may also specify
a sequence of statements to be executed first (separated by semicolons), followed by
the expression giving the result.

> f(int n)= a=3*n-7; if a<0 then a=-a fi; 7^a+a^3-4*a-57

> f(2)

-53

> f(5)

5765224

Chapter 2 The Interpreter 9

For conditional statements (and expressions) as in the above example, logical ex-
pressions are useful; there is a number of relational and logical operators, which are
represented in the same style as in the programming language “C”. Some examples
of logical expressions are

i<=n

n==8

p>10 && p!=13

f(3)<=7 || k+l >= 5

Some commands describe an action to be performed rather than a value to be com-
puted, and are called statements; examples are

a=[2,3]; b=7; v[2]=7

for i=1 to n do print(i*i) od

Statements do not yield a value, so unless the specified action explicitly produces
output (as in the case of print), nothing will appear on the screen. In the last
example we showed a loop entered directly to the interpreter; here is an example of
the use of a loop within a function

> sum_sq(vec v)= s=0; for i=1 to size(v) do s=s+v[i]^2 od; s

> sum_sq([1,-3,5,2,7])

88

There are commands for global control of LıE, such as ‘quit’ already mentioned
above, and others to control the input and output flow. Some examples of the latter
are

on monitor

edit script

the first of which starts recording the session on a file “monfil”, and the second of
which invokes an editor on the file “script”. (Note that some of these commands
are machine dependent: some computer systems do not provide a standard editor,
and for such computers an edit command might be simply ignored). The file name
monfil is the default name LıE chooses, although it can be altered by the monfil

command. The name script on the other hand could be replaced by any other file
name; that file should however contain only LıE commands (and comments), because
the file will be read by LıE automatically upon completion of the edit session.

Finally, there are some features of general assistance, such as

? functions

listvars

learn lie group

The first of these lists all mathematical functions built into LıE, the second lists all
variables that the user has been given a value, and the third prints a text indicating
what the authors of LıE think a Lie group is.

10 LıE Manual

The objects that LıE can manipulate are of the following types (in each case the
indication LıE uses to designate the type is added in parentheses): integer (int), vector
(vec), matrix (mat), polynomial (pol), group (grp), or text (tex). There is also the
indication vid, which stands for void; this is not really a type since there is no void
value that could be assigned to a variable or passed to a function, but it is used to
indicate the result type of a function that does not return any value. Variables do
not have a declared type: they simply assume the type of any value that is assigned
to them. However, once they have been created, variables cannot change their type
during a computation (i.e., from within a user defined function or a loop or even from
within a conditional statement): their type can only change by an assignment typed
directly by the user.

We end this introductory section with a few details that are important to know
when you start using LıE.

2.1.1. Command prolongation

As mentioned above, a command normally ends at the end of a line. We have im-
plemented this rule because, usually, one line suffices for a command. However, if
the line ends with one of the characters ‘+’, ‘-’, ‘*’, ‘;’, ‘,’ or ‘\’ (none of which can
be the last character of a valid command) then the command will be considered to
continue onto the next line. When used in this way the character ‘\’ is equivalent to
a space (and it can therefore be inserted at almost any convenient place), while the
other characters stand for themselves. A command is also assumed to continue be-
yond the end of a line when there are still unclosed left parentheses, brackets, braces,
or unfinished conditional or loop clauses, which means that in most cases you need
not bother to type any backslashes. To indicate that the remainder of a command is
awaited, the prompt changes from ‘>’ to ‘\’. This command prolongation cannot be
used after ?, help, or :, or within a string or comment.

2.1.2. Getting help

Use ?, help, or ?help to make enquiries. Other text following ? can be used to
get more detailed information about a particular topic. For example, ?functions

returns the list of built-in functions. The command ?〈name〉 returns information
about the variable, function(s) or operator(s) with the specified name. So, for instance
?Lie_rank will return information on the built-in function Lie rank. For built-in
functions, similar information can also be found in Chapter 4 of this manual.

The commands listvars, listfuns and listops respectively print lists of the
variables, and functions defined in the session, and of the operators known to LıE
(cf. Section 2.3).

2.1.3. Identifiers

Identifiers, which represent variables or functions, consist of a sequence of letters
(lower or upper case), digits and underscores; the first character must be a letter,
and if it is an upper case letter it must be immediately followed by a non-digit (this
requirement is necessary in order to be able to distinguish between identifiers and
groups).

Chapter 2 The Interpreter 11

There is also a special variable $, which contains at any time the value returned
by the last command that did in fact deliver a value (so assignments and calls for
help etc. do not alter the value of $). Note that only commands set the value of $;
this implies that

> 10

10

> 13; $

returns 10 rather than 13.

2.1.4. File management

Commands contained in a file named 〈name〉 can be read by entering the command
read 〈name〉. The same file can be edited by issuing the command edit 〈name〉.
Once a filename has been given it becomes the default, and can be omitted from
following read or edit commands. When the editing session is completed, the file is
automatically read in. There are also possiblities for recording results permanently
on output files; see Section 2.7.1 for further details.

2.1.5. Comments

Comments may be given anywhere within a line of input, and are enclosed between
a pair of characters ‘#’. If there is no closing ‘#’ on the same line as the opening one,
the comment is closed at the end of the line.

2.1.6. Escape to the shell

The character ‘:’ appearing as the first character of a command line means that
the remainder of the line is passed to the shell (this feature applies to UNIX imple-
mentations of LıE only). It is processed by a newly created subshell, not the (login)
shell from which LıE was called (so for instance it makes little sense to invoke a cd

command in this manner). If a sequence of commands is to be given to the shell, it
can be convenient to type ‘: sh’ or ‘: csh’, and to return to LıE after the sequence
of commands by typing ‘exit’.

2.2. Values

As mentioned above, LıE handles values of the types integer, vector, matrix, polyno-
mial, group and text. We now treat these kinds of values in some greater detail.

2.2.1. Integer

Integers are represented in LıE by values of type int. As usual, they may be denoted by
a sequence of digits, optionally preceded by a minus sign (although, strictly speaking
‘−1’ is already a formula, consisting of the monadic ‘−’ operator applied to the positive
integer 1).

Integers and coefficients of polynomials effectively have unlimited length. In
contrast, the integer entries of vectors, matrices and the exponents in polynomials
are restricted by the word size of the machine (usually this allows values up to 231

12 LıE Manual

in magnitude to be distinguished). This restriction is made for efficiency reasons;
for most purposes it is hardly a limitation since the running time of most Lie group
theoretic functions becomes excessively large long before the entries of the vectors and
matrices occurring as parameters or results of these functions reach this limit. Note
that whereas a warning is issued if one tries to insert too big an integer into a vector,
matrix, or polynomial exponent, no such warning is generated when overflow occurs
within an operation on vectors, matrices or (quite unlikely) polynomials themselves,
e.g., when calculating a high power of a matrix.

2.2.2. Vector

An object of type vec is a vector, which consists of a sequence of integers: it has
a size s (which may be 0), and entries indexed by the numbers 1, . . . , s. A vector
may be formed by a comma-separated list of integer expressions enclosed in square
brackets, such as [1,9,6,8], [32*13*9497,30-9*101*677] or []. It is also possible
to denote vectors whose size is determined at run time by means of the function
calls null(n) and all one(n), where in either case n stands for an arbitrary integer
expression whose value determines the size of the vector created; in the case of null
all entries are set to 0, while in case of all one they are all set to 1. If v is a vector of
size n, then its individual entries may be referred to as v[i] for 1 ≤ i ≤ n; if v is in fact
a vector variable (rather than some other vector valued expression) then assignment
to the individual entries v[i] is possible. The built-in function size allows the size of
the vector v to be obtained as size(v).

2.2.3. Matrix

An object of type mat is a matrix, consisting of a rectangular array of integers:
it has a number of rows r and a number of columns c, and integer entries in-
dexed by pairs i, j of integers with 1 ≤ i ≤ r and 1 ≤ j ≤ c. A matrix may be
formed by a comma-separated list of vector expressions enclosed in square brackets,
such as [[5,-4],[-6,5],[4-7,11]], or [v,-v,[35,61],4*v] after having assigned
v=[6,9]. Since matrices are always rectangular, it is required that all vectors occur-
ring in the list have the same size: they will be taken in order to form the successive
rows of the matrix. Note that although it is possible to denote matrices with 0 columns
in this way, one cannot represent matrices with 0 rows by such an expression; such
matrices can however be created with the a call of the form null(0, n). Very often
matrices in LıE are interpreted as sets or sequences of vectors, in which case these are
always taken to be the rows (rather than the columns) of the matrix. The notation
for entering matrices is in accordance with this convention. The functions null and
all one can be used to create matrices as well as vectors: to this end they should be
called with two integer arguments, the first of which determines the number of rows,
and the second the number of columns of the matrix. Like with vectors, the entries
are either all set to 0 or to 1, depending on whether null or all one was used.

A matrix is printed in the same way as it is entered, with the vectors representing
the rows on separate lines, and with the opening and closing brackets and commas of
the outer level in the first non-empty column (note however that it is possible to alter

Chapter 2 The Interpreter 13

the style of printing such that a matrix appears just as a rectangular block of numbers
enclosed in vertical bars, by means of the system parameter lprint, see Section 2.7.4).
For matrices with 0 rows this method would lead to ambiguity; therefore null(0,n)
is printed instead in such cases.

Since a matrix is often viewed as a sequence of its rows, the i-th row of a matrix m
with r rows, may be referred to as m[i], for 1 ≤ i ≤ r; the individual entries of the
matrix may be referred to either as m[i, j] or as m[i][j], both denoting the same entry.
If m is a matrix variable then assignment is possible both to m[i] and to m[i, j] (but
not to m[i][j] because although m[i] is a vector expression, it is not a variable). If m
is a matrix and v is a vector, then the expression m|v denotes the index of the first
row of m which is equal to v, or 0 if no such row exists. Similarly to the function size
for vectors, there are functions n rows and n cols to determine the number of rows
and columns of matrices.

2.2.4. Polynomials

An object of type pol is a Laurent polynomial in a fixed number n of indetermi-
nates. It consists of a set of terms, where each term has an integer coefficient, and
an exponent, which is a vector of n integers, the i-th of which represents the power
in which the i-th indeterminate occurs. Terms with equal exponents are automati-
cally combined by LıE, whence it is guaranteed that all terms occurring have distinct
exponents. There is always at least one term: the zero polynomial has a single term
with coefficient 0 and a zero vector of the appropriate size as exponent; apart from
this case coefficients are always non-zero. Terms are denoted as an optional integer
coefficient (the default is 1) followed by the symbol X followed by a vector as expo-
nent; polynomials with multiple terms can be formed by addition and subtraction of
terms. For polynomials in 1 indeterminate one may also write exponent as a single
integer, which will be automatically converted into a vector of size 1. Polynomials
are printed in the same format as they are entered (assuming the default setting of
the lprint parameter), with coefficients always explicitly represented (even if equal
to 1) and exponents always rendered as vectors. Polynomials in n indeterminates
corresponding to the integer numbers 0 and 1 can be formed by poly null(n) and
poly one(n) respectively; these calls are equivalent to 0X null(n) and 1X null(n).

The terms of a polynomial are always automatically sorted; the criterion by
which they are sorted depends on the setting of system parameters. The default is
lexicographic ordering of the exponents, but the user may also select total degree
ordering (in which case the sum of the exponent entries takes precedence over the
lexicographic ordering) or height ordering (which is useful when the exponents are
weights for the default group: the term with highest weight as exponent will be
sorted into the last position) and the reverse ordering of any of these possibilities.
See Section 2.7.4 for the commands to select the sorting criterion. This ordering
influences the selection of terms: the i-th term of a polynomial p can be referred to
as p[i]. Terms are not a separate data type in LıE however, so the selection will return
a polynomial consisting of a single term. The coefficient of the i-th term of p can be
obtained as coef (p, i), and the exponent of that term as expon(p, i) (this is a vector).

14 LıE Manual

Further functions to obtain information about polynomials are n vars, giving the
number of indeterminates, length, giving the number of non-zero terms, deg, giving
the total degree of p, i.e., the largest integer obtainable as sum of entries of some
exponent. It is not only possible to select coefficients by their position, they may also
be selected by exponent: p|v denotes the coefficient of the term with exponent v, or
zero if no such term exists. One may also assign to p|v in order to alter the coefficient
of the term with exponent v; this may cause a term to be created or deleted when
appropriate, as the following example shows.

> p = X[1,5]

> p

1X[1,5]

> p|[3,7]=-5

> p

1X[1,5] - 5X[3,7]

> p|[1,5]=8; p

8X[1,5] - 5X[3,7]

> p|[1,5]=0; p

-5X[3,7]

It is also possible to supersede an entire term p[i] of a polynomial by assigning another
term to it, but note that because the polynomial is normalised afterwards by possibly
rearranging and merging of terms, it is not generally true after assigning p[i] = term
that the condition p[i] == term holds.

2.2.5. Group

A value of type grp specifies an isomorphism class of reductive complex Lie groups
with simply connected semisimple part. An object of type grp records a (possibly
empty) sequence of simple groups, and the dimension of the central torus. For details
about the meaning of these terms we refer to Section 3.1. At this point it suffices
to know that each simple group is encoded in the form Ln, where L is an upper
case letter from the set {A,B,C,D,E, F,G} and n is a positive number, subject to
the further restrictions that n ≥ 2 if L ∈ {B,C}, n ≥ 3 if L = D, n ∈ {6, 7, 8} if
L = E, n = 4 if L = F and n = 2 if L = G. An n-dimensional torus is encoded
as Tn. To denote a group in LıE one simply concatenates the types of the simple
components and the central torus. The order of the simple components is retained
by LıE, but each term Tn simply increases the dimension of the central torus by n.
When a group is printed by LıE, the central torus appears at the end. For instance,
if you enter C3T4B12A4T6A1E7 then LıE will return C3B12A4A1E7T10 (fortunately the
most frequently used groups do not have such a long sequence of simple factors).

For a group g, the simple group that is its i-th component may be referred to
as g[i], while its central torus may be referred to as g[0]. For g as in the above example,
we have g[0] = T10, g[1] = C3, g[2] = B12, etc.

Chapter 2 The Interpreter 15

2.2.6. Text

LıE has some basic means to manipulate character strings for output, in the form
of values of type tex. Strings are denoted by enclosing them in double quote char-
acters, and doubling any double quotes ocurring in the string itself, for instance
"Say ""hello!""", which prints as ‘Say "hello"’. Whenever two string denota-
tions are separated by white space only they are concatenated by LıE, so very long
strings may be given on successive lines, with each opening quote being closed on the
same line. It is not possible to put a newline character into a string, but after each
print statement a newline is issued. To display several results and pieces of text on a
single line concatenation using the ‘+’ operator can be used.

2.3. Operators

We describe the operators defined in LıE. Contrary to functions, it is not possible to
define new operators, or additional instances of existing operators. The meaning of an
operator and the type of its result depend on the types of its operands (this holds for
functions as well). Each operator has a priority, which determines how expressions
are parsed: as usual, the implicit parentheses fit more closely around operators of
higher priority. At each priority level association is to the left, i.e., among operators
of equal priority implicit parentheses group towards the left.

There is no type ‘Boolean’; rather truth values are represented by integers. Re-
lational and logical operators yield 1 when true and 0 when false. When an arbitrary
integer is interpreted as a truth value, all values except 0 are considered to represent
true. There are however syntactic restrictions that prevent performing arithmetic
with truth values: expressions such as 100 + (3 < 4) are forbidden. The result of a
relational or logical operator may only be used between ‘if ’ and ‘then’ or ‘while’
and ‘do’, as operand of a logical operator, in an assignment to a variable, or in a list
of function parameters or of vector entries.

We give the operators, their priorities and their various meanings by a table. In
each case the first operand is called a, the second b; there might be only one argument,
in which case the operator is used monadically, written before its operand. In the
case of vector, matrix and polynomial operands, some restriction is often imposed on
the size, respectively on the number of rows, columns, or indeterminates; we have
included these conditions in braces, where σa stands for the size of a vector a, ρa and
κa for number of rows and columns respectively of a matrix a, and νa for the number
of indeterminates of a polynomial a.

oper-
ator

prio-
rity

type
of a

type
of b

type of
result

meaning, comments

+ 6 int int int a+ b
vec vec vec a+ b (vector addition) {σa = σb}
mat mat mat a+ b (matrix addition) {ρa = ρb, κa = κb}
pol pol pol a+ b (polynomial addition) {νa = νb}

16 LıE Manual

int vec vec [a, b[1], b[2], . . . , b[σb]]
vec int vec [a[1], a[2], . . . , a[σa], b]
mat vec mat [a[1], a[2], . . . , a[ρa], b] {κa = σb}
tex tex tex concatenation
tex int tex a+ t where t is textual representation of b
int tex tex t+ b where t is textual representation of a
tex vec tex a+ t where t is textual representation of b
vec tex tex t+ b where t is textual representation of a
tex grp tex a+ t where t is textual representation of b
grp tex tex t+ b where t is textual representation of a

− 6 int int int a− b
vec vec vec a− b {σa = σb}
mat mat mat a− b {ρa = ρb, κa = κb}
pol pol pol a− b {νa = νb}
vec int vec make a one shorter by removing a[b]
mat int mat make a one row shorter by removing row a[b]

− 10 int int −a
vec vec −a
mat mat −a
pol pol −a

∗ 7 int int int ab
int vec vec a · b (scalar multiplication by a)
vec vec int ab> =

∑σa

i=1 a[i]b[i] (standard inner product of
a and b) {σa = σb}

int mat mat a · b (scalar multiplication by a)
vec mat vec ab (right multiplication by matrix b) {σa = ρb}
mat mat mat ab (matrix multiplication) {κa = ρb}
mat vec vec ba> = (ab>)> (left multiplication of column

vector b by matrix a) {κa = σb}
int pol pol a · b (scalar multiplication by a)
pol pol pol a ∗ b (polynomial multiplication) {νa = νb}
pol mat pol multiply all exponents of terms of a on the right

by b and normalise result {νa = ρb}
pol int pol a ∗ (b ∗ id(νa)) (see previous line)
grp grp grp a× b (concatenation of simple factors, addition

of dimensions of central torus)
int tex tex the string b repeated a times
tex int tex the string a repeated b times

∗ 10 mat mat a> (matrix transposition)
/ 7 int int int a/b rounded towards 0

vec int vec [a[1]/b, . . . , a[σa]/b]
mat int mat [a[1]/b, . . . , a[ρa]/b] (see previous line)
pol int pol Replace each coefficient c of a by c/b.

Chapter 2 The Interpreter 17

pol vec pol For each i with 1 ≤ i ≤ νa, replace the
i-th entry ei of any exponent of a by ei/b[i].
{νa = σb}

% 7 int int int a mod b {b > 0; 0 ≤ a mod b < b}
vec int vec [a[1] mod b, . . . , a[σa] mod b]

mat int mat [a[1] % b, . . . , a[ρa] % b] (see previous line)

pol int pol Replace each coefficient c of a by c % b.

pol vec pol For each i with 1 ≤ i ≤ νa and b[i] 6= 0,
replace the i-th entry ei of any exponent of a by
ei % b[i]. {νa = σb}

∧ 8 int int int ab

mat int mat ab (matrix power) {ρa = κa}
pol int pol ab (polynomial power)

vec vec vec [a[1], . . . , a[σa], b[1], . . . , b[σb]] (concatenation)

mat mat mat [a[1], . . . , a[ρa], b[1], . . . , b[ρb]] (vertical
concatenation) {κa = κb}

pol pol pol a′ ∗ b′ where a′ is obtained by adding νb zeros to
every exponent of a, and b′ by prefixing every
exponent of b by νa zeros (multiplication with
disjoint sets of indeterminates)

! 3 vec vec [a[σa], . . . , a[1]] (reversal)

X 9 int int pol aX [b] (standing for aXb
1)

int vec pol the term aXb (standing for aX
b[1]
1 · · ·Xb[σb]

σb)

int mat pol
∑ρb
i=1 aX

b[i]

X 10 int pol 1X [a]

vec pol 1Xa

mat pol
∑ρa
i=1X

a[i]

< 5 int int int a < b

<= 5 int int int a ≤ b
> 5 int int int a > b

>= 5 int int int a ≥ b
== 4 int int int a = b

vec vec int a = b (componentwise equality)

mat mat int a = b (componentwise equality)

pol pol int a = b (termwise equality)

grp grp int a = b (order of simple factors is relevant)

tex tex int a = b

!= 4 int int int a 6= b

vec vec int a 6= b

mat mat int a 6= b

pol pol int a 6= b

18 LıE Manual

| | 1 int int int if a 6= 0 then 1 else b 6= 0 (logical or)
&& 2 int int int if a = 0 then 0 else b 6= 0 (logical and)

! 3 int int if a = 0 then 1 else 0 (logical not)

As suggested by the comments, the logical operators ‘| |’ and ‘&&’ are lazy with
respect to their second argument: this argument is not evaluated if the outcome of
the relation is already determined by that of the first argument. Therefore conditions
such as ‘i > 0 && i ≤ size(v) && v [i] > 0’ may be safely evaluated. Apart from these
two cases, it is not defined in which order the operands of an operator are evaluated.
As a general rule the order of evaluation of subexpressions is not defined unless a
specific order is explicitly stated in this manual (so one should not depend on any
specific order used to evaluate function arguments, the entries of a vector expression,
etc.).

As stated earlier, many meanings are attached to arithmetic operators, not all
of which are customary. Most of these meanings have proven to be useful operations
in writing programs, but one is warned that the usual arithmetic identities are no
longer valid for such uses of operators. For instance, if v is a vector, then v−3 means
something quite different from v+−3, and similarly (v+4)−2 differs from v+(4−2)
(due to left associativity of operators of equal priority, the parentheses could have
been omitted in the former expression). Also, if i is an integer and p a polynomial,
then in i ∗ p the coefficients of p are multiplied by i, while in p ∗ i the exponents of p
are, so there is no commutativity in this case.

For the inverse of these operations on p, namely the two ways of “dividing by i”,
it would be unnatural to use the order of the operands as a means of discrimination.
Therefore p/i means division of the coefficients of p by i, but division of the exponents
by i can be achieved by p/[i, . . . , i] (to be precise: by p/(i ∗all one(n vars(p)))). Di-
vision of a polynomial by a vector can be used more generally to divide the exponents
of each indeterminate by a separate value. These operations have their analogs for ‘%’
in place of ‘/’; in the case of “polynomial modulo vector” an exponent position may
be left unchanged by supplying a zero entry in the vector. There is no exact inverse of
the operation of dividing a polynomial by vector, but the operation “polynomial times
matrix” provides an even more general operation; this operation is quite natural and
useful when polynomials are used to encode sets of vectors with multiplicities, as is
often done in LıE. Another operation whose utility stems from this use of polynomials,
and from using matrices to represent sets of vectors without multiplicities, is the oper-
ation X from matrices to polynomials. The function support, treated in Section 2.4.2,
provides a transition in the opposite direction, which forgets the multiplicities.

2.4. Using functions

2.4.1. Function call

A function call has the form

Chapter 2 The Interpreter 19

〈name 〉 (〈 arg1 〉, . . . , 〈 argn 〉)

where 〈name 〉 is the name of the function to be called, and 〈 arg1 〉, . . . , 〈 argn 〉 are
arbitrary expressions giving the actual arguments of the function; among the possibly
numerous definitions for the given function name, the unique one is selected for which
the types of the formal parameters match those of the actual arguments. To call a
parameterless function, the name of the function may or may not be followed by an
empty pair of parentheses; the former possibility looks like a variable, but is really
different, since the function body will be executed only at the time of the call. (In
fact it is also allowable to write empty parentheses after a name that refers to a
variable, but this seems to be needlessly misleading.) Whenever a function is called,
its arguments are evaluated first.

2.4.2. Basic functions

A number of built-in functions which are not of Lie group theoretic nature supplement
the built-in operators. These built-in functions cannot be redefined for the given
argument types, although one may add user defined meanings for other types; the
same is true for the built-in mathematical functions listed in Chapter 4. Again, we
give these functions by means of a table.

function parameter(s) result
type

meaning, comments

abs int x int |x|; the absolute value
factor int n vid prints a tentative factorisation of n; only prime

factors up to 215 are found.

size vec v int the number of entries of v
gcd vec v int the greatest common divisor of all entries of v
null int n vec a vector of length n with all entries 0
all one int n vec a vector of length n with all entries 1
sort vec v vec vector with same entries as v, but sorted into

decreasing order

n rows mat m int the number ρm of rows of m
n cols mat m int the number κm of columns of m
id int n mat the n× n identity matrix
null int n,m mat the n×m matrix with all entries 0
all one int n,m mat the n×m matrix with all entries 1
diag mat m vec the main diagonal of m
vec mat mat m vec concatenation of rows of m: m[1]∧m[2]∧ · · ·
mat vec vec v; int n mat matrix with n columns, and rows [v[1], . . . , v[n]],

[v[n+ 1], . . . , v[2n]], . . . {n divides σv}
block mat mat a, b mat the block matrix

(
a
0

0
b

)
sort mat m mat matrix with same rows as m, but sorted using

the same criterion as selected for polynomial
exponents

20 LıE Manual

unique mat m mat A reduced matrix, representing the same set of
rows as m, but without duplicates. The rows are
also reordered as in sort(m).

row index mat m; vec v; int l, u int the first index i with l ≤ i ≤ u and
m[i] = v, or 0 if none exist.

n vars pol p int the number νp of indeterminates of p
length pol p int the number of non-zero terms of p
deg pol p int the total degree of p
coef pol p; int n int the coefficient of the n-th term of p
expon pol p; int n vec the exponent of n-th term of p
support pol p mat A matrix whose rows are the exponents of p
poly null int n pol the zero polynomial in n indeterminates
poly one int n pol the unit polynomial in n indeterminates
n comp grp g int the number of simple components of g
length tex s int The length of the string s
fmt int n,w tex place digits of n in field of width at least |w|,

left-justifying if w < 0.

void any x vid no result, useful to force void type, for instance
to make types match between branches of a
conditional clause

print any x vid print the value of x
used int the number of objects currently in use
gcol vid invoke the garbage collector, see Section 2.7.3.
error tex t tex print text t and terminate; prompt for new

command

The following remarks may be made. The function unique uses a heapsort algo-
rithm, rather than the quicksort algorithm used by sort, which avoids internal stack
build-up, and guarantees that the running time is independent of any ordering al-
ready present in the input to unique (the sorting implicitly applied to the terms of
polynomials, whenever necesssary, is also done by heapsort). The result of unique(m)
is equal to support(Xm). The single term of a zero polynomial does not influence the
outcome of the functions length and support, but the total degree of a zero polynomial
is taken to be 0, lacking a proper way to represent −∞. Finally note that the expres-
sions m|v and p|v for a matrix m, polynomial p and vector v (which didn’t appear in
the tables since they are syntactically neither formulae nor function calls) are analo-
gous to row index, but their range of search cannot be restricted by a lower and upper
bound. If the functionality of row index is needed for polynomials, it may be used in
combination with support (which preserves the order into which the exponents were
sorted).

2.5. Statements and clauses

We have treated the main ways of building expressions; however, expressions usually
do not suffice to perform complicated calculations, so we need basic actions and ways

Chapter 2 The Interpreter 21

to combine them into larger programs. The basic actions are performed by state-
ments, the larger structures built from them are called clauses. The distinction be-
tween expressions, statements and clauses is not absolute, however, since on one hand
expressions are considered to be statements as well, and on the other hand clauses
(which may very well yield values) are themselves expressions (and hence a fortiori
statements). A precise description of the relationships between these categories can
be found in the syntax which is given in Chapter 6. If a clause yields no value, then
the clause is said to return void, and is of type vid.

We first treat assignment statements, which are the most important kind of state-
ments, apart from expressions. Then we treat the clauses, of which there are three
kinds: blocks, conditional clauses and loops. Finally we treat three somewhat spe-
cialised kinds of statements, namely the break, return and setdefault statements.
We note that the commands on and off, as well as the related commands savestate
and restorestate, which are described in Section 2.7.4, also qualify syntactically as
statements.

2.5.1. Assignment statements

Assignment statements have the effect of altering the value of a variable, and return
void. They come in five forms.

〈 identifier 〉 = 〈 expression 〉
The execution of this statement consists of evaluating the expression (which may be
of any type), and assigning its value to the variable denoted by the identifier. This
statement may optionally be preceded by loc, in which case a new local variable is
created at the current level, which will be denoted by the identifier, and which is
initialised to the value of the 〈 expression 〉. For more details see Section 2.6.2.

〈 identifier 〉 [〈 expression1 〉] = 〈 expression2 〉
Here 〈 identifier 〉 must denote a vector, matrix or polynomial variable, and corre-
spondingly 〈 expression2 〉 must be of type integer, vector, or polynomial respectively,
while 〈 expression1 〉 must be of type integer in all cases. Both expressions are evalu-
ated, and the value of 〈 expression2 〉 replaces the entry of the vector variable (respec-
tively the row of the matrix variable or the term of the polynomial variable), whose
index is the value of 〈 expression1 〉. In the case of a matrix or polynomial variable
it is required that the yield of 〈 expression2 〉 has the same size as the row or term
replaced by it; in particular it may not be a polynomial of length > 1.

〈 identifier 〉 [〈 expression1 〉, 〈 expression2 〉] = 〈 expression3 〉
Here 〈 identifier 〉 must denote a matrix variable, and all expressions must be of type
integer; the value yielded by 〈 expression3 〉 replaces the entry of the matrix variable
whose indices are the values yielded by 〈 expression1 〉 and 〈 expression2 〉.

〈 identifier 〉 | 〈 expression1 〉 = 〈 expression2 〉
Here 〈 identifier 〉 must denote a polynomial variable, 〈 expression1 〉 must be of type
vector and 〈 expression2 〉 of type integer. The term of the polynomial is searched
whose exponent coincides with the value of 〈 expression1 〉 (if none exists, a new such

22 LıE Manual

term with coefficient 0 is created), and the coefficient of that term is replaced by the
value of 〈 expression2 〉.

〈 variable 〉 += 〈 expression 〉
where 〈 variable 〉 has one of the forms

〈 identifier 〉
〈 identifier 〉 [〈 expression1 〉]
〈 identifier 〉 [〈 expression1 〉, 〈 expression2 〉]

In each case the statement is equivalent to

〈 variable 〉 = 〈 variable 〉+ 〈 expression 〉
except that the expressions in brackets, if present, are only evaluated once; moreover
it is easier to write and in most cases more efficiently executed.

2.5.2. Series

Before we treat clauses, we must briefly mention series, which occur as constituent
parts of clauses. A series is nothing more than a sequence of statements, separated
by semicolons:

〈 statement1 〉; 〈 statement2 〉; · · · ; 〈 statementn 〉
When the series is executed, its statements are executed in order from left to right,
and the value of 〈 statementn 〉 (if any) becomes the value of the whole series (any
values that might be yielded by any of the other statements are cast away).

2.5.3. Blocks

The first and simplest kind of clause that we shall treat is a block. It is formed by
enclosing a series in braces:

{ 〈 series 〉 }
A block is an expression, which allows the value of a series to enter into larger expres-
sions. Furthermore, a block establishes a range for the definition of local variables, see
also Section 2.6.2. Here is a rather silly example that shows both aspects of blocks.
The command

a = 2; {loc a = [6, 19, 10, 1, 14, 10]; a/2}+ a

returns the value [3, 9, 5, 0, 7, 5, 2].

2.5.4. Conditional clauses

There are two forms of conditional clauses:

if 〈 expression 〉 then 〈 series1 〉 else 〈 series2 〉 fi

and

if 〈 expression 〉 then 〈 series1 〉 fi

In each case 〈 expression 〉 is evaluated first; if the (integer) value yielded is unequal
to 0 then 〈 series1 〉 is evaluated and its value becomes the value of the conditional
clause, and otherwise 〈 series2 〉 is evaluated if present and its value becomes that of the

Chapter 2 The Interpreter 23

conditional clause. In the second form of the conditional expression, where 〈 series2 〉
is absent, it is required that 〈 series1 〉 has void type, so that no value is yielded either
way, and the type of the conditional expression can be established before executing
it.

2.5.5. Loop clauses

There are two main kinds of loop clauses: while loops and for loops, of which the
latter kind has a few variants. All loop clauses are recognisable by the keywords do,
and od. A while loop has the form

while 〈 expression 〉 do 〈 series 〉 od

When a while loop is executed, the 〈 expression 〉 is first evaluated; if it yields 0
then the execution of the loop terminates, and otherwise the 〈 series 〉 is executed,
after which execution of the while loop resumes from the beginning. When the loop
terminates, it returns the value of the last execution of its 〈 series 〉, or void if the
〈 expression 〉 had value 0 the first time it was evaluated.

