UNIVERSITE DE POITIERS

On representations of simply connected

nilpotent and solvable Lie groups

Gérard Grélaud

Université de POITIERS

UMR CNRS 6086 — Laboratoire de Mathématiques et Applications
SP2MI - Téléport 2 - Boulevard Marie et Pierre Curie BP 30179
86962 FUTUROSCOPE CHASSENEUIL Cedex

Tél : 0549 49 69 03
e-mail :grelaud@math.univ-poitiers.fr



On representations of simply connected

nilpotent and solvable Lie groups

Introduction

In these notes following a course I gave during a visit at Pondicherry University
in 1992, T write the main results of the theory of representations of simply
connected nilpotent Lie groups (the Kirillov’s theory), and some generalizations
to simply connected solvable Lie groups.

After the basic properties of unitary representations of locally compact groups,
especially construction of induced representations and “Mackey’s machine” (Sec-
tion 1), I state the classical results on Lie groups and Lie algebras (section 2).

In section 3, I give the constuction of polarizations in solvable Lie algebras
and in section 4 the description of the the dual space of connected nilpotent Lie
groups, using the famous orbit method of A.A. Kirillov. For general solvable Lie
groups, I write in section 5 the construction of irreducible holomorphical induced
representations. This shows the use of complex polarizations.

The section 6 is devoted to a computation of the Kirillov’s character formula
and the Plancherel formula for nilpotent Lie groups and also a generalization to
some homogeneous spaces of nilpotent Lie groups.

In the last section, I write a survey (and some proofs) of the main results of
L. Pukanszky about solvable Lie groups.

The results given in these notes have been discovered during the years 1960-
1980. The most important contributions are due to A.A Kirillov, J. Dixmier,
P. Bernat, M. Vergne, M. Duflo, L. Pukanszky, L. Auslander, B. Kostant. It
is an introduction for topical research. At the present time, mathematicians
are concerned with problems about algebraic groups, homogeneous spaces of Lie
groups (Plancherel formulas, differential operators ... ).

The results in these notes are well known and the proofs given are not new,
except for a part of section 6. I have used lectures or books among others, M. Rais
(23], P. Bernat and Al. [3], A.A. Kirillov [14], P. Torasso [24], L. Corwin and
F. Greenleaf [5].

I have given many examples in low dimensional Lie groups, and many results
(more or less easy) are left in exercises.

I am grateful to Miss V. Gayatri, who attended my lectures, for a carefull
reading of a first version of these notes and a lot of remarks and corrections.



1. Basic facts on unitary representations

In this section G is a locally compact group which is separable. We give,
almost without proofs (but with references to litterature), classical results on
representation theory. A good introduction for this theory is G.W. Mackey [16] or
J. Dixmier [7]. For an abstract, you could read the chapter 1 of [1].

An unitary representation 7 of G in an Hilbert space H is an homomorphism
from G into the group U(H) of unitary operators on H and such that for every
v € 'H the map

G — H
g ~ 7(g)w

is continuous. We assume in these notes that the Hilbert spaces are separable
which is not a serious restriction since it is known that an irreducible unitary
representation of a connected Lie group has a separable space. It is also a well
known result (see [1]), that the continuity of the above map follows from the
measurability of the map g —< m(g)v,w > for all v and w in H.

SOME BASIC DEFINITIONS

1.1— Let m be an unitary representation of G in ‘H and let V C H a closed
subspace which is invariant by every operator w(z) for x € G. This defines a
new representation (m,)) in V. We say that it is a subrepresentation of w. It is
immediate that V- is also m(G)—invariant, so it defines an other subrepresentation
of .

1.2.— A representation 7 is said to be irreducible if it has no subrepresentation
other than the trivial ones. There is an other way to say this property: let w
and 7’ two representations in H and H’ respectively. Let T be a bounded linear
operator from H into H’. The operator T is said to be an intertwining operator
between m and 7’ if we have the relation

Ton(z)=7"(x)oT

for all x € G. Usualy one denotes by Hom(m, ') the space of intertwining
operators and we say that m and 7’ are unitarly equivalent if there is a bijective
isometry in Hom(7,7") and this is write 7 ~ #’. The relation with irreducibillity
is described by the following lemma.

Lemma 1.1 — ( Schur Lemma cf. [17] p. 14). An unitary representation m in
H is irreducible if and only if Hom (7,7 )= Clypy.

It is easy to see that the equivalence classes of irreducible representations is a
set denoted by G.

1.3.- If G is an abelian group the Schur lemma proves that G is the set of
characters of G. In fact, if 7 € G, for x € G, w(x) € Hom(w, 7). So, by Schur



On unitary representations -3 -

lemma 7(z) = x(x)Id where x(z) is a complex number and it is clear that x(z) is
a character.

