Stability of a cubically convergent method for
generalized equations

Michel H. Geoffroy !, Said Hilout ? and Alain Piétrus '
April 5, 2006

Abstract. In [8] we showed the convergence of a cubic method for solving gen-
eralized equations of the form 0 € f(z) + G(z) where f is a C? function and G
stands for a set-valued map. We investigate here the stability of such a method
with respect to some perturbations. More precisely, we consider the perturbed
equation y € f(x) + G(z) and we show that the pseudo-Lipschitzness of the map
(f + G)~! is closely tied to the uniformity of our method in the sense that the
attraction region does not depend on small perturbations of the parameter y. Fi-

nally, we provide an enhanced version of the convergence theorem established in [8].
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1 Introduction

Generalized equations are an abstract model of a wide variety of variational
problems including linear and nonlinear complementarity problems, systems
of nonlinear equations, variational inequalities (for example first-order nec-
essary conditions for nonlinear programming) etc. In particular, they may

characterize optimality or equilibrium and then have several applications
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in engineering (analysis of elastoplastic structures, traffic equilibrium prob-
lems...) and economics (Walrasian equilibrium, Nash equilibrium). For fur-
ther details on such applications one can refer to [7].

Throughout, X and Y are Banach spaces, we denote by B,.(x) the closed ball
centered at x with radius r. The distance between a point = and a subset A
of X will be denoted by dist (z, A) = inf{||z — a|| | @ € A} while the excess
e from a set B to a set C' is given by e(C, B) = sup{dist (¢, B) | c € C}. A
set-valued mapping F from X to Y is indicated by F': X =2 Y and its graph
is the set gph F':= {(z,y) € X xY |y € F(x)}. Fromnow on f: X — Y
denotes a twice (Fréchet) differentiable function while G : X = Y stands
for a set-valued mapping with closed graph. In [8], the present authors

considered generalized equations of the form
0€ flx) +G(x), (1)

and studied the following iterative method for solving (1):

0 € flzr) + Vf(ze)(@pe — zp) + %V2f($k)($k+1 —a)? + Gagn)  (2)

From now on we set

A7) = f(@) + VI @)y —2) + 5V @)y - 2), Yry e X (3
It has been showed that this method, based on the second-degree Taylor
polynomial expansion A of f, is locally cubically convergent whenever f has
a Lipschitz second order derivative and provided that the set-valued mapping
[A(-,z*) + G(-)]7! is pseudo-Lipschitz at (0,z*) (z* being a solution of (1)).
Recall that a set-valued map F' from Y to the subsets of X is pseudo-Lipschitz
at (yo,x9) € graph F if there exist constants a,b, M such that for every
y1,Y2 € By(yo) and for every xzy € F(y1) N By(xg) there exists xo € F(ys)
with

21 = 2ol < Mlyr — val|

The notion of pseudo-Lipschitzness, also known as Aubin continuity (see [1]),

is tied to the concept of metric regularity; actually, the pseudo-Lipschitzness

of a set-valued mapping F at (yo,zo) is equivalent to the metric regularity



of the inverse F~! of F at xy for yq, i.e., yo € F *(x) and there exists

k € [0, 0o[ along with neighborhoods U of xy and V' of yy such that
dist (z, F(y)) < wdist (y, F '(z)), Yo €U, y € V.

The infimum of the set of values x for which this holds is the modulus of
metric regularity. Finiteness of that modulus means that the generalized
equation problem is, from a certain perspective, well-posed. For more details
on these topics one can refer to [4, 6, 9, 10, 12, 13] and to the monograph
[14].

Here, we consider the following perturbed equation

y € f(z) +G(x), (4)

where 9 is a perturbation parameter and we study the stability of the method

(5) below under perturbations.

y € f(zr) + Vf(ag)(@p — 1) + %VQf(iﬂk)(ﬁkH — ) + G(zpp)  (5)

Such a study can be of interest for example in nonlinear programming for

solving optimization problems of the form

minimize fo(z) (6)

filx)=0, i=1,---,m

subject to .
fz(z)SU, Z:m+1a"'7p

where f;: IR"® — IR, i = 1,---,p are C3 functions on IR". The Lagragian L
associated with (6) is defined by

L:(z,)) € R x IR fo(z) + Y Nifi(z),
=1

Hence, the Karush-Kuhn-Tucker first order optimality conditions read as

follows:
V.L(z,\) = 0

(KKT) { VaL(z,)) € Na(\)



where N, () denotes the normal cone to the set A = IR™ x IRE"™ at the

point A. Then, it is easy to see the above conditions amount to
0€ (V,L(xz,\),=V,L(z,\) )+ Neo(z,N) (7)

where C' = IR"™ x A. Moreover, relation (7) can be reformulated in the
following way:
0€ fz,A) +G(z,N), (8)

where f(z,\) = (V,L(z,\), =V \L(z,\)) and G(z,\) = N¢(z,A). Hence,
the Karush-Kuhn-Tucker optimality system is equivalent to (8) which is a
generalized equation of the form of (1) and then can be studied using the

method presented in this paper.

