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Abstract. In this paper we present a study of the existence and the convergence of a

secant–type method for solving abstract generalized equations in Banach spaces. With

different assumptions for divided differences, we obtain a procedure that have superlin-

ear convergence. This study follows the recent results of semilocal convergence related

to the resolution of nonlinear equations (see [11]).
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1 Introduction

This paper is concerned with the problem of approximating a solution of the ”abstract”

generalized equation

0 ∈ f(x) +G(x) (1)

where f is a continuous function from X into Y and G is a set–valued map from X to

the subsets of Y with closed graph and X, Y are two real or complex Banach spaces.

Let us recall that equation (1) is an abstract model for various problems, the reader

could refer to [5, 6]. For solving (1), we consider the sequence











x0 and x1 are given starting points

yk = αxk + (1 − α)xk−1; α is fixed in [0, 1[

0 ∈ f(xk) + [yk, xk; f ](xk+1 − xk) +G(xk+1)

(2)
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where [yk, xk; f ] is a first order divided difference of f on the points yk and xk. This

operator will be defined in section 2.

In [11], the authors consider a similar iterative method like (2) with α = 0 to solve

nonlinear equations (G ≡ 0), they prove the semilocal convergence result of the method

under a conditioned divided differences. Analogous results can also be found in [12].

Let us note that a study of the convergence of Steffenson’s method to a locally unique

solution of a nonlinear operator equation is developped in [1] using a special choice of

divided differences. When the single–valued function involved in (1) is differentiable

and when the Fréchet derivative is Lipschitz, Dontchev [5, 6] showed that the Newton–

type method is locally (quadratically) convergent to a solution of (1) and he prove that

this convergence is uniform in the sense that the solution of (1) is stable, i.e., we find

similar result when we replace y = 0 in (1) by a small perturbation y. Analogous results

(superlinear convergence) can be found in [17] when the derivative of f is Hölder.

In [9], we consider a third order iterative method under some assumptions on the first

and the second Fréchet derivative of f at the solution of (1), we prove that this method

is locally (cubically) convergent.

A combination of Newton’s method with the first order divided differences method is

developped in [4] to solve a nonlinear equations (G ≡ 0) with f = f1 + f2 where f1 is

a differentiable function and f2 is continuous but admitting a divided difference. An

extension of this method to generalized equations is studied in [10] under an assumption

on the second order divided difference.

Recently, Michel Geoffroy in [8] obtained theQ-superlinear convergence of a secant

type method for solving (1) assuming the existence of first and second order divided

differences and that the solution satisfies a calmness-type property.

Note that in this present work, we don’t use the concept of second order divided dif-

ference, but only first order divided difference. This means that our method is valid if

f possesses a second order divided difference or not.

Here, we show the existence of a sequence defined by (2) which is locally convergent a

the solution x∗ of (1).

The paper is organized as follows: In section 2, we give some definitions and recall

a fixed–point theorem (lemma 2.1) which has been proved in [7]. This fixed point

theorem is the main tool to prove the existence and the convergence of the sequence

(2). In section 3, we show the existence and the convergence of the sequence defined
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by (2). At the end of the paper, we specify the cases α = 1 and α = 0.

2 Preliminaries and assumptions

Let us recall that the distance from a point x to a set A in the metric space (Z, ρ) is

defined by dist (x,A) = inf{ρ(x, y), y ∈ A} and the excess e from the set A from the set

C is given by e(A,C) = sup{dist (x,A), x ∈ C}. Let Λ : X ⇒ Y be a set–valued map,

we denote by gphΛ = {(x, y) ∈ X × Y, y ∈ Λ(x)} and Λ−1(y) = {x ∈ X, y ∈ Λ(x)}.
We denote by Br(x) the closed ball centered at x with radius r. The norm in the Banach

spaces X and Y are both denoted by ‖ . ‖ and L(X, Y ) is the space of bounded and

linear operators from X to Y . ∇f denotes the Fréchet derivative of f .