There are four variants of the for loop, namely two for looping over an interval
of the integers, and further for looping over the entries of a vector, and over the rows
of a matrix. The first form is

for 〈 identifier 〉 = 〈 expression1 〉 to 〈 expression2 〉 do 〈 series 〉 od

The identifier denotes a fresh variable, local to this loop, which will disappear when
the loop is terminated; call this the loop variable. First both expressions, which should
be of type integer, are evaluated. The value of 〈 expression1 〉 is assigned to the loop
variable, and the value of 〈 expression2 〉 is stored away for comparison; call it limit .
Then the following sequence of operations is performed until the loop is terminated:
the value of the loop variable is compared with limit , and if it exceeds that value, the
loop terminates; otherwise the 〈 series 〉 is evaluated and finally the loop variable is
incremented by 1. Having terminated, the loop returns the value of the most recent
evaluation of 〈 series 〉, or void if it was not evaluated even once (i.e., if the value of
〈 expression1 〉 exceeds limit). It is permitted—but not recommended—to assign to
the loop variable within 〈 series 〉.

The second form of the loop clause is

for 〈 identifier 〉 = 〈 expression1 〉 downto 〈 expression2 〉 do 〈 series 〉 od

It is identical to the first from, except that the loop variable is decremented at the
end of the loop, and that the loop terminates when the loop variable becomes smaller
than the limit computed in 〈 expression2 〉.

The third form of the loop clause is

for 〈 identifier 〉 in 〈 expression 〉 do 〈 series 〉 od

Here 〈 expression 〉 should yield a vector v, and again 〈 identifier 〉 denotes a loop
variable local to this loop. The execution of this kind of loop is similar to that of the
first kind, but rather than initialising, testing and incrementing the loop variable, the
〈 series 〉 is evaluated as many times as the size of v, and prior to the i-th evaluation,
the value v[i] is assigned to the loop variable. Again the value of the last execution

24 LıE Manual

of 〈 series 〉 determines the value of the loop clause itself. As an example, the sum of
the entries of a vector can be computed as follows:

sum(vec v) = loc s = 0; for entry in v do s += entry od; s

The last form is analogous to the third, looping over the rows of a matrix rather
than over the entries of a vector. Its form is

for 〈 identifier 〉 row 〈 expression 〉 do 〈 series 〉 od

Here 〈 expression 〉 should yield a matrix m, and again 〈 identifier 〉 denotes a loop
variable local to this loop; in this case it is a vector variable. The only further
difference with the previous form of the loop clause is that the number of times
〈 series 〉 is evaluated equals the row size of m, and prior to the i-th evaluation, the
value m[i], i.e., the i-th row of m, is assigned to the loop variable. This form of loop
clause is particularly useful since LıE often encodes a set of vectors as the set of rows
of a matrix; for instance to print the values returned by the function n tabl for each
of the partitions of 7, it suffices to enter

for lambda row partitions(7) do print(n tabl(lambda)) od

2.5.6. Break and return

It is possible to exit a while or for loop before the termination conditions given in
Section 2.5.5 are satisfied, by executing a statement break contained somewhere in
the 〈 series 〉 of the loop clause (but not in any loop clause contained in that 〈 series 〉).
This is a statement of the form

break or break 〈 expression 〉
Executing break forces termination of the smallest enclosing loop; the value of
〈 expression 〉 if present becomes the value of the loop*. The following example defines
a primality test using this feature.

prime(int n) = loc v = [2];
for i = 3 to n do if prime test(i) then v+ = i fi od; v

prime test(int k) = for n in v do if k % n == 0 then break 0 else 1 fi od
prime(68)

which returns [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67]. Note how
prime test uses the local variable v of prime, which is possible according to the (dy-
namic) binding rules for variables; see Section 2.6.2.

* This is true for any ordinary use of break, but in fact the rule is a bit more complicated,
since LıE completes the evaluation of any statement that is being evaluated as part of
the loop which is being terminated (but of course a series is completed when its current
statement is). The rule is that the value of break becomes that of the enclosing clause,
and may be used to complete evaluation of the statement containing that clause; the
value of that statement then moves outward to the enclosing clause, etc., until the value
of the loop itself is determined. Therefore unusual effects only happen if the break
statement is contained in a clause which is being used as a proper subexpression of
some statement within the loop. For instance in ‘a = {break 5}’ the value 5 is
assigned to the variable a, instead of forming the result of the loop.

Chapter 2 The Interpreter 25

The statement return is analogous to break, but it terminates the function
currently being executed rather than the smallest enclosing loop clause (this may in
fact also force termination of any loops within that function, but the converse is not
true: break can only terminate a loop within the current function). The form of the
return statement is

return or return 〈 expression 〉
In the same fashion as for break, the expression after return will determine the result
of the function. The function prime test in the previous example could therefore also
have been written as

prime test(int k) = for n in v do if k % n == 0 then return 0 fi od; 1

2.5.7. Setdefault

The statement setdefault used to set or inspect an important system parameter, the
default group. Its form is

setdefault or setdefault 〈 expression 〉
Many of the mathematical functions, which are described in Chapter 4 involve compu-
tations within some Lie group, or its root system or representation theory, etc. These
functions need to be told for which group they should do their computation: by con-
vention this group is passed as the final argument. Since one often does a number of
computations for the same group, one may however define for convenience a default
group. When this has been done it is allowed to omit the final argument specifying
the group: the default group will implicitly be assumed. To set the default group,
execute setdefault 〈 expression 〉 with 〈 expression 〉 yielding the desired group; to
find out what the current default group is, execute setdefault without parameters,
which will print the default group. Either form of the setdefault command returns
void. As an example, the commands

setdefault A3; W orbit([1, 1, 1])

will produce the same result as W orbit([1, 1, 1], A3), but it will also have set the
default group to A3, so that this group can be omitted in further function calls.

2.6. User defined functions

We have already seen some simple examples of functions defined by the user. In this
section we treat this subject in greater detail.

Functions can only be defined on top level, i.e., not within other function bodies.
At the moment of definition of a function, it is only checked for syntactic correctness,
and then effectively stored textually. Only at the time of the function call does the
interpreter determine the types and values of the symbols used (this makes it possible,
for instance, to define a function that calls upon other functions that are yet to be
specified, as long as these functions are defined before the first function is actually
called). At the time the function is called, the interpreter checks that all variables
and functions are used with consistent types; the real execution starts only after this

26 LıE Manual

has been successfully done. Before the function is invoked, all of its arguments are
computed; thereafter the function itself is executed.

Similarly to operators, there can be more than one meaning attached to one same
function identifier, as long as these meanings can be distinguished by the number and
types of their parameters. It is for instance possible for the user to extend functions
that are built into LıE to other types of values (although we have tried to include all
types that could meaningfully be associated with an operation among the predefined
functions). The name of a function can even be simultaneously used as a variable,
but the uses of a name for a parameterless instance of a function and as a variable
are mutually exclusive.

2.6.1. Function definition

A function definition consists of the function identifier followed by a list of formal
parameters, an equals sign and the (possibly compound) statement that computes the
result of the function (the latter may be as simple as a single expression). Function
definitions can take two similar forms:

〈name 〉 = (〈 type 〉〈 variables 〉; . . . ; 〈 type 〉〈 variables 〉) = 〈 series 〉
〈name 〉 = (〈 type 〉〈 variables 〉; . . . ; 〈 type 〉〈 variables 〉) { 〈 series 〉 }

where 〈 type 〉 stands for one of the keywords int, vec, mat, pol, grp and tex, and
〈 variables 〉 stands for one or more identifiers, separated by commas. The identifiers
denote the parameters of the function, in order; each identifier in 〈 variables 〉 has the
type specified by the preceding 〈 type 〉. (The first form of the function definition is
most convenient for simple functions, for instance when the function body consists of
a single expression; the second form on the other hand is more suitable for large func-
tions, especially since command prolongation up to the closing brace is guaranteed.
Note however that the 〈 series 〉 in the first form may well be a single block, in which
case it very much resembles the second form; this form has been used frequently in
the examples, where the ‘=’ serves for command prolongation to the second line.)

The function parameters are considered as local variables, which are initialised
during a call to the values of the arguments. Therefore they can be changed, but this
has no effect on the values of variables outside the function (call by value). A param-
eterless function may be defined by writing an empty pair of parentheses, but unlike
in calls the parentheses may not be omitted altogether, for then one would obtain an
assignment rather than a function definition. Examples of function definitions are:

f (int x) = 2 ∗ x
f (tex a; int x , y ; tex b) = print(a + x∧y + b)
gcd(int x , y) = if y == 0 then x else gcd(y , x % y) fi
hi() {print("How do you do?")}

Now the call f(3) yields 6, while f("7^51=", 7, 51, " (44 digits).") prints

7^51=12589255298531885026341962383987545444758745 (44 digits).

and yields no value, gcd(51592783, 2373146567) yields 1991, and finally the response
to hi is How do you do?. As an example of a slightly less trivial function definition,

Chapter 2 The Interpreter 27

we present the following function that extends gcd above in the sense that it not only
computes the value d = gcd(x, y), but also finds integers k, l satisfying d = kx + ly,
by means of the so-called “extended Euclidean algorithm”. The result is encoded as
a vector [d, k, l].

ext gcd(int x , y) =
{ loc m = [[x , 1, 0], [y , 0, 1]];

invariant: m[i, 1] = x ∗m[i, 2] + y ∗m[i, 3] for i ∈ {1, 2}
for i = 1 to 2 do if m[i , 1] < 0 then m[i] = −m[i] fi od;
while m[1, 1] # stop when smaller number becomes 0 #
do loc q = m[2, 1]/m[1, 1]; m = [m[2]− q ∗m[1],m[1]] od;
m[2]

}

2.6.2. Local variables and blocks

We have already encountered local variables when discussing assignments, blocks and
function parameters. We now discuss them in greater detail.

During execution, LıE maintains a hierarchy of levels for defining the scope of
variables. Command execution always starts at the top level; variables defined on this
level are global variables. Lower levels are created whenever the execution of a new
series starts, and remain in existence until the execution of that series is completed
(the reason we mention ‘series’ rather then ‘clauses’ is that each execution of a loop
body is considered separately). Here is a complete list of the series that correspond
to separate levels:

- A series enclosed in curly braces ‘{’ and ‘}’, forming a block,
- A series between then and else (or fi) or between else and fi,
- A series between do and od,
- The body of a function.

An assignment of the form loc 〈 variable 〉 = 〈 expression 〉 introduces a new
(initialised) local variable at the current level. The variable will cease to exist when
this level disappears and LıE returns to a higher level. The range in which such a local
variable can be accessed, extends from the statement following its loc assignment to
the end of the series defining the current level. The following example illustrates these
rules:

a = 3; for i = 1 to a do print(a); loc a = a + 1; print(a) od

will print the values 3, 4, 3, 4, 3, 4.

Whenever a variable is used in an expression, or occurs as left hand side of an
assignment without loc, a check is made whether there exists a variable of that name
at the current or any higher level (in that order), until eventually it is checked whether
a global variable of that name exists. As soon as a matching variable is found, that
variable is used; if no variable of that name is found at all, then, if the variable was
being assigned to a new variable is created at the current level (as if the assignment
were preceded by loc), but if the value of the variable was needed, an error message is
generated. As a consequence, it is not possible to create new global variables except

28 LıE Manual

from the top level. Furthermore, it is not allowed at lower levels to change the type
of any variable: it is only allowed to change the value to another value of the same
type.

Note that the variable identified by an identifier used non-locally within a function
depends on the chain of active functions at the point of reference. Examples can even
be constructed in which during the execution of a single command one same identifier
denotes different variables (possibly even of different types). To make the validity of
a function independent of the environment it is called from, the use of loc is always
recommended for variables storing intermediate results within functions.

Although the call-by-value rule excludes the possibility of a function modifying
by assignment to its own parameters any values in another function calling it, it can
modify the local variables (and even the parameters) of such a calling function by
means of direct assignments to them (provided these assignments are not shielded by
any loc). Unrestricted use of this feature may lead to ugly programs, but it may
be used in a special way to alleviate the restriction that functions cannot be defined
within others: when an auxiliary function is only called by a specific other function,
it can access the variables of the calling functions as if it were defined local to that
function at the point of the call. The technique of using non-local variables to imitate
a local function definition is exemplified in several places in this manual (in most
cases it is explicitly indicated), for instance in the function prime test of Section 2.5.6
above.

2.6.3. Make and apply

To LıE, functions differ from values in the sense that they cannot be assigned to
variables, or passed to or returned from (other) functions. However, there is a number
of built in operations, under the names make and a few variants of apply that do
accept a function as one of their arguments, and that yield values computed using
this function.

The function that appears as an argument to make or apply should be user
defined. It is treated as a mathematical function, so it should not have side effects (i.e.,
external changes resulting from calling the function, other than the value yielded),
because it is not defined in what way exactly the function is called.

There are a number of meanings for each of the operations, depending on the
number and type of arguments supplied. To facilitate specification of these meanings
we use the letter f throughout to denote the function parameter, and for the other
parameters we use n, n′ for integers, v, v′, v′′ for vectors and m for matrices.

The operation make is useful to tabulate a function f on certain sample values.
The simplest case is to tabulate a function on the numbers 1, . . . , n. For a function
f : int→ int, we have

make(f ,n) = [f (1), . . . , f (n)],

in other words make(f, n) is a vector v of size n, with v[i] = f(i) for each i. For
example, with the definitions given in Section 2.6.1, make(f, 4) returns [2, 4, 6, 8]. It
is also possible to tabulate the same function on explicitly given values. For a function

Chapter 2 The Interpreter 29

f : int→ int, we have

make(f , v) = [f (v [1]), . . . , f (v [n]),

where n is the size of v. In other words make(f, v) is a vector v′ of the same size
as v, with v′[i] = f(v[i]) for each i. Similarly, we have

make(f ,m) = [[f (m[1, 1]), . . . , f (m[1, c])], . . . , [f (m[r , 1]), . . . , f (m[r , c])]]

where r and c are the numbers of rows and columns of m. In other words make(f,m)
is a matrix m′ of the same size as m, with m′[i, j] = f(m[i, j]) for all i, j.

Similar operations are available for functions of two integer arguments. For
f : (int, int)→ int we have

make(f, n, n′) =

 f(1, 1) · · · f(1, n′)
...

...
f(n, 1) · · · f(n, n′)

 ,

in other words make(f, n, n′) is an n× n′ matrix m that satisfies m[i, j] = f(i, j) for
all applicable i, j. By way of example, with the function gcd of Section 2.6.1 we have

make(gcd, 3, 7) =

 1 1 1 1 1 1 1
1 2 1 2 1 2 1
1 1 3 1 1 3 1

 .

Again there are variants to present arbitrary sample data to f , namely by providing
a pair of vectors or matrices of the same size, where the first argument to f is taken
from the first, and the second argument from the second vector respectively matrix.
We have

make(f , v , v ′) = [f (v [1], v ′[1]), . . . , f (v [n], v ′[n])]

where n is the size of v and of v′. In other words make(f, v, v′) is a vector v′′ of
the same size as v and v′, with v′′[i] = f(v[i], v′[i]) for each i. Thus, for example
make(gcd, [3, 5, 8, 21, 91], [8, 10, 12, 14, 39]) yields [1, 5, 4, 7, 13]. Similarly we have

make(f ,m,m ′) = [[f (m[1, 1],m ′[1, 1]), . . .], . . . , [. . . , f (m[r , c],m ′[r , c])]]

The operations iapply, vapply and mapply are used to compute iterates (or
powers) of the specified function. For convenience, define the notation fn(x) by

fn(x) =

{
x if n = 0
f(fn−1(x)) if n > 0

Here x can be an integer, vector or matrix as applicable for f . The corresponding
cases have different names in LıE, however:

iapply(f ,n,n ′) = fn(n′) where f : int→ int
vapply(f ,n, v) = fn(v) where f : vec→ vec
mapply(f ,n,m) = fn(m) where f : mat→ mat

30 LıE Manual

As a simple example we have iapply(f, 4, 3) = 48 for the function f given above. For
the case of f : int→ int there is also a variant that accumulates all the intermediate
values into a vector; we have

vapply(f, n, n′) = [n′, f(n′), f2(n′), . . . , fn(n′)],

in other words, vapply(f, n, n′) is a vector v of length n + 1, with v[1] = n′ and
v[i] = f(v[i− 1]) for 2 ≤ i ≤ n + 1. For example, still using the doubling function f
from above, we have vapply(f, 4, 3) = [3, 6, 12, 24, 48]. A final variant of vapply uses
a function f : vec → int to incrementally build up a vector; it can be formulated in
terms of the first instance of vapply:

vapply(f ,n, v) = vapply(F ,n, v) where F (v) = v + f (v)

As indicated, F is a function that extends a vector with a new entry computed by f
from that vector. A typical example is the following procedure to compute Fibonacci
numbers. First a function f is defined to compute the next Fibonacci number from a
vector of preceding ones:

f(vec v) = loc s = size(v); v[s− 1] + v[s]

With this function we compute the first 12 Fibonacci numbers in the sequence starting
with [1, 1] by calling vapply(f, 10, [1, 1]) = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144]. Note
that LıE decides whether to take the second or third instance of vapply depending on
the result type of f when applied to a vector.

2.7. Global commands

In addition to the commands mentioned above, there are a number of commands that
do not really form a part of the language of the interpreter, but allow the user some
additional control over the way LıE operates. Unless noted otherwise these commands
are not statements, implying that they can only be invoked from top level.

2.7.1. File management

It is possible to collect a number of commands to the LıE interpreter in a file and
then execute these commands as if typed from the keyboard. If these commands
are contained in the file 〈name 〉, then execution of the commands can be invoked
by the command ‘read 〈name 〉’. (For very long computations it may be advisable
however not to start an interactive session at all, but to use input/output redirection
as provided by the operating system, and moreover to run the job in the background.
The behaviour of LıE is the same when its input is redirected from a file as when that
file is processed via the read command, except that in the latter case control will
return to the terminal upon completion.)

A file can be edited during the LıE session by giving the command ‘edit 〈name 〉’;
upon completion of the editing session the resulting file is directly read into LıE as if
the read command were given. The editor which is invoked is either the standard
editor of your machine, or, if you are in a UNIX environment and the shell variable
$EDITOR has been set, the editor named by that variable. The command edit can

Chapter 2 The Interpreter 31

also be used without a filename argument, in which case the same file is edited as in
the previous edit command. The file named ‘initfile’, if present in the directory
from which LıE is invoked, will be read upon entrance of the program LıE, before the
first prompt appears; the same file will also be used when no filename is supplied in
the first edit command of a LıE session. In a UNIX environment the shell variable
$PAGER is also used: output of large amounts of text, such as produced for intance
by listfuns, help and learn, are processed via the progam indicated by $PAGER

(the default is to use the program more). This feature can be used for instance in a
window environment to display help texts etc. in separate windows.

To save the variables and user defined functions of a particular session, exe-
cute the command ‘write 〈name 〉’. As a result, these functions are written in the
file 〈name 〉, in a format that can be read back by read. See also the command
‘on monitor’ below.

2.7.2. Information retrieval

Information about a function, operator or a reserved word (like for) can be obtained
by typing ‘? 〈 topic 〉’ (you may also use ‘help’ as a synonym for ‘?’). Information
produced by ‘?’ (or ‘help’) can also be written on a file by typing ‘? 〈 topic 〉 >
〈filename 〉’, or appended to an existing file by ‘? 〈 topic 〉 >> 〈filename 〉’. Because
there are so many functions in the system, a directory structure has been imposed
on the set of help entries. Each call of ‘? 〈 topic 〉’ will place you into the directory
of that topic, and the name of the directory will be printed as part of the prompt
which immediately follows the help information. The directory you are in has no
effect on searching a topic (it will be found if it is present anywhere in the directory
structure), but the command ‘?index’ will show just the entries of the current help
directory. In this way it is possible to find out which functions or commands are most
closely related to the previous one. The command ‘?functions’ lists the full set of
predefined functions, regardless of the current help directory.

Information about a mathematical term can be obtained by giving the command
‘learn〈 term 〉’. For example ‘learn lie group’ will give all available information on
the term ‘lie group’ and on any terms containing that string (this won’t work unless
you type lower case letters, apologies to Sophus Lie). A list of the documented terms
can be obtained by entering ‘learn index’.

2.7.3. Memory management

Memory management is performed automatically, and should be of little concern
to the user. At certain points, LıE will deem it advisable to reduce the amount of
memory in use, and will do so by invoking the garbage collector, which attempts
to locate and free objects that are no longer accessible to the user. Although this is
generally done automatically at convenient points in the calculation, and also between
printing a result and prompting for a new command, it is also possible to explicitly call
the garbage collector by the function gcol. It is also possible—by stating off gc—to
(temporarily) inhibit garbage collection when one knows that there will be no memory
to free anyway (see Section 2.7.4).

32 LıE Manual

Inhibiting garbage collection may reduce the time needed to read in long files
containing only function and variable definitions (if enabled the garbage collector is
called after each definition). On the other hand it may in extreme cases be useful to
call gcol immediately before calling a built-in function that uses very many objects,
since the garbage collector is never invoked during the execution of a built-in function.
The memory management monitors the number of objects in use by LıE, not their
sizes, so if very large objects are being used the physical memory of the computer
may become depleted before LıE notices any problems, thereby causing a fatal error
and termination of the LıE session. See the command maxobjects below for dealing
with such situations. To monitor the amount of memory occupied, the function used
provides the number of objects currently in use (but possibly inaccessible). There is
no way to explicitly remove a global variable from LıE’s tables, but by assigning 0 to
the variable, most relevant resources occupied by the variable are freed.

2.7.4. System parameters

There is a number of system parameters that may be set and altered by the user.
The command to do this has the form ‘on 〈 feature 〉’ or ‘off 〈 feature 〉’. The various
features are given in the following table:

feature default
state

effect of non-default setting

bigints on ‘off bigints’ changes the binding of integer arithmetic
operators so that machine size integers will be used in-
stead of arbitrary length integers; this is faster, but
overflow will not be detected. Bigints produced in other
ways, e.g., by polynomial arithmetic, can still be used,
but conversion failure may occur when integer opera-
tions are applied to them.

lprint on ‘off lprint’ prints vectors, matrices and polynomials
in rectangular from

monitor off ‘on monitor’ writes all output to the file ‘monfil’ in
LıE’s start-up directory, as well as to the screen,

prompt on ‘off prompt’ suppresses the prompt character ‘>’
runtime off ‘on runtime’ shows the amount of time spent executing

each command, after printing its result

gc on ‘off gc’ inhibits garbage collection,

The effect of ‘off lprint’ on vectors and matrices is only slight: commas are replaced
by spaces, and in case of matrices the square brackets bordering the rows are replaced
by vertical bars. For polynomials however the difference is significant: the terms are
listed in a tabular form: the coefficients are printed in the leftmost column, and are
followed by an asterisk; the entries of the exponents are printed in the columns to the
right of the asterisk. The filename used for ‘on monitor’ can be set differently by the
command ‘monfil 〈filename 〉’.

The system parameter that determines the sorting criterion used for ordering of

Chapter 2 The Interpreter 33

terms in a polynomial (and of the rows in a matrix in calls of sort and unique) has
six possible values, and requires a slightly different form of the ‘on’ command (while
the ‘off’ command is not used in this context):

on + lex select lexicographic ordering
on - lex select inverse lexicographic ordering
on + degree select total degree ordering
on - degree select inverse total degree ordering
on + height select increasing height ordering
on - height select decreasing height ordering

The current values of all the system parameters can be obtained by giving the ‘on’
or ‘off’ command without parameters. In order to limit the effect of the commands
on and off to the execution of the function in which they are needed, the command
savestate is provided to save the state of all the parameters, whereupon it can be
restored some later time by restorestate. The default group is also saved and
restored by these commands. Pairs of savestate/restorestate commands may be
nested. All commands mentioned up to here in this subsection are statements, and
may correspondingly be used not only from top level, but also in function definitions,
loops, etc.

There are two more system parameters, which determine the amount of memory
that LıE allocates for representing programs and data. They take a numeric argument,
as follows:

maxnodes n set maximum number of nodes (for programs) to n
maxobjects n set maximum number of objects to n

The numeric argument must be an explicit number; it may not be an expression. If
the argument is omitted, the current setting if the parameter will be printed.

Increasing the number of nodes may be needed if heavily recursive functions are
being used, but this rarely occurs. It is more common that the number of objects has
to be modified. An object is any integer, vector, etc. in use by LıE, although some of
them might be shared if they have equal values. Note however that each polynomial
coefficient counts as an individual object (and the same is true for simple components
of composite groups, but this is less likely to be of any importance). When the
available number of nodes or objects runs out, an error message is printed and the
computation aborted; in such cases one may increase the number of nodes or objects
and restart the computation. In case of object table to overflow it is advisable to check
the default group and the sorting criterion before proceeding, because some functions
(most notably branch) temporarily change these, and aborting the computation may
have given them no opportunity to restore the original values.

Setting maxobjects too low obviously may render certain computations impos-
sible, but on the other hand setting maxobjects too high may mean that the garbage
collector is not called in time, leading to exhaustion of physical memory (also the
time needed for each garbage collection increases with maxobjects). As in instruc-
tive example, the authors once used LıE to solve a large system of linear equations
over a finite field; this involved reading in a large matrix and then running a Gaus-

34 LıE Manual

sian elimination program (the program is given in Section 5.1.8). During the input
phase, maxobjects had to be set to a high value, because all the entries are converted
to integer objects before being combined to a matrix. During the elimination phase
however there were very few objects (typically one large matrix and a few vector and
integer quantities), but their average size was considerable. Therefore the value of
maxobjects had to be drastically decreased during this phase in order to allow the
garbage collector to come into action at regular times, thus preventing memory from
being swamped.

Chapter 3 Terminology 35

LıE Manual

Chapter 3. TERMINOLOGY

In LıE, various mathematical notions are encoded by means of a limited number of
different types (viz. integer, vector, matrix, polynomial). It is important to know the
correspondences between the mathematical notions and the concrete objects manip-
ulated by LıE; it is the purpose of the current chapter to explain them. To this end a
large part of this chapter consists of a listing of the names of mathematical notions
representable in LıE, with an indication of how they are represented by LıE objects.
For example, a root of a semisimple Lie group g of rank r may be represented by a
vector v = [v1, . . . , vr] such that the given root is equal to

∑r
i=1 viαi ∈

⊕r
i=1 Zαi,

where the αi (for 1 ≤ i ≤ r) are the fundamental roots of the root system of g.

It may be clear from this very example that some theoretical background is re-
quired in order to understand these things. We do not intend to give a comprehensive
introduction to the subject here (for this, one may consult standard textbooks, a num-
ber of which can be found in Chapter 7), but we shall try to give the basic definitions
and properties that are relevant to understanding the mathematical functions present
in LıE. The remainder of this chapter is divided into a number of sections, treat-
ing the following subjects: Lie groups and algebras, roots and weights, Weyl groups
and their action, matters related to the symmetric groups, and representations of
Lie groups. The same subdivision is used in Chapter 4 in which the mathematical
functions built into LıE are discussed, and in the help system provided by LıE. At the
end of each section an alphabetic listing of the relevant terms related to the subject
is given for reference, with explanations (if you are not sure under which subject a
term is classified, the index in Chapter 8 gives references to all terms).

It is advisable to skip certain parts of this chapter on first reading. The novice
to the subject might want to read the main text of each of the subsections but skip
the alphabetic listings, while the expert may wish to skip this chapter completely and
turn to the alphabetical listing only to look up the representation of certain concepts.
As this chapter is supposed to allow more or less random access, some repetitiveness
has been unavoidable. We start by listing the different ways in which several types
of LıE objects may be interpreted in general.

Matrix A matrix can either be interpreted as a linear transformation (acting by
right-multiplication on row vectors), or as a set of vectors, in which case each row
of the matrix represents a vector in the set, or in a special way such as a character
table. For instance, a matrix representing a set of roots will be termed a root
matrix. See also orbit matrix, and restriction matrix.

36 LıE Manual

Polynomial A polynomial may either just represent itself, i.e., a Laurent polyno-
mial (for instance in the case of the Kazhdan-Lusztig polynomials, which inciden-
tally are always ordinary polynomials), or it may encode a set of vectors of equal
size, with multiplicities. In the latter case each term represents the occurrence of its
exponent in the indicated set (such exponents are always interpreted as weights),
occurring with multiplicity equal to the coefficient of the term. On their turn,
sets of weights with multiplicities may have different interpretations, leading to a
further distinction between polynomials. Three important such interpretations are
that of decomposition polynomials, character polynomials, and dominant character
polynomials.

Vector A vector may represent an element of a vector space (or rather of a free Z-
module, since its entries must be integral), such as the weight space, or it may just
be interpreted as a set or sequence of integers. In the former case it is always to be
interpreted as a row vector, so that matrices are to be applied from the right. In
either case there are a further distinctions as to how the vector is to be interpreted.
See also root vector, weight vector, Weyl word, partition and toral element.

3.1. Lie groups and algebras

As the textbooks say, Lie groups are groups that also have the structure of a (real or
complex) differentiable manifold, such that the maps of multiplication and inversion
are differentiable maps. This definition however is not the most useful viewpoint
when considering Lie groups as treated in LıE: the differentiable structure is beyond
the scope of LıE’s computations, and the package only rarely deals with individual
elements of Lie groups. Moreover, LıE only deals with a particularly well behaved
subclass of Lie groups, namely the connected reductive complex Lie groups. This
class of groups contains the semisimple Lie groups, but also important non-semisimple
groups, such as GL(n,C) (the group of all invertible n×n-matrices). A complex torus
(i.e., a direct product of copies of C∗) is another example of a connected reductive
but not semisimple group (in fact semisimple groups and tori are opposite extremes
within the class of reductive groups). The chosen class of groups is quite convenient,
mainly for two reasons: the groups have a clearly structured classification, as well as
a pleasing representation theory.

By the classification of the connected reductive complex groups (cf. [Bour7]), each
such Lie group g is the homomorphic image of a direct product of a simply connected
semisimple complex group and a complex torus, where the homomorphism has a
finite kernel, which is contained in the center. The semisimple factor in the product
may be reconstructed up to isomorphism as the universal cover of the commutator
subgroup of g, and the torus factor as the identity component of the center of g.
Every simply connected semisimple group in its turn is a direct product of simply
connected simple groups. Each of the latter groups is isomorphic either to one of the
classical groups SL(n,C) (for n ≥ 2; the Special Linear group, consisting of all n×n
matrices with determinant 1), Spin(n,C) (for n ≥ 5; the Spin group, covering the
Special Orthogonal group: the group of all matrices m ∈ SL(n,C) with m−1 = m>),

Chapter 3 Terminology 37

Sp(2n,C) (for n ≥ 3, the Symplectic group, consisting of all invertible 2n × 2n
matrices m with m−1 = jm>j−1 for a fixed invertible antisymmetric matrix j), or
to one of the so-called exceptional groups. The classical groups are given a symbolic
identification, called their type, of the form An, Bn, Cn, or Dn, where n can be an
arbitrarily large integer; the exceptional groups have types E6, E7, E8, F4, and G2.
For classical groups the assignment of types is as follows:

An:SL(n+ 1,C) Bn: Spin(2n+ 1,C) Cn: Sp(2n,C) Dn: Spin(2n,C)

Although formally LıE deals with complex rather than with real Lie groups, the rep-
resentation theoretic computations may be interpreted for the compact real forms of
the complex groups as well, since their (finite dimensional complex) representation
theories are equivalent. The compact real Lie groups of classical type correspond to
the indications An–Dn as follows:

An:SU(n+ 1,C) Bn: Spin(2n+ 1,R) Cn:U(n,H) Dn: Spin(2n,R)

where H stands for the skew field of the quaternions. In addition we mention the
following special cases in low dimensions, which use the fact that certain “degenerate”
classical types go by different names (e.g., B1 is in fact A1 and D2 is A1A1). The
group U(1,C) (and SO(2,R) which is identical) is represented as the torus T1 (more
generally U(n,C) is represented by An−1T1, just like the complex group GL(n,C));
SO(3,R) is indicated by A1 (which in fact represents its twofold cover SU(2,C));
SO(4,R) is similarly indicated by A1A1, SO(5,R) by B2 or C2, and SO(6,R) by
D3 or A3.

