
Computations on finite dimensional Lie algebras.

Gérard Grélaud

Abstract. This paper is concerned with computations on finite dimensional simple Lie
algebras using Chevalley bases. Our work (with Patrice Tauvel and Claude Quitté)
is first the construction of explicit tables of structural constants for exceptional simple
Lie algebras, second the use of these tables to obtain new results on nilpotents orbits of
simple exceptional Lie algebras (a work with A. Elashvili).

Let g be finite dimensional Lie algebra over an algebraically close field (C in these
notes). If we have a basis B = {e1, . . . , en} of g, one can make computations using this
basis and structural constants Cki,j , 1 ≤ i < j ≤ n, 1 ≤ k ≤ n defined by

[ei, ej ] =
n∑
k=1

Cki,jek

Of course, it is interesting to use a basis such that most of the constants are zero. It is well
known that this is the case for semi-simple Lie algebras for which exist Chevalley bases.
Semi-simple Lie algebras are direct sums of simple Lie algebras. We recall the well known
classification of all simple finite dimensional Lie algebras over C. There are four classical
series

• An: Lie algebra of n× n matrix with trace equal zero;
• Bn: Lie algebra of 2n+ 1× 2n+ 1 skew symetric complex matrix;
• Cn: Lie algebra of 2n× 2n matrix M such that tMJ2n = −J2nM where

J2n =
(

0 In
−In 0

)
• Dn: Lie algebra of 2n× 2n complex skew symetric matrix.

and five exceptional Lie algebras denoted by

• G2: algebra of rank 2 and dimension 14;
• F4: algebra of rank 4 and dimension 56;
• E6: algebra of rank 6 and dimension 78;
• E7: algebra of rank 7 and dimension 133;
• E8: algebra of rank 8 and dimension 248.

Recall that the rank of a semi-simple Lie algebra is the dimension of the Cartan subalgebras
(i.e. nilpotent subalgebras which are equal to their normalizer).

We denote by r the rank of g an by h1, . . . , hr a basis of a fixed Cartan subalgebra
h of g. The Cartan’s subalgebras are abelian. The integer (dim g − r) is even, say 2p
and it can be shown that there exists vectors x1, . . . , xp and y1, . . . , yp such that B =
{h1, . . . , hr, x1, . . . , xp, y1, . . . , yp} is a basis for g with the following properties:
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• For i ∈ 1, . . . , r, j ∈ 1, . . . , p there exists integers ci,j such that

[hi, xj ] = ci,jxj and [hi, yj ] = −ci,jyj

• For i ∈ 1, . . . , p, j ∈ 1, . . . , p that exists integers Ni,j , N
′
i,j such that

[xi, xj ] = Ni,jxk(i,j) ; [yi, yj ] = N ′i,jyk(i,j)

• For i ∈ 1, . . . , p, j ∈ 1, . . . , p, i 6= j we have [xi, yj ] = Ci,jzk(i,j) where zk(i,j) is an
xk or an yk and Ci,j are integers;
• For i ∈ 1, . . . , p, there exists integers mk such that [xi, yi] =

∑r
k=1mkhk;

So, we see that all the structural constants are integers and most of them are zero. In
fact, for brackets of 2 basis elements, there is at most r non-zero constants.

1. Construction of Chevalley basis.

For general features concerning semi-simple Lie algebras one could consult [1], [2], [9]
and [10].

We denote by g a semi-simple Lie algebra over C with rank equal to r. With g we
consider

G the adjoint group of g;
K the Killing form on g;
h a Cartan subalgebra of g;
R the set of roots for (g, h);
B = {a1, . . . , al} a basis for R;
R+ (resp. R−) the set of positive (resp. negative) roots of R with respect to B.
For a ∈ R, ga is the root subspace corresponding to a, and Xa is an element of ga�{0}.

We put

n+ =
∑
a∈R+

ga , n− =
∑
a∈R−

ga

1.1. Let be λ ∈ h∗. There exists an element hλ ∈ h such that

λ(h) = K(h, hλ)

for all h ∈ h. For all λ, µ ∈ h∗, we write <λ, µ>= K(hλ, hµ) and, for a ∈ R, we set

Ha =
2

<a, a>
ha.

We write Hi instead of Hai , 1 ≤ i ≤ r. It is well known that (H1, . . . , Hr) is a basis
of h.

For a, b ∈ R, the scalars

na,b = 2
<a, b>

<b, b>

are integers, and are called Cartan’s integers of g. The square of the length of the root a
is <a, a>.
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1.2. Let a, b ∈ R be two roots such that a+ b 6= 0. One defines the scalar N(a, b) by
the following conditions:

— If a+ b 6∈ R, we set N(a, b) = 0;
— If a+ b ∈ R, N(a, b) is define by [Xa, Xb] = N(a, b)Xa+b.