Definition 2.1 (Aubin [2]) A set–valued Λ is Pseudo–Lipschitz around (x0, y0) ∈
gphΛ with modulus M if there exist constants a and b such that

sup
z∈Λ(y′)∩Ba(y0)

dist (z,Λ(y′′)) ≤M ‖ y′ − y′′ ‖, for all y′ and y′′ in Bb(x0). (3)

Using the excess, we have an equivalent definition replacing the inequality (3) by

e(Λ(y′) ∩ Ba(y0),Λ(y′′)) ≤M ‖ y′ − y′′ ‖, for all y′ and y′′ in Bb(x0). (4)

Characterizations of the Pseudo–Lipschitz property are obtained by Rockafellar using

the Lipschitz continuity of the distance function dist (y,Λ(x)) around (x0, y0) in [18]

and by Mordukhovich in [14] via the concept of coderivative of multiapplications. For

more details and applications of this property, the reader could refer to [3, 7, 15, 19].

Definition 2.2 An operator [x, y; f ] ∈ L(X, Y ) is called a divided difference of first

order of the function f on the points x and y in X (x 6= y) if this operator satisfies the

followings :

1. [x, y; f ](y − x) = f(y) − f(x).

2. if f is Fréchet differentiable at x then [x, x; f ] = ∇f(x).

Lemma 2.1 Let (Z, ρ) be a complete metric space, let φ a set–valued map from Z into

the closed subsets of Z, let η0 ∈ Z and let r and λ be such that 0 ≤ λ < 1 and

(a) dist (η0, φ(η0)) ≤ r(1 − λ),
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(b) e(φ(x1) ∩ Br(η0), φ(x2)) ≤ λ ρ(x1, x2) ∀x1, x2 ∈ Br(η0),

then φ has a fixed–point in Br(η0). That is, there exists x ∈ Br(η0) such that x ∈ φ(x).

If φ is single–valued, then x is the unique fixed point of φ in Br(η0).

The proof of lemma 2.1 is given in [7] employing the standard iterative concept for

contracting mapping. This lemma is a generalization of a fixed–point theorem given in

[13] where in assertion (b) of the lemma 2.1 the excess e is replaced by the Pompeiu–

Hausdorff distance. In the continuation of this work, the distance ρ in lemma 2.1 is

replaced by the norm.

In the sequel we suppose that, x∗ is a solution of (1) and for every distinct points

x and y in a neighbourhood V of x∗, there exists a first order divided difference of f

at these points. We also make the following assumptions on a neigbourhood V of x∗

(H1) There exists ν > 0 such that for all x, y, u and v in V (x 6= y and u 6= v)

‖ [x, y; f ] − [u, v; f ] ‖≤ ν(‖ x− u ‖p + ‖ y − v ‖p), p ∈ [0, 1]

(H2) The set–valued map (f +G)−1 is M -Pseudo–Lipschitz around (0, x∗).

(H3) For all x, y ∈ V , we have ||[x, y; f ]|| ≤ κ and Mκ < 1.

Remark 2.1 The hypothesis (H3) implies that the function f is κ-Lipschitz on V .

When a single–valued function f satisfies the assumption (H1), we say that f has

a (ν, p)–Hölder continuous divided differences on V . In [11], the authors showed a

semilocal result of convergence of the secant method to solve a nonlinear equation

(G ≡ 0) under a new condition relaxing the condition (H1) by replacing (in (H1))

the right term of the inequality by ω(‖ x − u ‖, ‖ y − v ‖) where ω is a continuous

nondecreasing function in its two arguments from IR+ × IR+ to IR+.

3 Convergence Analysis

In this section we show the existence of the sequence defined by (2) and we present

some results of convergence to the solution x∗ of (1) under the previous assumptions.
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We need to introduce some notations. First, define the set–valued map Q : X ⇒ Y by

Q(x) = f(x∗) +G(x). (5)

For k ∈ IN∗ and xk, yk defined in (2), we consider the application

Zk(x) := f(x∗) − f(xk) − [yk, xk; f ](x− xk). (6)

Finally, define the set–valued map ψk : X ⇒ X by

ψk(x) := Q−1(Zk(x)). (7)

Lemma 3.1 The following are equivalent

1. The map (f +G)−1 is pseudo–Lipschitz around (0, x∗);

2. The map (f(x∗) +G(.))−1 isPseudo–Lipschitz around (0, x∗).

Proof of lemma 3.1. The proof is a consequence of corollary 2 ([7]), identifying F

and f in corollary with (f +G) and h respectively where h(.) = −f(.) + f(x∗). �

The main result of this study is follow

Theorem 3.1 Let x∗ be solution of (1). We suppose that the assumptions (H1)–(H3)

are satisfied. For every C >
Mν[(1 − α)p + αp]