This kind of stability problems have already be studied, in different frame-
works, in [2, 11]. In this paper, following the work of Dontchev [2], we try
to identify what kind of well-posedness of our method would correspond to
the well-posedness represented by the property of pseudo-Lipschitzness. We
show, in section 2, that the pseudo-Lipschitzness of the map (f + G)™! is
closely tied to the uniformity of our method in the sense that the attraction
region does not depend on small perturbations of the parameter y. Then,
in section 3, we enhance the convergence result established in [8] by show-
ing that the pseudo-Lipschitzness of (f + G)~' implies that our method is

actually uniformly cubically convergent.

2 Uniform convergence

In this section, we study the behavior of the solution of the generalized
equation (1) when the data input y = 0 is subjected to small perturbations.
To this end, we need the following Lemma stating that the concept of pseudo-

Lipschitzness is robust under the kind of approximation of f we use in (2).

Lemma 2.1 Let ¢ : X = Y be a function and let (Z,9) € graph (¢ + G).
Assume that ¢ is twice differentiable in an open neighborhood of  and that its

second order derivative is continuous at . Then the following are equivalent:



(1) The map (¢ + G)~! is pseudo-Lipschitz at (y,T);

1
(2) The map P() = [p(Z) + Ve(@)(- = 2) + 5V () (- = 2)° + G()] " is
pseudo-Lipschitz at (g, ).
PRrOOF. The proof is a straightforward consequence of [3, corollary 2] where

we set Fi= o+G and f(-) = —go(-)+g0(5:)+V<p(i)(-—5:)+%V2g0(5:)(-—§:)2.

Proposition 2.1 Let (%,7) € graph(f + G) and f be a function which
is twice (Fréchet) differentiable in an open neighborhood Q2 of & and whose

second derivative V2 f is continuous at T. If we suppose that G has closed

graph and that (f+G) ™' is pseudo-Lipschitz at (§,Z) then there exist positive

constants r, s and M such that
(P60 B @R <1 -,
for every x € B,(Z) and y',y" € Bs(y), where
Py() = [A(,2) + G() ™

PROOF. From Lemma 2.1 P; is pseudo-Lipschitz at (y,Z); let a, b and M’
be the associated constants. For any e such that M’'e < 2/5 there exists
r > 0 such that [|V2f(z) — V2f(Z)|| < e for every & € By,(Z). Take r smaller
if necessary so that 4r < a and 1172 < b. Choose also s > 0 such that

10M’s

— <7
2 5M%Ee = ©)
Let z € B,(z), v, v" € Bs(y) and zy € P,(y') N B,(Z). Then

s+ 11r% < b and

v, € P; <y — A(zy,2) + Az, 5:)) N B, ().

We show that both ¢/ — A(z1, x)+ A(z1, Z) and y" — A(z1,2) + A(z1, ) belong
to By(y). Let Ay = ||y — A(x1,2) + A(z1, %) — g|| then

Ay <y =gl + 1 (1) = Alzr, 2)|| + |1 (@1) — Az, D).



And the continuity of V2 f at & yields A, < s+5||x1—x||2+%||x1—i||2. Since

9
|z —21|| < ||le—2Z||+[|Z—21]] < 2r we get Ay < s+ 557"2 < b. Obviously, the
same inequality holds for A,». Then the pseudo-Lipschitzness of P; implies

that there exists
T € Pj (y” — A(.ﬁEl, 517) + A(fl?l,.f)) N Ba(ff?),

ie.,
y"' € A(zy,x) — Az, %) + Axg, &) + G(x9),

such that
|z =2 IS M|y =" || (10)

Proceeding by induction, we suppose that there exist an integer n > 2 and
points xg, 3, ..., T, such that y" € A(z;_1,z) — A(x;—1, T) + Az, ) + G ()
and

5M' SM L
lzi—wia IS =1y =¢" [ (=) i=2....n. (11)

Then

n
lan =21 < Y laj—aja |l +llar—a]
j=2

n

5.
< BM'sY (SMey? (12)
< sj2(2 e  +r

5M's
< —oMs <9<
< 1_(5M,€/2)—|—7“_27“_a.