14-1f K C G is a closed subgroup, the operators m(k) for £k € K define a
representation of K in H. We say that it is the restriction of 7 to K and note
7|k this representation.

1.5.— Direct sum. Let m,...,m, be representations in Hilbert spaces ‘H1, ..., H,
respectively. It is clear that one defines a new unitary representation of G in
H = ®!_{H,; by letting

m(x) (v 4 Fvp) = m(v) + -+ Ta(vn)
forall z € G and v; € H;;i=1,...,n. 7w is said to be the direct sum of the ;.

1.6.— Hilbert integral. We only give a weak definition. Let X be a separable
locally compact topological space, H an Hilbert space, G a locally compact group
and for all z € X, n* a representation of G in H. We denote by i a Radon positive
measure on X. We consider the space V = L?(X,H) of all functions ¢ on X such
that [ [|¢||*du(x) < co. We suppose that for all g € G, ¢ € V, ¢ € V, the map
x —< 7 (g)p(x), ¥(r) > is measurable. We define a new representation p by
the formula

[p(g9)f](x) = 7" (g) f(x) feH, reX

This representation is denoted p = [ )? m*du(x). If v is a positive measure
equivalent to u, we have p, ~ p,.

1.7.— EXAMPLES.

(a) Let G =R and H = C. Then U(H) =U ={z € C; |z| = 1}. So every
unitary representation of H is a continuous character x of G (see 1.3) and it is
well known that there exists an y € R such that x(z) = €'Y, for all z € G.

(b) Let G = O(n,R),H = C™ and let 7w be the natural injection of G into the
group U(H). Then 7 is a unitary representation of G.

(¢) The regular representation. Let G be any separable locally compact group.
We denote by p its left Haar measure. Consider H = L*(G, ). For g € G define
the operotor A(g) by [A(g).f](z) = f(g~'x). We have [|A(g).f[| = [If]l, so A(g) is
a unitary operator. Moreover, the map ¢ — A(g).f of G into H is continuous.
This is clear when f is a continuous function with compact support, from which
one deduces the case of other f € L2 (G, 1) by an easy exercise of measure theory.
The representation A is called the left regular representation. The right regular
representation is defined by [p(g).f](z) = A(g)2 f(zg), for f € L2(G, p) where A
is the modular function of G and p is the left Haar measure on G.
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1.8.— INDUCED REPRESENTATIONS.

We now describe the most important tool of the theory to build representations
of G from representations of closed subgroups. We start with a particular case
which is the only necessary for the class of groups we study in these notes.

(a) Let G be a locally compact group and consider H a closed subgroup of G.
Let o be a representation of G in an Hilbert space H. Suppose that there is a
left-invariant measure v on the locally compact quotient space G/H. We remark
that this is always the case if G and H are unimodular. Then we can construct
a new Hilbert space H,: we first denote by C, the set of all continuous functions
from G into H such that

(i) f(gh) =c(h)"tf(g) forallg€ G and h € G;

.. 2
(i) /G P < +oc

The function ¢ — ||f(g)||? is constant on each left coset of G/H, so the
integral in (ii) exists and we define an inner product on C, by the formula

<= /G < I010) > vty (1)

We note H, the completion of C, for this inner product. Then, we define the
induced representation 7 = Ind$o by left action of G on functions of H,

m(x).f(y) = fla™"y)

for all (z,y) € G x G. It is clear that 7(z) is isometric and one to one, so there is
an unique unitary operator (also noted 7(x)) in H, which is equal to 7(z) on C,.
An easy computation shows that 7(x) is an homomorphism from G into U(H,,).
We want to prove that x — m(z) is continuous. Let z € G, € > 0 and ¢ € C,.
We have

() — ol]? = /G e el

and the function v : # — ||o(x~1y) — v(y)||? is continuous and has a compact
support S. So, for every y € S there is a neighbourhood V,, of 1 € G such that
le(z™ty) —p(y)||* < e for z € V,,. The compactness of the support of ¢ (in G/H)
shows that there exists a neighbourhood V' of G such that for allx € V and y € G,
le(z7ry) — ¢(y)||* < e and the continuity follows easily.

