École Normale Supérieure FIMFA

Année 2018/19

Systèmes dynamiques TD9

Exercice 1. On pose $\mathbb{T}^d = \mathbb{R}^d/\mathbb{Z}^d$. Soit $\alpha \in \mathbb{T}^d$ et soit $f \colon \mathbb{T}^d \to \mathbb{T}^d$ donnée par $f(x) = x + \alpha$.

- 1. Montrer que la mesure de Lebesgue est invariante.
- 2. Montrer qu'elle est ergodique si et seulement si la famille $1, \alpha_1, \ldots, \alpha_d$ est libre sur \mathbb{Q} .
- 3. Montrer que f est alors uniquement ergodique.

Exercice 2. Soit M une matrice $d \times d$ à coefficients entiers. On suppose que $\det(M) \neq 0$. On définit $f_M : \mathbb{T}^d \to \mathbb{T}^d$ par $f_M(\pi(x)) = \pi(Mx)$ pour tout $x \in \mathbb{R}^d$, où $\pi : \mathbb{R}^d \to \mathbb{T}^d$ est la projection canonique.

- 1. Montrer que f_M est bien définie puis que f_M et surjective.
- 2. Montrer que f_M préserve la mesure de Lebesgue \mathcal{L}^d sur \mathbb{T}^d .

On suppose désormais que M ne possède pas de valeur propre qui soit racine de l'unité.

3. Monter que pour toutes ϕ et ψ appartenant à $L^2(\mathbb{T}^d,\mathcal{L}^d)$ on a

$$\lim_{n} \int_{\mathbb{T}^{d}} \phi\left(f_{M}^{n}(x)\right) \, \psi(x) \, dx = \left(\int_{\mathbb{T}^{d}} \phi(x) \, dx\right) \left(\int_{\mathbb{T}^{d}} \psi(x) \, dx\right)$$

Indication: Utiliser la base de Fourier.

4. En déduire que pour tous Boréliens A et B de \mathbb{T}^d on a

$$\lim_{n} \mathcal{L}^{d}(f_{M}^{-n}(A) \cap B) = \mathcal{L}^{d}(A)\mathcal{L}^{d}(B).$$

On dit que f_M est mélangeante.

- 5. En déduire que f_M est ergodique.
- 6. Réciproquement montrer que si f_M est ergodique alors M n'admet pas de valeur propre qui soit racine de l'unité.

Exercice 3. Soit α irrationnel. On considère $f\colon \mathbb{T}^2\to \mathbb{T}^2$ donnée par $f(x,y)=(x+\alpha,x+y).$

- 1. Montrer que f préserve la mesure de Lebesgue.
- 2. Montrer que la mesure de Lebesgue est ergodique.
- 3. Montrer que f est uniquement ergodique.
- 4. Application : Montrer que pour tout polynôme P de degré 2 et de coefficient dominant irrationnel la suite (P(n)) est équirépartie modulo 1.

Question subsidiaire : Reprendre les questions précédentes avec $f\colon \mathbb{T}^d\to \mathbb{T}^d$ donnée par

$$f(x_1,\ldots,x_d)=(x_1+\alpha,x_1+x_2,x_2+x_3,\ldots,x_{d-1}+x_d),$$

et montrer que pour tout polynôme P non constant et de coefficient dominant irrationnel la suite (P(n)) est équirépartie modulo 1.