Hence z,, € P; (y”—A(xn,l, x)+A(x, 1, :E)) NB,(Z) and by the same method
as in the beginning of the proof we show that both y' — A(x,, z) + A(x,, )
and 4" — A(xy,, z) + A(x,, Z) belong to By(y). Then there exists

Tni1 € P; (y” — A(zp, z) + A(zy, i)) N B,(%),

ie.,

y"' € Alxp,x) — AT, T) + A(pi1, T) + G(Tny1) (13)

such that
|41 — @ < M'[[(Vf(z) = Vf(Z)) (@01 — z0)+



SV (@) (s — 2 — (2 = ) = 2V F @) (0 — 2 — (a0 — 2]
For all z € Q, x — Vf(z) and z — V2f(z)(z — x) are continuous at Z, thus

we can choose r such that

1
i1 = 2all < M'e@ll2n1 = zall + Fllwn1 = za*).
By choosing €2 smaller if necessary
, D
[#nt1 =zl < M 8§||xn—1 — Zn-
Hence

5M’ 5M’
A e A [

6))1171’

and the induction is complete. Thus (z) is a Cauchy sequence, let z” be its

limit, passing to the limit in (13) yields y” € A(2",z)+G(z"), or equivalently
x" € Py(y"). Since z1 € P, (y'),

n
| 2" — 21 < lim sup || @ — 2 |,
n—-4oc o

we obtain

n
50" 5M' e 5M
’/_ < . /_ " < ’_ 1
I 2 “”—JHQWPZ;2 Iy =yl (5-e)" < gz 1V —v" |

5M'
and thus Proposition 2.1 holds with M < PV O

Now, from Proposition 2.1 we derive the following stability result for the

solution of equation (1).

Theorem 2.1 Let x* be a solution of (4) fory =0, if V2f is continuous on

Q then the following are equivalent:

1. (f + G)7" is pseudo-Lipschitz at (0, x*);



2. There exists ¢ > 0 such that for every y in some neighborhood of 0 and
xg in some neighborhood of x* there is a sequence (xy) satisfying (5),
starting from xo and converging to a solution x of (4). Furthermore,

|z — zo|| < c||ly — yol| whenever xq is a solution of (4) for y = ys.

PrROOF. (1) = (2). Let r, s and M be the constants in Proposition 2.1.
Let a > 0 and choose € > 0 such that Me < 1 and satisfying

£ *
@) = A", 2] < Slla" = 2'|%, Vo', 2" € Bu(a”).

Let 0 > 0 satisfy

2

€, 9 o°+o
— < < — < 14
2(0 +0)<s, o<, = 02) a (14)

and choose b > 0 such that
M
b(1+%)+§(02+0) < s (15)
M

Mb+7602+0§ 1; (16)

Mb+ (6%/2) + 20
1— (Mz2) -
Let xy € By(z*) and 3y’ = —f(z*) + A(x*, x). Since z* is a solution of (1)
we have y' € A(z*, z9) + G(z*) then z* € P, (y').

(17)

2
€.« £o
Moreover [ly/]| = |£(a*) = A(a*,20)| < Slla* = a|[* < 2. For y € By(0),

Proposition 2.1 ensures that there exists z1 € Py, (y) such that
[l = =[] < M({lyl] + [1f (z7) = Az, o))

e0? Meo?
||z1—x*||§M(||y||+7)§Mb+ .

Therefore

2
7 o (18)

Me
|21 — 2ol < [l — 2™ + ||z — o] < Mb+

Since x; € Py, (y) we have y + f(x;) — A(z1,20) € A(xy,21) + G(x1) which
is equivalent to x1 € Py, (y') where v/ =y + f(x1) — A(x1,x¢) is such that



1Yl <yl + [[f(z1) — Az1, z0) |
€ 2
S b+§||$1—$0”
M
< b+ S(Mb+ =l0? + o).

2 2
Then from Proposition 2.1 there exists zo € P, (y) such that

VAN

|29 — 1| Mlly" —y|| = M| f(x1) — A(z1, 20)||

IA
|
S
_I_
5
)
+
Q
E)
|
g

(19)

IN

=
=
|
S

=

Hence
|22 — 27|

IN

|lzo — 21| + [|21 — 2ol + [J20 — 27|

N

(1 4+ 25— o]+
Mb+ (Meo?/2) + o iy
— (M/2)
Mb+ (Me/2)(0? — o) + 20
= (Mz/2)

(20)

IN

Applying (17), we get

[ — 2™ < a.