The coefficients N(a, b), a, b ∈ R, satisfy the relations :
(1) N(b, a) = −N(a, b) for a, b ∈ R such that a+ b 6= 0.
(2) If a, b, c ∈ R are two by two independant and such that a+ b+ c = 0, then

N(a, b)
<c, c>

=
N(b, c)
<a, a>

=
N(c, a)
<b, b>

(3) Let a, b, c, d, e ∈ R such that a+ b = c+ d = e. Then

N(b,−c)N(a, d− a) +N(−c, a)N(b, d− b)−N(a, b)N(−c,−d)
<d, d>

<e, e>
= 0

(4) Let a, b be in R such that a+ b ∈ R, and let b− ra, . . . , b+ qa be the a-chain of b.

N(a, b)N(−a,−b) = −(r + 1)2 = −q(r + 1)
<a+ b, a+ b>

<b, b>
.

Thus, it is clear that to know the numbers N(a, b), a, b ∈ R with a+b 6= 0, it is enough
to calculate the coefficients N(a, b) for a, b ∈ R+ and a+ b 6= 0.

It is possible to select the vectors Xa, a ∈ R, in such a way that
(a) [Xa, X−a] = Ha for all a ∈ R.
(b) For a, b ∈ R such that a+ b 6= 0, one has N(a, b) = −N(−a,−b).

A basis {Xa; a ∈ R,Hi, 1 ≤ i ≤ r} which satisfy the previous conditions is a Chevalley
basis of g. For such a basis we have the following properties :

(i) [Hi,Hj ] = 0, 1 ≤ i, j ≤ r.
(ii) [Hi, Xa] =<ai, a> Xa, 1 ≤ i ≤ r, a ∈ R.
(iii) For all a ∈ R, Ha = [Xa, X−a] is a linear combination with integer coefficients of

the vectors Hi, 1 ≤ i ≤ r. Precisely, for

a =
r∑
i=1

niai

we have

<a, a> Ha =
r∑
i=i

ni < ai, ai> Hi.

(iv) Let a, b ∈ R be such that a+ b ∈ R. If we denote b− ra, . . . , b+ qa the a-chain of
b, we have:

N(a, b)2 = (r + 1)2 = q(r + 1)
<a+ b, a+ b>

<b, b>

So, we see that, knowing R (therefore, the length of the roots, the Cartan matrix and
the Dynkin diagram), it is easy to find N(a, b) apart from the sign. For the problem of
signs of the constants of structure one could consult [11].
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1.3. An order on R. For each a =
r∑
i=1

niai in R+, we put |a| =
r∑
i=1

ni. Let a, b ∈ R+

be roots such that a 6= b. We say that a < b if
• either |a| < |b|
• or either |a| = |b| and a is smaller than b for the reverse lexicographical order define

by B. This defines a total order on R+ which is compatible with the addition.

Denote by n the cardinal of R+ and let

R1 < R2 · · · < Rn

be the elements of R+. We select Xi (resp. Yi) in gRi (resp. g−Ri), 1 ≤ i ≤ n such that
(Xi, Yi, 1 ≤ i ≤ n;Hj , 1 ≤ j ≤ r) be a Chevalley basis of g. With the previous order we
have [Xi, Yi] = Hi for 1 ≤ i ≤ r.

We obtain the table of integers N(a, b) for exceptional Lie algebras with a computer
program1.

The main part of the program is the computation of N(a, b) for two positive roots a
and b such that a < b (for the order define in 1.3.) Other constants are easily deduced by
using the formulas (1), (2), (3) in paragraph 1.2.

We use the following algorithm :
1.– The table of positive roots (and the square of the length of the roots for G2 and

F4), and the Cartan matrix, are read from a file.
2.– The computation is inductive on the order of the positive roots. For each positive

root v, we compute the list of pairs of positive roots (c, d) with d < c such that c+ d = v.
3.– Let (a, b) be a pair of roots, if it exists, which verifies a + b = v, b < a and b

minimum according to these conditions (so a is maximum). The absolute value of N(a, b)
being given by the property (iv) in paragraph 1.2 (equal to 1 for the algebras E6, E7, E8),

we arbitrary fix the sign of N(a, b) = −N(b, a)(plus for our realization).
4.– Now, the other constants N(d, c) for c + d = v, d < c are easely deduced from

N(a, b). Indeed, let (d, c) be such two roots. We have b < d < c < a and since a+b = c+d,
we obtain x = a − c = d − b, y = c − b = a − d, and one deduces from formulas (1), and
(3) in paragraph 1.2

N(d, c) =
<a+ b, a+ b>

N(a, b) <a, a>

(<x, x>
<d, d>

N(x, b)N(x, c) +
<y, y>

<c, c>
N(y, b)N(d, y)

)
(but x and y are not always roots: in this case, one puts N(x, u) = 0 for every root
u ∈ R+). We can calculate N(c, d) since all the integers N(i, j) in the right hand of the
previous formula are already known because x + b = d − b + b = d < d + c = v, x + c =
a− c+ c = a < a+ b = v, etc . . .