The groups directly representable in LıE are those complex Lie groups which,
after dividing out their central torus, are simply connected; this means that they are
a direct product of simply connected simple groups and a central torus, without the
need to apply a homomorphism with finite central kernel. The type of such a group
is formed by concatenating the types of the individual factors, where Tn is used to
denote an n-dimensional torus. We shall occasionally use a type indication to stand
for the group of that type itself. In some cases the mathematical specification would
require that a function returns a group which does not fall into the mentioned class
which is representable in LıE (e.g., this may be the case for the function centr). In such
cases the group of which it is a central quotient with finite kernel, and which is simply
connected modulo its central torus, is returned instead. The information that is lost
in this way is the description of the finite kernel. For example, the group g = GL(2,C)
modulo its central torus (the 1-dimensional group of multiples of the identity matrix)
is isomorphic to the projective group PSL(2,C) which is not simply connected (it
is covered twofold by SL(2,C)). Therefore g is represented in LıE by the group of
type A1T1, which in fact describes the direct product ĝ = SL(2,C) × C∗. In this
case the canonical surjective morphism ĝ → g has kernel {(1, 1), (−1,−1)} ⊂ A1T1,
where 1 ∈ A1 stands for the identity in SL2. LıE does provide a representation for
such toral elements; in the current case the non-trivial element of the kernel would

38 LıE Manual

be represented as [1, 1, 2] (see Section 3.2 for details). We shall assume from now on
that g is the direct product of simply connected simple groups, together forming the
so-called semisimple part g′ of g, and a torus S, the so-called central torus of g,

Any Lie group g contains subgroups that are isomorphic to a (complex) torus, and
are moreover maximal (with respect to inclusion) for this property; such a subgroup
is called a maximal torus. All maximal tori are conjugate in g, so we may fix an
arbitrary maximal torus in g and call it T . Then T is the direct product of the
central torus S and a maximal torus T ′ of the semisimple part, which in turn is the
product of maximal tori of the simple components. The Lie rank of g is the dimension
of T , which we shall denote by r; the semisimple Lie rank of g is the Lie rank of g′;
we shall denote it by s.

Much of the structure of a Lie group can be deduced from the study of the Lie
algebra it induces on the tangent space to the group at the identity element. In
particular, any finite dimensional representation of one of the two leads to a similar
representation of the other. Indeed much of the theory of Lie groups is derived by
studying the adjoint representation, which is the representation of the Lie group on its
Lie algebra, acting by conjugation. In LıE the point of view of Lie algebras is usually
not stressed, but many of the computations may be interpreted for Lie algebras as
well as for Lie groups.

Central torus The center of any reductive Lie group g is the direct product of a
torus and a finite group; the former (which is clearly the connected component of
the center) is called the central torus of g. For the groups LıE deals with this central
torus is even a direct factor of g itself, the other factor being the semisimple part
of g.

Diagram The (Dynkin) diagram of a semisimple Lie group is a graph indicating the
isomorphism type of the group; the number of vertices is equal to the (semisimple)
Lie rank, and the number of connected components of the diagram is equal to
the number of simple factors of the group. The vertices are labeled with positive
integer numbers, following the conventions of [Bour7]. The diagram represents the
information contained in the Cartan matrix of the group in a compact form.

Fundamental Lie subgroup A closed subgroup h of a Lie group g is called fun-
damental if it contains a maximal torus of g. If h contains T and is reductive, it is
determined by the set of roots in the root system Φ of g that are also roots of h;
these form a closed subsystem of roots.

General Linear group The group of all invertible linear transformations of a
vector space V is called the general linear group of V , written GL(V). Up to
isomorphism this depends only on n = dimV , and this group is also written as
GL(n,C) (assuming the vector space is over C). This group is a Lie group, and any
Lie group homomorphism of some Lie group g to GL(V) is called a representation
of that Lie group on the vector space V . See also special linear group.

Lie algebra A finite-dimensional vector space V supplied with a bilinear operation
[· , ·]:V × V → V satisfying [x, y] = −[y, x] and [[x, y], z] + [[y, z], x] + [[z, x], y] =

Chapter 3 Terminology 39

0 for all x, y, z ∈ V (anti-commutativity and the Jacobi identity, respectively)
is called a Lie algebra. Every Lie group defines a Lie algebra structure on the
tangent space to the group at the identity element. Although Lie algebras play
no explicit rôle in this package, the representation theory of simply connected
reductive complex Lie groups which LıE deals with coincides with the representation
theory of reductive Lie algebras over C, see [Hum1]. See also [Jac].

Lie group A group is called a Lie group if its underlying set is a differentiable
variety, and the multiplication and inversion maps are differentiable. The group
is called complex, connected, simply connected, etc., if the variety is respectively
complex, connected, simply connected, etc. Each reductive complex Lie group is
an algebraic group and the representation theory can be dealt with in an entirely
algebraic manner. See [Serre].

Lie rank The dimension of a maximal torus of g is called the Lie rank of g.

Maximal torus A torus that is not properly contained in any other torus within g
is called a maximal torus of g. If g is a reductive Lie group, such tori exist and
any two are conjugate. In LıE, we always assume a fixed maximal torus T of g to
be chosen; weights and roots are defined with respect to T .

Reductive group A group is reductive if each of its finite dimensional represen-
tations decomposes into a direct sum of irreducible representations. A connected
reductive complex Lie group g is isomorphic to the quotient of the direct product of
a simply connected semisimple group and a torus by a finite central subgroup. An
example is the General Linear group GL(n,C). The (images of) the semisimple
factor and the torus can be found as the commutator subgroup g′ of g and the
central torus of g respectively. In LıE, an object of type group always refers to a
group that itself is a direct product of a simply connected semisimple group and a
torus (so no quotient is involved).

Semisimple element All conjugates of elements of the torus T are called semi-
simple elements (not to be confused with the term semisimple for groups); in any
representation of g they correspond to diagonalisable transformations. Obviously,
each conjugacy class of semisimple elements has representatives in T . Some ele-
ments of T , namely those of finite order, can be represented in LıE; see in Section 3.2
under toral element.

Semisimple group A connected reductive Lie group is called semisimple if it con-
tains no non-trivial central torus, or equivalently if it is equal to its commuta-
tor subgroup. Note that a non-trivial semisimple group necessarily contains non-
semisimple elements.

Semisimple rank The semisimple rank of a group g is the Lie rank of its semisimple
part, or stated differently, the Lie rank of g minus the dimension of its central torus.

Special Linear group For a vector space M the Special Linear group SL(M) is
the closed Lie subgroup of the General Linear group GL(M) of all transformations
with determinant equal to 1. It is the commutator subgroup of GL(M).

40 LıE Manual

Torus A group which is isomorphic to (C∗)n for some n is called a torus (plural:
tori); it is a reductive Lie group of dimension n. Any closed connected subgroup
of a Lie group g all of whose elements are semisimple is a torus, called a torus of g.
Every torus of g is contained in a maximal torus, and every maximal torus is con-
jugate to T , the fixed maximal torus. See also semisimple element. A fundamental
property of a torus is that all of its irreducible representations are 1-dimensional.
Since in such a representation of T each element acts as a scalar, the represen-
tation is essentially given by an algebraic group morphism T → C∗, a so-called
weight. Any representation of g may be restricted to a representation of T ; as
such it decomposes into 1-dimensional representations. The resulting formal sum
of weights is called the (formal) character of the representation with respect to T .
This formal sum of weights can be represented by a polynomial, which is then
called a character polynomial.

3.2. Roots and weights

Consider the set Λ(T) of algebraic group morphisms T → C∗ (or equivalently, isomor-
phism classes of 1-dimensional T -modules); its elements are called weights. Weights
may be composed by pointwise multiplication of C∗-valued functions, which turns
Λ(T) into an Abelian group (in terms of 1-dimensional T -modules the operation cor-
responds to taking the tensor product). We use an additive notation for this group;
it is therefore convenient to denote the image of some t ∈ T under weight λ ∈ Λ(T)
by tλ, so that we have tλ+µ = tλtµ. As an Abelian group, Λ(T) is isomorphic to Zr;
moreover there is a natural Z-linear action on Λ(T) of the finite group W = Ng(T)/T ,
the Weyl group of g (with respect to T). The group Λ(T) naturally decomposes into
a direct sum Λ(S) ⊕ Λ(T ′) where S and T ′ are as described in Section 3.1. The
subgroup Λ(S) is pointwise fixed by W . The group T , being reductive and Abelian,
is diagonalisable in any g-representation. In other words, if M is a g-module, then
the restriction of M to T is a direct sum of 1-dimensional T -modules, and therefore
described by a set of weights (with multiplicities). The adjoint representation of g is
its representation on the Lie algebra of g. The set of non-zero weights of T occurring
in the adjoint representation is called the root system of g, and (often) denoted by Φ.
The elements of Φ, the so-called roots, span the sublattice of Λ(T ′) of finite index,
which is known as the root lattice.

There is a non-degenerate W -invariant inner product on the root lattice ZΦ; it
is unique up to a scalar factor for each simple factor of g, and can be chosen to take
values in Z. For definiteness we fix the inner product by the following requirements:
for all roots α ∈ Φ we have (α, α) ≥ 2, and for the root system of any simple factor
of g the value (α, α) = 2 occurs for some root. (In other words: the shortest roots are
normalised to 2; this normalisation ensures that on the root lattice the inner product
takes integral values). We may extend the inner product to Λ(T) by letting Λ(S)
be perpendicular to everything (the extended inner product is non-degenerate only if
g is semisimple). The reflections in W acting on Λ(T) are precisely the orthogonal
reflections in the hyperplanes perpendicular to the roots. A pair of opposite roots
gives rise to the same reflection.

Chapter 3 Terminology 41

Any root α defines a linear form 〈 · , α〉 on Λ(T) by 〈x, α〉 = 2(x,α)
(α,α) , which value is

independent of the scalars involved in the choice of the inner product, and moreover
is always integral. The image of a weight x under reflection in the hyperplane per-
pendicular to a root α is given by x − 〈x, α〉α; in particular it lies in the same coset
of the root lattice as x.

From the root lattice we may extend scalars to the real numbers, and obtain
a real vector space Λ(T ′) ⊗Z R, endowed with a Euclidean inner product, and an
action of W preserving this inner product. Calling this Euclidean vector space E,
and viewing the root system Φ as a subset of E, we have the following properties.

(1) Φ is finite, spans E, and does not contain 0.
(2) If α ∈ Φ, then Rα ∩ Φ = {α,−α}.
(3) Φ is invariant as a set under the action of W .
(4) For every α, β ∈ Φ we have 〈α, β〉 ∈ Z.

These properties can be taken as axioms for the abstract concept of a root system in
a Euclidean vector space, where W is taken to be the group generated by the orthog-
onal reflections in the hyperplanes perpendicular to the roots. The above properties
characterise the root systems of Lie groups, in the sense that any abstract root system
occurs (up to isomorphism) as the root system of a semisimple Lie group.

We choose (and fix) a hyperplane H in E through the origin, but not through any
root, and a half space with respect to H, which we shall call the ‘positive half-space’.
Then there is a unique system of fundamental roots, i.e., a set {α1, . . . , αs} ⊂ Φ
of s linearly independent roots such that any root β is an integral linear combination
of the αi, and the non-zero coefficients are either all positive or all negative, according
as β lies in the positive or negative half-space; we accordingly call β a positive or
negative root. We have (αi, αj) ≤ 0 for i 6= j. Apart from determining a choice of
a set of positive roots, we shall make no use of the hyperplane H and the positive
half-space.

We define a partial ordering of weights: for weights v, v′ we write v′ ≺ v if v−v′ is
a linear combination of the fundamental roots with non-negative integral coefficients;
we say that v′ lies under a weight v, and that v is higher than v′ (so by construction
all positive roots are higher than 0, which in its turn is higher than all negative roots).
Note that v and v′ can only be comparable with respect to ≺ if they lie in the same
coset of the root lattice; in particular any set of weights that has a highest element is
contained in a single such coset.

There exist weights ω1, . . . , ωs in Λ(T ′) that form a ‘dual basis’ to the linear
forms 〈 · , α1〉, . . . , 〈 · , αs〉, i.e., that satisfy 〈ωi, αj〉 = δi,j for all 1 ≤ i, j ≤ s. From
this it follows that the ωi form a Z-basis of Λ(T ′). We extend ω1, . . . , ωs by a basis
ωs+1, . . . , ωr of Λ(S) to a basis of Λ(T), called the basis of fundamental weights.

Cartan matrix The matrix
(
〈αi, αj〉

)
1≤i,j≤s is called the Cartan matrix (of the

semisimple part) of g; its rows express the fundamental roots on the basis of fun-
damental weights.

Cartan type The Cartan type of a closed subsystem Ψ of roots of Φ is the type of

42 LıE Manual

the fundamental Lie subgroup of g whose root system is Ψ.

Closed subsystem Given a root system Φ, a closed subsystem is a subset Ψ that
is itself a root system, and has the property that whenever α + β ∈ Φ for α,
β ∈ Ψ then α + β ∈ Ψ. If Φ is the root system of g, then every closed subsystem
corresponds to a fundamental Lie subgroup of g.

Fundamental reflection For a chosen set of fundamental roots α1, . . . , αs, the
reflections in the hyperplanes perpendicular to these roots are called fundamental
reflections; they are often denoted by r1, . . . , rs. These reflections generate the
Weyl group.

Fundamental root It is often assumed that a subset of the roots has been chosen as
the set of fundamental roots, which are then denoted by α1, . . . , αs. This set must
form a basis of the root lattice such that any root can be expressed as a linear
combination of them with either all positive or all negative integer coefficients.
This is the basis on which root vectors are expressed. The function inprod gives a
W -invariant inner product for weights on this basis.

Fundamental weight For a chosen set of fundamental roots there is a basis of
the weight lattice consisting of weights ω1, . . . , ωr such that 〈ωi, αj〉 = δi,j for all
i ∈ {1, . . . , r} and j ∈ {1, . . . , s}; these weights are called the fundamental weights.
It is this basis on which weight vectors are expressed.

Highest root This is the maximum of the set of roots with respect to the partial
ordering ‘≺’ (see above). It is the highest weight of the adjoint representation.

Levi subgroup Any subset of the set of fundamental roots determines a closed
subsystem (of which it is a basis of fundamental roots) of the root system, and
the fundamental Lie subgroup corresponding to this subsystem is called a Levi
subgroup of g. The Dynkin diagrams of the Levi subgroups of g are therefore
obtained by taking subsets of nodes of the diagram of g and retaining the edges
between elements of the subset.

One parameter subgroup Any 1-dimensional subtorus h of T is called a one
parameter subgroup; there is an algebraic group isomorphism φ: C∗ → h. Such
one parameters subgroups may be represented in the following way, which is very
similar to the representation of toral elements. For each i with 1 ≤ i ≤ r we have a
group homomorphism z 7→ φ(z)ωi from C∗ to C∗, where ωi is the i-th fundamental
weight (see weight). This homomorphism C∗ → C∗ must be equal to some map
z 7→ zai with ai ∈ Z. The one parameter subgroup h is now represented by the
vector [a1, . . . , ar, 0]. The final 0 serves to distinguish it from toral elements, which
are valid in the same positions where one parameter subgroups may be used (e.g., as
parameter to cent roots). The integers a1, . . . , ar should not all have a non-trivial
factor in common, because the morphism φ would then fail to be injective. Any
toral element obtained by substituting some number n for the final zero lies in h
(it is φ(ζn) where ζn = e2πi/n). The restriction matrix for h as subgroup of g can
be obtained by arranging the ai (for i = 1, 2, . . . , r) vertically into a one-column
matrix.

Chapter 3 Terminology 43

Positive root A root that can be expressed as a linear combination of fundamental
roots with non-negative coefficients is called a positive root. For every root α
exactly one of {α,−α} is positive.

Root A non-zero weight for the adjoint representation of g is called a root of g. For
each root the orthogonal reflection in the hyperplane perpendicular to it preserves
the weight lattice.

Root lattice The sublattice of the weight lattice generated by the roots of g is
called the root lattice. For semisimple groups the root lattice has finite index in
the weight lattice; for simple groups of type An, Bn, Cn, Dn, En, F4 and G2 this
index is n+ 1, 2, 2, 4, 9− n, 1 and 1 respectively. The fundamental roots form a
basis of the root lattice, and the elements of the root lattice are root vectors. See
also weight.

Root matrix A root matrix is a matrix whose rows specify a set of roots, repre-
sented as root vectors. Root matrices may be used to denote subsystems of the
root system of g.

Root system The set of all roots is called the root system of g. It is usually denoted
by Φ.

Root vector When an element of the root lattice is represented by its coefficients
on the basis consisting of the fundamental roots α1, . . . , αs, the result is called a
root vector. So a root vector has as size the semisimple rank of the group, and
such a vector v = [v1, . . . , vs] is interpreted as the sum

∑s
i=1 viαi.

Toral element To describe elements of T we can use the fundamental weights ωi.
Recall that weights are in fact mappings T → C∗, and a weight λ can therefore
be evaluated at an element t ∈ T , the resulting value be written tλ; the set of
fundamental weights form a complete set of coordinates in the sense that any
element t ∈ T in uniquely determined by the values tωi for i = 1, . . . , r. Although
LıE cannot represent arbitrary complex numbers, it can represent torus elements
of finite order, i.e., elements for which all tωi are roots of unity. To this end,
a vector [a1, . . . , ar, n] in LıE may represent the element t ∈ T for which tωi =
e2πiai/n = ζain for i = 1, . . . , r, where ζn = e2πi/n is a canonical n-th root of unity.
It follows form this description that any ai may be taken modulo n, and that all
the entries (including the final n) may be multiplied by a common non-zero factor,
without changing the indicated toral element. See Section 5.7 for examples showing
how to bring a toral element into a canonical form (using the function gcd), and
how to transform between this presentation of toral elements and the more usual
presentation for classical Lie groups like GL(n,C), namely by the diagonal entries
of the diagonal matrix t. See also one parameter subgroup.

Weight A weight with respect to a torus T is an algebraic group morphism T → C∗;
it describes a 1-dimensional representation of T . These arise in the decomposition
of the restriction to T of representations of g, in which case they are called the
weights of the g-representation with respect to T . The set Λ(T) of weights is an
Abelian group, where the group operation is pointwise multiplication of weights

44 LıE Manual

as C∗-valued functions (which corresponds to the tensor product of 1-dimensional
T -representations); this is written additively. We consequently use the exponen-
tial notation tλ to indicate application of a weight λ to t ∈ T , so that we have
tλ+µ = tλtµ. The fundamental weights span the weight lattice as a free Z-module;
expressing a weight on this basis we obtain a so-called weight vector.

Weight lattice The set Λ(T) of all weights of g with respect to T is called the
weight lattice. The addition defined for weights turns Λ(T) into an Abelian group
isomorphic to Zr.

Weight vector When a vector is represented by its coefficients on the basis con-
sisting of the fundamental weights ω1, . . . , ωr, it is called a weight vector. So a
weight vector v = [v1, . . . , vs] is interpreted as the sum

∑r
i=1 viωi.

3.3. The Weyl group and its action

Recall that the Weyl group W is defined as the quotient of the normaliser in G of T
by T (which is its own centraliser). If g is a reductive group, its Weyl group is the
same as the Weyl group of its semisimple part. By construction W has a faithful
action by conjugation on T , which induces an action on Λ(T); often we will identify
W with the corresponding set of transformations of Λ(T). A fundamental domain for
this action is the set Λ+(T) of weights of the form

∑r
i=1 aiωi with ai ≥ 0 for all i ≤ s,

which means that any weight can be transformed by W into a unique unique element
of Λ+(T); the set Λ+(T) is usually referred to as the Weyl chamber. A weight is
called dominant if it lies in Λ+(T). There is no direct relation between dominance
and the ordering ‘≺’ (for instance for all positive roots α we have 0 ≺ α, but usually
very few (often only one) of these positive roots are dominant); however we have the
following fact: the unique dominant weight in any W -orbit is also the highest element
of that orbit.

The group W is generated by the fundamental reflections, i.e., the orthogonal
reflections in the hyperplanes perpendicular to the fundamental roots; the reflection
corresponding to αi is denoted ri. Elements of W can be represented in LıE either as
products of fundamental reflections (see Weyl word below) or as r× r matrices giving
their action on Λ(T). There are convenient ways of switching from one representation
to another. As we have seen the action of the fundamental reflection ri on Λ(T)
is given by xri = x − 〈x, αi〉αi, where we follow the convention, used consistently
throughout LıE, of writing linear transformations (and their matrices) to the right of
the vector they operate upon. For any pair of distinct i, j with 1 ≤ i, j ≤ s, the
product rirj fixes the space perpendicular to both αi and αj , and induces a rotation
in the plane spanned by αi and αj . The angle of rotation is 2π/mi,j , where mi,j is
the order of rirj (i.e., the least number m > 0 such that (rirj)

m = 1). Consequently

we have (αi, αj) = −
√

(αi, αi)(αj , αj) cos(π/mi,j), which holds also in the case i = j,
since mii = 1. Then W has the following abstract presentation:

W = 〈 r1, . . . , rs | (rirj)mi,j = 1 〉.

Chapter 3 Terminology 45

This presentation of W in terms of generators and relations shows that W is a Coxeter
group. The numbers mi,j are easily determined from the Dynkin diagram of g: when
nodes i and j are not directly connected we have mi,j = 2, if there is a single bond
between them then mi,j = 3, if there is a double bond then mi,j = 4 and if there is a
triple bond the mi,j = 6.

The Weyl groups of (semisimple) Lie groups form an important subclass of the
finite Coxeter groups (in fact the only other irreducible finite Coxeter groups are the
dihedral groups Dihn of order 2n for n 6∈ {2, 3, 4, 6}, and the groups known as H3

and H4). A number of concepts are considered in LıE for Weyl groups, which are in
fact defined for general Coxeter groups. For each w ∈ W there exists a sequence
ri1 , ri2 , . . . , ril of fundamental reflections such that w = ri1ri2 · · · ril . Such a sequence
is called an expression for w, and the minimal length occurring among all expressions
of w is called the length of w, denoted l(w). An expression of minimal length for w (of
which many different ones may exist) is called a reduced expression. An expression
for w (whether reduced or not) may be represented in LıE by the vector [i1, i2, . . . , il]
consisting of the consecutive indices of its fundamental reflections, which is said to
be a Weyl word for w (for convenience it is also allowed to include zeros as entries of
a Weyl word, without affecting the meaning). Each Coxeter group has a parity, i.e.,
the map W → Z/2 given by w 7→ l(w) mod 2 is a morphism of groups (this follows
directly from the presentation of the Coxeter group). In a representation of W in
which its generators act as reflections—such as the action of a Weyl group on the
weight lattice—the parity of any w ∈ W gives the determinant of the corresponding
linear transformation.

On any Coxeter group an important partial ordering is defined, called the Bruhat
order, which will be denoted simply by ‘≤’. The ordering is compatible with the length
function on W : whenever x ≤ y, we must have l(x) ≤ l(y). There are many equivalent
definitions of the Bruhat order (see [Deodh]), one of which is the following. Define a
reflection in W to be any conjugate wriw

−1 of some simple reflection ri. The Bruhat
order is the partial ordering generated by the relations obtained by putting, for any
x ∈ W and any reflection s ∈ W , either x ≤ xs or xs ≤ x, according as l(x) < l(xs)
or l(xs) < l(x) (for reasons of parity we cannot have l(x) = l(xs)). In fact those cases
for which l(xs) = l(x)+1 already generate the Bruhat order; in such a case x is called
a Bruhat descendent of xs. It can be shown that for any w ∈ W and any reduced
expression for w, the condition x ≤ w for x ∈ W is equivalent to the existence of
an expression for x obtainable by removing a subset of the reflections in the reduced
expression for w.

A concept which is in a sense a refinement of the Bruhat order is that of the
Kazhdan-Lusztig polynomials. These are polynomials Px,y in one indeterminate with
integer coefficients, defined for any x, y ∈ W . We have Px,y 6= 0 if and only if x ≤ y.
For a precise definition and interpretation we refer to the defining paper [KaLu],
where the indeterminate is called q. An elementary recursion relation defining these
polynomials is given below.

Bruhat descendent For any element w ∈ W the Bruhat descendents are those

46 LıE Manual

elements x ∈W for which x < w in the Bruhat order and the length l(x) is exactly
one less than l(w). For any reduced expression of w, the set of expressions obtained
from it by removing a single reflection in all positions where the resulting expres-
sion remains reduced, contains exactly one reduced expression for each Bruhat
descendent of w. Also, any element y ∈ W with y ≤ w can be obtained starting
from w by repeatedly moving from an element to one of its Bruhat descendents.

Bruhat order The Bruhat order is a partial ordering defined on any Coxeter group.
It can be determined by the following recursive definition. For the identity element
e ∈ W we have x ≤ e ⇐⇒ x = e. For any other element y ∈ W there is
some simple reflection ri such that l(yri) < l(y); then for any x ∈W we have x ≤
y ⇐⇒ x′ ≤ yri, where x′ is the element with the smaller length from {x, xri}. This
definition is independent of the choice of ri. Incidentally, the definition implies that
the condition l(yri) < l(y) used above is equivalent to yri < y. It is tempting to
omit the function l from similar conditions (as occur for instance in the description
of the Kazhdan-Lusztig polynomials), but we have not done this to avoid the
suggestion that the full Bruhat order is involved in cases where a simple length
comparison suffices.

Canonical Weyl word When representing Weyl group elements by Weyl words
it is sometimes useful (for instance when testing for equality) to select for each
w ∈W a particular expression among the many possibilities; this is then called the
canonical Weyl word for W . In LıE we choose for this purpose the lexicographically
first reduced expression for w.

Coxeter group A Coxeter group is a finitely presented group, where the presen-
tation is determined by its Coxeter matrix m = (mi,j)1≤i,j≤s; the presentation of
the Coxeter group is 〈 g1, . . . , gs | (gigj)mi,j = 1 〉. Every Weyl group is a Coxeter
group, with Coxeter matrix given by mi,j = order(rirj).

Coxeter matrix A Coxeter matrix is a symmetric matrix m = (mi,j)1≤i,j≤s with
positive integer entries, such that mi,j = 1 if and only if i = j. Such a matrix is
used to define a Coxeter group.

Distinguished coset representative Within the Weyl group W we may consider
left-, right-, and double cosets with respect to a subgroup (or in the case of dou-
ble cosets, two subgroups) generated by fundamental reflections; in each case the
unique element of smallest length in its coset is called the distinguished coset rep-
resentative. Note that this term refers to a Weyl group element as representative
for a coset, not to a Weyl word representing that Weyl group element.

Dominant weight A weight whose inner products with all fundamental roots are
non-negative is called dominant. Equivalently, if the weight is written on the basis
of the fundamental weights ω1, . . . , ωr, then the first s coefficients (corresponding
to the semisimple part of the weight lattice Λ(T)) are non-negative.

Exponents The exponents of a Lie group g form a sequence of numbers e1, . . . , er,
where r is the Lie rank of g, such that the polynomial

∑
w∈W X l(w), where l denotes

the length function on the Weyl group, decomposes as a product
∏r
i=1

∑ei
j=0X

j .

Chapter 3 Terminology 47

Another property of the exponents is that the algebra of polynomial functions
invariant under the action of the Weyl group of g in its standard reflection repre-
sentation is generated by r homogeneous polynomials of respective degrees e1 + 1,
e2 + 1, . . . , er + 1. Usually the exponents of g are given in weakly increasing order.

Kazhdan-Lusztig polynomial For any pair x, y of elements of a Coxeter group W
a polynomial Px,y is defined, called Kazhdan-Lusztig polynomial. The following
recursive description may be used to determine Px,y. Unless x ≤ y in the Bruhat
order we have Px,y = 0; if x = y then Px,y = 1 (a constant polynomial). Otherwise
let ri be a simple reflection such that l(yri) < l(y). Then if l(x) < l(xri) we have
Px,y = Pxri,y; otherwise

Px,y = Pxri,yri +XPx,yri −
∑

x≤z<yri
l(zri)<l(z)

µ(z, y)X
l(y)−l(z)

2 Px,z

where µ(z, y) is the coefficient of X
l(y)−l(z)

2 −1 in Pz,y (taken to be 0 if the exponent
is not integral). This recursive description can be deduced from equation (2.2.c)
of [KaLu].

Length The length of a Weyl group element w is the smallest number l such that
w is a product of l fundamental reflections. Hence, it is the size of a reduced Weyl
word representing w.

Longest element In every finite Coxeter group W there is a unique element of
maximal length. It is an involution (but in general not a reflection), and is called
the longest element of W .

Orbit When a group W acts (from the right) on a set X, any x ∈ X has an orbit,
which is the set of all distinct values of x · w for w ∈W .

Orbit matrix When a finite group acts on any lattice by integral matrices, an orbit
may be represented by an orbit matrix, each row of which represents one element
of the orbit.

Reduced Weyl word If an element w of the Weyl group is expressed as a product
ri1 · · · rim of fundamental reflections, and no product of fewer than m fundamental
reflections yields w, then the sequence [i1, . . . , im] is a reduced Weyl word for w.
In general such a reduced Weyl word is not uniquely determined by w, but see
canonical Weyl word.

Reflection A Weyl group element that acts on the weight lattice, fixing a sublattice
of rank r − 1, is an orthogonal reflection in the hyperplane perpendicular to some
root. The reflections are precisely the conjugates of the simple reflections, and the
latter description makes sense for arbitrary Coxeter groups.

R-polynomial For any pair x, y of elements of a Coxeter group W a polyno-
mial Rx,y in one indeterminate is defined, called R-polynomial. These polynomials
are related to the Kazhdan-Lusztig polynomials (see Section 5.9.1). The following

48 LıE Manual

recursive description may be used to determine Rx,y. Unless x ≤ y in the Bruhat
order we have Rx,y = 0; if x = y then Rx,y = 1 (a constant polynomial). Otherwise
let ri be a simple reflection such that l(yri) < l(y). Then if l(xri) < l(x) we have
Rx,y = Rxri,yri ; otherwise Rx,y = (X−1)Rx,yri+XRxri,yri . For more details about
the meaning of these polynomials and their relationship to the Kazhdan-Lusztig
polynomials, one may consult [KaLu]; see also Section 5.9.1.

Weyl group The Weyl group W is defined as the quotient of the normaliser Ng(T)
of the maximal torus T in g by the centraliser of T in g (which is T itself). W is a
finite group, and has a faithful linear representation on the weight lattice Λ(T). The
elements of W are often identified with their images in this representation. The
fundamental reflections r1, . . . , rs in this representation are canonical generators
of W .

Weyl word An element of the Weyl group W may be presented as a product of
the fundamental reflections ri (1 ≤ i ≤ s). If ri1 · · · ril is such a product, the
corresponding Weyl group element may be represented by the so-called Weyl word
[i1, . . . , il]. It is allowed to include entries equal to 0 in a Weyl word, which are
ignored by LıE; no function that returns Weyl words will include such zeros in the
result, except possibly as a padding at the right end when that Weyl word forms
a row in a matrix of Weyl words of different lengths.

3.4. The Symmetric groups and related matters

Although they are not (connected) Lie groups, the Symmetric groups enter into a
number of computations performed by LıE (in particular into plethysm). The rep-
resentation theory of the General Linear groups is closely linked with that of the
Symmetric groups (this goes much further than the observation that the Weyl group
of GLn is isomorphic to the symmetric group Sn). Either of these representation the-
ories has a convenient description in terms of partitions and Young tableaux, whereas
such a description is not applicable to reductive Lie groups in general. We do not
intend to go deeply into these matters here; one may consult [JaKe] for details. We
will just recall the basic definitions, and explain how they relate to the objects ma-
nipulated by LıE.

The Symmetric group on n symbols, denoted Sn, consists of permutations of
the set {1, 2, . . . , n}; these are readily represented by vectors of length n containing
the entries 1, 2, . . . , n in permuted order. An important rôle in the theory of Sn
is played by partitions of n; these are weakly decreasing sequences of natural num-
bers with sum equal to n. The individual terms of a partition are called its parts.
Partitions of n parametrise the conjugacy classes of Sn in a natural way: the parts
indicate the sizes of the cycles of the elements of the corresponding conjugacy class.
Partitions also naturally parametrise the irreducible representations of Sn. For the
precise correspondence of partitions to representations we refer to the literature, but
we remark that LıE can compute the character χλ of the representation corresponding
to the partition λ, i.e., the function mapping each permutation to its trace in that
irreducible representation (in the case of Sn this is always an integral number). Since

Chapter 3 Terminology 49

this function is constant on each conjugacy class, it can be specified by giving its
value on each such class; the value of χλ on the conjugacy class of cycle type µ will
be written as χλ(µ).

Partitions also provide an alternative way to represent dominant weights of
SLn or GLn. Taking as maximal torus T in those groups the set of diagonal matrices,
a weight (which is a function T → C∗) is a monomial expression in the diagonal en-
tries, and is determined by the vector v of the n exponents occurring for these entries.
This is not the expression on the basis of fundamental weights which is used through-
out in LıE. The group SLn has type An−1, and the coefficient of the i-th fundamental
weight in the weight represented by v is the difference v[i]− v[i+ 1] of two successive
exponents. Note that a vector v all of whose entries are equal corresponds to the zero
weight; this is because the product of all diagonal entries of a diagonal matrix is its
determinant, which is identically 1 in SLn. If GLn is represented in LıE by a group of
type An−1T1, then the first n− 1 coefficients on the basis of fundamental weights are
determined as in the SLn case; the final coefficient is equal to the sum of the entries
of v. The fact that only one in every n possible weights of An−1T1 can be so obtained,
stems from the fact that GLn is not itself the group encoded as An−1T1, but rather
a quotient of it by a central subgroup of order n.