(b) If there is no G—invariant measure on G /H, the construction of H, is more
complicated. Let us denote by A (resp. ) the modular function of G (resp. H).
So, we have if ug is the left Haar measure on G,

/ Flayz™Ddua(y /f )dpa(y (2)

/ (e (y) = / Ay Ve (y) (3)
G G
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for all f € K(G), the space of continuous functions with compact support on G
and x € G. Similarly, we fix a left Haar measure on H and for h € H let

x(h) = Ap.a(h) = 0(h)/A(h) (4)

Let KX(G) be the space of continuous functions F' with compact support from
G to C which verify
F(zh) = x(h)F(x) (5)

For f € K(G) we define fX € KX(G) by the formula

() = /H F(h)x(h)~Ldpugr () (6)

It is wellknown (see [4] §2 prop. 2 and 3) that the map f — fX is onto and if
f € K(G) is such that fX =0 then ug(f) =0, so, there is a positive linear form
pa,m on KX(G) such that

L@@ = ([ senxe a0

The linear form pg, g is G-invariant and unique up to a multiplicative scalar.
There is a theory of integrable functions for pug g (cf. [4] §2 or [3] Chap. V by
M. Duflo). We can now define the space H, as follows : let C, the space of
continuous functions from G into H with compact support modulo H such that

f(xh) = x()a(h)" f(z) (¢ €G, he H) (8)

On this space there is a scalar product
<EE = <195 ) > dncals) 9)
G/H

and the Hilbert completion H, of C, is the space of m = Indga. The representation
7 acts by left translation as in the previous case.

[m(2)]e(y) = (z'y) (10)

(c) EXAMPLES

(1) The left regular representation of G is the more simple example of
induced representation. The subgroup H is the trivial subgroup, the linear form
pc. g is the Haar measure of G : A\g = Ind§(1).

(2) The Heisenberg group. Let us denote by N3 the group of 3 X 3 matrix
with real coefficients
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M(a,b,c) =

S O
S = Q
o0

We have?
M(a,b,c).M(a',b',c')=M(a+a,b+b,c+c +al)

M(a,b,c)”t = M(—a, —b, —c + ab)

The center Z of N3 is the set of matrix M (0,0,c) with ¢ € R. There is two
natural abelian subgroups of N3:

K ={M(a,0,c); a € R}

H ={M(0,b,c) ; beR}

The subgroups H and K are invariant subgroups of N3. Let z,y be two real
numbers and

X(M(0,b,¢)) = e'®¥¥ex)  N(0,b,¢) € H (11)

For each (z,y), x is a character of H, so x is a one dimensional representation of
H. The space of x is C. We can consider the induced representation p, :Indg X-
It is interesting to give an explicit realization of this induced representation.

First we define the space of p,,. We look at the functions ¢ € H,. We have

p(M(a,b,¢).M(0,8,7)) = e " P2 o (M(a,b, c))
so if we notice that M(a,b,c) = M (a,0,0).M(0,b,c — ab) then
¢(M(a,b,c)) = e "CvHe=ab)=) (M (a,0,0)) (12)
and we see that ¢ is completly known with its values on the subgroup A =
{M(a,0,0); a € R}. Conversely, every function ¢ : R — C gives a function
¢ € H, by the formula
p(M(a,b,c)) = e~ HEmaD2) g(a) (13)

The action of M € N3 in N3/H ~ A is the translation by the first parameter
a, so, the Lebesgue measure on A is N3—invariant and we can identify the space
H, with L?(A,da). Now, we describe the action of Indgx on this space.

Let ¢ be a function in K(A). The function ¢ defined by

o (M(a,b,c)) = e Pvtlemab)z) () (14)

2 We sometimes write (a, b, C) for M(a, b, C).
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is in ‘H, and we have

[p2y(a,b,c).0](a,0,0) gp( —a, — c—i—ab)(a,0,0))
= p(a— —c+ ab)
:go(a—aOO )(0, b, —c + ab))
i(

— ¢t by+(c— ab)z)¢( CL)

Finally, the induced representation acting in L?(A, da) is defined by

[p2,4(a,b, ¢).¢](a) = "D (o — a) (15)

Proposition 1.1 — For each (y,z) € R x R, z # 0 the representation p, , is
irreducible.

PRrROOF — We want to show that p, , has no proper subrepresentation. For this
we take ¢ € L*(A, da) = H,, ¢ # 0 and we prove that the only p, , (IN3)—invariant
space containing ¢ is H,.

Let f be any function in L*(A,da) which is orthogonal to p,,(N3).¢. It is
enough to prove that f = 0. Since p, ,(a,b,0).¢(a) = e~ ?**¢(a — a) and z # 0
we see that for all (a,b) € R x R

/Reiboﬁ(a —a)f(a)do =

This shows that the Fourier transform of the function hy : @ — ¢(av — a) f ()
is zero so, h, is zero almost everywhere for all a € R. By Fubini’s theorem, the
positive function (a, «) — |p(a—a)l||f(«)| is zero almost everywhere. By Fubini’s
theorem again, we have

0= [ ( [1r@léla ~a)lda)da
— [\ [ 16(a - a)ldada
~ [lr@lda [ [o(@]da

and since ¢ # 0 this shows that f =0. g
1.9.—- PROPERTIES OF INDUCTION.