1 −Mκ
, one can find δ > 0 such that for every

distinct starting points x0 and x1 in Bδ(x
∗), there exists a sequence (xk) defined by (2)

which satisfies

‖ xk+1 − x∗ ‖≤ C ‖ xk − x∗ ‖ max {‖ xk − x∗ ‖p, ‖ xk−1 − x∗ ‖p}. (8)

To prove theorem 3.1, we first prove the following proposition:

Proposition 3.1 Under the assumptions of theorem 3.1, one can find δ > 0 such that

for every distinct starting points x0 and x1 in Bδ(x
∗) (x0, x1 and x∗ distincts), the

set–valued map ψ1 has a fixed point x2 in Bδ(x
∗) satisfying

‖ x2 − x∗ ‖≤ C ‖ x1 − x∗ ‖ max {‖ x1 − x∗ ‖p, ‖ x0 − x∗ ‖p}. (9)

Remark 3.1 The point x2 is a fixed point of ψ1 if and only if the following holds

0 ∈ f(x1) + [y1, x1; f ](x2 − x1) +G(x2). (10)

Once xk is computed, we show that the function ψk has a fixed point xk+1 in X. This

process allows us to prove the existence of a sequence (xk) satisfying (2).
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Proof of the proposition 3.1. Since the iterate y1 in (2) is defined by y1 = αx1 +

(1 − α)x0 then it is clear that y1 ∈ Bδ(x
∗).

By hypothesis (H2) and lemma 3.1 there exist positive numbers M , a and b such that

e(Q−1(y′) ∩ Ba(x
∗), Q−1(y′′)) ≤M ‖ y′ − y′′ ‖, ∀y′, y′′ ∈ Bb(0). (11)

Fix δ > 0 such that

δ < min

{

a ; p+1

√

b

ν((1 − α)p + αp)
;

1
p
√
C

;
b

2κ
;

p+1

√

b

2p+2ν

}

. (12)

To prove proposition 3.1 we intend to show that both assertions (a) and (b) of lemma

2.1 hold; where η0 := x∗, φ is the function ψ1 defined by (7) and where r and λ are

numbers to be set. According to the definition of the excess e, we have

dist (x∗, ψ1(x
∗)) ≤ e

(

Q−1(0) ∩ Bδ(x
∗), ψ1(x

∗)

)

. (13)

Moreover, for all points x0 and x1 in Bδ(x
∗) (x0, x1 and x∗ distincts) we have

‖ Z1(x
∗) ‖=‖ f(x∗) − f(x1) − [y1, x1; f ](x∗ − x1) ‖ .

By definition 2.2 and the assumption (H1) we deduce

‖ Z1(x
∗) ‖ = ‖

(

[x∗, x1; f ] − [y1, x1; f ]
)

(x∗ − x1) ‖
≤ ‖ [x∗, x1; f ] − [y1, x1; f ] ‖‖ x∗ − x1 ‖
≤ ν ‖ x∗ − y1 ‖p‖ x∗ − x1 ‖

≤ ν

(

(1 − α) ‖ x∗ − x0 ‖ +α ‖ x∗ − x1 ‖
)p

‖ x∗ − x1 ‖

(14)

Thus

‖ Z1(x
∗) ‖≤ ν[(1 − α)p ‖ x∗ − x0 ‖p +αp ‖ x∗ − x1 ‖p] ‖ x∗ − x1 ‖ . (15)

Then (12) yields, Z1(x
∗) ∈ Bb(0).