The above correspondence applies to arbitrary weights; the dominant weights
correspond to vectors v whose entries are weakly decreasing. In this way the dominant
weights of SLn are in bijection with partitions of arbitrary natural numbers with at
most n−1 (non-zero) parts (the n-th part can be made 0 by a uniform shift of all the
parts). For GLn partitions only correspond to those dominant weights that involve
only non-negative powers of the diagonal entries (i.e., the inverse of the determinant,
although it is a dominant weight, is not used); such weights are in bijection with
partitions with at most n parts. We will say that weights, when represented by
vectors v as above, are expressed in partition coordinates (even if they should be
non-dominant).

Here are some examples of these correspondences. The highest weight of the
standard module of SL(n,C), obtained from the injective morphism SL(n,C) →
GL(n,C), corresponds to the partition [1], which is represented by [1, 0, . . . , 0] on the
basis of fundamental weights. The partition [d] corresponds to the highest weight of
the d-th symmetric power (see below) of the standard module, and is represented by
[d, 0, . . . , 0] on the basis of fundamental weights. The partition [1, 1, . . . , 1] of d cor-
responds to the highest weight of the d-th alternating power of the standard module,
and is represented by [0, . . . , 0, 1, 0, . . . , 0] on the basis of fundamental weights, with
the coefficient 1 appearing in the d-th position.

Note that the action of the Weyl group of type An−1 or An−1T1—which is isomor-
phic to Sn—corresponds to the action of Sn permuting the n partition coordinates.
In the representation theory of SLn and GLn partition coordinates are often more
natural than coordinates on the basis of fundamental weights; they are for instance
used in the Littlewood-Richardson rule.

To explain why the Symmetric group plays a rôle for representations of an arbi-

50 LıE Manual

trary reductive Lie group g, consider some g-module V and its tensor square V ⊗ V .
The (diagonal) action of g on V ⊗ V obviously commutes with the involution of
that space which exchanges the two tensorands. Consequently the two eigenspaces
of that involution (viz. the spaces of symmetric and of anti-symmetric tensors) are
g-submodules of V ⊗V . We call these two submodules the symmetric and alternating
tensor square of V ; the ordinary tensor square is their direct sum.

More generally we may consider arbitrary symmetric and alternating tensor
powers of V , consisting of the (fully) symmetric respectively alternating tensors in
V ⊗n = V ⊗ V ⊗ · · · ⊗ V . For n > 2 however, the n-th symmetric and alternating
tensor powers together do not combine to the full n-th tensor power. Rather one
can decompose V ⊗n into parts corresponding to all of the irreducible representations
of Sn (not just the linear ones), the so-called isotypical components. The isotypical
component for the Sn-representation Rλ corresponding to a partition λ, is isomorphic
(as g × Sn-module) to the tensor product of some g-module V (λ), say, with that Sn-
representation Rλ, in such a way that the group g acts via the tensorand V (λ) and Sn
via the tensorand Rλ. The module V (λ) is then called the symmetrised tensor power,
or plethysm, of V with respect to the partition λ.

Character polynomial For the symmetric group on n letters, the conjugacy classes
are parametrised by partitions of n, where the parts of the partition correspond to
the disjoint cycles of the permutation. Therefore a character χλ of the symmetric
group may be represented by a character polynomial, which is a polynomial in
n indeterminates, in which each exponent represents a partition µ of n (padded with
trailing zeros) and its coefficient is the (integral) value χλ(µ) of the character χλ
on the conjugacy class corresponding to µ.

Partition A partition of a natural number n is a weakly decreasing sequence of
numbers whose sum is n; adding or removing trailing zeros does not alter the
partition. Any partition of n can be represented as a vector v = [v1, . . . , vn] of
length n. The LıE function partitions(n) produces a matrix whose rows represent the
partitions of n. Partitions of n parametrise the conjugacy classes of the symmetric
group on n letters and also their irreducible characters; they also parametrise
dominant weights of SLn or GLn.

Partition coordinates A weight x for a group of type An−1 can be expressed in
partition coordinates by forming a vector of length n whose i-th entry is the sum
of the coefficients in x of the j-th fundamental weights for j ≥ i (note that the final
entry is always 0). Conversely the coefficient of the i-th fundamental weight can
be obtained as the difference between the i-th and the i+1-st partition coordinate.
In LıE these conversions can be performed by the functions to part and from part.
Partition coordinates are used for the function LR tensor.

Robinson-Schensted correspondence The Robinson-Schensted correspondence
is an algorithmically defined bijection between the elements of the Symmetric
group Sn and the set of pairs of Young tableaux of equal shape with n entries.
For a definition of the correspondence see [Knuth], pp. 48-69.

Chapter 3 Terminology 51

Shape The shape of a Young tableau is a partition describing the length of the rows
of the tableau.

Symmetric group The set of permutations of {1, . . . , n} is called the Symmetric
group on n letters, often denoted by Sn. Its conjugacy classes are described by
partitions, as well as its characters.

Tableau A (Young) tableau is a an arrangement of a set {1, 2, . . . , n} of numbers
into rows of weakly decreasing length, such that the numbers increase along rows
and columns. The shape of a tableau is the sequence of its row lengths, which is a
partition. A typical example is

1 2 4 6 11
3 5 8
7 10
9 12

,

which has shape [5, 3, 2, 2]. In LıE, tableaux are represented linearly by vectors of
size n. If t is such a vector, then t[i] indicates the row number of the entry i
in the 2-dimensional form. For instance, the tableau above would be encoded
as [1, 1, 2, 1, 2, 1, 3, 2, 4, 3, 1, 4]. A function print tab is provided to display the 2-
dimensional form of a tableau. Young tableaux have many applications in the
theory of the symmetric group, for instance the number of tableaux of shape λ is
equal to the dimension of the irreducible representation of Sn corresponding to λ.

3.5. Representation theory

An important reason for choosing reductive groups as the class of groups to work with
in LıE, are the nice properties of representations of such groups. A representation of
a Lie group g on a finite dimensional vector space V is a Lie group homomorphism
g → GL(V). Equivalent information is given by specifying a (left) action of g on V
such that each map v 7→ g · v is linear and depends in a differentiable way on g; when
taking this point of view we call V a g-module. A g-module V is called irreducible if
it is non-zero, and has no subspaces stable under the action of g, except 0 and V itself.
Two fundamental facts about reductive groups are of great importance. First, every
g-module decomposes as a direct sum of irreducible representations, (or equivalently,
every g-stable subspace has a g-stable complementary subspace). Second, the set of
(finite dimensional) irreducible representations is in bijection with the set Λ+(T) of
dominant weights, by assigning to each irreducible module its highest weight (which
always exists, is unique, and occurs with multiplicity 1). According to the first fact
each module M is determined up to isomorphism by the multiplicity or frequency
in M of each irreducible module (i.e., the number of times it occurs in a direct sum
decomposition of M), while according to the second fact this may be recorded by the
set of the highest weights of its constituent irreducible submodules, counted with their
multiplicities. Representing this set with multiplicities by a polynomial we obtain the
decomposition polynomial for the module M .

52 LıE Manual

It is also possible to represent the set of all weights occurring in M , i.e., the
character of M , by a polynomial, which is then called the character polynomial for M .
Since W permutes the weights occurring in the character of M , it suffices for the
determination of the character to find just the dominant weights occurring in it with
their multiplicities; recording these in a polynomial we obtain the dominant character
polynomial for M .

On the set of g-modules a number of operations can be defined, such as forma-
tion of Cartesian product, tensor products, tensor powers and (as was discussed in
Section 3.4) symmetrised tensor powers. Also, if a Lie group homomorphism f :h→ g
is given then any g-module may be viewed (by restriction) via f as h-module (this is
called branching from g to h). In terms of characters of the g-modules these operations
are easily computed, because each weight corresponds to a 1-dimensional T -module.
Forming Cartesian and tensor products corresponds to addition and multiplication of
the character polynomials, and taking tensor powers obviously corresponds to expo-
nentiation of the character polynomials.

The character polynomials of symmetrised tensor powers can also be described
in this way, but to explain the general case we would need the theory of symmetric
functions (see [Macd]); here we just give the fully symmetric and alternating cases.
To this end write out the character polynomial of M in fully expanded form, ex-
pressing any multiplicities merely by repetition of the monomial. Then the character
polynomial of the alternating tensor square of M is obtained by summation of all
products of two distinct monomials of that expanded polynomial; similarly the char-
acter polynomial of the n-th alternating tensor power is obtained by summation of
all products of n distinct monomials. For the symmetric tensor square of M we take
a similar summation, but include into it the square of each of the monomials in the
character polynomial of M ; for the n-th symmetric tensor power we take the sum of
all products of n not necessarily distinct monomials (but unlike the case of polynomial
exponentiation, each such product is taken only once). From the theory of symmetric
functions it follows that these operations, and indeed the formation of any symmetric
function in the monomials of the character polynomial of M , can be expressed (as
linear combination with rational coefficients) in terms of polynomial exponentiation
together with one additional operation, called the Adams operator or formation of
power sums. The n-th Adams operator has the effect on the character polynomial
of simply replacing each monomial by its n-th power; in general the resulting char-
acter polynomial belongs to a virtual module. As an example the character of the
alternating tensor square of M is obtained from the character χ of M by computing
1
2 (χ2 − χ∗2), where the asterisk indicates Adams operator; for the symmetric tensor
square we may take 1

2 (χ2 + χ∗2).

Branching from the group g to a (reductive) subgroup h amounts to applying
to all the exponents occurring in the character polynomial a linear transformation,
which describes the transition from weights for the maximal torus of g to those for h.
The matrix representing the linear transformation is called the restriction matrix.
Even when the maximal tori of g and h should coincide, the restriction matrix need

Chapter 3 Terminology 53

not be equal to identity, since it should perform the coordinate transformation from
the basis of fundamental weights for g to those for h.

Despite the simplicity of description of these operations for character polynomi-
als, it is awkward to have to compute the character of any module to which one would
like to apply them, since the character polynomial of a module is usually very much
larger than its decomposition polynomial (this is mostly due to the fact that charac-
ters must be invariant under the action of the Weyl group W , which is often quite
large). Therefore some of the most powerful built-in functions of LıE deal with the
computation of these operations on the level of decomposition polynomials. (There
can still be a problem due to the size of the characters, since the formulae appropriate
for computing the operations for decomposition polynomials often involve some char-
acter polynomial as intermediate result; examples are tensor product and branching
computations. In such cases LıE will generate and traverse these character polynomial
dynamically, rather than computing and storing the whole thing at once.)

Adams operator For each n > 1 there is an operator, called the n-th Adams oper-
ator, defined on the set of virtual g-modules, which has the effect on the characters
of scaling each occurring weight by a factor n (while retaining its multiplicity). In
general the result is a virtual module even if the original module was actual. The
n-th Adams operator is the ‘weight analog’ of the operator that, given a character
χ of a finite group g, computes the decomposition of the class function γ 7→ χ(γn)
as an integral linear combination of irreducible characters. The operator is useful
for computing symmetrised tensor powers.

Adjoint representation Each Lie group g acts on its Lie algebra by conjugation,
which defines a representation of the group, the so-called adjoint representation.
The non-zero weights of this representation (all of which occur with multiplicity 1)
are called the roots of g.

Alternating Weyl sum Let ρ =
∑s
i=1 ωi = 1

2

∑
α∈Φ+ α, and let W act linearly

on the set of polynomials with exponents in Λ(T) by putting (Xλ) · w = Xλ·w.
Then for a given polynomial p the following expression will be of interest (mainly
for representation theoretic purposes):

J (p) =
∑
w∈W

(−1)l(w)((Xρp) · w)X−ρ.

This expression is called the alternating Weyl sum of p; one interesting property of
it is that it gives the same result when applied to a decomposition polynomial as
when applied to the corresponding character polynomial. Note that the expression
above suggests an alternative action of W on polynomials, where the i-th generator
of W (as a Coxeter group) does not act on exponents by reflection in the hyperplane
perpendicular to αi, but rather in that plane shifted by−ωi (or equivalently by−ρ),
and meanwhile also changes the sign of the coefficients. For this action J (p) is just
the sum of theW -images of p. However, since this “shifted alternating action” plays
no rôle except via the operator J , we will not introduce any further terminology
or notation relating to it.

54 LıE Manual

Branching Branching is another word for restricting a g-module M to another
reductive group h. Suppose h is a closed reductive Lie subgroup of g. The branch-
ing problem concerns finding the decomposition into highest weight modules of M
when viewed as an h-module. Since the maximal torus Tg of g is unique up to con-
jugacy, and similarly for h, the maximal torus Th of h may be chosen within Tg.
Consequently, each weight with respect to Tg determines by restriction a weight
with respect to Th, which defines a linear transformation Λ(Tg) → Λ(Th). In fact
we can define such a ‘restriction’ transformation in the more general setting of an
arbitrary Lie group morphism f :h→ g (not just for embeddings); consequently we
can consider branching for such situations as well. The matrix m which describes
this transformation on the respective bases of fundamental weights, is called the
restriction matrix for h in g, and plays a crucial rôle in the function branch. The
function res mat helps to find the restriction matrix in cases where h is a fun-
damental Lie subgroup; LıE has also access to a table of precomputed restriction
matrices for cases where h is a maximal subgroup in g but not a fundamental Lie
subgroup. See Chapter 5 for further examples of restriction matrices.

Character For a representation of a group on a finite dimensional vector space we
may define a function on the group by assigning to each group element the trace
of the corresponding transformation of the vector space. This function, which is
constant on conjugacy classes, is called the character of the representation. For
reductive complex Lie groups the character determines the representation up to
isomorphism, and this is already true for the restriction of the character to the
maximal torus T . Now the restriction to T of the representation decomposes
into a direct sum of 1-dimensional representations, and the character of such a
1-dimensional representation is just a weight. Hence the restriction to T of the
character of the whole representation can be correspondingly written as a formal
sum of weights (formal because we don’t use the Abelian group structure of Λ(T)
here, but just count the occurring weights with multiplicities, in other words, the
sum is taken in the group algebra of Λ(T)) and this is called the formal character
of the representation. This character can be conveniently encoded as a charac-
ter polynomial. LıE provides several ways to compute character polynomials, see
Chapter 5.

Character polynomial The (formal) character of a representation of g can be ex-
pressed as a polynomial, which records each weight λ occurring with multiplicity m
in the character as a term mXλ of the polynomial.

Contragredient representation For each representation of g on a vector space V
there is a corresponding representation, called its contragredient representation, on
the dual vector space V ∗. Here a group element a acts on an element f :V → C
of V ∗ by mapping it to fa: v 7→ f(va−1). As an example where the contragredient
occurs, consider the space of homogeneous polynomial functions of degree n on V ;
this is a finite dimensional space on which g acts (by the same formula as above, but
with a polynomial function replacing f). This representation of g is isomorphic
to the n-th symmetric tensor power of the contragredient representation of the

Chapter 3 Terminology 55

original representation.

Decomposition polynomial The decomposition of a g-module M into irreducible
modules may be represented by a decomposition polynomial d. Each term mXλ

of d represents a dominant weight λ such that the highest weight module Vλ occurs
in M with multiplicity m. In certain circumstances we allow m to be negative, in
which case there is no module corresponding to d, but we may think of M as a
formal sum (with integral scalar coefficients) of irreducible modules. In this case M
is called a virtual module, and the polynomial a virtual decomposition polynomial.

Demazure operator For each simple root αi a linear operator Mαi , called De-
mazure operator, is defined on the set of polynomials with exponents in Λ(T). Let
Xλ be a monomial and let λ[i] = 〈λ, αi〉 be the coefficient of ωi in λ. Then

Mαi(X
λ) =

Xλ·ri −Xλ+αi

1−Xαi
=

Xλ +Xλ−αi + · · ·+Xλ·ri if λ[i] ≥ 0,
0 if λ[i] = −1,
−Xλ+αi − · · · −X(λ+αi)·ri if λ[i] ≤ −2.

Note that λ ·ri = λ−λ[i]αi, and that Mαi
(p) is symmetric with respect to the fun-

damental reflection ri while the alternating Weyl sum is unchanged: J (Mαi
(p)) =

J (p). A discussion of the mathematical significance of this operator is beyond
the scope of this manual, as it involves the representation theory of parabolic
subgroups, which are not reductive. We refer to [Litt] for more information and
references.

Dominant character polynomial Since character polynomials are invariant un-
der W , and each W -orbit of weights contains a unique dominant element, the infor-
mation of a character polynomial can be more compactly represented by omitting
all terms whose exponents are not dominant. The polynomial obtained in this way
from the character polynomial of a g-module M is called the dominant character
polynomial of M . LıE provides functions filter dom and W orbit for going from the
character polynomial to the dominant character polynomial and back again.

Highest weight The maximum of the set of weights of some irreducible represen-
tation of g with respect to the partial ordering ‘≺’ is called the highest weight; it
always exists and is a dominant weight that occurs with multiplicity 1. Conversely,
every dominant weight λ occurs as the highest weight of a unique irreducible rep-
resentation Vλ of g. By definition, λ′ ≺ λ holds if and only if λ − λ′ is a sum of
positive roots; in this case λ is called higher than λ′.

Highest weight module For a dominant weight λ the unique irreducible repre-
sentation of g with λ as highest weight, is called the highest weight module (or
representation) of g for λ, and is denoted by Vλ.

Irreducible representation A representation of a group g is called irreducible if
the representation space has no proper non-zero subspace that is stable under g.
In case g is a reductive group it suffices that the representation space cannot be
decomposed as a direct sum of two non-trivial g-stable subspaces.

56 LıE Manual

Module See representation.

Plethysm A representation of a group g on a vector space M corresponds to a group
morphism g → GL(M). As such it can be composed with any representation of
the group GL(M) on a vector space N , giving rise to a representation of g on
the space N . Now if we take for the representation of GL(M) the irreducible
one parametrised by the partition λ (in partition coordinates), then the resulting
representation of g is called the plethysm, or symmetrised tensor power, of M with
respect to λ. See also Section 3.4 for an alternative description of plethysms.

Representation An action by linear transformations of a group g on a finite di-
mensional vector space V (where the representing matrices depend in a polynomial
way on the coordinates of the group element), is called a (rational) representation
of the group; the space V is then called a module for g. This is equivalent to
giving a (Lie) group morphism g → GL(V). The irreducible representations of fi-
nite groups, as well as of reductive Lie groups, are determined (up to equivalence)
by their characters. For reductive Lie groups, the irreducible representations are
parametrised by their highest weights. For the general and special linear groups,
the representations can alternatively be parametrised by partitions, see Section 3.4.

Restriction matrix If h is a reductive subgroup of g, and a maximal torus of h is
chosen within the maximal torus T of g, then any weight of g with respect to T
(which is a function on T) becomes by restriction to the maximal torus of h a
weight of h. Consequently there is a map from the weight lattice of g to that of h,
and this map is linear; it can therefore be given by a matrix, called the restriction
matrix for the subgroup h. A similar matrix can be defined for an arbitrary Lie
group morphism f :h → g. Each row of this matrix represents the restriction to
the maximal torus of h of a fundamental weight of g, viewed as a weight of h. The
restriction matrix plays a rôle in branching.

Symmetrised tensor power See plethysm.

Virtual module A formal sum of irreducible g-modules with integer coefficients
corresponds to an actual g-module only if all the coefficients are non-negative (the
module can then be constructed by interpreting the formal additions as direct
sums). However, when negative coefficients occur, it is still possible to perform all
the operations defined for modules (addition, computing characters etc.), although
there are no corresponding actual representations. In such cases we say that the
objects of computation correspond to virtual g-modules. Computations with vir-
tual modules can be useful even if one is primarily interested in actual modules, as
in the computation of plethysms.

Chapter 4 Built-in mathematical functions 57

LıE Manual

Chapter 4. BUILT-IN MATHEMATICAL FUNCTIONS

In this chapter, we list the mathematical functions built into LıE. With each function
listed, we give an interpretation of its arguments and the result of its call; furthermore,
whenever worthy of mention, a brief indication is given of the algorithm involved in
its implementation.

For each function we give a sample heading, in a format similar to what a user
defined function would start with, but we allow ourselves to use uppercase and Greek
letters, replace any semicolons by commas. A final parameter of type group may be
enclosed in an extra pair of parentheses to indicate that it is optional; if corresponding
argument is omitted in a call, the default group will be substituted. Then following
a colon the result type is given, and whenever appropriate we give enclosed in square
brackets additional information about how certain vectors, matrices and polynomials
among the parameters and the result should be interpreted.

The possible interpretations for an object of type vector are
◦ root, indicating that it is expressed on the basis of fundamental roots,
◦ weight, indicating expression on the basis of fundamental weights,
◦ ints, denoting the set or sequence of integers forming its entries,
◦ Weyl word, denoting a Weyl group element expressed as a product of fundamental

reflections,
◦ toral, denoting either an toral element of finite order or a one parameter subgroup,

as described in Section 3.3,
◦ permutation, denoting a permutation as a sequence numbers {1, 2, . . . , n} in per-

muted order,
◦ partition, denoting a partition as a weakly decreasing sequence of numbers, pos-

sibly with trailing zeros, or
◦ tableau, denoting a Young tableau, encoded by row numbers as described in

Section 3.4.

For objects of type matrix the possible interpretations are
◦ lin(a, b), representing the matrix of a Z-linear transformation, always assumed

to act from the right on vectors, where a gives the interpretation (basis) of the
vectors acted upon, and b gives the interpretation of the vectors yielded,

◦ vectors, roots, weights, Weyl words, torals, partitions, or tableaux, representing
a set of equal sized vectors without multiplicities—each row giving one vector—
with the indicated interpretation of the individual vectors.

58 LıE Manual

Finally, for polynomials the possible interpretations are
◦ polynomial, representing itself as polynomial,
◦ character, representing the character of a representation of a symmetric group

by its character polynomial,
◦ decomposition, representing a g-module by its decomposition polynomial,
◦ dominant, representing a g-module by its dominant character polynomial,
◦ weights, or representing a set of weights with multiplicities without imposing a

fixed interpretation of those weights.
The terms used here are described in more detail in Chapter 3. The notation Vλ will
be used throughout to denote the irreducible g-module with highest weight λ.

4.1. Lie groups

center ((grp g)): mat [result : torals]. Returns a matrix whose rows are toral elements
or one parameter subgroups generating the center of g. The center of a semisimple
Lie group g (always assumed to be simply connected in LıE) is a finite Abelian group
isomorphic to the quotient of the weight lattice by the root lattice (for reductive
groups the central torus is also included). For most simple groups g the center is a
cyclic group of order det Cartan(g) (which order appears in the last column of the
result); however, for groups of type D2n the center is a Klein 4-group, so simple
components of g of type D2n will account for two rows of the result.

diagram ((grp g)): vid. Prints the Dynkin diagram of g, also indicating the type of
each simple component printed, and labeling the nodes as done by Bourbaki (for
the second and further simple components the labels are given an offset so as to
make them disjoint from earlier labels). The labeling of the vertices of the Dynkin
diagram prescribes the order of the coordinates of root- and weight vectors used
in LıE.

dim ((grp g)): int. Returns the dimension of the Lie group g, which is equal to
dim(adjoint(g), g). Algorithm: We compute 2 ∗ n pos roots(g) + Lie rank(g).

Lie code (grp g): vec [result : ints]. It is required that g be a simple group or a torus;
the function returns a vector [t, n] of size 2, such that Lie group(t, n) = g.

Lie group (int t, int n): grp. Returns a torus or a simple group according to the
following rule:

Lie group(0, n) = Tn Lie group(4, n) = Dn (n ≥ 3)
Lie group(1, n) = An (n ≥ 1) Lie group(5, n) = En (6 ≤ n ≤ 8)
Lie group(2, n) = Bn (n ≥ 2) Lie group(6, 4) = F4

Lie group(3, n) = Cn (n ≥ 2) Lie group(7, 2) = G2

and for any other numbers an error is indicated. This function can be useful in
order to run examples over many Lie groups using a for loop.

Lie rank ((grp g)): int. Returns the Lie rank of g; for simple groups and tori this
equals Lie code(g)[2], while for composite groups it is the sum of the Lie ranks of
the component groups.

Chapter 4 Built-in mathematical functions 59

4.2. Root systems

Cartan ((grp g)): mat [result : lin(root,weight)]. Returns the Cartan matrix of g,
which is the transformation matrix from the root lattice to the weight lattice, using
the bases of fundamental roots and fundamental weights respectively. Hence the
i-th row of the Cartan matrix equals the i-th fundamental root, expressed as weight
vector. The labeling of the fundamental roots is as indicated by diagram(g). When
g is semisimple, the (i, j)-entry of the Cartan matrix is 〈αi, αj〉. If g contains a
central torus, so that the semisimple rank s of g is differs from the Lie rank r, then
the Cartan matrix is not square, as it is an s × r matrix, but all entries beyond
column s are zero.

Cartan (vec α, β, (grp g)): int [α, β: root]. Returns the ‘Cartan product’ 〈α, β〉, i.e.,
the integral value 2(α, β)/(β, β), where β must be a root, and α is any root vector.
[This is is not really an inner product because the function is not linear in β. The
function is linear in α, and indeed any weight would have been acceptable in place
of α, still giving an integral value; nevertheless, to avoid confusion, and because it
is most common to take α to be a root, we stick to the root basis for α as well as
for β]. See also inprod and norm.

Cartan type (mat R, (grp g)): grp [R: roots]. Returns the type of the fundamental
Lie subgroup whose root system is the minimal subsystem of the root system of g
containing all the roots in R. A basis of fundamental roots of this subsystem may
be obtained as fundam(R, g). See also closure and centr type. Algorithm: The
same algorithm as fundam is performed, but only the type of the root system is
returned.

cent roots (vec t, (grp g)): mat [t: toral, result : roots]. Returns the matrix whose
rows form the set of all positive roots centralising the toral element t ∈ T (or the
specified one parameter subgroup). Here a root α ∈ Φ is said to centralise t if
t commutes with all elements of the fundamental Lie subgroup of type A1 and
closed subsystem of roots {α,−α}. Equivalently, α centralises t if and only if α
(which is a weight, and hence a map T → C∗) maps t 7→ 1. Algorithm: Let n
be the final entry of t, and t′ the vector of remaining entries. First all positive
roots are obtained by pos roots, from which those roots α are selected for which
α ∗ Cartan(g) ∗ t′> ≡ 0 (mod n) (note that the transpose t′

>
of t′ is naturally

interpreted as a linear function on the weight lattice with values in Z/n).

cent roots (mat S, (grp g)): mat [S: torals, result : roots]. Returns the matrix whose
rows form the set of all positive roots centralising the toral elements and/or one
parameter subgroups represented by the rows of S. This set is the intersection of all
sets cent roots(t, g) with t traversing the rows of S. One may apply Cartan type or
fundam to the result to obtain the type, respectively the set of fundamental roots,
of the centraliser. See also centr type.

centr type (vec t, (grp g)): grp [t: toral]. Returns the centraliser Cg(t) of the toral
element t ∈ T (or of the specified one parameter subgroup); effectively only the type
is computed. See also cent roots. [Actually the centraliser (although connected)

60 LıE Manual

need not be simply connected, so the interpretation of the type grp of Section 2.2.5
does not admit a precise description of the actual centraliser; the result refers to
the unique simply connected group C covering the centraliser subgroup (in other
words, there is a finite central subgroup Z of C such that the precise centraliser is
isomorphic to the quotient C/Z of C by Z).]

centr type (mat S, (grp g)): grp [S: torals]. Returns the (universal cover of the)
centraliser of the toral elements and/or one parameter subgroups of T repre-
sented by the rows of S, i.e., the intersection of the groups centr type(t, g) for
t traversing the rows of S. Algorithm: The set cent roots(S, g) is divided into
connected components (where a pair of roots is considered to be joined if they
have a non-zero inner product); then in most cases LıE recognises the type from
the size of these components. This function can alternatively be computed as
Cartan type(cent roots(S, g), g), which provides a useful check, since in that case
the result is obtained by analysing the Cartan matrix of a base of fundamental
roots for the centraliser, rather than by simple counting. (A pre-LıE version of this
function, only implemented for types En, has been used for [CoGr].)

closure (mat R, (grp g)): mat [R, result : roots]. Returns a basis of fundamental
roots of the minimal closed subsystem of the root system of g that contains all the
roots in R; the basis consisting of positive (for g) roots only is chosen. Algorithm:
First fundam(R, g) is computed. Then if g has roots of different lengths, all pairs
(α, β) of short roots in the resulting set are tested to see whether α−β is a positive
root (necessarily a long one), and if so this root replaces α. Afterwards the function
fundam is applied once more to make the result dominant.

det Cartan ((grp g)): int. Returns the determinant of Cartan(g). This number is
the index of the root lattice in the weight lattice, and it is also the order of the
center of g. See also i Cartan.

dom weights (vec λ, (grp g)): mat [λ: weight, result : weights]. Returns the set of
dominant weights lying under λ, i.e., the set {µ ∈ Λ+(T) | µ ≺ λ }. This is equal
to the set of weights occurring in dom char(λ, g). Algorithm: Starting with the
singleton set {λ}, the closure is formed within the set Λ+(T) under the operation
of subtracting positive roots. Note that it would not suffice to subtract just funda-
mental roots, because certain dominant weights would then only be reachable via
weights that are not dominant.

fundam (mat R, (grp g)): mat [R, result : roots]. Returns a basis of fundamental
roots of the minimal subsystem of the root system of g that contains all the roots
in R; the basis consisting of positive (for g) roots only is chosen. The order in
which the fundamental roots are returned is compatible with the standard labeling
for a root system of type Cartan type(R, g). Algorithm: As a criterion for a set
of positive roots to be a fundamental basis for the minimal subsystem containing
them, LıE uses the condition that all mutual inner products be ≤ 0 (note that this
implies that the roots are independent). First, all negative roots in R are replaced
by their opposites, then each pair of roots that has a positive inner product is

Chapter 4 Built-in mathematical functions 61

replaced by the positive basis of fundamental roots of the rank 2 subsystem they
generate, while duplicates are removed by calls of unique. This is repeated until
no more changes occur.

high root ((grp g)): vec [result : root]. Returns the highest root of the root system of
the group g, which must have exactly one simple component (for otherwise there
exists no highest root). This root is the last row of pos roots(g). See also adjoint.

i Cartan ((grp g)): mat [result : lin(weight, root)]. Returns det Cartan(g) times the
inverse of Cartan(g). The scalar factor det Cartan(g) is required in order to keep
all matrix entries integral. To transform an element of the root lattice given as λ
in weight coordinates to root coordinates, compute λ∗ i Cartan(g)/det Cartan(g).

inprod (vec x, y, (grp g)): int [x, y: root]. Returns the Weyl group invariant inner
product of x and y. The inner product is normalised in such a way that for each
simple component of g the short roots α have inprod(α, α) = 2.

norm (vec α, (grp g)): int [α: root]. Returns the norm inprod(α, α) of the root
vector α (it would be more accurate, but less convenient, to call this the “squared
norm”). When α is a root, the value is one of {2, 4, 6}, and the inner product is
chosen such that for each simple component the short roots have norm 2. Note
that this normalisation differs from that used in [Bour4] in the case of groups of
type Bn, as the short roots are given norm 1 there.

n pos roots ((grp g)): int. Returns the number of positive roots of the root system
of g, which is equal to n rows(pos roots(g)). The number of all roots is twice as
much, and can also be computed as dim(g)− Lie rank(g).

pos roots ((grp g)): mat [result : roots]. Returns a matrix whose rows are the positive
roots of g. The first rows are the fundamental roots (i.e., the top r rows form the
matrix id(r), and if g is simple the last row, which has index n pos roots(g), is
high root(g).

4.3. The Weyl group

Bruhat desc (vec w, (grp g)): mat [w: Weyl word, result : Weyl words]. Returns the
set of Bruhat descendents of w, each one represented by a reduced Weyl word. The
Weyl word chosen for a Bruhat descendent is the unique one which is obtainable by
omitting one of the fundamental reflections occurring in the Weyl word reduce(w).
Algorithm: For each fundamental reflection in w it is tested whether leaving it out
decreases the length by exactly 1; if so a row is included in the result. In particular
this function does not use Bruhat leq.

Bruhat desc (vec v, w, (grp g)): mat [v, w: Weyl word, result : Weyl words]. Returns
the set of Bruhat descendents w′ of w which satisfy v ≤ w′ in the Bruhat ordering.
This is useful in generating all elements between v and w in the Bruhat ordering.