We suppose now that for n € IN (n > 2), there exist z,, ..., x, such that for
t=1,...,n we have
2; € Py (y), (21)
and
|l = 25| < (Me/2)" |21 = 2o (22)

One can note that relations (16) and (22) imply that ||z; — z; 1]| < 1. By
(21), we have
Yy € A(mnamn—l) + G(iEn), (23)

ie., z, € P, (y'), where v =y + f(x,) — A(xp, Tp—1). To apply Proposition
2.1 we show that z, € B,(z*) and ¢’ € B,(0). Using (22), (18) and (17) we
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get

n
[ = D llzi = @il + 2o — 2|
i=1

= (02 ) o = sl + o — |

< m”fﬂl — @l + [0 — 27|

Mb+ (02/2) + 20
1—(Mej2) =

<
An easy computation yields
' € 2 € 2
I/l < b+ llan = zacal? < b+ Sller — ol < 5.
Then from Proposition 2.1 there exists

Tnt1 € Pr, () (24)
such that ||z, — z,|| < M|y — y|| = M||f(zn) — A(zn, zn1)]], i€,
[ €041 = 2nll < (Me/2)|Jwn — 2nall < (Me/2)" |2y — ol (25)

Thus the induction step is complete and there exists a Cauchy sequence (zy)
converging to some x € X and satisfying (24). Passing to the limit in relation
(24), we get

-1

v € Pyy) = | f(2) + Vf(2)( —x) + %V2f(37)(' —2)'+G()| (y) (26)

which is equivalent to

v € (f+G)7(y). (27)

It remains to show that ||z — xo|| < ¢||ly — yo|| whenever zq is a solution of
(4) for y = yo. Let yo € By(0) and zy € (f + G) ' (yo) N By(z*). Then
xog € Py (yo) N By(xy). From proposition 2.1, there exist x; € P, (y) such
that ||z1 — xo|| < M|y — yol|. By repeating the argument (18)—(25), there

exists a sequence (ry) converging to a solution z of (4) and satisfying (24)
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and (25). We have also

n
[0 — 2ol < Dl — @il

n =1 |

< (orer)arty - wl 28)
=1

< By

= 9 Me Y—Y%

Passing to the limit and setting ¢ = , we obtain
2—Me
[l = zol| < clly — yol- (29)

(2) = (1). From the second assertion of Theorem 2.1 there exist positive
numbers a and b such that for all y € By(0) and zy € B,(z*) there exists a

sequence () satisfying (5) starting from zo and converging to a solution x
of (4).
Let y1,y2 € By(0) and z; € (f + G)"'(y1) N Bu(z*) then there exists a
sequence (xy) starting from z; and such that z;, — 29 € (f + G) 1(ya), i.e.,
Yo € f(x9) + G(x3). Since x; is a solution of (4) for y = y;, assertion (2)
yields:
|22 — 21| < clly2 — wmnl],

and the mapping (f + G) ! is pseudo-Lipschitz at (0, z*).

]
These results can be partially extended to parameterized generalized equa-
tions. More precisely, when the function f depends also on a parameter

w € X the generalized equation (1) becomes

0€ f(w,z) + G(x). (30)
Given y € Y, we associate to (30) the following perturbed equation

y € flw,z)+G(z),
which can be rewritten

0€ fi(w,y,z)+ G(x), (31)
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where fi(w,y,x) = f(w,z) —y. We denote by
S:(w,y)—= S((w,y))={re X |0e€ fi(w,y,z)+G(x)},

the solution mapping of (31) and we assume that there exists 2* € S((w*, y*)).
Now, let f. denote any smooth first-order approximation to fi(w*,y*,-) at

z* in the sense that
fu(@®) = fr(w*, y", x*) and V fi(zy) = Vo fi(w*, y*, z*).

Here, we define f, as the following linearization of f(w*, y*,-) :
fulz) = fi(w*,y*, 2") + V, fr(w*, y*, 2%) (z — x7).
Then, we introduce the set-valued mapping S, defined by
Si:y = Si(y) ={z e X |ye filz)+G)},

and by Theorem 3.2 in [5], the mapping S is pseudo-Lipschitz at ((w*, y*), z*)
whenever the mapping S, is pseudo-Lipschitz at (0, z*). According to Dontchev
and Rockafellar [5], these two conditions are equivalent under some ample pa-
rameterization hypothesis. Moreover we know that the pseudo-Lipschitzness
of S, at (0,2%) is equivalent to the pseudo-Lipschitzness of (fi(w*,y*, ) +
F(-))~! at (0,2*) (see [3]). Then, to apply our stability results in Theorem
2.1 to the parameterized problem (30), it suffices to assume the pseudo-
Lipschitzness of the mapping (fi(w*,y*,-) + F(-))~" at (0,2*) which is a

standard and natural hypothesis.