(a) If 0 ~ o' are two equivalent representations of H C G then
Ind$ o ~ Ind§ o’
(b) If 7 ~ @} ,0; then Indgﬂ ~ @?lendgai (n is not necessarly a

finite number). So, if Indga is irreducible, then o is irreducible but the converse
is false (look at the regular representation).
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This result extends to Hilbert integrals. If m = [ )? m*dp(x) is an Hilbert integral
of representations of H then Indgw ~ [ f? (Indg ) du(x).

(¢) (Induction by stage). Let K C H be two subgroups of G and let
o be a representation of K in H. Then

Indﬁ.a ~ Indg (Indg o) (16)

The proof of these results could be found in [16] and are good exercises to
understand induction.

(d) Let o be a representation of H C G and v € Aut(G), (Aut(G) is
the group of automorphisms of G). It is clear that o o define a representation of
v~Y(H) in the same Hilbert space H.

Proposition 1.2 — We have (Indg o) oy~ Indv_lcfH) (0 o7).

PROOF — Let H be the space of o, H, (resp. Hsoy) the space of Indga (resp.

G
For a function ¢ € H, we have

plgh) =o(h)"'elg) heH
and for a function ¢ € Hy., we have
P(gk) = (ooy)(k)"(g)  kery '(H) (17)

For ¢ € H, we define Tp(g) = ¢(v(g)). Then, for k € v~ (H) we have

To(gk) = ¢(v(gk))
= o(v(g9)v(k))

Since k € y"1(H), (k) € H and we have

To(gk) = a(v(k) o (v(9))
= (g o7)(k) ' Te(g)

so, T'e verifies the relation (17).
If p is a left-invariant measure on G/ H, we define a left-invariant measure v on
G/y ' (H) by v(E) = u(v(E)) for each Borel set E in G/y~*(H), and we have

el = [ e ()P

[ et Pt
G/H

= llell®
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Finally, we have to show that T' is an intertwining operator between the two
representations

T[(Ind§ o) (v(x))¢] () = [(Indg o) (v(z))¢] (v(»))

This completes the proof. g

Corollary 1.1 — Ifx € G and v = 7, is the inner automorphism of G defined

by x, then IndflGHx (0 07,) =~ Indga.

Proor — This is clear by proposition 1.2 because Indga ~ (Indga) 0 Ya
when 7, is an inner automorphism of G. g

(e) Let G be a locally compact group and let Z be a closed normal
subgroup of G. Let G be the locally compact group G/Z and p : G — G the
canonical map. If H is a closed subgroup of G, then H = p~}(H) is a closed
subgroup of G. If 7 is a representation of H we define a representation o of H
by o(h) = (p(h)), and o(z) is the identical operator if = € Z. We also define

T = Indgﬁ and 7(z) = 7(p(z)). It is clear that 7 is a representation of G.

Proposition 1.3 — We have m = Indga.

PROOF — We assume that there is an invariant measure on G/H. Let ¢ be a
function in H,, the space of Indg o. We have for g € G and h € H:

so, ¢ is right-invariant by Z and there is one and only one function 1 on G
such that ¢ op = . It is easy to see that ¢ € Hz. The map ¢ — ¥ is a
bijective intertwining operator for the two representations (we leave the details to
the reader ... )

1.10.— IRREDUCIBILLITY CRITERION ; MACKEY'S THEORY.

As we have seen before, an induced representation is not always irreducible.
This is the case when the subgroup H is “too small”. The philosophy of the
“Mackey’s machine” is to extend the representation to a subgroup between H and
G and to induce this new representation.

Let G be a locally compact group and A be an abelian closed normal subgroup
of G. The irreducible representations of A are the characters. We define a
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continuous action of G on A by (9,X) — x9 where x9(z) = x(¢g7tzg). We
also denote by G, the stabilizer of x in G.

GX={zxc G| x(z tax) = x(a), Ya € A}

This is a closed subgroup of G and there is a bijective map ¢ — x9 from the
homogeneous space G/G, onto the orbit G.x in A. This map is continuous but
not always an homeomorphism. When it is an homeomorphism, we say that A is
regularly embedded in G.

The following result is difficult. The proof is in [10] or [11]

Theorem 1.1 — The following are equivalent:
1) The map G/Gy — G.x is an homeomorphism ;
2) The orbit G.x is a locally closed subset ofﬁ ;
3) The space A/G is a Ty topological space ;
4) The space A\/G is countably separated ;
5) For each quasi-invariant ergodic Borel measure u there is a G-orbit € in A

such that ,u(le\\ﬂ) =0

A quasi-invariant measure p on a transformation group (X,G) is a Borel
measure such that p(z.E) = 0 if and only if u(E) =0 for x € G and F C X. Such
a measure is said to be ergodic if every G-invariant Borel set B, is a p-null set or
E\B is a p-null set.