Bruhat leq (vec v, w, (grp g)): int [v, w: Weyl word]. Returns the value 1 if v ≤ w
in the Bruhat order, and 0 otherwise.

62 LıE Manual

canonical (vec w, (grp g)): vec [v, result : Weyl word]. Returns the canonical Weyl
word representing the same Weyl group element as w, which is the lexicographically
first reduced expression for that element. Algorithm: We take a strictly dominant
weight ρ, and compute W word(W action(ρ, w̃, g), g), where w̃ denotes the reverse
Weyl word of w.

canonical (mat m, (grp g)): mat [m, result : Weyl words]. Returns the matrix ob-
tained by replacing each row w by canonical(w, g), filling out the row with zeros if
necessary. This is useful in combination with unique when handling sets of Weyl
words.

dominant (vec λ, (grp g)): vec [λ, result : weight]. Returns the unique dominant
weight in the Weyl group orbit of the weight λ.

dominant (mat m, (grp g)): mat [m, result : weights]. Returns the matrix obtained
by replacing each row of m by the unique dominant weight in its Weyl group orbit.

dominant (pol p, (grp g)): pol [p, result : weights]. Returns the polynomial obtained
by replacing each exponent of p by the unique dominant weight in its Weyl group
orbit.

exponents ((grp g)): vec [result : ints]. Returns the exponents of the given Lie group.
For composite groups the exponents are not necessarily increasing, as they are
grouped according to the simple factors of the group, with the exponents for the
central torus (all zeros) at the end.

filter dom (mat m, (grp g)): mat [m, result : weights]. Returns the matrix obtained
by casting away all rows of m that are not dominant weights.

filter dom (pol p, (grp g)): pol [p, result : weights]. Returns the polynomial obtained
by casting away all terms of p whose exponents are not dominant weights.

KL poly (vec x, y, (grp g)): pol [x, y: Weyl word, result : polynomial]. Returns the
Kazhdan-Lusztig polynomial Px,y. Algorithm: The recursion given in Section 3.3
is used, with a few minor improvements.

length (vec w, (grp g)): int [w: Weyl word]. Returns the length of the Weyl group
element w. We have length(w) ≤ size(w), with equality if and only if w ==
reduce(w, g). Algorithm: The computation of reduce(w, g) is simulated, but record-
ing only the length changes.

long word ((grp g)): vec [result : Weyl word]. Returns a Weyl word for longest el-
ement of the Weyl group. Algorithm: We compute W word(−ρ, g), where ρ is a
strictly dominant weight.

l reduce (vec l, w, (grp g)): vec [l: ints, w, result : Weyl word]. The set l determines
a subgroup Wl of W generated by the set of fundamental reflections { ri | i ∈ l }.
The function returns a Weyl word for the distinguished representative (element of
minimal length) of the left coset Wlw. This Weyl word is obtained by deleting
certain entries from w; in particular, if w is already a reduced expression for the
distinguished representative, then w itself is returned. Algorithm: A variant of the

Chapter 4 Built-in mathematical functions 63

algorithm for reduce is used, replacing the strictly dominant weight by one that
has Wl as stabiliser.

lr reduce (vec l, w, r, (grp g)): vec [l, r: ints, w, result : Weyl word]. The sets l and r
determine subgroups Wl and Wr of W generated by the sets of fundamental reflec-
tions { ri | i ∈ l } respectively { ri | i ∈ r }. The function returns a Weyl word for
the distinguished representative (element of minimal length) of the double coset
WlwWr. This Weyl word is obtained by deleting certain entries from w; in partic-
ular, if w is already a reduced expression for the distinguished representative, then
w itself is returned. Algorithm: After computing l reduce(l, w, g) the resulting re-
flections are applied from right to left to a weight whose stabiliser is Wr, and each
reflection that stabilises the intermediate value is thrown away. It can be shown
that the result is still left reduced with respect to l.

orbit (vec v,mat M): mat [result : vectors]. Here v is a vector with an arbitrary
interpretation, and M is a matrix whose column size c equals size(v), and whose
row size is a multiple of c, say kc. We interpret M as a collection of k square
matrices of size c × c, vertically concatenated. The function orbit attempts to
compute the orbit of v under the group generated by the collection of matrices,
i.e., a minimal set V of vectors containing v and closed under right multiplication
by any of the matrices in the given collection. As the orbit might be infinite,
and the algorithm has no means to detect this situation, it gives up when more
than 1000 vectors in the orbit have been computed. If any of the matrices has an
eigenvalue of absolute value > 1, then the existence of a finite orbit is unlikely;
it may happen however that an apparent orbit is still found, due to undetected
arithmetic overflow in the vector entries. For larger orbits, see orbit(n, v,M), for
Weyl group orbits see W orbit.

orbit (int n,vec v,mat M): mat [result : vectors]. This function operates in the
same way as orbit(v,m), but n replaces the limit of 1000 elements in the orbit. A
warning is in its place here: orbit uses a rather simple minded algorithm, which
in particular allocates space at the beginning for the maximal number of vectors
allowed in the orbit; therefore one shouldn’t go overboard on choosing the limit n

reduce (vec w, (grp g)): vec [w, result : Weyl word]. Returns a Weyl word of minimal
length representing the same element of W as w. This Weyl word is obtained by
deleting certain entries from w; in particular, if w is already a reduced expression,
then w itself is returned. See also canonical, l reduce, r reduce and lr reduce. Al-
gorithm: We apply the reflections in the word w from left to right to a strictly
dominant weight ρ, and whenever the intermediate value is found to have a nega-
tive coefficient at the position of the reflection being applied (i.e., a negative inner
product with the corresponding simple root), then the reflection in question is
cancelled against a previous one, which exists by the exchange condition.

reflection (vec α, (grp g)): mat [α: root, result : lin(weight,weight)]. Returns the
matrix of the reflection of the weight lattice in the hyperplane perpendicular to
the root α, expressed on the basis of fundamental weights. See also W action.

64 LıE Manual

R poly (vec x, y, (grp g)): pol [x, y: Weyl word, result : polynomial]. Returns the
value of the R-polynomial Rx,y. Algorithm: The recursion given in Section 3.3 is
used.

r reduce (vec w, r, (grp g)): vec [w, result : Weyl word, r: ints]. The set r determines
a subgroup Wr of W generated by the set of fundamental reflections { ri | i ∈ r }.
The function returns a Weyl word for the distinguished representative of the right
coset wWr. This Weyl word is obtained by deleting certain entries from w; in
particular, if w is already a reduced expression for the distinguished representative,
then w itself is returned. Algorithm: The function l reduce is called, reversing the
Weyl word before and after the call.

W action (vec w, (grp g)): mat [w: Weyl word, result : lin(weight,weight)]. Returns
the matrix giving the action of the Weyl group element w ∈W on the weight lattice,
expressed on the basis of fundamental weights. See also reflection, W rt action,
and W word.

W action (vec λ,vec w, (grp g)): vec [λ, result : weight, w: Weyl word]. Returns the
weight that is the image λ·w of the weight λ underaction of the Weyl group element
w ∈W .

W action (mat m,vec w, (grp g)): mat [m, result : weights, w: Weyl word]. Re-
turns the matrix obtained by replacing each row λ of m by W action(λ,w, g);
this matrix is equal to m∗W action(w, g), while conversely W action(w, g) equals
W action(id(Lie rank(g)), w, g).

W action (pol p,vec w, (grp g)): pol [p, result : weights, w: Weyl word]. Returns the
polynomial obtained by replacing each exponent λ of p by W action(λ,w, g); this
polynomial is equal to p ∗W action(w, g).

W orbit (vec λ, (grp g)): mat [λ: weight, result : weights]. Returns the orbit of the
weight λ under the Weyl group of g. Algorithm: for the classical groups of types
An, Bn, Cn and Dn, the orbit is generated by permutations and (for types other
than An) sign changes, after a suitable linear transformation, using a procedure
similar to next perm. For the exceptional groups (of type En, F4, and G2), a large
subgroup of the Weyl group W is chosen that is of classical type, for which the
same method is employed; it remains to traverse the small number of cosets of this
subgroup in W . This algorithm is much faster than the general function orbit.

W orbit (pol p, (grp g)): pol [p, result : weights]. Returns the polynomial obtained
by summing over all terms nXλ of p the polynomial n ∗ X W orbit(λ, g); the
latter polynomial contains each weight in the W -orbit of λ exactly once and with
coefficient n. This operation can be used for instance to compute the full character
polynomial of a module from its dominant character module.

W orbit size (vec λ, (grp g)): int [λ: weight, result : weights]. Returns the size of the
orbit of the weight λ under the Weyl group of g. This size can also be computed as
W order(g)/W order(I, g), where I is a vector whose entries indicate the positions
at which the vector dominant(λ) has zero entries.

Chapter 4 Built-in mathematical functions 65

W order ((grp g)): int. (Weyl group order) Returns the order of the Weyl group
of g.

W order (vec I, (grp g)): int [I: ints]. Returns the order of the subgroup WI of the
Weyl group of g generated by the set of fundamental reflections { ri | i ∈ I }. This
subgroup is the stabiliser subgroup of any weight vector that has zero entries pre-
cisely at positions i for which i ∈ I. Algorithm: The set of roots R = {αi | i ∈ I }
is constructed, and W order(Cartan type(R, g), g) is computed.

W rt action (vec w, (grp g)): mat [w: Weyl word, result : lin(root, root)]. (Weyl root
action) Returns the matrix giving the action of the Weyl group element w ∈ W
on the root lattice, expressed on the basis of fundamental roots.

W rt action (vec α,w, (grp g)): vec [α: root, w: Weyl word]. Returns the root that
is the image α · w of the root vector α under the Weyl group element w ∈W .

W rt action (mat m,vec w, (grp g)): mat [m, result : roots, w: Weyl word]. Returns
the matrix obtained by replacing each row α of m by W rt action(α,w, g); this
matrix is equal to m∗W rt action(w, g), while conversely W rt action(w, g) equals
W rt action(id(Lie rank(g)), w, g).

W rt orbit (vec α, (grp g)): mat [α: root, result : roots]. (Weyl root orbit) Returns
the orbit of the root vector α under the Weyl group of g.

W word (vec λ, (grp g)): vec [λ: weight, result : Weyl word]. Returns a Weyl word
for a Weyl group element w whose action sends λ to a dominant weight. In fact, the
canonical Weyl word for w is returned, while w is the distinguished representative
of its right coset wWS , where WS is the stabiliser of λ′ = dominant(λ, g). (Here
S = { i | λ′[i] = 0 }, the set of indices of fundamental reflections which stabilise λ′.)
Algorithm: Starting with the weight λ, and while the weight is not yet dominant,
the fundamental reflection ri is applied for the smallest index i for which the
coefficient of ωi in the weight is negative; the sequence of reflections used is recorded
as the result.

W word (mat m, (grp g)): vec [m: lin(weight,weight), result : Weyl word]. Returns
the canonical Weyl word for the Weyl group element w, if it exists, whose action on
the weight lattice is given by the square matrix m, i.e., such that W action(w, g) =
m. Algorithm: W word(ρ ∗ m, g) is computed for a strictly dominant weight ρ,
and reversed. Then it is checked whether applying W action to the result indeed
gives back m.

4.4. Operations related to the Symmetric group

class ord (vec λ): int [λ: partition]. Returns the order of the conjugation class of Sn
of permutations of cycle type λ (for n = |λ|, the sum of the parts of λ).

from part (vec λ): vec [λ: partition, result : weight]. Let n be the number of parts
of λ (trailing zeros are significant here) then the function returns the weight for a
group of type An−1 (i.e., for SLn) corresponding to λ, expressed on the basis of
fundamental weights. See also to part.

66 LıE Manual

from part (mat m): mat [m: partitions, result : weights]. Replaces each row λ of m
by from part(λ).

from part (pol p): pol [p: partitions, result : weights]. Replaces each exponent λ oc-
curring in p by from part(λ).

next part (vec λ): vec [λ, result : partition]. Returns the next partition of |λ| in
reverse lexicographic order. If λ is the last one, i.e., if λ = [1, 1, . . . , 1], it will
return λ again. See also partitions.

next perm (vec p): vec [p, result : ints]. Returns the next permutation of the entries
of p, in lexicographical order. If p is the last such permutation, i.e., if the entries
of p are decreasing, then p itself will be returned again. If there are repetitions
among the entries of p, then this function will not attempt to permute identical
entries, and in such cases it will take fewer applications of next perm to go from
the weakly increasing order to the weakly decreasing order. See also sym orbit.

next tabl (vec T): vec [T, result : tableau]. Returns the lexicographically next Young
tableau of the same shape as T .

n tabl (vec λ): int [λ: partition]. Returns the number of Young tableaux of shape λ.
Algorithm: The hook length formula (see [Macd]) is used.

partitions (int n): mat [result : partitions]. Returns a matrix whose rows are the
partitions of n in reverse lexicographic order, and extended by zeros to length n.
See also next part.

print tab (vec T): vid [T : tableau]. Displays the Young tableau encoded by T in
2-dimensional form.

RS (vec π): mat [π: permutation, result : tableaux]. Returns the pair of Young
tableaux corresponding to the permutation π by the Robinson-Schensted corre-
spondence; the result is represented as a 2-row matrix.

RS (vec P,vec Q): vec [P,Q: tableau, result : permutation]. Returns the permuta-
tion corresponding to the pair of Young tableaux P,Q (which must have the same
shape) by the Robinson-Schensted correspondence.

sign part (vec λ): int [λ: partition]. Returns the sign (+1 or −1) of permutations of
cycle type λ.

shape (vec T): vec [T : tableau, result : partition]. Returns the shape of the Young
tableau T .

sym char (vec λ): pol [λ: partition, result : character]. (Symmetric group character)
Let n = |λ|; the function returns the character polynomial of the character χλ
of the symmetric group Sn corresponding to the partition λ. Algorithm: We use
an implementation of the Murnaghan-Nakayama rule (see for instance [JaKe]),
representing partitions by their edge sequences for fast detection and manipulation
of rim hooks.

sym char (vec λ,vec µ): int [λ, µ: partition]. We should have |λ| = |µ|; the function
returns the (integral) value χλ(µ) of the character of the symmetric group S|λ|

Chapter 4 Built-in mathematical functions 67

corresponding to λ on the conjugacy class with cycle type µ. Algorithm: A sim-
ilar implementation of the Murnaghan-Nakayama rule, slightly adapted to avoid
computations that do not contribute to the character value at µ.

sym orbit (vec v): mat [result : vectors]. (Symmetric group orbit) Let n = size(v).
The symmetric group on n letters acts on Zn by permuting the coordinates; the
function returns the orbit of v in this action. The rows of the result are ordered
lexicographically. See also next perm.

tableaux (vec λ): mat [λ: partition, result : tableaux]. Returns matrix whose rows
encode the set of all Young tableaux of shape λ, in lexicographic order.

to part (vec v): vec [v: weight, result : partition]. Let n = size(v), then v is inter-
preted as a weight for a group of type An (i.e., for SLn+1); the expression of that
weight in n + 1 partition coordinates is returned. When v is dominant, this is a
partition with n+ 1 parts. See also from part.

to part (mat m): mat [m: weights, result : partitions]. Replaces each row λ of m by
to part(λ).

to part (pol p): pol [p: weights, result : partitions]. Replaces each exponent λ occur-
ring in p by to part(λ).

trans part (vec λ): vec [λ, result : partition]. Returns the transpose partition of λ.

4.5. Representations

Adams (int n,vec λ, (grp g)): pol [λ: weight, result : decomposition]. Returns the
decomposition polynomial of the virtual module obtained by applying the n-th
Adams operator to Vλ. Algorithm: The computation is effectively equivalent to
v decomp(dom char(λ, g) ∗ n, g). This function is used in plethysm, sym tensor,
and alt tensor.

Adams (int n,pol p, (grp g)): pol [p: decomposition, result : decomposition]. This
is like Adams(n, λ, g), but with the irreducible module Vλ replaced by the module
with decomposition polynomial p.

adjoint ((grp g)): pol [result : decomposition]. Returns the decomposition polyno-
mial of the adjoint representation of g. For simple groups the adjoint representation
is irreducible and the result therefore has a single term; the highest weight of the
adjoint representation can then be obtained as expon(adjoint(g), 1). Since the
non-zero weights of the adjoint representation are precisely the roots, this highest
weight is equal to high root(g) ∗ Cartan(g).

alt tensor (int n,vec λ, (grp g)): pol [λ: weight, result : decomposition]. (alternating
tensor power) Returns the decomposition polynomial of

∧n
Vλ, the n-th alternat-

ing tensor power (also called n-th exterior power) of Vλ. See also sym tensor and
plethysm.

alt tensor (int n,pol p, (grp g)): pol [p, result : decomposition]. This is similar to
alt tensor(n, λ, g), but with the irreducible module Vλ replaced by the module with
decomposition polynomial p.

68 LıE Manual

alt dom (pol p,vec w, (grp g)): pol [p, result : weights, w: Weyl word]. (alternating
dominant) Starting with the polynomial p, the following operation is repeatedly
applied, taking for i the successive entries of the Weyl word w, reading from left to
right. For any term nXλ let λ[i] = 〈λ, αi〉 be its coefficient of ωi; the term is unal-
tered if λ[i] ≥ 0, it is removed if λ[i] = −1, and it is replaced by −nX(λ+ωi)·ri−ωi

if λ[i] ≤ −2. (The exponent of the latter monomial could also have been written
as λ · ri − αi or as λ − (λ[i] + 1)αi.) As a result of the operation for i, the co-
efficient λ[i] is made non-negative without affecting the image Mαi(p) under the
Demazure operator, and hence also without changing the value of the alternating
Weyl sum J (p). The final result of alt dom should be the same when taking for w
different reduced Weyl words for the same element of W .

alt dom (vec λ,vec w, (grp g)): pol [λ: weight, w: Weyl word, result : weights]. Re-
turns alt dom(1Xλ, w, g).

alt dom (pol p, (grp g)): pol [p, result : weights]. This is equivalent to (but some-
what faster than) alt dom(p, long word(g), g). The resulting polynomial p′ can
be charaterised as the unique polynomial with only dominant exponents which
has J (p′) = J (p). If p is a character polynomial, then p′ is the corresponding
decomposition polynomial.

alt dom (vec λ, (grp g)): pol [λ: weight, result : weights]. Returns alt dom(1Xλ, g).

alt W sum (pol p, (grp g)): pol [p, result: weights]. (alternating Weyl sum) Returns
the alternating Weyl sum J (p) of p. This function can be useful for demonstration
purposes, e.g., to check Weyl’s character formula (see Chapter 5), but the fact that
the number of terms of the result is a multiple of W order(g) makes it impractical
for groups like E8. Algorithm: First alt dom is applied, then the alternating orbits
of the terms are generated in a straightforward way.

alt W sum (vec λ, (grp g)): pol [λ: weight, result : weights]. Is alt W sum(1Xλ, g).

branch (vec λ,grp h,mat m, (grp g)): pol [λ: weight, m: lin(weight,weight), result :
decomposition]. Returns the decomposition polynomial of the restriction to h
of Vλ, with respect to the restriction matrix m. Here the matrix m is such that
any weight λ′ (expressed on the basis of fundamental weights for g), when re-
stricted to the maximal torus of h becomes the weight λ′ ∗ m (expressed on the
basis of fundamental weights for h). In many cases the restriction matrix can be
obtained by use of res mat. See also decomp for a warning about memory overflow.
Algorithm: For simple groups g, the computation is a dynamic version of

decomp(filter dom(W orbit(dom char(λ, g), g) ∗m,h), h).

The dynamic nature lies in the fact that no intermediate result between the appli-
cation of W orbit and filter dom is generated in memory. The function branch is a
very general one, and in specific situations there may be alternative methods which
compute the answer much more efficiently; some examples are given in Chapter 5.
Note that the call of decomp might result in an error due to “failure of non-virtual

Chapter 4 Built-in mathematical functions 69

decomposition” being reported, this is almost always due to supplying a matrix m
which is not the correct restriction matrix for any morphism h→ g (but we do not
know any certain way of testing whether an arbitrary matrix m is a valid restriction
matrix or not). When g is composite, then λ and m are split up accordingly, and
the results for the individual factors of g are combined by calling tensor (for the
subgroup h). If g has a central torus, then m should be such that any coefficients
of λ on this torus can only contribute on the central torus of h; for this part of the
weight branch reduces simply to multiplication by m.

branch (pol p,grp h,mat m, (grp g)): pol [p, result : decomposition, m: lin(weight,
weight)]. This is like branch(λ, h,m, g), but with the irreducible module Vλ re-
placed by the module with decomposition polynomial p. Algorithm: Rather than
applying the formula given above to p in place of λ, we simply call branch(λ, h,m, g)
for every exponent λ of p and combine the results linearly. This means on one hand
that the call of tensor mentioned in the description of that instance of branch can
still be used to avoid generating complete Weyl orbits for composite groups; on the
other hand it means that branch can handle virtual modules, despite the call of
decomp. The only restriction is that each irreducible constituent of p—regardless
of the sign of its multiplicity—should branch to an actual h-module; this is always
the case for a proper restriction matrix m.

collect (pol p,grp h,mat l, (grp g)): pol [p, result : decomposition, l: lin(weight,
weight)]. This function attempts to perform the inverse operation of branch,
namely to reconstruct a g-module from its restriction to h. This is not generally
possible unless the restriction matrix is invertible, and in particular g and h have the
same Lie rank. When a restriction matrix m has an inverse l, and the h-module
with decomposition polynomial p is equal to some restriction branch(q, h,m, g)
of a g-module via m, then the decomposition polynomial q can be computed as
collect(p, h, l, g). Algorithm: Remarkably, the computation is quite similar to that
of branch: we compute decomp(filter dom(dom char(p, h) ∗ l, g), g); the fact that
the operation is inverse to branch is mainly due to the inverse of the restriction
matrix being supplied in the call. Apart from the switching of rôles of g and h,
the main differences with branch are that no W -orbits are generated (since it is
assumed that dominant weights for g correspond a fortiori to dominant weights
of h), and that all irreducible constituents of p are considered together (because
individually they would almost certainly give rise to problems with the non-virtual
decomposition). It can be seen from this that if p does not correspond to the
restriction of any g-module, this will result in failing of decomp, and also that
contrary to branch, it is not possible to collect virtual modules.

collect (pol p,grp h,mat l, int n, (grp g)): pol [p, result : decomposition, l: lin(weight,
weight)]. An obvious limitation of the previous version of collect is that it is only
applicable for restriction matrices which are invertible over the integers; certain
restriction matrices are invertible, but only over the rational numbers. For these
cases this extended version is provided. Since LıE cannot handle matrices with
rational entries, a common denominator n of all the entries of the inverse restriction

70 LıE Manual

matrix has to be factored out and passed as a separate argument, so that the scaled
inverse matrix l has only integer coefficients. For all weights to which l is applied
the image should be divisible by n, or else an error will be reported; apart from
this, the extended version of collect operates in the same way as the previous one.

contragr (vec λ, (grp g)): vec [λ, result : weight]. Yields the highest weight of the
contragredient (or dual) representation V ∗λ of Vλ, which is dominant(−λ, g).

contragr (pol p, (grp g)): vec [p, result : decomposition]. Returns the decomposition
polynomial of the contragredient representation of the module with decomposition
polynomial p.

decomp (pol d, (grp g)): pol [d: dominant, result : decomposition]. Returns the de-
composition polynomial of the g-module with dominant character polynomial d; it
is the inverse operation of dom char. Algorithm: The terms of d are sorted accord-
ing to the decreasing height ordering, then repeatedly dom char is applied to the
leading term and the result subtracted from the polynomial, until no terms remain.
The sequence of leading terms encountered in this way constitute the required de-
composition polynomial. It is required that the coefficients of these leading terms
are all positive, otherwise it is reported that the “non-virtual decomposition failed”.
Note that this function temporarily sets the sorting criterion to decreasing height
order, and it may need to change the default group as well to achieve this; this
is particularly likely when it is called from branch. If memory overflows within
decomp or branch, then then warning in Section 2.7.4 is particularly relevant, and
one should check the default group and the sorting criterion. See also v decomp.

Demazure (pol p,vec w, (grp g)): pol [p, result : weights, w: Weyl word]. Starting
with the polynomial p, repeatedly apply the Demazure operator Mαi

, taking for i
the successive entries of the Weyl word w, reading from left to right. The final
result of Demazure should be the same when taking for w different reduced Weyl
words for the same element of W .

Demazure (vec λ,vec w, (grp g)): pol [λ: weight, w: Weyl word, result : weights].
Returns Demazure(1Xλ, w, g).

Demazure (pol p, (grp g)): pol [p, result : weights]. This is an abbreviation for the
call Demazure(p, long word(g), g). The resulting polynomial p′ can be charac-
terised as the unique W -invariant polynomial which has J (p′) = J (p). In fact,
due to Demazure’s character formula, p′ is the character polynomial of the mod-
ule with decomposition polynomial p (provided all exponents of p were dominant).
This is not the most efficient way to compute characters, but it can be very useful
in checking other algorithms, since nothing but the most elementary manipulations
are involved, in which no information about g is used other than its Cartan matrix.

Demazure (vec λ, (grp g)): pol [λ: weight, w: Weyl word, result : weights]. Returns
Demazure(1Xλ, g).

dim (vec λ, (grp g)): int [λ: weight]. Returns the dimension of the representation Vλ.
Algorithm: Weyl’s dimension formula is applied.

Chapter 4 Built-in mathematical functions 71

dim (pol p, (grp g)): int [p: decomposition]. Returns the dimension of the g-module
with decomposition polynomial p.

dom char (vec λ, (grp g)): pol [λ: weight, result : dominant]. (dominant character)
Returns the polynomial representing the dominant part of the character of the g-
module Vλ. Algorithm: Freudenthal’s multiplicity formula is applied, see [Hum1]
and [Kruse].

dom char (vec λ, µ, (grp g)): int [λ, µ: weight]. Returns the coefficient of Xµ in the
character polynomial of Vλ. The weight λ should be dominant, but µ may be any
weight. Algorithm: The computation of dom char(λ, g) is performed, but it is
terminated as soon as the coefficient of dominant(µ, g) is known.

dom char (pol p, (grp g)): pol [p: decomposition, result : dominant]. This is like
dom char(λ, g), but with the irreducible module Vλ replaced by the module with
decomposition polynomial p.

dom char (pol p,vec µ(grp g)): pol [p: decomposition, µ: weight, result : dominant].
Returns the coefficient of Xµ in the character polynomial of the module with
decomposition polynomial p.

LR tensor (vec λ,vec µ): pol [λ, µ: partition result : decomposition]. (Littlewood-
Richardson tensor) The partitions λ and µ, which must have the same number
of parts, say n, are interpreted as dominant weights for the group SLn of type
An−1, expressed in partition coordinates. The decomposition polynomial of the
tensor product of the corresponding highest weight modules is computed using the
Littlewood-Richardson rule, where the exponents in the result are again expressed
in partition coordinates. Note that extending λ and µ by zeros can be significant:
partitions with more than n non-zero parts may appear as exponents of new terms,
while existing terms will reappear in zero-extended form. The total number of
non-zero parts is bounded however by the number in λ and µ taken together,
so eventually the number of terms will stabilise; the limiting case corresponds
to the decomposition of the Young product of the representations corresponding
to λ and µ in the representation theory of the symmetric groups. Algorithm: A
description of the Littlewood-Richardson rule can be found in the literature, see for
instance [JaKe] and [Macd]. Suffice it here to mention that the result is computed
by a combinatorial counting process, which produces the irreducible constituents
of the result one by one, in approximately constant time. This means on one hand
that there are no cancellations, as are possible in Klymik’s formula which is used for
the ordinary tensor operation, but on the other hand no advantage is taken of any
high multiplicities that may occur in the characters of Vλ and Vµ. Experimental
evidence suggests that LR tensor is slightly less efficient than tensor when n is
small but λ and µ are high weights, but it can be much more efficient when n (and
hence the Weyl group) is large, and the weights are relatively small.

LR tensor (pol p,pol q): pol [p, q, result : decomposition]. Returns the decomposi-
tion polynomial of the tensor product of the SLn-modules with respective decom-
position polynomials p and q, computed using the Littlewood-Richardson rule; all

72 LıE Manual

polynomials have their exponents in partition coordinates.

max sub ((grp g)): tex. Returns the types of the maximal proper subgroups of g,
represented textually as comma separated list; the list is obtained from a small
database. The group g must be simple and of rank ≤ 8. Types for which more
than one conjugacy class of subgroups exist have repeated occurrences in the list.
See also res mat.

max sub (int i, (grp g)): grp. Returns the type of the i-th maximal proper subgroup
of g in the list max sub(g). The group g must be simple and of rank ≤ 8. See also
res mat.

plethysm (vec λ, µ, (grp g)): pol [λ: partition, µ: weight, result : decomposition]. Re-
turns the decomposition polynomial of the plethysm of Vµ corresponding to the
partition λ. Algorithm: We use the classical Frobenius Formula (cf. [And] and
[JaKe])

plethysm(λ, µ) =
1

n!

∑
κ∈Pn

class ord(κ) ∗ sym char(λ, κ) ∗
l(κ)⊗
i=1

Adams(κi, µ),

where n = |λ|, Pn denotes the set of partitions of n, and l(κ) denotes the number
of non-zero parts κi of κ. Hence the algorithm uses partitions, class ord, sym char,
Adams, and tensor.

plethysm (vec λ,pol p, (grp g)): pol [λ: partition, p, result : decomposition]. This is
similar to plethysm(λ, µ, g), but with the irreducible module Vµ replaced by the
module with decomposition polynomial p.

p tensor (int n,vec λ, (grp g)): pol [λ: weight, result : decomposition]. Returns the
decomposition polynomial of the n-th tensor power V ⊗nλ of Vλ.

p tensor (int n,pol p, (grp g)): pol [p, result : decomposition]. Returns the decom-
position polynomial of the n-th tensor power of the g-module with decomposition
polynomial p.

res mat (mat R, (grp g)): mat [R: roots, result : lin(weight,weight)]. (restriction
matrix) It is assumed that the set R consists of roots forming a fundamental basis
for a closed subsystem Φ′ of the root system Φ of g (as for instance obtained by
a call of closure). The function returns the restriction matrix for the fundamental
Lie subgroup of g with root system Φ′. Algorithm: Let R consist of m roots,
and let r be the Lie rank of g. The first m columns of the restriction matrix
are easily computed: the (i, j)-entry is equal to 〈ωi, R[j]〉 for 1 ≤ i ≤ r and
1 ≤ j ≤ m. The remaining r −m columns define a map from the weight lattice
to Zr−m which vanishes on the roots in R and yet is surjective; it is computed by
an extended Euclidean type algorithm. This does not completely specify these last
columns, which is due to the absence of a canonical choice of fundamental weights
for the part of the central torus of the fundamental Lie subgroup which lies in the
semisimple part of the original group. Although the function checks whether the

Chapter 4 Built-in mathematical functions 73

rows of R are indeed roots, and whether they are linearly independent, it does not
test whether they are positive roots and whether their mutual inner products are
non-positive; these conditions should be met however in order to obtain a result
suitable for use with branch and collect. Note that if one is in fact interested in
the semisimple subgroup with the given root system Φ′, then it suffices to simply
discard the final r −m columns.

res mat (grph, (grp g)): mat [result : lin(weight,weight)]. Returns the restriction
matrix for the maximal proper subgroup with type h of g, which is obtained from
a small database. The group g must be simple and of rank ≤ 8. In case more than
one non-conjugate subgroups of type h exist, the restriction matrix for the first
one in the list is returned; in case no such subgroup exists, an error is reported.
See also max sub.

res mat (grph, int i, (grp g)): mat [result : lin(weight,weight)]. Returns the restric-
tion matrix for the i-th maximal proper subgroup with type h of g, which is ob-
tained from a small database. The group g must be simple and of rank ≤ 8. See
also max sub.

spectrum (vec λ, t, (grp g)): pol [λ: weight, t: toral]. Let n be the last entry of t,
then the toral element t ∈ T will act in any representation of g as a diagonalisable
transformation all of whose eigenvalues are n-th roots of unity. The function returns
a polynomial in one indeterminate, in which the coefficient of the monomial Xi

is the multiplicity of the eigenvalue ζi in the action of the toral element t on the
irreducible g-module Vλ, where ζ is the complex number e2πi/n. The result can
also be obtained by calling branch to compute the restriction to a one parameter
subgroup containing the toral element, see Section 5.7.3. Algorithm: The element t
naturally determines a linear function on Λ(T) with values in Z/n; this map is
applied to the character polynomial of Vλ, which is generated using using dom char
and a dynamic version of W orbit. In fact this algorithm is a simplified version
of branch. (A pre-LıE version of this function, implemented only for En, has been
used for [CoGr].)

spectrum (pol p,vec t(grp g)): pol [p: decomposition, t: toral]. This is similar to
spectrum(λ, t, g), but with the irreducible module Vλ replaced by the module with
decomposition polynomial p.

sym tensor (int n,vec λ, (grp g)): pol [λ: weight, result : decomposition]. (symmet-
ric tensor power) Returns the decomposition polynomial of Sn(Vλ), the n-th sym-
metric tensor power of Vλ. See also alt tensor and plethysm. Algorithm: We use
the recursion

sym tensor(n, λ) =
1

n

n∑
k=1

tensor(sym tensor(n− k, λ),Adams(k, λ)).