5.– The constants N(u, v) (for u and v, not two of them positive), are deduced from
formulas (1) and (2) of 1.2. These formulas imply

N(−u, v) =
<v − u, v − u>

<v, v>
N(v − u, u) 0 < u < v, (v − u) ∈ R+

6.– The computation of brackets [Xa, X−a] and [Hi, Xa] is a straightforward calculation
using the Cartan matrix.

1In fact the method works for any semi-simple Lie algebras.
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1.4. Programming problems. For the realization of the program, the more impor-
tant difficulties were: the large dimension of the algebras (248 for E8) and the delay for
running these programs when one tries to use array structures. The output of the program
is a file with lines of 4 integers

i j k Cki,j

The file is used later for computations on the Lie algebras.
With PC computers and programming languages such that Pascal or Ada, the size of a

variable is limited to 64 K-bytes, so it is impossible to use a table with constants of struc-
ture for a Lie algebra of dimension greater than 40 with an array of integers. Moreover, for
example, for dimension 35 the computation time for to verify the Jacobi identity is about
20 minutes. All the vectors used having little much nonzero components, only one in al-
most all case, we have chosen to memorize them with dynamical variables (pointers, lists).
However, for E8 a two dimensional array of pointers on brackets [Xi, Xj ], 1 ≤ i, j ≤ 248 is
greater than the maximal possible size for a variable. We have opted for a more complex
structure: a one dimensional array of pointers on “lines” which are themselves arrays of
pointers on “the brackets” [Xi, Xj ]. Actually, this structure is almost easy to use than
a standard array, when the usual operations have been programmed. The time for the
Jacobi identity verification for the dimension 35 is 2 seconds instead of 20 minutes and
about one minute for E8.

2. New results obtained with Chevalley bases.

2.1. sl(2)-triples. A sequence (h, e, f) of nonzero elements of g such that

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h

is called a sl(2)-triple of g.
It is well known that there is a one to one map between sl(2)-triple and nilpotent

orbits (i.e. The G-orbit (cf. section 1 of a nilpotent element of g)
Let g be an exceptional simple Lie algebra. In [4], Dynkin describes nilpotent orbits

Ω with some sequences CΩ = (n1, . . . , nr) named characteristics. All the characteristics
of nilpotent orbits have been computed by Dynkin in [4]. The list of characteristics could
also be found in [3] and [7]. Giving such a characteristic (n1, . . . , nr), it is easy to find
h ∈ h such that ai(h) = ni for 1 ≤ i ≤ r; it is sufficient to apply the reverse of the Cartan
matrix of g to the column vector having n1, . . . , nr for components. Infortunately, there
is no general method to deduce e ∈ n+, f ∈ n− such that (h, e, f) is a sl(2)-triple (these
elements are not unique).

Using the tables of Chevalley bases, P. Tauvel computed tables of sl(2)-triples for
the 5 exceptional Lie algebras and we verified the results with a computer program. The
lists of sl(2)-triples can be found in [8]. In the same paper we give the lists of brackets of
Chevalley bases for the five exceptional Lie algebras, the lists of roots, Dynkin diagrams,
and the listings of programs written in Turbo-Pascal. It is easy to modify these programs
and to get the same results for any given simple classical Lie algebra: it is enough to
change the rank, the list of roots and the Cartan matrix.

Here we write an example of sl(2)-triple for the Lie-algebra E8. It corresponds to the
characteristic (2, 2, 2, 2, 2, 2, 2, 2)

h = 92H1 + 136H2 + 182H3 + 270H4 + 220H5 + 168H6 + 114H7 + 58H8

e = X1 +X2 +X3 +X4 +X5 +X6 +X7 +X8

f = 92Y1 + 136Y2 + 182Y3 + 270Y4 + 220Y5 + 168Y6 + 114Y7 + 58Y8
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2.2. “Compact nilpotent orbits”. Let e be a nilpotent element and ge its central-
izer in g. One interesting property concerning the nilpotent orbit Ωe is the codimension
of Ωe�Ωe: What are the nilpotent orbits such that this codimension is greater than 2?
(Vogan property). Such an orbit is said to be a compact nilpotent orbit. For classical
Lie algebras it is possible to solve this problem by theorical usual methods and this was
done by A. Elashvili (see [5], [6]) who discovered that it is true if and only if e ∈ [ge, ge],
also equivalent to another more technical property, and he gives the list of these orbits.

For exceptional Lie algebras, only case by case computation seems possible to us and
for E7 and E8 it is not possible to acheive the work “by hand”! Using the tables of
Chevalley bases and new programs in Pascal and Axiom, we obtain the complete list of
compact nilpotent orbits for exceptional Lie algebras [5].
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1. Bourbaki N., Groupes et algébres de Lie, Chap. 7, 8, Masson, Diffusion C.C.L.S., 1975.
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8. Grélaud G., Quitté Cl., and Tauvel P., Bases de Chevalley et sl(2)-triplets des algèbres de lie
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