It is clear that A C G, for all x € K, but there is not always a character
X € éx whose restriction to A is x. We say that p € éx extend a multiple of y
if p(a) = x(a)ld, Ya € A. The space of p has a dimension greater than one.

Now we are able to state the main theorem of Mackey [15] (in a special case).

Theorem 1.2 — Let G be a locally compact group, A a closed normal subgroup
of G, x a character of A and G, the stabilizer of x in G.

1) Let o be an irreducible representation of G, whose restriction to A is a
multiple of x. Then, Indgxa 18 irreducible ;

2) Let 01 and oy two irreducible representations of G, whose restrictions to A
are multiple of x. Then, Indg; o1 Indg; o9 if and only if o1 ~ 09 ;

3) Let o be an irreducible representation of G, whose restriction to A is a
multiple of x. Then, the restriction of Indgxa to A is an Hilbert integral over

the orbit of x in A for a measure which is G-invariant and ergodic (a transitive
quasi-orbit). Every irreducible representations the restriction of which to A is such
an Hilbert integral is induced by an irreducible representation of G, as in 1).

Mackey has proved that, in the previous situation, there is always an irreducible
representation of Gy, whose restriction to A is a multiple of x and he gave a con-
struction for all such representations of G'. Roughly speaking, this construction
gives a bijective map between irreducible representations of G, whose restrictions
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to A are multiple of x and the dual space of an “extension” of the group G, /A.
This extension is the Mackey obstruction [15]. This construction is not needed in
these lectures.

1.11.- TYPE OF A LOCALLY COMPACT GROUP

Let H be an Hilbert space (separable) and L(H) the algebra of all continuous
operators on H. Let W be a subset of L(H). Denote by W’ the set

W ={T;TeW,  Tow=woT, YweW}

It is clear that W’ is a subalgebra of L(H) : it is the commuting algebra of W.
We denote by W’ the bicommuting algebra (W')'.

Definition — 1) A subalgebra W of L(H) is said to be a Von Neumann algebra
if it is invariant by adjoint involution and if W = W".
2) We say that a Von Neuman algebra is a factor if W N W’ = C Id.

If W is any subset of £L(H), W’ is a Von Neuman algebra because for a Von
Neumann algebra W we have W/ = W.

If 7 is a representation of a locally compact group G, 7(G)"” is a Von Neumann
algebra. The representation  is a factorial representation if 7(G)' (or 7(G)") is
a factor. This means that 7(G) N 7(G)" = CId.

The Von Neumann algebra 7(G)” contains m(G) and is exactly the smallest
Von Neumann algebra which contains 7(G). It is clear from definitions that 7 is
irreducible if and only if 7(G)’ = CId so, 7 is of course a factorial representation.
A multiple of a factorial representation is also a factorial representation.

On a factor we can define traces. A trace t on a factor W is a map defined only
on positive elements W of W and with values in [0, o] such that:

) Ifz e WH, ye WT then t(z +y) = t(z) +t(y);

2) If z € W+t and A > 0 then t(\x) = Ai(z);

3) If z € W then t(zz*) = t(z*2).

The trace t is finite if t(x) < oo for every x € W™ and semi finite if
t(z) = sup{t(y); y < z ; t(y) < oo}. We say that ¢ is faithful if for z € W,
t(z) = 0 implies z = 0.

The trace t is normal if for every set F C W which is a “upper filtering set”
with upper bound T, then ¢(7T) is the upper bound of ¢(F).

We are now able to state the classification of factorial representations.

Definition — Let 7 be a factorial representation of a locally compact group G.
e 7 is type I <= 7 is a multiple of an irreducible representation of G ;
e 7 is type I <= 7 is not type I and there exists a semi-finite (or finite) normal
faithful trace on 7(G)’;
e 7 is type Il <= 7 is not type I or type II.

Definition — A locally compact group G is type I if every factor representation
of G is type I. This is equivalent to say that every factorial representation is a
multiple of an irreducible one.
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It is known that if a group is not type I, it has factorial representations of type
IT and type III.

There are large classes of type I groups : abelian, compact, semi-simple
connected Lie groups, nilpotent and completely solvable connected Lie groups
but, there exists connected solvable Lie groups which are not type I. Only type I
groups have computable dual space. The structure of the dual space of non type
I locally compact groups is very bad! We will study (as a survey) the Pukanszky
theory for non type I solvable groups where only a kind of “smooth” factorial
representations is used instead of irreducible one’s.

1.12.— EXERCISES.

Exercise 1.1 — Let A be the left regular representation of a nontrivial locally
compact group G and let p be the right regular representation.

Prove that for all x € G the operator A(x) € Hom(p,p) and that p is not
irreducible.