This formula turns into a recursion formula for alt tensor upon including a sign
(−1)k−1 in the summand.

74 LıE Manual

sym tensor (int n,pol p, (grp g)): pol [p, result : decomposition]. This is similar to
sym tensor(n, λ, g), but with the irreducible module Vλ replaced by the module
with decomposition polynomial p.

tensor (vec λ, µ, (grp g)): pol [λ, µ: weight, result : decomposition]. Returns the de-
composition polynomial of the tensor product Vλ⊗Vµ. Algorithm: We use Klimyk’s
formula, see [Hum1], Exerc. 24.9. In terms of other LıE functions this formula can
be expressed as alt dom(W orbit(dom char(λ, g), g) ∗ Xµ, g); for efficiency the
weights λ and µ are possibly interchanged, in order to make Vλ the lower dimen-
sional module of the two. Like in other functions, a dynamic version of W orbit is
used to prevent storage of a complete Weyl group orbit. For groups of type An,
see also LR tensor.

tensor (vec λ, µ, ν, (grp g)): int [λ, µ, ν: weight]. Returns the coefficient of the
monomial Xν in tensor(λ, µ, g). Algorithm: The same computational steps as in
tensor(λ, µ, g) are performed, but the computed weights unequal to ν are ignored.

tensor (pol p, q, (grp g)): pol [p, q, result : decomposition]. Returns the decomposi-
tion polynomial of the tensor product of the g-modules with respective decompo-
sition polynomials p and q.

tensor (pol p, q,vec ν, (grp g)): pol [p, q, result : decomposition, ν: weight]. Returns
the coefficient of the monomial Xν in tensor(p, q, g).

v decomp (pol d, (grp g)): pol [d: dominant, result : decomposition]. (virtual decom-
position) Returns the virtual decomposition polynomial of the virtual g-module
with dominant character polynomial d. Algorithm: Although the algorithm of
decomp could be used in this case as well, we have chosen a different approach: we
compute alt dom(W orbit(d, g), g), as always using a dynamic version of W orbit.
The validity of this formula is most easily verified by comparing with the formula
given under tensor, taking for µ the zero weight. Experimental evidence suggests
that in cases where the character polynomial to be decomposed is highly virtual,
as in the application to Adams, this algorithm is significantly more efficient than
that of decomp.

v decomp (vec λ, (grp g)): pol [λ: weight, result : decomposition]. This is equivalent
to v decomp(1Xλ, g).

Chapter 5 Examples 75

LıE Manual

Chapter 5. EXAMPLES

In this chapter we illustrate how LıE can be used to study Lie groups and their rep-
resentations, and how one can use the built-in functions and the capabilities of the
interpreter to tailor solutions to specific problems. For conciseness we have assumed
that a default group has been chosen, so that we do not have to pass around an extra
grp parameter all the time (although this would be a good thing to do when writing
a library of functions; remember that one could then still omit the parameter when
making a call to such a function). Some functions given in this chapter use other
functions defined before them, which will not always be explicitly mentioned. A file
containing all the function definitions of this chapter is supplied as part of the LıE
distibution.

5.1. General

5.1.1. Reversing the ordering

For sorting the entries of a vector the is no choice of sorting criterion, unlike with
sorting of matrices and polynomials. However, the only likely alternative to the
decreasing ordering which sort gives is the increasing ordering, and it can be obtained
by the call ‘−sort(−v)’. The same trick works for matrices as well, if one just wants
to reverse the ordering for one matrix without affecting the global sorting criterion.

5.1.2. Union and intersection of sets of vectors

Suppose a and b are matrices representing sets of vectors. Then a matrix representing
the union of these set can be obtained by the call ‘unique(a∧b)’. For the intersection
of two sets a little more work is needed. An obvious approach is to sort both matrices
and then systematically search for equal rows among the two. This approach is slightly
complicated by the fact that there is no direct way to compare two given rows in the
selected ordering for matrix rows. Here is a slicker solution using polynomials.

union(mat a, b) = unique(a∧b)
intersection(mat a, b) = support(X unique(a) + X unique(b)−X union(a, b));

5.1.3. Sum and product of vector entries

The following commands define functions that compute the sum and product of the
entries of a vector.

76 LıE Manual

sum(vec v) = loc s = 0; for i in v do s += i od; s
prod(vec v) = loc p = 1; for i in v do p = p ∗ i od; p

Incidentally, there is another solution for the first case, namely to form the inner
product with the all-one vector:

sum(vec v) = v ∗ all one(size(v))

The latter solution is more efficient than the former one, because built-in operations
(such as the standard inner product) are executed much more efficiently than pro-
grams executed by the interpreter.

5.1.4. The factorial function

There are many ways to compute the factorial n! of a natural number n. An obvious
recursive definition

fac(int n) = if n == 0 then 1 else n ∗ fac(n − 1) fi

will do fine, but there are faster and less obvious methods, such as

fac(int n) = class ord([n + 1])

which surprisingly even gives a value for (−1)!.

5.1.5. Evaluating polynomials

LıE has no built-in operation for evaluating a polynomial in a point; such an operation
is scarcely needed in the context in which LıE generally interprets polynomials (i.e.,
for decomposition polynomials and the like). It is not difficult however to write
a function that performs such an evaluation, provided that no negative exponents
occur (for otherwise the result cannot be computed over the integers).

eval pol(pol p; vec pt) = loc s = 0;
for i = 1 to length(p)
do loc m = 1; for j = 1 to size(pt) do m = m ∗ pt [j]∧expon(p, i)[j] od;

s += coef (p, i) ∗m
od; s

eval pol(pol p; int n) = eval pol(p, [n])

5.1.6. The sum of the coefficients of a polynomial

There are several ways to compute the sum of all the coefficients of a polynomial p.
First, one may consider this as a special case of polynomial evaluation: the call
eval pol(p, all one(n vars(p))) will return the desired answer, unless there are any
negative exponents (since LıE will refuse to compute even 1a if a is negative). A
function written specifically for this purpose could of course avoid the exponentiation.
A better method still is to use the fact that any polynomial can be interpreted as a
(virtual) decomposition polynomial for a torus, and then the dimension is the desired
answer; the value can therefore be obtained as dim(p,Lie group(0,n vars(p)). The
probably fastest way is to use multiplication by a matrix to obtain a polynomial in
0 indeterminates (LıE provides automatic coercion of such polynomials to and from
integers); the matrix in question has 0 columns: p ∗ null(n vars(p), 0). Thus even
multiplication by empty matrices can have its use.

Chapter 5 Examples 77

5.1.7. Accessing the default group

Although the default group is implicitly provided (whenever necessary) as an addi-
tional parameter in function calls (independently of whether built-in or user defined
functions are involved), its value can not be explicitly accessed within expressions.
There is a way out of this problem however, by means of the following little trick:
define a function on groups that returns its parameter, and call it without arguments.

default(grp g) = g

Now one can for instance assign the default group to a variable by the statement
g = default , or obtain the central torus of the default group as default [0].

5.1.8. Gaussian elimination over Z/p

Here is a practical example of a program executed entirely by the interpreter, with
no use of built-in functions. It performs Gaussian elimination over a prime field Z/p.
The input consists of a matrix m whose rows represent linear functions in n cols(m)
unknowns with coeffients in Z/p; the goal is to describe the subspace on which all these
functions vanish. The algorithm performs row operations (adding one row to another,
multiplying a row by a non-zero scalar and discarding null rows) until the first non-
zero entry each row is unique in its column. The resulting rows are returned, sorted
reverse lexicographically (which makes rows with non-zero entries at low indices come
first). This result is easily interpreted as the solution for the homogeneous system
of linear equations: each row expresses the unknown corresponding to its first non-
zero entry as a linear combination of later unknows, and any unknown for which
no row gives such an expression is a free parameter of the solution. Inhomogeneous
systems can also be treated by tacitly assuming the final unknown to be 1, so that
the last column can be used for the inhomogeneous parts of the equations. Then after
performing the elimination, the final unknown should be a free parameter (if not the
system is inconsistent), and it can be set to 1 in the solution.

A first ingredient needed is a division procedure in Z/p. We use a slight variation
of the extended gcd computation that was given in Section 2.6.1.

p = 1831 # or any other prime number #
div(int a, b) = a ∗ inv(b) % p
inv(int x) =
{ loc m = [[x % p, 1, 0], [p, 0, 1]];

while m[1, 1] # stop when smaller number becomes 0 #
do loc q = m[2, 1]/m[1, 1]; m = [m[2]− q ∗m[1],m[1]] od;
if m[2, 1] != 1 then error("division by 0") fi; m[2, 2]

}

The Gaussian elimination is now a relatively simple matter.

78 LıE Manual

Gauss(mat m) =
{ m = m % p; loc i = 1;

while i ≤ n rows(m)
do if wipe(i) # true unless m[i] was null # then i += 1

else m = m − i # cast away a null row #
fi

od;
savestate; on− lex; sort(m); restorestate; m

}
wipe(int row nr) =
{ loc v = m[row nr]; # the row to wipe with #

loc j = 1; while j ≤ size(v) && !v [j] do j += 1 od;
if j > size(v) then return 0 # failure # fi;
v = inv(v [j]) ∗ v % p; # normalise, making leading coefficient 1 #
for i = 1 to n rows(m) do if i != row nr then m[i] = m[i]−m[i , j]∗v fi od;
m[row nr] = v ; 1 # success #

}

5.2. Roots

Here are a few simple examples of how to obtain information about root systems.

5.2.1. All roots

The function roots that computes the full root system of g can be defined as follows:

roots() = loc m = pos roots; m∧−m

5.2.2. The half sum of the positive roots

In many cases one needs the weight

ρ =
1

2

∑
α∈Φ+

α,

the half sum of the positive roots. The following appears to be a correct computation

rho(grp g) = loc sum = null(Lie rank(g));
for alpha row pos roots(g) do sum = sum + alpha od; sum/2

but in fact this rounds off the result downwards to the nearest root vector, so that
for instance rho(A1) turns out to be [0], which is clearly unsatisfactory. The obvious
solution is to use the weight basis instead of the root basis, and in that case we have
ρ = all one(Lie rank(g)) for semisimple groups g, as can be easily shown (to prove
〈ρ, αi〉 = 1 use the fact that the fundamental reflection ri sends every positive root
except αi to a positive root). For groups containing a central torus we have to be a
bit more accurate:

toral dim(grp g) = Lie rank(g [0])
ss rank(grp g) = Lie rank(g)− toral dim(g)
rho(grp g) = all one(ss rank(g))∧null(toral dim(g))

Chapter 5 Examples 79

5.2.3. Positive roots made negative by w

It is known that for each Weyl group element w there are exactly l(w) positive roots α
such that α · w is a negative root. Here is a function that computes this set of roots.

inverse(vec w) = loc l = size(w); loc wi = w ;
for i = 1 to l do wi [i] = w [l + 1− i] od; wi

pos neg(vec w) = intersection(pos roots,W rt action(−pos roots, inverse(w)))

We have used the function intersection that was defined in Section 5.1.2.

5.3. Weyl words

5.3.1. The Coxeter matrix

The Coxeter matrix of a Weyl group is the matrix with entries mi,j equal to the order
of the product rirj of the fundamental reflections ri and rj . Here is a way to compute
it based on the definitions.

cox mat() = loc m = id(ss rank);
for i = 1 to n rows(m)− 1 do for j = i + 1 to n rows(m)
do m[i , j] = ord(W action([i , j])); m[j , i] = m[i , j] od od; m

ord(mat m) = loc p = m; loc i = 1; loc idmat = id(n rows(m));
while p != idmat do p = p ∗m; i += 1 od; i

A more efficient way to compute the Coxeter matrix is to use the information con-
tained in the Cartan matrix directly:

cox mat() = loc m = id(ss rank); loc c = Cartan;
for i = 1 to n rows(m)− 1 do for j = i + 1 to n rows(m)
do m[i , j] = 2 + c[i , j] ∗ c[j , i]; if m[i , j] == 5 then m[i , j] = 6 fi;

m[j , i] = m[i , j]
od od; m

5.3.2. All reduced Weyl words of a given element

Tits has shown that, to produce all reduced Weyl words corresponding to the same
Weyl element, all that is needed is to start with one such word, and to continue
substituting occurrences of the subword [i, j, i, . . .] of length m, where m is the order
of the product rirj of the corresponding fundamental reflections, by [j, i, j, . . .] of
the same length. The following routine next rewrite forms a basic ingredient in the
enumeration of all equivalent Weyl words: it produces the indicated replacement (if
possible) in the Weyl word w for the subword that begins at the k-th entry of w.

80 LıE Manual

try rewriting reduce(w) at position k
next rewrite(vec w ; int k) =
{ w = reduce(w); if k + 1 > size(w) then return w fi;

loc m = cox mat [w [k],w [k + 1]]; if k + m− 1 > size(w) then return w fi;
for i = k + 2 to k + m − 1 do if w [i] != w [i − 2] then return w fi od;
loc t = w [k + m − 2]; for i = k to k + m − 2 do w [i] = w [i + 1] od;
w [k + m − 1] = t ; w

}

The function cox mat is as in the previous subsection. In order to find all reduced
expressions for a given Weyl group element, we may use a standard closure algorithm.

produce a list of all reduced expressions for a given w ∈W
all rewrites(vec w) =
{ w = reduce(w); loc l = size(w); loc m = [w]; loc i = 0;

while i < n rows(m)
do i += 1;

for j = 1 to l − 1
do loc next = next rewrite(m[i], j); loc found = 0;

for k = 1 to n rows(m)
do if m[k] == next then found = 1; break fi od;
if !found then m = m + next fi

od
od; m

}

Incidentally there is a completely different way to solve this problem, which is anal-
ogous to the way W word is implemented. We first produce a weight x that is made
strictly dominant by the action of w, namely x = W action(rho, inverse(w)). Then
those fundamental reflections that may start a Weyl word for w are the ones whose ac-
tion brings x closer to the dominant chamber, and these are immediately recognisable
by the fact that x has a negative entry at the corresponding position. Having found
such a position we may apply the reflection to x and repeat the procedure. The rou-
tine implementing W word always chooses the first possible fundamental reflection,
but the routine all W words below tries every possibility and proceeds recursively to
obtain all possible continuations.

all W words(vec prefix , x) =
{ loc m = null(0, l);

for i = 1 to ss rank
do if x [i] < 0 then m = m∧all W words(prefix +i ,W action(x , [i])) fi od;
if n rows(m) > 0 then m else # x is dominant # [prefix] fi

}
alt rewrites(vec w) =

loc l = length(w); all W words([],W action(rho, inverse(w)))

This routine is faster that all rewrites, and it produces the Weyl words in lexicographic

Chapter 5 Examples 81

order.

5.3.3. The Bruhat ordering

Let us first reproduce from a previous version of this manual—as an example of how
certain functions were implemented in the interpreter before they were built in—a
function that computes the Bruhat descendents of a Weyl group element, which is
now available as Bruhat desc. The default group is assumed to be semisimple.

bruhat(vec w) =
{ loc w = reduce(w); loc m = null(0, size(w)− 1);

for i = 1 to size(w)
do loc v = w − i ; if length(v) == size(w)− 1 then m = m + v fi od;

it remains to check whether two rows represent words
corresponding to the same Weyl group element
m = unique(m); loc rho = all one(Lie rank);
for i = 1 to n rows(m)− 1 do for j = i + 1 to n rows(m) do

if W action(rho,m[i]) == W action(rho,m[j]) then m[j] = m[i] fi
od od;
unique(m)

}
Note how thanks to the (new) function canonical the second part can be made more
efficient: it suffices to return unique(canonical(m)). Better still, the whole second
part can be omitted, as it is not difficult to show that any two Bruhat descendents
produced by the initial for loop cannot represent the same Weyl group element: they
would contradict the reducedness of the initial expression. These considerations have
now been incorporated in the built-in algorithm for Bruhat desc; in particular the
Weyl words it returns are not necessarily canonical ones.

Now let us consider using the built-in functions for the Bruhat order to traverse
the interval in the Bruhat order between to given Weyl group elements x and y. To
be concrete about what we do with the elements found, let us just count them at each
level, producing a polynomial in one indeterminate with a term nXi if there are n
elements of length i between x and y in the Bruhat order. We shall use the version
of Bruhat desc with two Weyl word arguments.

inter pol(vec x , y) =
{ loc result = poly null(1); if ! Bruhat leq(x , y) then return result fi;

loc l = length(y); loc lx = length(x); loc level = [y];
while l ≥ lx
do result += n rows(level)X l ;

loc nl = canonical(Bruhat desc(x , level [1]));
for i = 2 to n rows(level)
do nl = unique(nl∧canonical(Bruhat desc(x , level [i])) od;
level = nl ; l = l − 1

od; result
}

82 LıE Manual

Note that canonical is always immediately applied to the result of Bruhat desc, and
that unique is called each time new words are added, in order to limit the size of the
intermediate values as much as possible. Nevertheless this way of traversing parts of
the Weyl group may lead to memory problems for large Weyl groups and elements
x and y which differ considerably in length, since the majority of the elements will
occur near the middle levels.

5.4. Cosets in The Weyl group

There are many ways to compute cosets in W with respect to Weyl subgroups gener-
ated by a subset of the set of fundamental reflections. Here, we show how to recover
some of the results in [BrCo].

5.4.1. Right cosets

Suppose S is a subset of {1, . . . , r} and W is a Weyl group of rank r; let WS be
the subgroup of W generated by { ri | i ∈ S }. When enumerating cosets of WS a
natural choice of representatives is that of the distinguished coset representatives,
i.e., the representatives of minimal length. We may use the natural bijection between
the (Weyl) orbit of a vector and the set of right cosets of its stabiliser in order to
enumerate the right cosets for WS , using the fact that WS is the stabiliser of any
dominant weight that has zeros precisely at those positions whose index occurs in S.
Calling such a weight having ones on all other positions the characteristic vector for S,
we can write the following functions.

char v(vec s) = loc y = rho; for i = 1 to size(s) do y [s[i]] = 0 od; y

r cosets(vec r) = for x row W orbit(char v(r)) do print(W word(x)) od

For example, the right coset representatives for the subsystem A1A1A1 in D4 can now
be found as follows:

setdefault D4; s = [1, 3, 4]; r cosets(s)

The Weyl words printed as a result of this all end (with the exception of the empty
word) with the simple reflection 2, which is reassuring: obviously a Weyl word which
is right reduced for S shouldn’t end with any of the reflections contained in S. Note
that [1, 3, 4] represents the nodes of the Dynkin diagram corresponding to a sub-
system A1A1A1 of D4, which can be verified by calling diagram(D4). Another—
more elaborate—way of verifying this is to ask for the Cartan type of the subsystem
generated by the fundamental roots with indices 1, 3, and 4, i.e., by computing
Cartan type(id(4)− 2, D4).

5.4.2. Left cosets

Using the fact that a Weyl word w is left reduced with respect to the subset S if and
only if its inverse is right reduced with respect to S, we can write the following varia-
tion to the previous example to obtain a print of the list of left coset representatives;
we use the function inverse defined above in Section 5.2.3.

l cosets(vec l) =
for x row W orbit(char v(l)) do print(inverse(W word(x))) od

Chapter 5 Examples 83

5.4.3. Double cosets

We now construct a function double cosets printing the full set of distinguished double
coset representatives, displayed as left and right reduced Weyl words, with respect to
specified subsets L and R of {1, . . . , r}. It suffices to modify r cosets to the effect that
it only prints those Weyl words (already right reduced for R) that are left reduced
for L.

double cosets(vec l , r) =
for x row W orbit(char v(r)) do loc w = W word(x);

if w == l reduce(l ,w) then print(w) fi
od

Of course it is also possible to put the coset representatives in a matrix. For this
purpose, the Weyl words need to have the same length, which can be achieved by
padding with zeros. A good upper bound for the number of columns needed is
lr reduce(v, long word , w). An alternative efficient way of storing the coset repre-
sentatives is to encode the Weyl word w by the weight W action(rho, reverse(w)),
which always has the same size Lie rank (this is generally much less then the upper
bound for size(w)), and from which w can be retrieved by calling W word. This idea
applies in many other situations as well, in which one has to deal with subsets of the
Weyl group.

5.5. Traversing the Weyl group

For some applications it may be necessary to perform a certain operation upon all
the elements of the Weyl group. Basically this is not difficult: if action is a function
performing the desired operation, then in analogy to the example of enumerating right
cosets one may write

for r row W orbit(all one(Lie rank)) do action(W word(r)) od

to obtain the desired effect. However, this solution has one drawback, rendering it
useless for many applications, which is that it needs an amount of memory propor-
tional to the order of the Weyl group to store the Weyl orbit. What we would like
to have is a way of traversing the Weyl group dynamically, without storing any infor-
mation permanently for each element. The built-in functions have access to a routine
that generates Weyl group orbits, but this routine is not available from the interpreter
level; there is no such construction as ‘Weyl w do action(w) od’. We will present
a set of functions that enable traversing the Weyl group without excessive storage
requirements. A price has to be paid in terms of speed, since the interpreter has to
perform the major part of the computation (as an indication, for the group E6 the
approach first mentioned is still feasible on large computers, and is about 7 times as
fast as the procedure below, while the orbit generation proper (without the for loop)
is more than 100 times as fast).

The basic idea we use is to find a large subgroup of the kind WS of Section 5.4, to
enumerate its right cosets using W orbit as described in that section (this requires only
a small amount of memory) and then for each such coset to recursively enumerate the

84 LıE Manual

elements of WS , appending the resulting Weyl words to the distinguished representa-
tive of the current right coset. The largest proper subgroups of W of the kind WS are
obviously those for which only one fundamental reflection is absent from S; moreover
it is usually best to omit a reflection at an end of the Dynkin diagram. To inspect
the orbit sizes involved one can use

inspect(grp g) = for r row id(Lie rank(g)) do print(W orbit size(r , g)) od

We will not fix some specific choice of reflection to omit, but rather allow the user to
specify a function choose which determines for each group the index of the reflection
to omit; a reasonable choice for simple groups is

choose(grp g) = if Lie code(g)[1] == 5 then Lie rank(g) else 1 fi

Having chosen a reflection to omit, we have to determine the subgroup generated by
the remaining fundamental reflections. This subgroup can be obtained by applying
Cartan type to the corresponding set of fundamental roots. We are not interested
in the central torus, however, so we make the subgroup semisimple. The following
function uses a “feature” which would have been considered a bug if it weren’t so
handy for this purpose: the function Lie group can produce tori of negative rank.

semisimple(grp g) = g ∗ Lie group(0,−toral dim(g)) # kill the central torus #

We also need to know the correspondence of the fundamental reflections of the sub-
group to those of the containing group. This can be achieved by calling fundam with
the same set of roots as Cartan type: the effect is not so much to make the set funda-
mental (which it already is) but to reorder the roots in such a way that their ordering
corresponds to the standard labeling of the Dynkin diagram of the subgroup. The
resulting matrix is almost a permutation matrix: its i-th row is the j-th unit vector,
where j is the index of the reflection in the whole group corresponding to the i-th
fundamental reflection of the subgroup. This information is more compactly repre-
sented by a vector with j as its i-th entry, which can be obtained by multiplying the
matrix to the right by the vector [1, 2, 3, . . .]. If we call the resulting vector v, then
Weyl words for the subgroup can be translated to Weyl words for the larger group
by replacing any entry i by v[i]. Since we are using recursion, we must maintain a
cumulative translation vector for translating directly to Weyl words for the original
group; this is accomplished by using a previous translation vector instead of the vector
[1, 2, 3, . . .] above. The remaining details can be found in the following program; we
revert to the method mentioned at the beginning of this section as soon as the rank of
the group has been brought down to 3. The only further subtle point is the function
translate used with make, which accesses the vector trans as non-local variable; the
identification rules of LıE ensure that it always uses the most recent instance of the
parameter of that name to the recursive function trav.

translate(int i) = trans[i]

trav(grp g ; vec prefix , trans) =
{ loc s = ss rank(g);

if s ≤ 3 then
for r row W orbit(rho(g), g)

Chapter 5 Examples 85

do action(prefix∧make(translate,W word(r , g))) od;
else loc c = choose(g); loc roots = id(s); loc sub roots = roots − c;

loc h = semisimple(Cartan type(sub roots, g));
loc new trans = fundam(sub roots, g) ∗ trans; # cumul. translation #
for r row W orbit(roots[c], g) # orbit of vector with stabiliser h #
do trav(h, prefix∧make(translate,W word(r , g)),new trans) od

fi
}

ii(int n) = n
traverse(grp g) = g = semisimple(g); trav(g , [], make(ii ,Lie rank(g)))

action(vec w) = print(w) # a useful initial setting #

We leave it as an exercise to write a similar program for traversing the orbits of
weights with small but non-trivial stabilisers.

5.6. Kazhdan-Lusztig polynomials

LıE provides a basic routine for computing Kazhdan-Lusztig polynomials. It has not
been optimised very much for speed (in particular no attempt is made to remember
previously computed polynomials), and difficult cases in large Weyl groups may prove
to be problematic. For a Weyl group like that of type B3 however there are no
problems. The following routines compute all relevant values for that group, and
present the results compactly in the format used in [Shi], p. 23; this format is based
on the observation that only very few different values occur for Kazhdan Lusztig
polynomials in small groups. For the pairs of Weyl group elements which are not
listed the Kazhdan-Lusztig polynomials are either zero or one (i.e., X0), depending
on whether Bruhat leq does or does not hold for the pair. For the pairs that are
listed the kind of bracketing indicates the value: no bracketing signifies X1 + X0,
parentheses X2 +X0, square brackets X2 +X1 +X0, and inverted angle brackets any
other value, but these don’t occur for B3 (for other groups other encodings would be
more appropriate).

The routines below taken care to list all Weyl group elements in canonical form,
and to order then by increasing length and lexicographically within the same length
class. The routine list KL is a variation of inter pol shown earlier, which spends some
extra effort to generate the elements in order of increasing length: the order reversing
involution of multilplying with the longest element of W is used for this purpose. The
function table KL illustrates an alternative way to traverse the Weyl group, useful
when a sensible order of traversal is more important than time or memory consider-
ations. It uses the fact that any initial segment of a canonical expression for a Weyl
group element is again a canonical expression (in fact this holds for any subsegment).
The remaining routines mainly concern themselves with formatting the output.

86 LıE Manual

table of Kazhdan-Lusztig polynomials, most suited for B3
str(vec w) =

if w == [] then "e"

else loc s = ""; for i = 1 to size(w) do s = s + w [i] od; s
fi

buf = ""; first = 1
output(tex t) = if length(buf + t) > 70 then print(buf +","); buf = " " fi;

buf = buf + if first || buf == " " then t else buf + ", " + t fi; first = 0
flush() = if !first then print(buf + "."); first = 1 fi

list KL(vec x) =
{ loc level = [reduce(x∧long word)]; loc l = length(level [1]);

buf = str(x) + ": ";
while l > 0 # case l = 0 would not produce any output #
do loc nl = null(0, l − 1);

for r row level
do nl = unique(nl∧canonical(Bruhat desc([], r)));

loc y = reduce(r∧long word); loc p = KL poly(x , y);
if p != X 0 then output
(if p == X 1 + X 0 then str(y) else

if p == X 2 + X 0 then "(" + str(y) + ")" else
if p == X 2 + X 1 + X 0 then "[" + str(y) + "]" else

">" + str(y) + "<" fi fi fi
) fi

od; level = nl ; l += −1
od; flush

}
table KL() =
{ loc level = [[]]; loc l = 0;

while n rows(level)
do l += 1; loc nl = null(0, l);

for w row level
do list KL(w);

for i = 1 to ss rank do if w +i == canonical(w +i) then nl += w +i
fi od

od; level = nl
od

}

5.7. Toral elements

In LıE, a toral element is represented by a vector v = [a1, . . . , ar, d]. This vector
corresponds to the element t of the maximal torus T with tωi = e2πiai/d for 1 ≤ i ≤ r.
The representation of the toral element t by the vector v is not unique, but it can be

Chapter 5 Examples 87

made so by the following function.

toral(vec v) = v = v/gcd(v); loc s = size(v); (v − s) % v [s] + v [s]

5.7.1. SL(n,C)

For the special linear group SL(n,C) there is a much more familiar way to describe
a toral element, namely by its diagonal entries in diagonalised form. If t is a diagonal
matrix with entries (t1, . . . , tn) on the main diagonal in the standard representation,
then the values of the fundamental weights ωi on t are given by

tωi =

i∏
j=1

tj .

Therefore, for g of type An−1, let t be a toral element whose diagonalised form has
entries [ζb1 , . . . , ζbn] along the main diagonal, where ζ = e2πi/d is an d-th root of unity
(note that

∑n
j=1 bj ≡ 0 (mod d) since t ∈ SL(n,C)). Then t can be represented

in LıE by applying the following function mk toral (an abbreviation for make toral
element), to the vector [b1, . . . , bn] and the number d:

mk toral(vec b; int d) = loc n = size(b);
for i = 2 to n − 1 do b[i] = (b[i − 1] + b[i]) % d od; b[n] = d ; b

Note that we use the parameter b itself (in fact a copy of the actual argument) to
build up the result in; all entries may be reduced modulo d, and the redundant
final entry is used to record the denominator d. One might wonder if the functions
to part and from part could be of any use for our present purpose, since they are
concerned with coordinate transformations to and from “diagonal entry” coordinates
for groups of type An. However they deal with weights whereas our current problem is
stated for toral elements, which are in a sense dual to weights; therefore they cannot
be directly applied. To be sure, the second line of mk toral could be replaced by
to part(−b) % d − 1 − n + d , (recall that the operators ‘−’ and ‘+’ associate to the
left!) provided that sum(b) is indeed divisible by d, but this solution seems to be
rather artificial.

5.7.2. SO(12,C)

Here is yet another example, now with the group of type D6. Consider the standard
12-dimensional representation where it acts as the orthogonal group SO(12,C) (note:
since “the group of type D6” should be read as the simply connected group of that
type, which is Spin(12,C), this is not a faithful representation: the kernel consists of a
central subgroup of order 2). We fix a basis e1, . . . , e6, f1, . . . , f6 of the underlying 12-
dimensional complex vector space with respect to which the inner product (· , ·) fixed
by SO(12,C) satisfies (ei, ej) = (fi, fj) = 0 and (ei, fj) = δi,j for all i, j ∈ {1, . . . , 6}.
Suppose now that t ∈ SO(12,C) is given by the diagonal matrix with diagonal entries
[ζa1 , . . . , ζa6 , ζ−a1 , . . . , ζ−a6], where again ζ = e2πi/d. Then the following function,
using the given matrix m, transforms the vector [a1, a2, . . . , a6] into the form used
by LıE to represent t.

88 LıE Manual

m = [[2, 2, 2, 2, 1, 1], [0, 2, 2, 2, 1, 1], [0, 0, 2, 2, 1, 1],
[0, 0, 0, 2, 1, 1], [0, 0, 0, 0, 1, 1], [0, 0, 0, 0,−1, 1]]

mk tor d6(vec a; int d) = toral((a ∗m) % (2 ∗ d) + 2 ∗ d)

Some explanation may be in its place as to how we obtained this function. Let
ε1, . . . , ε6 be weights for the maximal torus T of SO(12,C), where εi assigns to a
diagonal matrix its i-th diagonal entry. Then it is well known that the fundamental
roots of SO(12,C) are the weights εi−εi+1 for i = 1, . . . , 5, together with ε5 +ε6, and
that the weights εi form an orthonormal system in Λ(T). From this one can deduce
what the fundamental weights are (we should have (ωi, αj) = δi,j since all fundamental

roots have norm 2), and these turn out to be ωi =
∑i
j=1 εj for 1 ≤ i ≤ 4, together

with ω5 = 1
2 (ε1 + ε2 + ε3 + ε4 + ε5− ε6) and ω6 = 1

2 (ε1 + ε2 + ε3 + ε4 + ε5 + ε6). The
fractional factors in the last two expressions may seem a bit surprising; indeed, as
a weight for T we would have for instance that ω6 corresponds to taking the square
root of the product of the first 6 diagonal entries, which is not well defined. The
explanation is that ω5 and ω6 are only defined as weights for the maximal torus of
the twofold covering Spin(12,C) of SO(12,C); they do not occur in the weight lattice
of T . Nevertheless we have to use these fundamental weights, since LıE deals only with
the simply connected simple groups.