3 Local cubic convergence

When y = 0 in (4), we have showed in [8] that if z* is a solution of (1),
the pseudo-Lipschitzness of (f + G)™" at (0,2*) ensures the existence of a
sequence which is cubically convergent to z*. We intend to prove now that

this result remains true if we replace 0 by some small y.
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Theorem 3.1 Let x* be a solution of (1), assume that f is twice Fréchet
differentiable in an open neighborhood Q of x* and that V2 f is Lipschitz on
Q with constant L. If the map (f + G)™" is pseudo-Lipschitz at (0,x*) then
there ezist positive constants o and b such that for every y € By(0) and
xo € B,(x*) there exists a sequence (xy,) defined by (5), starting from xo and
which converges to a solution x of (4). Furthermore, there exists a constant

v (which does not depend on small variations of y) such that
[zpr = | < ylloy — 2, (32)
that is (xy,) is cubically convergent to .

PROOF. First, let us remark that the pseudo-Lipschitzness of (f + G)™" at
(0, z*) with constants [, m and ¢ implies that for all y; and y, € B,,(0) and
for all z; € (f +G) ' (y1) N By(z*) there exists zo € (f + G) '(y2) satisfying
21 = 2|l < cllyr — wall

Taking 6 = m, y; = 0, yo = y, xr1 = z* and x5 = x in the above assertion,
we obtain the existence of 6 > 0 such that for every y € B;(0) there exists
z € (f +G) ' (y) N By (z*). Now, let us assume that o and b satisfy the

following:

T

< _.

) o<t
(i) b < min {36, -};

% : :
(iii) ¢b + ¢ < min s : or : 6 :
2L IML ML

where 7, s and M are given by Proposition 2.1 with £ = z* and y = 0.

For every y € By(0), we have to prove the existence of a sequence (z,)
satisfying (5) and converging to x which is solution of (4). We proceed by

induction for the rest of the proof. More precisely, we are going to show that

starting with a suitable x4, we can build a sequence (xy) satisfying relation
(5). Let 2y € B,(2*), y € By(0) and = € (f + G) *(y) N By (z*) then
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||lx — z*|| < ¢b < r. Let us also remark that y € f(z) + G(z) is equivalent to
MRS P:vo (y - f(l‘) + A(JI,LEO)) N B,«(ZE*)
We also have,
L 3 L 3
Iy~ £(2) + Az, 20)]| < Flla — a0l +5 < E(ch+ ) + b
Then from hypotheses (ii) and (iii) we get
s s
ly—F) + Alwrg)| < 245 = s (33)

2

From inequality (33), z =y — f(z) + A(x, z¢) € B,(0). Since zy € B,(z*) C
B,(z*) and (f + G)~! is pseudo-Lipschitz at (0, z*) Proposition 2.1 yields

eQ%@m&wx%wQSMMwmwfmw

Thus, there exists x; € Py, (y) such that

1
Iz — 1| < MI|A(z, 20) = f(@)[| < M L]jw = o]

Since x € By(2*) and |21 — 2*|| < ||lo — 21| + ||lx — 2*|| we get
ML
la* =2l < == (b +0)" +cb < g+%:r,

thus z; € B,(z*). Let us suppose that we have proved the existence of z,
Za,...x) (all of them in B, (x*)) satisfying relation (5). We are going to show
that we can find x4, ; with the same property. First, using hypothesis (ii), it

is easy to see that
ML
|z — x| < T(Cb+0)3, V2<I<Ek.
Starting with z; we have

z € P, (y— f(z) + A(z, 1)) N B, (z*).

Furthermore, thanks to (iii) and the induction relation, we obtain
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ly — f(z) + Az, z) | (L/6)]lx — @]’ + b
(L/6) ((ML/6)(cb+0)*)" +b
(L/6)(cb + 0)3 +b
< s/2+s/2 =s.
By Lemma 2.1 there exists an x4 € P, (y) such that

VAN VAN VAR VAN

[ =2kl < M| = f(z) + Az, 2
ML

< — |z — x|
< Zlle-al
That gives the inequality of the theorem at the step k + 1 and assertion (32)
is satisfied for any v > M L/6. To complete the proof let us note that since
M is the constant of pseudo-Lipschitzness of (f + G)™' at (0,z*), v doesn’t

depend on small variations of y. O
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