Exercise 1.2 — By using the Fourier transform on R™, show that the regular
representation of R™ is equivalent to fg% xdx

Exercise 1.3 — The “ax 4+ b” group and the Mackey’s Machine.

We denote by G the “ax + b” group which is the group of 2 x 2 matrix (8 l;)

with @ > 0 and b € R.

We denote by H the normal abelian subgroup of matrix such that a = 1.

a) Compute the orbits of G in H and H for the adjoint representation.

b) Let x € f—I\, X # 1. Prove that the stabilizer G, of x in G is H.

c¢) Apply the Mackey theorem and prove that there are two irreducible inequiv-
alent representations induced from H.

d) Compute the space G.



2. Nilpotent Lie algebras and Lie groups

2.1.- LIE ALGEBRAS.

A Lie algebra g is a finite dimensional vector space over a field k on which
there is a bilinear form named the bracket and denoted by [, | with the following
properties

[z, y] = —[y,z], Ve eg,Vy€eg

[z, [y, 21 + [y, [z, 2]] + [2, [z, 4]] = 0 (18)

for all (z,y, 2) in g. The equality 18 is the Jacobi identity.

A subspace a of g is said to be an ideal (resp. a subalgebra), if [z, a] € a for all
x€gandall a€a(resp. acg).
In these notes, the field k is R or C.

An important example of Lie algebra is the Lie algebra of all n xn square matrix
(or endomorphisms of a vector space) with the bracket [M, N| = MN — NM.

Exercise 2.1 — Let {e1,ea,...,¢e,} a basis of a Lie algebra g. Fori <n, j <n we

n
write [e;, e;] = Z C’fj j ek. The scalars C’,ffj are the structural constants of the Lie
k=1

algebra g. Write the equations between the C'f, ; equivalent to the Jacobi identity.

2.2— NILPOTENT LIE ALGEBRAS.
Let g be a Lie algebra. We define inductively the descending central series by

C% =gand C*"'g=[g,C*g] for k € N

and the ascending central series by Z%g =0, Z*T1g is the inverse image in g of
the center of g/Z%g.

Definition — A Lie algebra is said to be nilpotent if there exists n such that
C"g = 0.

Let n be the smallest integer such that C"g = 0. Then, C" g is central in g,
so the center of a nilpotent Lie algebra is never zero.

A linear map o : g — ¢’ is a Lie algebra homomorphism if for all z,y in g, we

have o([z,y]) = [o(z), o (y)]-
Proposition 2.1 — Let g be a Lie algebra and let r € N. The following conditions
are equivalent:

a) C"g=0;

b) There exists a sequence of ideals

O0=0a,Ca,1C---CayCag=g
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such that [g,ar) C ags1, 0 <k <r—1;

c) Z"g=g.

PROOF — Almost obvious (exercise). g

If g and g’ are two Lie algebras we define obviously a direct product Lie algebra
gx g, and if a is an ideal of g the quotient g/a has a natural structure of Lie algebra
such that the map g — g/a is a Lie algebra homomorphism: [Z,7] = [z,y]. It is

easy to show that if g and g’ are nilpotent then g x g’ is nilpotent, every subalgebra
and quotient of nilpotent Lie algebra is nilpotent (an exercise for the reader!).

2.3.— EXAMPLES.
a) An abelian Lie algebra is nilpotent.
b) The Heisenberg Lie algebra is nilpotent.

c) The list of nilpotent Lie algebras of dimension lower than 5. This list of
nilpotent Lie algebras (up to isomorphism) has been established by Dixmier [6].
We give this list because it is very useful for examples. We don’t write the direct
products and give the nonzero brackets [e;, ¢;] for a basis (e, eq,...,e,) and for
i< 7.

Dimension 2 : only the abelian one;
Dimension 3 : only the Heisenberg Lie algebra ;

Dimension 4 : one class denoted g4 with the brackets
le1,ea] =e3 5 [er,e3] =e4

Dimension 5 : there is six algebras

95,1
le1,e2) =e5 5 [es,eq] =e5
95,2
[61762] =e€4 [61763] = €5
95,3
[61,62] =e€4 [61764] = €5
[62, 63] = €5
95,4
le1,e2]) =e3 5 [er,e3] =eq
[62, 63] = €5
05,5
[61,62] =e3 [61763] = €4
[61, 64] = €5
95,6
le1,ea] =e3 5 [e1,e3] =eu
le1,eq] = €5 5 [e2,e3] =e5