To obtain the entries of the toral element t, it now suffices to apply each of the fun-
damental weights ωi to t; each ωi accounts in this way for a column of m given above.
To avoid the fractions that might result from ω5 and ω6 we have multiplied all entries,
including the final denominator entry, by 2; in fact this corresponds to lifting t from T
to the maximal torus of Spin(12,C) which covers it twofold. Afterwards any common
divisor present in all entries are removed, which leaves the meaning of a toral element
invariant. For example we have mk tor d6([0, 1, 0, 0, 0, 0], 7) = [0, 2, 2, 2, 1, 1, 14] and
mk tor d6([0, 0, 1, 0, 1, 0], 7) = [0, 0, 1, 1, 1, 1, 7]. The fact that the first element turns
out to have order 14 rather than 7, is due to the lifting to Spin(12,C). The 7-th power
of the lift of this element is [0, 0, 0, 0, 7, 7, 14], which is equal to [0, 0, 0, 0, 1, 1, 2]; this is
an element in the center of Spin(12,C) (which can be checked by calling center(D6)),
which moreover lies in the kernel of the morphism Spin(12,C)→ SO(12,C) (this can
be checked by calling spectrum, see the next subsection).

5.7.3. Spectrum

The function spectrum provides a means to recognise the toral element specified in a
more natural form. For instance, we perform the following computation for a toral
element t of order 2 in SL(5,C):

setdefault A4; t = [1, 0, 0, 0, 2]; sr = [1, 0, 0, 0] # standard representation #
spectrum(sr , t)

which returns 3X[0] + 2X[1], showing that t has 3 eigenvalues 1, and 2 eigenval-
ues −1 in the standard representation. It is therefore conjugate to the element
mk toral([0, 0, 0, 1, 1], 2) (with mk toral as in Section 5.7.1), which equals [0, 0, 0, 1, 2].
The element t itself can be obtained as an image of mk toral by an appropriate per-
mutation of the eigenvalues: we have t == mk toral([1, 1, 0, 0, 0], 2). By replacing the

Chapter 5 Examples 89

final entry of t by 0 we obtain a vector representing a one parameter subgroup that
contains t; information about this whole subgroup may be obtained using the function
branch. The restriction matrix needed for such a 1-dimensional torus is essentially
obtained by transposition of the vector leaving out the final entry; in the current case
this restriction matrix can be expressed as ∗[t−5]. Computing branch(sr ,T1, ∗[t−5])
we find the polynomial 1X[−1] + 3X[0] + 1X[1], indicating that the element of that
one parameter subgroup parametrised by some z ∈ C∗ has one eigenvalue z−1, three
eigenvalues 1, and one eigenvalue z in the standard representation; this is in accor-
dance with the fact that such an element has matrix

z 0 0 0 0
0 z−1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

(the element t corresponds to z = −1). The centraliser of t can be found by the call
centr type(t), which returns A1A2T1, and the centraliser centr type(t− 5 + 0) of the
one parameter subgroup containing it is A2T2. On the other hand we may compute
spectrum(adjoint , t) | [0], which will return the dimension of the Lie subalgebra fixed
(eigenvalue (−1)0) by t in the adjoint representation. Since the adjoint action is by
conjugation this number should be equal the dimension of (the Lie algebra of) the
centraliser of t. The call returns 12, which is indeed equal to dim(A1A2T1). If we want
to verify the dimension of the centraliser of the one parameter subgroup containing t
in a similar way, then we may again use branch: the call branch(adjoint ,T1, ∗[t − 5])
returns 1X[−2] + 6X[−1] + 10X[0] + 6X[1] + 1X[2], which shows that this centraliser
has dimension 10, in accordance with dim(A2T2). In general we see that the function
spectrum may be simulated by using branch, as follows:

spec(pol p; vec t) = loc r = size(t); branch(p,T1, ∗[t − r]) % [t [r]]

The built-in function spectrum is slightly more efficient than this way of using branch.
As a final example of its use, let c = [0, 0, 0, 0, 1, 1, 2] be the central toral element of the
group Spin(12,C) which was considered in the previous subsection; we claimed that its
image in SO(12,C) was the identity. To verify this we first of all need to know which
highest weight corresponds to the (standard) representation of Spin(12,C), acting as
SO(12,C) on a 12-dimensional space. From the descriptions above it is obvious that
ε1 = ω1 is a weight of the standard representation (whose weight space is spanned by
the first basis vector), and in fact it is its highest weight. To check our claim we set
setdefault D6 and compute spectrum([1, 0, 0, 0, 0, 0], c); the result 12X[0] shows that
indeed c acts trivially on the 12-dimensional space. We may perform this calculation
for all 6 fundamental representations of Spin(12,C) in one go by typing

for r row id(6) do print(spectrum(r , c)) od

and find in this way (try it) that c acts non-trivially only in the last two fundamental
representations (with highest weights ω5 and ω6); these representations are called spin
representations, and there is no corresponding representation of SO(12,C) for them.

90 LıE Manual

As an extra result of our computations we easily read off the respective dimensions
of the 6 fundamental representations.

5.7.4. Branching to a centraliser

We continue with the toral element of the preceding subsection. We wish to compute
how the standard representation decomposes when restricted to the centraliser of the
toral element t, which we have already seen to be of type A1A2T1. We start with
computing the centraliser more explicitly by calling cent roots(t) which returns

1 0 0 0
0 0 1 0
0 0 0 1
0 0 1 1

 .

This is the full set of positive roots centralising t; we would like to have a basis
of fundamental roots and the corresponding type, to which end we compute f =
fundam($) and h = Cartan type(f), which give, respectively,

f =

 0 0 0 1
0 0 1 0
1 0 0 0

 and h = A2A1T1.

Note that the order of the simple factors of h differs from that in centr type(t); this is
due to the fact that, contrary to centr type, fundam and Cartan type sort their roots
before grouping them according to the simple factors (whence their result may differ
when another sorting criterion is selected, but is independent of the initial ordering
of the roots). In order to branch to the centraliser we need the restriction matrix
m = res mat(f); this gives

m =

0 0 1 3
0 0 0 6
0 1 0 4
1 0 0 2

 .

Finally we compute branch(sr , h,m) which returns 1X[0, 0, 1, 3] + 1X[0, 1, 0,−2].
Note that it is important to supply the group h here as second argument, and not
centr type(t) which has its simple components in the wrong order: the order of these
components should match the order of the columns of the restriction matrix. In our
case the restriction matrix was obtained via res mat from the matrix f of roots, and
the order of those roots correspond the order of the factors in h (as a rule, if the
restriction matrix is obtained by fres mat preceded by either fundam or closure, and
the subgroup is computed by Cartan type from the same set of roots, the orderings
match).

It is interesting to attempt to interpret the result of branching the standard
representation of SL5 to the centraliser of t. To that end, we must first find the indi-
vidual factors A2, A1, and T1 of that centraliser; they can be seen to be respectively

Chapter 5 Examples 91

the group SL3 with its non-trivial entries in the lower right hand 3 × 3 block, the
group SL2 living similarly in the upper left hand 2× 2 block, and the one parameter
subgroup of diagonal matrices in SL5 of the form

a 0 0 0 0
0 a 0 0 0
0 0 b 0 0
0 0 0 b 0
0 0 0 0 b

 or equivalently,

z3 0 0 0 0
0 z3 0 0 0
0 0 z−2 0 0
0 0 0 z−2 0
0 0 0 0 z−2

 .

The decomposition of the restriction to this centraliser of the standard represen-
tation is obviously that into the spaces spanned by the first two and by the last
three standard basis vectors. Grouping the exponents in the decomposition polyno-
mial p = 1X[0, 0, 1, 3] + 1X[0, 1, 0,−2] of this restriction according to the factors of
h = A2A1T1, we see that the highest weight [0, 0, 1, 3] corresponds to the space
spanned by the first two basis vectors (with SL3 acting trivially, SL2 in its standard
representation, and the one parameter group T1 by third powers), while the highest
weight [0, 1, 0, −2] corresponds to the space spanned by the last three basis vec-
tors. Another way to identify the two components of the restriction is by computing
dim(p[1], h) and dim(p[2], h), which return 2 and 3, respectively.

The paradoxical fact that the polynomial p claims that SL3 acts on the latter
component by its second fundamental representation ([0, 1]), which is the contragredi-
ent of its first (standard) representation, while our “decomposition by hand” indicates
a standard representation of SL3, can be explained as follows. The matrix f of roots
lists them in the reverse order to what is most natural (the fourth fundamental root
coming before the third), and we have consequently used an embedding of the group h
into SL5 which applies the “diagram automorphism” of A2 (taking transpose inverses)
to that factor of h. The reader who wishes to find out exactly where these orderings
play a rôle is urged to try the same computations after selecting a different sorting
criterion, e.g., by on - lex.

5.8. Computing and decomposing characters

5.8.1. The character polynomial

A first matter of interest for a given irreducible representation is to find out which
weights occur in it, and with which multiplicities, in other words, to find the character
of the representation. Somewhat surprisingly there is no function char built into LıE
to compute characters. A basic way to compute the character of a representation
is to use branch: if r is the Lie rank of the group then for any dominant weight λ,
the call branch(λ, Tr, id(r)) will compute the decomposition of the restriction to the
maximal torus T of the irreducible representation with highest weight λ, and this is
by definition the character of that representation. A simpler way however is to use the
function Demazure: it was mentioned in Chapter 4 that calling this function without
a Weyl word argument (which implies the default long word), can be used to compute
characters. We therefore define

92 LıE Manual

char(vec lambda) = Demazure(lambda)

as a way to compute character polynomials. Neither branch nor Demazure provide
the most efficient way of computing characters (a better method is discussed below),
but for our rather simple examples this is of little concern.

We use this function to compute the character of the standard representation of
SL4:

setdefault A3; char([1, 0, 0])

which returns the polynomial 1X[−1, 1, 0] + 1X[0,−1, 1] + 1X[0, 0,−1] + 1X[1, 0, 0],
indicating the 4 weights, all occurring with multiplicity 1. To interpret these weights—
as we have done before—in terms of ‘diagonal entries’, let εi be the weight of the
torus T of diagonal matrices in SL4 which assigns to any t ∈ T its i-th diagonal entry.
Then the fundamental weights are given by ω1 = ε1, ω2 = ε1+ε2 and ω3 = ε1+ε2+ε3,
while ε1 +ε2 +ε3 +ε4 = 0 since the elements of T have determinant 1. Using this it is
not difficult to see that the weights in the character computed above are equal to ε2,
ε3, ε4, and ε1, which is as it should be since the weight spaces for T in the standard
representation of SL4 are obviously those spanned by the 4 standard basis vectors.

As the ordering produced by sorting the weights lexicographically is somewhat
unnatural, we change it to the decreasing height ordering, which puts the highest
weight in front:

on− height; $

which gives 1X[1, 0, 0] + 1X[−1, 1, 0] + 1X[0,−1, 1] + 1X[0, 0,−1]. The ε-coordinates
are in fact just what was called ‘partition coordinates’ in Section 3.4, so we may
convert to these coordinates by means of the function to part : calling to part($)
returns 1X[1, 0, 0, 0] + 1X[0, 1, 0, 0] + 1X[0, 0, 1, 0] + 1X[−1,−1,−1, 0], which is not
exactly what we computed by hand, but equivalent to it modulo the relation on the
εi’s.

If we want to have weights which are uniquely expressible in partition coordinates,
we should consider representations of GLn rather than of SLn; extra information will
then be contained in the coefficient of the n-th fundamental weight of the group
of type An−1T1, which coefficient equals the sum of the partition coordinates. The
coordinate transformations from and to ε-coordinates can then be given by

from eps(vec lambda) = from part(lambda) + sum(lambda)
from eps(pol p) = loc s = poly null(n vars(p));

for i = 1 to length(p) do s += coef (p, i)X from eps(expon(p, i)) od; s

to eps(vec wt) = loc n = size(wt); loc v = to part(wt − n);
v + (wt [n]− sum(v))/n ∗ all one(n)

to eps(pol p) = loc s = poly null(n vars(p));
for i = 1 to length(p) do s += coef (p, i)X to eps(expon(p, i)) od; s

We now repeat the computations above for GL4 instead of SL4, keeping in mind that
the standard representation is now encoded by the highest weight [1, 0, 0, 1]:

Chapter 5 Examples 93

setdefault A3T1; char([1, 0, 0, 1])

returns 1X[1, 0, 0, 1] + 1X[−1, 1, 0, 1] + 1X[0,−1, 1, 1] + 1X[0, 0,−1, 1]; we then call
to eps($), which yields 1X[0, 1, 0, 0] + 1X[1, 0, 0, 0] + 1X[0, 0, 1, 0] + 1X[0, 0, 0, 1] as
desired. A slightly larger representation of GL4 is the irreducible representation
with highest weight [0, 1, 0, 2] (corresponding to ω2 for SL4), which is the second
exterior power of the standard representation (this fact can be verified by calling
alt tensor(2, [1, 0, 0, 1])). Its character char([0, 1, 0, 2]) is equal to

1X[0, 1, 0, 2] + 1X[1,−1, 1, 2] + 1X[1, 0,−1, 2] + 1X[−1, 0, 1, 2] +

1X[−1, 1,−1, 2] + 1X[0,−1, 0, 2]

which is converted by to eps to

1X[1, 1, 0, 0]+1X[0, 1, 1, 0]+1X[1, 0, 1, 0]+1X[0, 1, 0, 1]+1X[1, 0, 0, 1]+1X[0, 0, 1, 1],

which is in accordance with the fact that the weights of this representation are εi+εj
for 1 ≤ i < j ≤ 4, where the corresponding weight space is spanned by the wedge
ei ∧ ej of standard basis vectors.

Note that for both representations considered so far the set of weights forms a
single W -orbit, which is evident in the partition coordinates since W acts by permu-
tation of these; for the fundamental weight coordinates it can be checked by calling for
instance W orbit([0, 1, 0, 2]). Only few representations, called miniscule representa-
tions, have this property; it is more typical that there are several W -orbits of weights,
some of them with non-trivial multiplicity, as is exemplified by char([1, 1, 0, 3]):

1X[1, 1, 0, 3] + 1X[2,−1, 1, 3] + 1X[−1, 2, 0, 3] + 1X[2, 0,−1, 3] +

2X[0, 0, 1, 3] + 1X[1,−2, 2, 3] + 2X[0, 1,−1, 3] + 1X[−2, 1, 1, 3] +

2X[1,−1, 0, 3] + 1X[−1,−1, 2, 3] + 1X[−2, 2,−1, 3] + 1X[1, 0,−2, 3] +

2X[−1, 0, 0, 3] + 1X[0,−2, 1, 3] + 1X[−1, 1,−2, 3] + 1X[0,−1,−1, 3]

which is converted by to eps to

1X[1, 2, 0, 0] + 1X[0, 2, 1, 0] + 1X[2, 1, 0, 0] + 2X[1, 1, 1, 0] + 1X[0, 1, 2, 0] +

1X[2, 0, 1, 0] + 1X[1, 0, 2, 0] + 1X[0, 2, 0, 1] + 2X[1, 1, 0, 1] + 2X[0, 1, 1, 1] +

1X[2, 0, 0, 1] + 2X[1, 0, 1, 1] + 1X[0, 0, 2, 1] + 1X[0, 1, 0, 2] + 1X[1, 0, 0, 2] +

1X[0, 0, 1, 2].

5.8.2. The dominant character

Obviously characters get rather large pretty soon. An indication of the size of the
module with highest weight λ can be obtained by computing dim(λ), which returns
the sum of the multiplicities of all the weights in that character, so for instance
since dim([1, 2, 3, 14]) equals 630, it should be clear that we do not want to print

94 LıE Manual

the result of char([1, 2, 3, 14]) here. However, because characters are invariant under
the W action, there is no need to print the whole character in order to describe it
completely: one representative weight from each W -orbit with its multiplicity would
be sufficient. Since each orbit contains a unique dominant weight, that weight is
an obvious candidate. The function filter dom can be used to select only the terms
with a dominant weight as exponent from a polynomial, so we have for instance
filter dom(char([1, 1, 0, 3])) = 1X [1, 1, 0, 3]+2X [0, 0, 1, 3]; the value of char([1, 1, 0, 3])
can still be reconstructed from this by applying the function W orbit. However,
a much more efficient way to obtain the dominant part of the character is to call
dom char([1, 1, 0, 3]), which computes the same result without building the whole
character as an intermediate value. In fact this function is more efficient even if
eventually we do want to compute the whole character, so a slightly more efficient
definition of char would have been

char(vec lambda) = W orbit(dom char(lambda))

Using dom char it is feasible to obtain information about the characters of much
larger modules than with char, for instance for the GL4-module with highest weight
[1, 2, 3, 14] mentioned above the result of dom char([1, 2, 3, 14]) is the polynomial

1X[1, 2, 3, 14] + 1X[2, 0, 4, 14] + 1X[1, 3, 1, 14] + 2X[2, 1, 2, 14] + 2X[0, 1, 4, 14] +

2X[2, 2, 0, 14] + 4X[0, 2, 2, 14] + 3X[3, 0, 1, 14] + 5X[1, 0, 3, 14] + 4X[0, 3, 0, 14] +

7X[1, 1, 1, 14] + 9X[2, 0, 0, 14] + 9X[0, 0, 2, 14] + 11X[0, 1, 0, 14]

(the reader may apply to eps to this result and verify that all exponents then become
partitions of 14, as they should). If one is only interested in the set of dominant weights
occurring in the character, then one may call dom weights instead of dom char ; as an
example we may compute the exact number of terms in char([1, 2, 3, 14]) by entering

s = 0; for r row dom weights([1, 2, 3, 14]) do s += W orbit size(r) od; s

and find that this number is ‘only’ 188.

It is possible to compute characters, or their dominant parts, for reducible rep-
resentations as well as for the (irreducible) highest weight modules that we discussed
so far. For the built-in functions Demazure and dom char (and indeed all other built
in functions that accept a highest weight specifying an irreducible representation) it
suffices to call them with a decomposition polynomial for the reducible module in
place of the highest weight. For user defined functions like char this does not auto-
matically work, but for either of the definitions of char an additional definition with
‘vec’ replaced by ‘pol’ would suffice to make it available for reducible representations
as well as for irreducible ones. The functions from eps and to eps exemplify a simple
way to linearly extend—from vectors to polynomials—functions which do more than
merely call upon built in functions.

5.8.3. Decomposition

For the computation of characters of reducible representations the inverse operation is
also of interest. Several operations are available as inverses to char and dom char. For

Chapter 5 Examples 95

reconstructing the decomposition polynomial of a representation from its dominant
character one may use either decomp or v decomp; the former will only succeed if
all terms of the decomposition polynomial have positive coefficients (as they have
for any actual representation), while the latter always succeeds (given enough time
and memory), possibly returning a virtual decomposition polynomial. Apart from
the wider applicability of v decomp, it should also be noted that it uses an algorithm
which is quite different from that of decomp. If we are given the full character of a
representation, its decomposition polynomial can be most easily found by applying
alt dom: for any W -invariant polynomial p the dominantly supported polynomial
alt dom(p) satisfies char(alt dom(p)) = p.

Of course one may also choose to switch from dominant character polynomial
to character polynomial or back (using W orbit respectively filter dom) before com-
puting the decomposition polynomial. In fact it is possible to make an arbitrary
sequence of transitions between the three forms of polynomial without loosing the es-
sential information about the representation. We summarise the transition functions
in a diagram, to which we add a fourth form of polynomial, the alternating Weyl sum,
mainly because it adds a number of interesting commuting paths to the diagram.

decomposition

decomp
v decomp

� -
dom char

dominant character

filter dom

6

?

alt W sum

YHHH
HHHH

HHH
HHH

alt dom
Demazure

HHH
HHHH

HHH
HHHj

filter dom
6

?

W orbit

alternating Weyl sum �

alt W sum
· ∗ alt W sum(null(r))

character

For instance, Weyl’s character formula essentially states that starting with a decompo-
sition polynomial one obtains the same result by computing the alternating Weyl sum
directly as by computing the character first and then multiplying by the alternating
Weyl sum of the zero weight (the lower label of the bottom arrow; this second method
is much less efficient). Also one sees that the alternating Weyl sum of decomposition
polynomial is the same as that of the character polynomial. A similar property holds
for the functions alt dom and Demazure, so that the diagram could be extended by
circular arrows at the corners “decomposition polynomial” and “character polyno-
mial”, respectively labeled alt dom and Demazure (more such ‘identity arrows’ could
in fact be added, but they would not be very illuminating). Finally note that the
application of branch mentioned in Section 5.8.1 could be added as an alternative to
Demazure along the diagonal arrow, and similarly collect is an alternative for alt dom
along the opposite arrow.

96 LıE Manual

It is not possible (and it would make little sense) to apply decomp to a single
weight; however it is possible to apply v decomp to single weights. In fact, somewhat
surprisingly, v decomp can be effectively applied to weights λ which are so large that
even computing dom char(λ) would cost excessive time and space, provided only
that the Weyl group has a tractable size. For instance, still assuming the default
group A3T1 from earlier examples, we have for λ = ([34, 19, 52, 68]) that dim(λ) =
1340608500, and dom char(λ) has 26860 terms, yet calling v decomp([34, 19, 52, 68])
promptly returns

1X[34, 19, 52, 68]− 1X[35, 17, 53, 68]− 1X[34, 20, 50, 68]− 1X[32, 20, 52, 68] +

1X[32, 21, 50, 68] + 1X[36, 16, 52, 68] + 1X[35, 19, 49, 68] + 1X[34, 16, 54, 68] +

1X[31, 19, 53, 68]− 1X[36, 17, 50, 68]− 1X[32, 17, 54, 68]− 1X[35, 15, 53, 68] +

−1X[31, 21, 49, 68]− 1X[34, 19, 48, 68]− 1X[30, 19, 52, 68] + 1X[35, 17, 49, 68] +

1X[32, 20, 48, 68] + 1X[31, 17, 53, 68] + 1X[30, 20, 50, 68] + 1X[34, 15, 52, 68] +

−1X[34, 16, 50, 68]− 1X[32, 16, 52, 68]− 1X[31, 19, 49, 68] + 1X[32, 17, 50, 68]

An explanation for this phenomenon can be deduced from the diagram above, and
from the algorithm used to implement v decomp (the algorithm of decomp would not
produce this simple answer using a reasonable amount of time and space).

5.9. Checks

Numerous checks are possible to verify the consistency between results produced by
different functions. We have already mentioned many of them in Chapter 4, and in
the previous examples (several such checks are implicitly contained in the diagram
above). In addition to those, we give below a number of other checks that can be
made.

5.9.1. Checking Kazhdan-Lusztig polynomials

One may use the R-polynomials for a test of the Kazhdan-Lusztig polynomials. We
should have for any x,w ∈W :

X l(w)−l(x)Px,w − Px,w =
∑

x<y≤w

Rx,yPy,w

where the bar indicates a sign change of all the exponents. The following function
performs the test; it should always return 1 for x,w ∈W .

Chapter 5 Examples 97

test KL(vec x ,w) =
{ loc result = poly null(1);

loc l = length(w); loc lx = length(x); loc dl = l − lx ; loc level = [w];
while l > lx
do l += −1; loc nl = null(0, l);

for y row level
do result += R poly(x , y) ∗KL poly(y ,w);

nl = unique(nl∧canonical(Bruhat desc(x , y)))
od; level = nl

od; result == { loc pxw = KL poly(x ,w); X dl ∗ (pxw ∗ [[−1]])− pxw }
}

This function also exemplifies a useful application of a local block as an operand in a
(relational) formula.

5.9.2. Dimension checks

A dimension check can be made for the result of dom char ; we should have∑
µ∈Λ+(T),µ≺λ

dom char(λ, µ) ∗W orbit size(µ) = dim(λ).

The best way to check this in LıE is by the following function:

check dim(vec lambda) = loc p = dom char(lambda); loc d = 0;
for i = 1 to length(p) do d += coef (p, i) ∗W orbit size(expon(p, i)) od;
d == dim(lambda)

We may similarly check for branch that the dimension of the resulting sum of h-
modules equals that of the original g-module Vλ. In other words, we should have∑

µ∈Λ+(Th)

branch(λ, h,m)|µ ∗ dim(µ, h) = dim(λ),

where h is a reductive subgroup of g with restriction matrix m (when m is not really
a restriction matrix from g to h, the test may easily fail). The test can be performed
with the following function

chk branch(vec wt ; grp h; mat m) = dim(branch(wt , h,m), h) == dim(wt)

Similar dimension checks can be made for most representation theoretic operations.
For instance, the dimension of the tensor product of representations should be the
product of their dimensions, and the (virtual) dimension of the n-th Adams operator
applied to a representation should be the same as the original dimension of that rep-
resentation (because the corresponding character polynomials have the same number
of terms, with the same multiplicities). The dimension of plethysms for a fixed par-
tition is a polynomial expression (with rational coefficients) in the dimension of the
starting representation. The following functions compute this polynomial and use it
to predict the dimension of plethysms.

98 LıE Manual

l(vec mu) = # number of non-zero parts # loc n = size(mu);
for i = 1 to n do if ! mu[i] then return i − 1 fi od; n

pleth pol(vec lambda) =
{ loc p = 0X 0;

for mu in partitions(sum(lambda))
do p += sym char(lambda,mu) ∗ class ord(mu)X l(mu) od;
p

}
pleth dim(vec lambda; int orig dim) =

eval pol(pleth pol(lambda), orig dim)/fac(sum(lambda))

5.9.3. Checks using characters

Using character polynomials even more precise checks are possible than using dimen-
sions. For instance we may write

char(pol p; grp g) = W orbit(dom char(p, g), g)

check tensor(vec x , y) = char(tensor(x , y)) == char(x) ∗ char(y)
check branch(vec x ; grp h; mat m) =

char(branch(x , h,m), h) == char(x) ∗m

The practical applicability of these tests is limited to small cases, however, due to the
size of the character polynomials.

5.9.4. The functions sym tensor , alt tensor , and plethysm

It has already been mentioned that sym tensor and alt tensor should coincide with
special cases of plethysm. Here is a way to check that the second tensor power of a
module decomposes into a symmetric and alternating part:

check sq(vec wt) = alt tensor(2,wt) + sym tensor(2,wt) == p tensor(2,wt)

Such a simple relation does not hold for higher tensor powers, since one needs all
plethysms to decompose the tensor power, moreover plethysm(λ, µ) occurs a number
of times in p tensor(n, µ) with n = |λ|. The number of times it occurs is the dimension
of the representation Sn corresponding to λ. This dimension is equal to the value of
the symmetric group character χλ at the identity element, which can be computed as
sym char(λ, all one(sum(λ))), but it is also equal to the number of Young tableaux
of shape λ, so it is more efficiently computed as n tabl(λ). We can now set up the
following test.

chk p tensor(int n; vec wt) = loc d = poly null(size(wt));
for lambda row partitions(n)
do d += n tabl(lambda) ∗ plethysm(lambda,wt) od;
d == p tensor(n,wt)

5.9.5. Intrinsic tests

In the course of the computation of certain built-in functions a number of tests are
automatically performed to check the validity of assumptions about the results ob-
tained from subsidiary calls. We mention here two such tests which have been useful

Chapter 5 Examples 99

in detecting subtle coding errors during the development of LıE. (The tests are still
present in the production versions of LıE, and although of course they should “stay
forever silent”, it is still conceivable that they confront an unsuspecting user with a
harsh error message. Users getting such error messages, apparently not indicating a
transgression on their part, are requested to report this to the developers of LıE.)

For each orbit of weights generated by W orbit the size is first predicted by
W orbit size and a corresponding amount of memory is allocated. Then the actual
orbit is generated using the same procedure as used by tensor, branch and other func-
tions. If during this process the allocated memory runs out, or if at the end it is not
completely filled, then an error will be reported. In this way both the orbit genera-
tion routines and the routines involved in W orbit size (for instance Cartan type) are
tested. A single call of W orbit with a polynomial argument may perform this test
for orbits of many different sizes, and therefore provides a rather thorough check of
the used routines.

The formulae used for the routines sym tensor, alt tensor, and plethysm involve
a summation of polynomials which is to be divided by an integer, where the resulting
polynomial should have integer coefficients. It is checked that the divisions involved
leave no remainder. Since plethysm in particular uses many of the main routines of LıE,
and since the denominator occurring in its formula can be substantial, the successful
completion of a call of plethysm with a moderately large partition provides in itself
some confirmation of the correctness of the computation.

5.10. Branching

The function branch is very general, and many other functions can be considered to
be special cases of it, for instance spectrum (branching to a 1-dimensional torus),
tensor (branching from g × g to g), plethysm (branching a representation of some
GLn to g via the morphism g → GLn determined by a representation of g), and if
we were to allow an irreducible representation to branch to a virtual representation,
even Adams (branching with a multiple of the identity as restriction matrix). Being
so general, the algorithm used for branch is not always the most efficient one in a
specific situation. The following subsections discuss alternative ways of computing
branch; except for the first of these they deal with improvements for specific cases.

5.10.1. Branching from composite groups

Many of the examples given in the earlier version of this manual have become obsolete
since their functionality has now been built into LıE; this is also the case with the
following example which shows how branching in composite groups can be expressed
in terms of branching in simple groups. We have retained the example because it is a
somewhat larger function than most other examples, and as a documentation of the
algorithm used by the built-in function branch. The example has been adapted to the
conventions of the current version of LıE, for instance by using the polynomial data
type; it reflects rather precisely the algorithm which has been built in. The function
has been given a different name, since using branch with the same parameter types

100 LıE Manual

would conflict with the built-in function.

branch comp(vec wt ; grp h; mat m; grp g) =
{ loc c = n cols(m);

if Lie rank(h) != c || Lie rank(g) != n rows(m)
then error("wrong size restriction matrix") fi;

loc r = toral dim(g); loc wk = null(r); loc mk = null(r , c);
loc i = ss rank(g);
for j = 1 to r do mk [j] = m[i + j]; wk [j] = wt [i + j] od;
loc res = alt dom(wk ∗mk , h); # central torus part, ensure dominant #
i = 0;
for k = 1 to n comp(g)
do r = Lie rank(g [k]); wk = null(r); mk = null(r , c);

for j = 1 to r do mk [j] = m[i + j]; wk [j] = wt [i + j] od;
res = tensor(res, branch(wk , h,mk , g [k]), h); i += r

od;
res

}
branch comp(pol p; grp h; mat m; grp g) =
{ loc s = coef (p, 1) ∗ branch comp(expon(p, 1), h,m, g);

for i = 2 to length(p)
do s += coef (p, i) ∗ branch comp(expon(p, i), h,m, g) od;
s

}

5.10.2. Branching from F4 to B4

Recall that the algorithm of branch generates the full character, then applies the
restriction matrix, filters the dominant part and decomposes. Generating the full (not
just the dominant) character is necessary since non-dominant weights may become
dominant (for the subgroup) upon applying the restriction matrix (but conversely
dominant weights should always stay dominant, if the restriction matrix is constructed
for compatible systems of fundamental weights; this fact is used by collect). We cannot
improve on this in the general case, as can be seen by considering branching to the
maximal torus of g: the result should then in fact be equal to the full character
(filtering and decomposition are null operations in this case). However, in specific
cases we may be able to see beforehand that only a few Weyl chambers (images under
some w ∈ W of the dominant chamber) will map into the dominant chamber of the
subgroup under applying the restriction matrix; in such cases it is only necessary to
generate that part of the W -orbit which lies in these chambers.

