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Abstract : This paper presents a study of the Lipschitz dependence of the optimal solution
of elementary convex programs in a Hilbert space when the equality constraints are subjected to
small perturbations in some fixed direction and with the sub and super quadratic growth condi-
tions. This study follows the recent results of Janin and Gauvin [9] related to the finite dimentional
case. As an illustrative example, we study the directional derivative with respect to the boundary

conditions of the infimum (value funtion) of the Mossolov problem in space dimension one.
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1. Introduction

Following the methods introduced in [9] by Janin and Gauvin in finite dimensional
spaces, we consider the problem of the Lipschitz dependence of the optimal solution
of an elementary convex problem with a nonsmooth convex objective function in
an infinite dimensional Hilbert space when the equality constraints are subjected
to small perturbations in some fixed direction. As in [9], these results are obtained
assuming a sub and super quadratic growth conditions. As an illustrative example,
we then study the directional derivative with respect to the boundary conditions of
the infimum (value funtion) of the Mossolov problem in space dimension one [5, 11]
in H'(]0, 1).

Let g : E — IRU {400} be a convex function, where E is a Hilbert space en-
dowed with the scalar product (.,.). The polar (or conjugate) function of g is
9*(y) = sup{(z,y) — g(z)/z € E},Vy € E.

We denote by dg(x) the subdifferential of g at the point z. It is known that :

dg(x) ={y € E/g"(y) + 9(z) = (y,2)}.

Let H and W be two Hilbert spaces. We denote by (.,.) the scalar product on H
and W, and by |.| the associated norm. Let f be some convex function on H and A



be some linear operator from H onto W and consider the problem :
Minimize f(z) subjectto Az = y. (1)

Let v be a value (or marginal) function of (1) defined by :

v(y) = inf{f(x)/Ax =y} for every y € W.

We assume the following :
H1: (super-quadratic growth condition)

dp > 0 such that Vo € H, f(x) > f(xo) + Df(xg,x — x0) + g|x — x0]%
H2: (sub-quadratic growth condition)

R
dR > 0 such that Va € H, f(z) < f(xo) + Df(xo, 2 — z0) + §|x — x0]%,

1
where D f(xg,h) = 1{1’(} ;(f(xo + th) — f(z0)), and z, is an optimal solution of (1)

for the perturbation y = .
It is known that :

dv(yo) = {ne W/ A'n € 9f(x0)}. (2)

Since x, is optimal, a first-order necessary and sufficient optimality condition is :
Of (xg) NA*(W) #£ 0.

First-order results are well-known in convex and nonconvex programs [8, 7, 12].
Second-order terms are evaluated in [2, 3]. Our aim in this article is to give some
accurate bounds for the second-order term of the power series of the value function
at yo.

The following set will be important in this work

> (fih) = {o € 9f (o), (0, A'h) > Du(yo, h)}, (3)

where A* = A*(AA*)~! denotes the pseudo-inverse of A, A* being the adjoint of A
and h some fixed direction in W.
We denote by sgn the sign function on IR defined at 0 by sgn0 = 0.

2. Second-order results

k
Consider the function g(z) = w(z) + §|x|2, where w(.) is the support function of

the convex set B = dw(0). The polar function of g is given by

g (p) = ﬁlnf{|p—q|2/q € B}.



We are interested now in the expression of (¢* o A*)*(y) for y € W.

Lemma 2.1. For every oo € BN A*(W), we have :

k 1
(9" 0 A*)*(y) = (09, A'y) + §|A”y|2+sug {(0—00, Aly) — A —A”A)(U—UU)IQ},
o€

where 1y denotes the identity mapping of H.

Lemma 2.2. We assume that B N A*(W) # 0. Then we have the following re-
sult :
i) If o € B, (0,A%) > D(g* 0 A*)*(0,y), then :

jm (<g* 0 A" (ty) — (g 0 A} (0) — tD(g" o A" (0, y)) -

= k{|Aﬂy|2 + sup
c€EB

o. Aly) — *o A*)* 2

i) If o € B, (0, A'y) < D(g* 0 A*)*(0,%), then :

1{%%(@* o A')'(ty) — (g" 0 A)*(0) — tD(g" o A*)*(O,y>) — KAy

3. Lipschitz type stability

We now derive a stability result for the optimal solution of the problem (1), using
the result of §2. We set xy = x(yo) and we denote by z(y) the optimal solution
associated to y.

Theorem 3.1. We have the following :
i) Either Z(f, y) # 0, in which case :

b2 gy (L0 AT) = Du(0,y))”
p{|A vl +U€Z(Ij)”,y){ |(1g — A*A)o|? }}

i 2 (o(00) — 0(0) = 1D(0.9)) <

N0
Aly) — Du(0,y))?