Lists of nilpotent Lie algebras for dimension 6 and 7 can be found in several
works (many examples are studied in [18]).
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d) Denote by ny the set of n x n square matrix (a; ;) such that a; ; = 0 if j <.
Then n, is a subalgebra of the Lie algebra of all n x n square matrix. For every
k € N such that 0 < k < n we denote by n,, ; the set of matrix X = (z; ;)1<i j<n
such that z; ; = 0 if ¢ > 7 — k. We see that n, 41 C n,y for £ < n — 2,
Npo = Mg,y 1 = 0 and [ny,n, ] = n, 541 and now it is clear that ny is
nilpotent.

e) An example of an algebra which is not nilpotent. The set of n X n matrix m
such that trace(m)= 0 (i.e. ¥;a;; = 0) is a Lie algebra because trace([m,m'])=
trace(mm’ — m/m) = 0, so it is a subalgebra of the Lie algebra of n x n matrix.
For n = 2 this Lie algebra is denoted s[(2,R). Let

0 1 0 0 1 0
=) =0 0) =6 5
By an obvious computation we see that [e, f] = h, [h,e] = 2e, [h, f] = —2f so,
[g,9] = C'g = g and C¥g = g for all K € N. This shows that s[(2,R) is not a
nilpotent Lie algebra.
2.4.— EXERCISES.

Exercise 2.2 — Let g be a nilpotent Lie algebra the dimension of which is equal
to n and let a be a subalgebra of g which dimension is n — 1. Show that a is an
ideal of g.

Exercise 2.3 — Show that the set of n X n matrix

O 0 ... 0 =z,
0 0 =« 0 0 xn_1
0 O T X9
0 O 0
0 O 0 0

is a nilpotent Lie subalgebra of L(R™).
Exercise 2.4 — Let g be the Lie algebra of matrix

a b
(O 0) a€R, beR

and let h be the subalgebra of g defined by the matrix above with @ = 0. Then b
is nilpotent, g/bh is nilpotent but g is not nilpotent.

2.5.— THE ENGEL THEOREM.
We give this theorem without proof (cf. [24] or books on Lie Algebras).
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Theorem 2.1 — Let g be a finite dimensional Lie algebra, V a finite dimensional
vector space and ¢ : g — L(V') an homomorphism of Lie algebras such that o(X)
s nilpotent for every X € g. Then there exists a flag

0O=VWwcWc---CcV,=V
such that o(X).V; C V;_1 for each X € g, so, ©(g) is a nilpotent Lie algebra.

Corollary 2.1 — If g is a finite dimensional Lie algebra such that ad X is nilpotent
for all X € g then g is a nilpotent Lie algebra.

Proor — By Engel theorem we have a flag
OZVQCV1C"'CVn:g

such that ad g.V; C V;_1, so, the vector spaces V; are ideals of g and this is exactly
the nilpotency of g.

Definition — Let g be a nilpotent Lie algebra and h a subalgebra of g. We say
that a sequence of linearly independant (modulo b)) elements X1, ..., Xy of g is a
Malcev complementary basis of § in g if

ho=bh bhi=haRX;16---6RX; 1<;j<k

and b; are subalgebras of g.

This Malcev complementary basis is said to be a strong Malcev basis if each b;
is an ideal in g.

Theorem 2.2 — Let g be a finite dimensional nilpotent Lie algebra and let b
be a subalgebra (resp. an ideal) of g, then, b admits a Malcev (resp. strong
complementary basis).

Proor — If b is an ideal of g, then the adjoint representation of g induces an
action of g in g/b by nilpotent operators ady,, X. By Engel’s theorem, we find
vectors X1,..., X € gsuch that X7 +b,..., Xi+b is a basis of g/h such that the
matrix of every adg/ is strictly upper triangular. So it is clear that X7,..., X} is
a strong Malcev complementary basis of § in g.

If b is a proper subalgebra and not an ideal of g, we prove the result by induction
on the codimension of h. By Engel’s theorem apply to the action of b in g/h, we
get X € g such that [X3,h] C h. The subalgebra b is an ideal in the subalgebra
h1 = RX; @b and the codimension of h; is lower than the codimension of  in g, so,
we apply the induction hypothesis to find the rest of the Malcev complementary
basis. g

2.6.— LIE GROUPS.

Definition — A Lie group is a group G which is an analytic manifold such that
the mapping (z,y) — zy~! of G x G (product manifold) is analytic.
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The dimension of a Lie group is its dimension as a manifold.

EXAMPLES.

1.— If V is a finite dimensional vector space, the group GL(n,V) of linear
automorphisms of V' is a Lie group. It is an open subset of £(V') and it is well
known that the maps (u,v) — wov and v — u~! are analytic.

2.— The group G2 of 2 x 2 matrix

a b
(0 1) a>0,beR

is a Lie group. As a manifold, it is isomorphic to R} x R and it is clear that the
product and inverse maps are analytic.

An homomorphism of a Lie group G into a Lie group G’ is an analytic
homomorphism of groups.