Hence from (11) one has

e

(

Q−1(0) ∩ Bδ(x
∗), ψ1(x

∗)

)

= e

(

Q−1(0) ∩Bδ(x
∗), Q−1[Z1(x

∗)]

)

≤ Mν[(1 − α)p ‖ x∗ − x0 ‖p +αp ‖ x∗ − x1 ‖p] ‖ x∗ − x1 ‖
(16)
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By (13), we get

dist (x∗, ψ1(x
∗)) ≤ Mν[(1 − α)p ‖ x∗ − x0 ‖p +αp ‖ x∗ − x1 ‖p] ‖ x∗ − x1 ‖

≤ Mν[(1 − α)p + αp] ‖ x∗ − x1 ‖ max {‖ x1 − x∗ ‖p, ‖ x0 − x∗ ‖p}
(17)

Since C(1 −Mκ) > Mν[(1 − α)p + αp] there exists λ ∈ [Mκ, 1[ such that C(1 − λ) ≥
Mν[(1 − α)p + αp] and

dist (x∗, ψ1(x
∗)) ≤ C(1 − λ) ‖ x∗ − x1 ‖ max {‖ x1 − x∗ ‖p, ‖ x0 − x∗ ‖p} (18)

By setting r := r1 = C ‖ x∗ − x1 ‖ max {‖ x1 − x∗ ‖p, ‖ x0 − x∗ ‖p} we can deduce

from the inequality (18) that the assertion (a) in lemma 2.1 is satisfied.

Now, we show that condition (b) of lemma 2.1 is satisfied.

By (12) we have r1 ≤ δ ≤ a and moreover for x ∈ Bδ(x
∗) we have

‖ Z1(x) ‖ = ‖ f(x∗) − f(x1) − [y1, x1; f ](x− x1) ‖
≤ ‖ f(x∗) − f(x) ‖ + ‖ [x, x1; f ] − [y1, x1; f ] ‖‖ x− x1 ‖

(19)

Using the assumptions (H1) and (H3) we obtain

‖ Z1(x) ‖ ≤ κ ‖ x∗ − x ‖ +ν ‖ x− y1 ‖p‖ x− x1 ‖
≤ κ ‖ x∗ − x ‖ +ν(‖ x− x∗ ‖ + ‖ x∗ − y1 ‖)p ‖ x− x1 ‖
≤ κδ + ν(2δ)p2δ = κδ + ν2p+1δp+1.

(20)

Then by (12) we deduce that for all x ∈ Bδ(x
∗) we have Z1(x) ∈ Bb(0). Then it follows

that for all x′, x′′ ∈ Br0
(x∗) we have

e(ψ1(x
′) ∩Br1

(x∗), ψ1(x
′′)) ≤ e(ψ1(x

′) ∩Bδ(x
∗), ψ1(x

′′)),

which yields by (11)

e(ψ1(x
′) ∩Br1

(x∗), ψ1(x
′′)) ≤ M ‖ Z1(x

′) − Z1(x
′′) ‖

≤ M ‖ [y1, x1; f ](x′′ − x′) ‖
≤ M ‖ [y1, x1; f ] ‖‖ x′′ − x′ ‖

(21)

Using (H3) and the fact that λ ≥ Mκ, we obtain

e(φ0(x
′) ∩ Br1

(x∗), ψ1(x
′′)) ≤Mκ ‖ x′′ − x′ ‖≤ λ ‖ x′′ − x′ ‖ (22)
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and thus condition (b) of lemma 2.1 is satisfied. Since both conditions of lemma 2.1

are fulfilled, we can deduce the existence of a fixed point x2 ∈ Br1
(x∗) for the map ψ1.

Then the proof of proposition 3.1 is complete. �

Proof of theorem 3.1. Proceeding by induction, keeping η0 = x∗ and setting

r := rk = C ‖ x∗ − xk ‖ max {‖ xk − x∗ ‖p, ‖ xk−1 − x∗ ‖p},

the application of proposition 3.1 to the map ψk gives the existence of a fixed point

xk+1 for ψk, which is an element of Brk
(x∗). This last fact gives the inequality (8) and

the proof of theorem 3.1 is complete. �

4 Concluding remarks

When α = 1, our method is no longer valid, but if we suppose that f is Fréchet

differentiable (2) is equivalent to a Newton-type method to solve (1). In this case

conditions on ∇f give quadratic convergence (see [5]) and superlinear convergence (see

[16]) and in the two cases the convergence is uniform (see [6] and [17]).

When α = 0 the sequence (2) seems to the method introduced by M. Geoffroy and

A. Piétrus in [10]. Let us note that the problem studied in [10] can be seen as a

perturbation of (1) by a Fréchet differentiable function. In both cases, we obtain a

superlinear convergence using different assumptions, but in this paper the existence of

second order divided differences is not required.
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