RS |A%|> +  sup (<, . },
{| | an(f,y){ |(1g — A*A)o|? J

i) or Z(f, y) = 0, in which case :

2
plAfy[? < Tim (v(ty) —(0) = tDv(0, y)) < R|A%y[".



In finite dimensional, Lipschitz continuity for the optimal solutions has been studied
by Aubin [1] in the nonsmooth convex case with small perturbations. Analogous
results can also be found in [4]. Holder, Lipschitz and differential properties of the
optimal solutions of a nonlinear mathematical programming problem with pertur-
bations in some fixed direction are developed in [6]. In infinite dimensional space,
some results on stability and sensitivity analysis with respect to the parameter are
discussed in [10]. The following theorem gives the Lipschitz dependence for the op-
timal solution when the constraint y, is subjected to a small perturbation in some

direction h, this stability being characterized by the emptiness or the nonemptiness
of the set defined by (3).

Theorem 3.2. We have the following alternative :

i) If Z(f, £ (), then : hm\sup (o + tht) — =)l <
R lo — 00)?
i
S S = &) o — o)

where oy is a subgradient of f at xo such that : (og, A*h) = Du(yq, h).
it) If > "(f.h) =0, then :

tmsup 0TI 200} By g,
t\0 t p

4. Example

M=

1
© LA [,

In this paragraph we consider the Mossolov’s problem :

Minimize J(v / v'(a |dx+ﬂ/ v'(z |dx—/ Flz)o(z)dz,

subject to : Av = ,v(1)) = 0 € IR*, with v € H'(]0, 1]),

where o and (3 are strlctly positive constants, F' € L*(]0,1]) given.

In two space dimensions, the trajectories of the viscous-plastic medium’s particules
will be rectilinear during their motion in a pipe and their velocity v(z,y) will be
parallel to the pipe’s axis. Mossolov and Miasnikov [11] studied the existence of
optimal solutions such that the constraint is vanishing on the boundary. In [5], Eke-
land and Temam extend these results by considering the primal and dual problems.
Here, we study the dependence of the optimum of Mossolov’s problem with respect
to the boundary conditions.

The value function of the Mossolov problem is

V(0) = inf{J(u)/Au = (u(0),u(1)) = 6}.



We assume that ug is an optimal solution associated with 6, € IR?, and we set

L5 (ug) = {v € L= /lv(t)| < fa.e in{uy =0} andv(t) = Bsgnug(t) a.e in {uy # 0}}

Proposition 4.1. The subdifferential of J at uo € H'(]0,1]) is given by the formula

ch
hl

3J(Uo)—{wGHI/w(-)———(Fo(l) / sh (1= y)(w(y) + an(y)+

Foly))dy)+ / e (—y) (wy)+auy(y)+ Foy))dy, w € LT (uo) . Fo(.) = / | F(t)dt}.

0

Idea of the proof. The proof is based on the resolution of the system

_T"+T = f with f € L2,
T(0) = T(1) = 0.

It is well known that the solution of this system is given by :

/ G(z,v) f(y)dy, where the Green’s function G is given by :

G(z,y) = Shl(shxsh(l—y) —shlsh(z—y)"),

and we have the following lemma :

Lemma 4.1.

ch !

IP(ug) = {<p € H'/p() = ] sh(l y)u(y )dy+/0. ch (.-—y)v(y)dy,v € L;’f(uo)},

where ®(u ﬁ/ |u'(z)|dz, for w e H(]O,1[).

Remark. Inplementing Corollary 4.1, we obtain the directional derivative of the

value function of the Mossolov’s problem

(- thl my + shl ma)br + (—

DY (6y,0) = (= tlil ma + shl ms )0y + (=
’ ( th1m2+ m3)91+ -
(- thll mi1+ g1 m4)91 + (=

where m; = inf B,(0%), my = sup

vELF (uo) vELF (uo)

my = sup B,(1"), where

vELP (uo)

3
B,(z) = chzx

DL [ sh0=0ota) + o) + Foo)a ) -

if6h > 0,00 >0,
if 6 <0,0; <0,
if 6 <0,0, >0,
if6h > 0,0, <0,

/Ox ch (z —y)(v(y) + aug(y) + Fo(y))dy, Vo €]0,1[, v € LF (ug).



Using the Proposition 4.1, we obtain the following theorem and the stability of the
optimal solution of Mossolov’s problem in some direction is given by case ii) of The-
orem 3.2.

Theorem 4.1. The following relation holds : Z(J, ) = 0.
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