As a concrete example let us study branching from F4 to B4. We start with some
considerations for finding the restriction matrix, The root system of F4 contains 24
short roots and 24 long roots, each of which subsets form a subsystem of type D4;
the set of long roots is a closed subsystem, but the closure of the short roots is the
full root system of F4. To check these statements we compute as follows (we do not

Chapter 5 Examples 101

print the results; the reader should use LıE to obtain them).

setdefault F4; short = null(0, 4); long = short ;
for r row pos roots do if norm(r) == 2 then short += r else long += r fi od
print(n rows(short)); Cartan type(short)
print(n rows(long)); Cartan type(long)
short = fundam(short); Cartan type(closure(short))
long = fundam(long); Cartan type(closure(long))

Adjoining any one short root to the set of long roots and then forming the closure will
result in a subsystem of type B4, which contains 8 short roots and of course all 24
long roots (consequently there are 3 such subsystems, which are conjugate under the
Weyl group of F4). We choose such a system and compute its basis of fundamental
roots

b4 roots = closure(long + short [1]); print(b4 roots); Cartan type(b4 roots)

The full set of positive roots of this subsystem can be obtained by mapping the positive
roots of B4 into the F4 system: pos roots(B4) ∗ b4 roots. We can now obtain the
restriction matrix for the fundamental Lie subgroup of type B4 with this subsystem
as set of roots:

m = res mat(b4 roots); m

Now that we know the restriction matrix, we would like to know which Weyl
chambers for F4 are dominant for B4. We expect that there are three such chambers,
since W order(F4)/W order(B4) equals 3. In terms of our restriction matrix we can
state the problem as: for which w ∈W are the entries of the matrix W action(w)∗m
all positive (meaning that the images of all fundamental weights are dominant in B4)?
The answer can be found with a little experimentation (obviously the identity is one
of the requested w’s, and the other two will not be far removed from it), or by the
following reasoning. Since the first three fundamental roots of F4 occur in b4 roots
(which is a bit of a coincidence; it is not true for the other two conjugate subgroups)
the chambers obtained applying any of the first three fundamental reflections to the
dominant Weyl chamber of F4 will certainly not be dominant for B4. Since one of
the chambers bordering the dominant one must be included, the fourth fundamental
reflection (encoded as [4]) must be one of the desired w’s. The third chamber must
be a neighbor of the one for w = [4], whence its Weyl group element is obtained
by multiplying [4] to the left by a fundamental reflection, and moreover it must be
right reduced with respect to the subset S = {1, 2, 3} of fundamental reflections;
therefore the only possibility is w = [3, 4]. So for branching from F4 to this instance
of a subgroup of type B4, one may replace the full W -orbits by the images under
the action of w ∈ {[], [4], [3, 4]} (for the other two instances of such subgroups the
corresponding sets are {[], [3], [4, 3]} and {[], [3], [4]} respectively).

Our next step is to generate these 3-chamber “orbits”. It is convenient to do
it for the whole dominant character at once, in analogy to W orbit applied to a
polynomial. We should not simply compute p+W action(p, [4])+W action(p, [3, 4]),
since that would incorrectly duplicate weights at the ‘walls’ separating our chambers.

102 LıE Manual

We therefore need to be able to remove from p the terms whose exponents lie on a
given wall of the dominant chamber:

shave(int i ; pol p) = loc v = id(n vars(p))[i]; filter dom(X (−v) ∗ p) ∗X v

(note how a unit vector is obtained as a row of the identity matrix). Then the “orbit”
of a dominantly supported polynomial over the indicated three chambers is

spread(pol p) = p + W action(shave(4, p), [4]) + W action(shave(3, p), [3, 4])

and we can now write our special branching function as

branch f 4 b4(pol p) = decomp(spread(dom char(p)) ∗m,B4)

Experimentation with this function shows that indeed it delivers the same results as
a corresponding call of branch, and it is marginally faster (about 10%). Apparently
generating and discarding many weights in each W -orbit is not a limiting factor for the
speed of branch (for this case); the amount of time spent by the interpreter executing
our little program cannot be of much influence since it only involves a limited number
of instructions.

5.10.3. Branching from G2 to A2 using a rational function

The polynomials computed by LıE’s representation theoretic functions usually cannot
be expressed by simple closed formulae in terms of the input data. However, the
method of generating functions often allows us to construct closed expressions for
power series in newly introduced indeterminates, containing the polynomials com-
puted by LıE as the coefficient of some power of the new indeterminates. Although
these power series are infinite structures and can therefore not be computed fully in
explicit form, the closed expressions (which are in fact rational functions in the old
and new indeterminates) often enable an efficient algorithm for computing the (finite)
polynomials we are after.

As an example of this technique consider branching from G2 to its fundamental
Lie subgroup of type A2 (whose root system is the closed subsystem of G2 of the
long roots). In analogy to the examples already given, the reader should have no
difficulty to verify that the restriction matrix for this branching is

(
0 1
1 1

)
(the columns

might be interchanged depending on the chosen ordering, because of the symmetry
of the Dynkin diagram of type A2). If m is this matrix, then we are considering
an alternative way to compute branch(λ,A2,m,G2). Let Pλ denote this polynomial
for arbitrary dominant (for G2) weights λ; it is an ordinary polynomial (since all
exponents are dominant for A2) in two indeterminates. To form the power series we
want to discuss, we introduce a pair of new indeterminates; to indicate monomials in
these indeterminates we use the symbol Y (as opposed to X which is used in the Pλ)
with a vector of size two as exponent (in fact a weight for G2). The power series then
is

P =
∑

λ∈Λ+(G2)

PλY
λ

It has been shown in [CoRui] that this power series can be given by the following

Chapter 5 Examples 103

rational function:

P =
1−X [1,1]Y [1,1]

(1−X [1,0]Y [1,0])(1−X [0,1]Y [1,0])(1−X [0,0]Y [1,0]) ∗
(1−X [1,0]Y [0,1])(1−X [0,1]Y [0,1])(1−X [1,1]Y [0,1])

(in the notation of [CoRui], u corresponds to X [1,0], v to X [0,1], y to Y [1,0], and x
to Y [0,1]). To deduce from this rational function its coefficient Pλ of Y λ one could use
general power series expansion techniques, but given the special form of the function
this is not necessary. Let Q be the rational function obtained by replacing the numer-
ator of P by 1, and Qλ its coefficient of Y λ, then Pλ = Qλ−X [1,1]Qλ−[1,1] if λ− [1, 1]
is dominant, and otherwise Pλ = Qλ. For the computation of Qλ note that the de-
nominator of P factors as product of a term A not involving Y [0,1], and a term B not
involving Y [1,0]; consequently Q[a,b] is the product of the coefficient Ra of Y [a,0] in 1

A

and the coefficient Sb of Y [0,b] in 1
B . Furthermore both 1

A and 1
B are a product of

factors of the form (1−XµY ν)−1 for dominant weights µ, ν (this is quite typical for
this kind of generating functions); such a factor can be expanded to a geometric series∑∞
n=0X

nµY nν . It is not difficult to find combinatorial descriptions of the coefficients
Ra and Sb occurring in the product of these series, they are respectively

Ra =
∑

i,j,k∈N
i+j+k=a

X [i,j] and Sb =
∑

i,j,k∈N
i+j+k=b

X [i+k,j+k].

These formulae can be straightforwardly translated into functions for LıE. Since the
generation of the very regular polynomials Ra and Sb is likely to consume a large
portion of the time, we use a little trick to avoid two nested loops.

r(int a) = loc p = X [0, 0]; loc sum = p;
for i = 1 to a do p = X [1, 0] ∗ p + X [0, i]; sum += p od; sum

s(int b) = loc p = X [b, b]; loc sum = p;
for i = b − 1 downto 0 do p = X [−1, 0] ∗ p + X [b, i]; sum += p od; sum

q(vec lambda) = r(lambda[1]) ∗ s(lambda[2])
p(vec lambda) =

if lambda[1] > 0 && lambda[2] > 0
then q(lambda)−X [1, 1] ∗ q(lambda − [1, 1]) else q(lambda)
fi

Experimentation shows that this function p is considerably more efficient than branch:
speedup factors exceeding 20 have been found for weights of the order of magnitude
of [13, 7]. Clearly the approach of using rational generating functions is an attractive
one, in particular since the existence of appropriate rational functions has been proved
for all cases of branching, tensor products and plethysms. The main problem with this
approach is the determinatation of these rational functions: in the literature several
other generating functions for small rank cases are known (cf. [McKPa]), but there
seems to be no practical algorithmic way to compute the generating function for an

104 LıE Manual

arbitrary problem in the mentioned categories. (An additional problem might be that
other rational functions could turn out to be much more difficult to handle than the
one in this example.)

5.11. Overflow

Due to the fact that matrix and vector entries are stored as machine size integers,
rather than as arbitrary size integers, and that arithmetic overflow is not tested for
during vector and matrix arithmetic, one should not completely trust vector and
matrix operations leading to big integer entries. In the example below, we found an
‘orbit’ of length 34, apparently due to the computer’s arithmetic modulo 232.

orbit([1, 0, 0, 0], reflection([1, 1, 1, 0]) + reflection([1, 1, 1, 1]))

Incidentally, the real error that led to this example was using the operator ‘+’ instead
of ‘∧’, implying addition of matrices rather than the intended concatenation.

5.12. Branching to Levi subgroups

In order to be able to compute branching to a subgroup, one needs to specify the
subgroup within the containing group; in LıE this is done by means of the type of the
subgroup together with a restriction matrix. If one has another sort of description of
the subgroup, or if one is looking for all subgroups with certain properties, then extra
work has to be done to determine the type and the restriction matrix. Whether this
can be done in an algorithmic way depends on the details of the situation; generally
speaking one must depend on classification in the form of tables (such as provided
by max sub and instances of res mat) for subgroups of lower Lie rank than the full
group, while for groups of equal rank (the fundamental Lie subgroups) algorithms
dealing with root systems can be applied. For one class of subgroups the whole
computation can be done completely mechanically, namely for the Levi subgroups,
i.e., those fundamental Lie subgroups of with a system of fundamental roots that is
a subset of the set of fundamental roots of the whole group. The most interesting of
these are the maximal (proper) Levi sugroups, for which only one fundamental root is
removed (the other Levi subgroups can clearly be reached by repeating this process).
We give here some functions that compute the ingredients necessary for branching to
them.

Levi mat(int i) = fundam(id(Lie rank)− i) # remove i-th row and reorder #
Levi type(int i) = Cartan type(Levi mat(i))
Levi diagram(int i) = diagram(Levi type(i))
Levi res mat(int i) = res mat(Levi mat(i))

Levi branch(vec v ; int i) =
loc m = Levi mat(i); branch(v ,Cartan type(m), res mat(m))

It will be clear that Levi branch gives the decomposition matrix of the Levi subgroup
of type Levi type. The diagram printed by Levi diagram gives the ordering of the
fundamental roots of the Levi subgroup, with respect to which ordering the restriction
matrix (returned by Levi res mat) and the resulting decomposition matrix are given.

Chapter 6 Syntax 105

LıE Manual

Chapter 6. SYNTAX

In this chapter the complete formal syntax accepted by the interpreter is given for
reference. It is as a context free grammar, using the well known BNF formalism.
Literally represented symbols are given in typewriter type, and every rule is ter-
minated by a period. The grammar has a few ambiguities, but these only involve
expressions with multiple operators, and they are resolved by the priorities assigned
in Section 2.3 to operators, and the rule that all operators are left-associative. Note
however that the fact that relational and Boolean operators have lower priorities than
the arithmetic ones is not essential, since it explicitly follows from the given grammar.

The majority of the rules presented are derived in an almost mechanical way from
the syntax used to generate the parser of LıE (using the program yacc); therefore we are
quite confident that, apart from the mentioned ambiguities, these rules give truthful
descriptions of the language accepted by LıE (even if they should have some strange
consequences). The lexical part of the grammar is given at the end (starting with the
rule for 〈 empty 〉), and describes the operation of the lexical analyser; in this part
white space between the various components of a production is not allowed. This part
is somewhat more informal, and some lexical matters are purposely not indicated, like
under which circumstances an end of line is taken to terminate a command (for this
see Section 2.1.1); a grammar is not an appropriate means to specify such details.

The syntax includes a few cases such as ‘exec 〈 tail〉’ that are not described
anywhere in this manual, since they are of little or no interest to the average user.
The special identifiers read, . . . , exec that start various alternatives of 〈 command 〉
are recognised as keywords only at the beginning of a command; in other positions
they are treated as ordinary identifiers, and they may be used for instance as local
variables.

〈 command 〉 ::= 〈 series 〉 | 〈 function definition 〉 | read 〈filename option 〉
| edit 〈filename option 〉 | write 〈filename 〉 | monfil 〈filename option 〉
| maxobjects | maxobjects 〈number 〉 | maxnodes | maxnodes 〈number 〉
| listvars | listfuns | listops | 〈 help 〉 〈 subject 〉 > 〈filename 〉
| 〈help 〉 〈 subject 〉 >> 〈filename 〉 | 〈help 〉 〈 subject 〉 | learn 〈 tail option 〉
| : 〈 tail 〉 | 〈 quit 〉 | type 〈 arithmetic expr 〉 | exec 〈 tail 〉 | 〈 empty 〉 .

〈block 〉 ::= { 〈 series 〉 } | { 〈 series 〉 } (〈 list 〉) .

〈 series 〉 ::= 〈 statement 〉 | 〈 statement 〉 ; | 〈 statement 〉 ; 〈 series 〉 | ; 〈 series 〉 .

106 LıE Manual

〈 statement 〉 ::= 〈 assignment 〉 | 〈 expression 〉 | return 〈 expression 〉
| break 〈 expression 〉 | return | break | setdefault

| setdefault 〈 expression 〉 | 〈 on 〉 〈 identifier 〉 | off 〈 identifier 〉 | 〈 on 〉
| off | savestate | restorestate .

〈 on 〉 ::= on | on 〈number 〉 | on + | on - .

〈 assignment 〉 ::= 〈 identifier 〉 = 〈 expression 〉 | loc 〈 identifier 〉 = 〈 expression 〉
| 〈 identifier 〉 += 〈 expression 〉 | 〈 selection 〉 = 〈 arithmetic expr 〉
| 〈 selection 〉 += 〈 arithmetic expr 〉 .

〈 expression 〉 ::= 〈 logical expr 〉 | 〈 arithmetic expr 〉 .

〈 logical expr 〉 ::= 〈 expression 〉 〈Boolean operator 〉 〈 expression 〉
| 〈 arithmetic expr 〉 〈 relation 〉 〈 arithmetic expr 〉 | ! 〈 expression 〉
| (〈 logical expr 〉) .

〈 arithmetic expr 〉 ::= 〈 arithmetic expr 〉 〈 operator 〉 〈 arithmetic expr 〉
| 〈monadic expr 〉 .

〈monadic expr 〉 ::= 〈monadic operator 〉 〈monadic expr 〉 | 〈 secondary 〉 .

〈 secondary 〉 ::= 〈 selection 〉 | 〈primary 〉 .

〈 selection 〉 ::= 〈 secondary 〉 [〈 expression 〉]
| 〈 secondary 〉 [〈 expression 〉 , 〈 expression 〉] | 〈 secondary 〉 | 〈primary 〉 .

〈primary 〉 ::= 〈 variable 〉 | 〈number 〉 | 〈 string 〉 | 〈 group 〉
| 〈 identifier 〉 (〈 list option 〉) | make (〈 variable 〉 , 〈 arithmetic expr 〉)
| make (〈 variable 〉 , 〈 arithmetic expr 〉 , 〈 arithmetic expr 〉)
| 〈 apply 〉 (〈 variable 〉 , 〈 arithmetic expr 〉 , 〈 arithmetic expr 〉)
| [〈 list option 〉] | (〈 arithmetic expr 〉) | 〈block 〉
| 〈 conditional clause 〉 | 〈 loop clause 〉 .

〈 variable 〉 ::= 〈 identifier 〉 | 〈 sysident 〉 .

〈 group 〉 ::= 〈 simple group 〉 | 〈 group 〉 〈 simple group 〉 .

〈 simple group 〉 ::= 〈 family 〉 〈 number 〉 .

〈 conditional clause 〉 ::= if 〈 expression 〉 then 〈 series 〉 else 〈 series 〉 fi
| if 〈 expression 〉 then 〈 series 〉 fi .

〈 loop clause 〉 ::= while 〈 expression 〉 do 〈 series 〉 od
| for 〈 identifier 〉 = 〈 arithmetic expr 〉 to 〈 arithmetic expr 〉 do 〈 series 〉 od
| for 〈 identifier 〉 = 〈 arithmetic expr 〉 downto 〈 arithmetic expr 〉 do 〈 series 〉 od
| for 〈 identifier 〉 in 〈 arithmetic expr 〉 do 〈 series 〉 od
| for 〈 identifier 〉 row 〈 arithmetic expr 〉 do 〈 series 〉 od .

〈 function definition 〉 ::= 〈 identifier 〉 (〈 formals 〉) = 〈 series 〉
| 〈 identifier 〉 () = 〈 series 〉 | 〈 identifier 〉 (〈 formals 〉) { 〈 series 〉 }
| 〈 identifier 〉 () { 〈 series 〉 } .

Chapter 6 Syntax 107

〈 formals 〉 ::= 〈 type 〉 〈 variables 〉 | 〈 type 〉 〈 variables 〉 ; 〈 formals 〉 .
〈 variables 〉 ::= 〈 variable 〉 | 〈 variable 〉 , 〈 variables 〉 .
〈 list option 〉 ::= 〈 empty 〉 | 〈 list 〉 .
〈 list 〉 ::= 〈 expression 〉 | 〈 list 〉 , 〈 expression 〉 .

〈 empty 〉 ::= .

〈help 〉 ::= help | ? .

〈number 〉 ::= 〈digit 〉 | 〈digit 〉 〈 number 〉 .
〈digit 〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 .

〈 identifier 〉 ::= 〈 lower case letter 〉 | 〈upper case letter 〉 〈 letter 〉
| 〈 identifier 〉 〈 letter 〉 | 〈 identifier 〉 〈 digit 〉 .

〈 lower case letter 〉 ::= a | b | . . . | z .

〈upper case letter 〉 ::= A | B | . . . | Z .

〈 letter 〉 ::= 〈 lower case letter 〉 | _ | 〈upper case letter 〉 .
〈 sysident 〉 ::= $ | $ 〈number 〉 .
〈 family 〉 ::= A | B | C | D | E | G | T .

〈 operator 〉 ::= + | - | * | / | % | ^ | 〈X 〉 .
〈monadic operator 〉 ::= + | - | * | 〈X 〉 .
〈X 〉 ::= X | Y .

〈 relation 〉 ::= == | != | < | > | <= | >= .

〈Boolean operator 〉 ::= && | || .

〈 tail option 〉 ::= 〈 empty 〉 | 〈 tail 〉 .
〈 tail 〉 ::= { non-empty sequence of any characters but newline } .
〈 string 〉 ::= 〈basic string 〉 | 〈 string 〉 { white space } 〈 basic string 〉 .
〈basic string 〉 ::=

" { sequence of characters unequal to “"” and newline, or “""” } " .
〈filename option 〉 ::= 〈 empty 〉 | 〈filename 〉 .
〈filename 〉 ::= { non-empty sequence of non-whitespace characters } .
〈 subject 〉 ::= 〈 empty 〉

| { non-empty sequence of any non-whitespace characters but “>” } .
〈 quit 〉 ::= quit | exit | @ .

〈 type 〉 ::= int | vec | mat | pol | grp | tex .

〈 apply 〉 ::= iapply | vapply | mapply .

108 LıE Manual

LıE Manual

Chapter 7. REFERENCES

We give a list of the main books and papers that have been of use and/or influence to
us while preparing LıE, and which may be of use to anyone wishing to be familiarised
with Lie groups. As for a survey of the field, the list is far from complete.

[And] C. M. Andersen, “Clebsch-Gordan series for symmetrized tensor products”, J. Math.
Phys. 8, (1977), 988–997.

[BeKo] R. E. Beck & B. Kolman (eds.), Computers in Nonassociative Rings and Algebras,
Acad. Press, New York, 1977.

[Bour4] N. Bourbaki, Groupes et algèbres de Lie, Chap 4, 5, et 6, Hermann, Paris, 1968.

[Bour7] N. Bourbaki, Groupes et algèbres de Lie, Chap 7 et 8, Hermann, Paris, 1975.

[BMP] M. R. Bremner, R. V. Moody, J. Patera, Tables of dominant weight multiplicities
for representations of simple Lie algebras, Monographs and Textbooks in Pure and
Appl. Math. 90, Dekker, New York, 1985.

[BrCo] A. E. Brouwer & A. M. Cohen, “Computation of some parameters of Lie geome-
tries”, Annals of Discrete Math. 26, (1985), 1–48.

[CoGr] A. M. Cohen & R. L. Griess, On finite simple subgroups of the complex Lie group
of type E8, pp. 367–405 in “Proc. of Symp. in Pure Math. 47[2]” (P. Fong, ed.),
Amer. Math. Soc., Providence, 1987.

[CoRui] A. M. Cohen & G. C. M. Ruitenburg, “Generating functions and Lie groups”, CWI
tract 84, (1991), 19–28.

[Deodh] V. V. Deodhar, “Some Characterisations of Bruhat Ordering on a Coxeter group
and determination of the Relative Möbius Function”, Inventiones Math. 39, (1977),
178–198.

[Hum1] Humphreys, J. E., Introduction to Lie algebras and representation theory, Springer,
New York, 1972.

[Hum2] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge University
Press, 1990.

[Jac] N. Jacobson, Lie algebras, Wiley & Sons, New York, 1962.

[JaKe] G. James & A. Kerber, The Representation Theory of the Symmetric Group,
Addison-Wesley, Reading MA, 1981.

[KaLu] D. Kazhdan and G. Lusztig, “Representations of Coxeter groups and Hecke alge-
bras”, Inventiones Math. 53, (1979), 165–184.

Chapter 7 References 109

[Knuth] D. E. Knuth, The art of Computer programming, Vol. III: Sorting and searching,
Addison-Wesley, Reading MA, 1975.

[Kruse] M. I. Krusemeyer, “Determining multiplicities of dominant weights in irreducible
Lie algebra representations, using a computer”, BIT 11, (1971), 310–316.

[Litt] P. Littelmann, “A generalisation of the Littlewood-Richardson rule”, Journal of
Algebra 130, #2, (1990), 328–368.

[Macd] I. G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, Ox-
ford, 1979.

[McKPa] W. G. McKay & J. Patera, Tables of dimensions, indices and branching rules for
representations of simple Lie algebras, Lecture Notes in Pure and Appl. Math. 69,
Dekker, New York, 1981.

[MoPa] R. V. Moody & J. Patera, “Characters of elements of finite order in Lie groups”,
SIAM J. Alg. Discr. Meth. 5, (1984), 359–383.

[Serre] J.-P. Serre, Complex Semisimple Lie algebras, Springer Verlag, Berlin, 1987.

[Spri] T. A. Springer, Linear algebraic groups, Birkhäuser, Basel, 1981.

[Shi] Shi J.-Y., The Kazhdan-Lusztig Cells in Certain Affine Weyl Groups, Springer Ver-
lag, Berlin, 1986.

[Tits] J. Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Lecture
Notes in Math. 40, Springer, Berlin, 1967.

110 LıE Manual

LıE Manual

Chapter 8. INDEX

In this index you will find all functions, and operators defined in LıE, and many of
the commands, keywords and terms that are used, with the pages on which they are
referred to. When a term coincides with the name of a function, references to both
the term and the function are listed after the function name. Underlined numbers
refer either to the listings of operators and functions (Chapter 2 and Chapter 4), to
the listings of terms(Chapter 3), or to occurrences in the syntax(Chapter 6).

(· , ·) . 61
〈 · , α〉 41, 59
Λ . 40
+ 10, 15, 106, 107
+= 22, 106
− 10, 16, 106, 107
∗ 10, 16, 107
/ . 16, 107
% . 17, 107
∧ . 17, 107
= . 21, 106
< . 17, 107
<= 17, 107
> 17, 105, 107
>= 17, 107
! 17, 18, 106
! = 17, 107
== 17, 107
&& 18, 107
| | . 18, 107
| . 106
> . 4, 10, 32
\ . 10
? 10, 31, 107
@ . 4, 107
. 11
$. 11, 107

≺ . 41
ρ . 78
abort . 4
abs . 19
Adams . 67
Adams operator 52, 53
adjoint . 67
adjoint representation 40, 43, 53
all one . 19
alternating Weyl sum 53, 55
alt dom . 68
alt tensor 67
alt W sum 68
bigint . 32
block . 22
block mat 19
branch 68, 69
branching 52, 54, 56
break 24, 106
Bruhat descendent 45
Bruhat order 45, 46, 47, 48
Bruhat desc 61
Bruhat leq 61
canonical 62
canonical Weyl word 46, 47
Cartan . 59
Cartan matrix 38, 41

Chapter 8 Index 111

Cartan product 59
Cartan type 41
Cartan type 59
center . 58
central torus 38, 39
centraliser 89
centr type 59, 60
cent roots 59
character 50, 54, 56, 58
character polynomial 40, 50, 52, 54, 55
classical groups 36
class ord 65
clauses . 21
closed subsystem 38, 41, 42
closure . 60
coef . 20
coefficient 13
collect . 69
n comp . 20
contragr 70
contragredient representation 54
coset 41, 46, 82
Coxeter group 45, 46, 47
Coxeter matrix 46, 79
decomp . 70
decomposition 58
decomposition polynomial 51, 55
default group 25
Demazure 70
Demazure operator 55
det Cartan 60
diag . 19
diagram 38, 58
dim 58, 70, 71
direct sum 55
distinguished coset representative 46, 82
do . 23, 106
dominant 44, 58, 62
dominant character polynomial 52, 55
dominant weight 46
dom char 71
dom weights 60
downto 23, 106
edit 30, 105

else 22, 106
error . 20
exceptional groups 37
exec . 105
exit 4, 107
expon 13, 20
exponent 13, 20
exponents 46, 62
factor . 19
fi . 22, 106
filter dom 62
for 23, 24, 106
frequency 51
from part 65, 66
fundam . 60
fundamental domain 44
fundamental Lie subgroup . 38, 42, 54
fundamental reflection . . . 42, 44, 48
fundamental root 41, 42, 43
fundamental weight 41, 42, 44, 46, 56
garbage collector 31
gc . 32
gcol . 20, 31
General Linear group 38, 39
grp . 107
help 10, 107
higher than 41
highest root 42
highest weight 3, 42, 55, 56
highest weight module 55
high root 61
iapply 29, 107
id . 19
identifier 10
if . 22, 106
in . 23, 106
initfile 31
inner product 61
inprod . 61
int 11, 57, 107
ints 11, 57, 107
irreducible 51
irreducible representation 55
i Cartan 61

112 LıE Manual

Kazhdan-Lusztig polynomial . . 45, 47
KL poly . 62
Laurent polynomial 7, 13
learn 31, 105
length 20, 45, 46, 47, 62
level . 27
Levi subgroup 42
lexicographic ordering 13
Lie algebra 38, 53
Lie group 39
Lie rank 38, 39
lies under 41
Lie code 58
Lie group 58
Lie rank 58
lin . 57
listfuns 10, 105
listops 10, 105
listvars 10, 105
Littlewood-Richardson rule 71
loc 21, 106
local variable 27
Longest element 47
long word 62
lprint . 32
lr reduce 63
LR tensor 71
l reduce . 62
make 28, 106
mapply 29, 107
mat 12, 107
matrix . 35
mat vec . 19
maximal torus 38, 39
maxnodes 33, 105
maxobjects 33, 105
module 51, 56
monfil 9, 32, 105
monitor 32
multiplicity 51
next part 66
next perm 66
next tabl 66
norm . 61

null . 19
n cols . 19
n pos roots 61
n rows . 19
n tabl . 66
n vars . 20
od 23, 106
off 21, 32, 106
on 21, 32, 106
one parameter subgroup 42, 43
orbit 47, 63
orbit matrix 47
partitions 48, 50, 51, 56, 57, 66
partition coordinates 49, 50, 56
parts . 48
permutation 57
plethysm 50, 56, 72
pol 13, 107
polynomial 36, 58
poly null 20
poly one 20
positive root 43, 55
pos roots 61
print . 20
print tab 66
prompt 4, 10, 32
p tensor 72
quit 4, 107
rational function 102
read 30, 105
real Lie groups 37
reduce . 63
reduced expression 45
reduced Weyl word 47
reductive 39
reductive group 39
reflection 47, 63
representation 53, 56
restorestate 21, 33, 106
restriction matrix 52, 54, 56
res mat 72, 73
return 25, 106
Robinson-Schensted correspondence 50
root 39, 40, 43, 53, 57

Chapter 8 Index 113

root lattice 40, 43
root matrix 43
root system 40, 43
root vector 42, 43
row 24, 106
R-polynomial 47
R poly . 64
r reduce . 64
RS . 66
runtime 32
savestate 21, 33, 106
semisimple element 39, 40
semisimple group 39
semisimple Lie rank 38
semisimple part 38
semisimple rank 39
series . 22
setdefault 25, 106
shape 51, 66
sign part 66
size . 19
sort . 19
Special Linear group 36, 39
spectrum 73, 88
Spin group 36
statements 21
symmetric group 51
symmetrised tensor power . 50, 53, 56
symplectic group 37
sym char 66
sym orbit 67
sym tensor 73, 74
tableaux 50, 51, 57
tensor . 74
term . 13
tex 15, 107
then 22, 106

to . 23, 106
toral . 57
toral element 37, 42, 43, 86
torus 39, 40
total degree ordering 13
to part . 67
transposition 16
trans part 67
type 10, 105
used 20, 32
vapply 29, 107
variable . 27
vec 12, 107
vec mat . 19
vector 36, 57
vid . 10, 21
virtual module 56
void . 20
v decomp 74
weight . . 39, 40, 42, 43, 54, 56, 57, 58
weight lattice 42, 43, 44, 48
weight vector 42, 44
Weyl chamber 44
Weyl group 40, 42, 48
Weyl word 45, 46, 48, 57
while 23, 24, 106
write 31, 105
W action 64
W orbit . 64
W orbit size 64
W order 65
W rt action 65
W rt orbit 65
W word . 65
X . 17, 107
Young tableau 50, 51, 57

LıE MANUAL

Table of Contents

1 Introduction . 1

1.1 About the content of this manual . 2

1.2 Theoretical aspects . 2

1.3 The authors . 3

2 The Interpreter . 4

2.1 A first look . 4
2.1.1 Command prolongation . 10
2.1.2 Getting help . 10
2.1.3 Identifiers . 10
2.1.4 File management . 11
2.1.5 Comments . 11
2.1.6 Escape to the shell . 11

2.2 Values . 11
2.2.1 Integer . 11
2.2.2 Vector . 12
2.2.3 Matrix . 12
2.2.4 Polynomials . 13
2.2.5 Group . 14
2.2.6 Text . 15

2.3 Operators . 15

2.4 Using functions . 18
2.4.1 Function call . 18
2.4.2 Basic functions . 19

2.5 Statements and clauses . 20
2.5.1 Assignment statements . 21
2.5.2 Series . 22
2.5.3 Blocks . 22
2.5.4 Conditional clauses . 22
2.5.5 Loop clauses . 23
2.5.6 Break and return . 24
2.5.7 Setdefault . 25

2.6 User defined functions . 25
2.6.1 Function definition . 26
2.6.2 Local variables and blocks . 27
2.6.3 Make and apply . 28

— i —

2.7 Global commands . 30
2.7.1 File management . 30
2.7.2 Information retrieval . 31
2.7.3 Memory management . 31
2.7.4 System parameters . 32

3 Terminology . 35

3.1 Lie groups and algebras . 36

3.2 Roots and weights . 40

3.3 The Weyl group and its action . 44

3.4 The Symmetric groups and related matters 48

3.5 Representation theory . 51

4 Built-in mathematical functions . 57

4.1 Lie groups . 58

4.2 Root systems . 59

4.3 The Weyl group . 61

4.4 Operations related to the Symmetric group 65

4.5 Representations . 67

5 Examples . 75

5.1 General . 75
5.1.1 Reversing the ordering . 75
5.1.2 Union and intersection of sets of vectors 75
5.1.3 Sum and product of vector entries 75
5.1.4 The factorial function . 76
5.1.5 Evaluating polynomials . 76
5.1.6 The sum of the coefficients of a polynomial 76
5.1.7 Accessing the default group 77
5.1.8 Gaussian elimination over Z/p 77

5.2 Roots . 78
5.2.1 All roots . 78
5.2.2 The half sum of the positive roots 78
5.2.3 Positive roots made negative by w 79

5.3 Weyl words . 79
5.3.1 The Coxeter matrix . 79
5.3.2 All reduced Weyl words of a given element 79
5.3.3 The Bruhat ordering . 81

5.4 Cosets in The Weyl group . 82
5.4.1 Right cosets . 82
5.4.2 Left cosets . 82
5.4.3 Double cosets . 83

— ii —

5.5 Traversing the Weyl group . 83

5.6 Kazhdan-Lusztig polynomials . 85

5.7 Toral elements . 86
5.7.1 SL(n,C) . 87
5.7.2 SO(12,C) . 87
5.7.3 Spectrum . 88
5.7.4 Branching to a centraliser . 90

5.8 Computing and decomposing characters 91
5.8.1 The character polynomial . 91
5.8.2 The dominant character . 93
5.8.3 Decomposition . 94

5.9 Checks . 96
5.9.1 Checking Kazhdan-Lusztig polynomials 96
5.9.2 Dimension checks . 97
5.9.3 Checks using characters . 98
5.9.4 The functions sym tensor , alt tensor , and plethysm 98
5.9.5 Intrinsic tests . 98

5.10 Branching . 99
5.10.1 Branching from composite groups 99
5.10.2 Branching from F4 to B4 . 100
5.10.3 Branching from G2 to A2 using a rational function 102

5.11 Overflow . 104

5.12 Branching to Levi subgroups . 104

6 Syntax . 105

7 References . 108

8 Index . 110

— iii —