For a Lie group G we denote by G the connected component of the neutral
element e of G and by G, the tangent space of G at e.

2.7— THE LIE ALGEBRA OF A LIE GROUP

Let G be a Lie group. For x € G, the left translation L, : y — L, (y) = xy is
an analytic map from G onto G. A vector field Z on G is said to be left invariant
if for all x € G,dL,Z = Z. Given a tangent vector X € G there exists one and
only one left invariant vector field X defined by

X 1)@ = [ 27 0w)]

where f € C*(G), = € G, and t — ~y(t) is any curve on G with tangent vector
X for t =0 and v(0) = e.

For two vectors fields we can define a bracket (cf. Exercise 2.5) and it is easy to
see that the bracket of two left invariant vector fields is also left invariant. So the
tangent vector space at e € G has a structure of Lie algebra. It is the Lie algebra
g of G.

Now, we give general results on Lie groups without proofs because these results
are easier for nilpotent groups.

1) Given X € g there is one and only one analytic homomorphism 6x from R
into G such that dfx(0) = X and we put exp X = 0x(1).

2) We have exp(t+ s)X = exptX expsX for all s and ¢t in R and X € g. So we

d ~ ~
have 0x (t) = exptX and for a function f on G, af(exp tX)j=o = X f where X

is the left invariant vector field corresponding to X € g.

3) There is a neigbhourhood V' C g of 0 such that if X € V and Y € V then
we have exp X expY = expn(X,Y) where n(X,Y) is in the Lie algebra generated
by X and Y. We have n(X,Y) =X +Y + %[X, Y]+ ..., the other terms of this
formulas are expressions like [Y[X]...[Y, X]]...]]. This is the Campbell-Hausdorff
formula.
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4) Let G be a Lie group and g its Lie algebra. Let h be a Lie subalgebra of g.
There exists one and only one connected Lie subgroup H (analytic subgroup) of
G whose Lie algebra is h. This subgroup is not always closed and not always a
submanifold of G.

5) If g is a Lie algebra there is one and only one connected and simply connected
Lie group G (up to an isomorphism) with Lie algebra g. It is clear from the
Campbell-Hausdorff formula that if two Lie groups have the same Lie algebra
then they are localy isomorphic. If G is connected and simply connected and if G’
is a connected Lie group with the same Lie algebra the local isomorphism from G
into G’ expand to a global homomorphism . The kernel of ¢ is a central discret
subgroup of G. So, every connected Lie group is a quotient of G by a central
discret subgroup.

6) Let GL(R™) be the set of all linear automorphisms of R (or equivalently
n X n non singular real square matrix). It is a Lie group which is an open set
in the space M(n,R) of all real n X n square matrix, so L(R™) is identical to
the tangent space of GL(R"™) at identity. For X € L(R™) and t € R the map

t — ExptX = Z EX * is an analytic homomorphism of R into GL(R"), so we
k=0

have, with the above notations dfx (0) = X and we can see that the bracket [X,Y]
as left invariant vector fields is XY —Y X in £L(R") (Exercise 2.5). So L(R")is the
Lie algebra of GL(n,R).

7) Let g be a Lie algebra over R, and as above denote by GL(g) the group of
non singular endomorphisms of g. We denote by ad the mapping X — ad X
for X € g where ad X(Y) = [X,Y] for all Y in g. The set ad(g) is a subalgebra
of L(g). Let Int(g) denote the analytic subgroup of GL(g) whose Lie algebra is
ad(g); Int(g) is called the adjoint group of g.

The group Aut(g) of all automorphisms of g is a closed subgroup of GL(g)
Thus, it is a Lie subgroup of GL(g). Let d(g) be the Lie algebra of Aut(g). The
exponential mapping from 6(g) into Aut(g) is the restriction of Exp thus, we have
Exp(ta) € Aut(g) for each a € §(g) and ¢t € R. This means that for all X,Y € g
we have Exp(ta)([X,Y]) = [Exp(ta)X,Exp(ta)Y] for all ¢t € R. We differentiate
this relation and for ¢ = 0 we get

a([X,Y]) = [a(X), Y] + [X, a(Y)] (19)

thus, a is a derivation of g. Conversely, if a is a derivation of g we see, by
computing the operator a® for k € N with the formula (19) that Exp(ta)([X,Y]) =
[Exp(ta) X, Exp(ta)Y] for all t € R and thus 6(g) consists of all derivations of g. By
using the Jacobi identity we see that ad(g) C d(g) and therefore Int(g) C Aut(g).

For + € G we denote by Adz or Adg(z) the differential of the inner
automorphism of G defined by u — zuz~' at the identity. It is clear that
Ad is an homomorphism from G into GL(g) because we have for z,y € G and
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Xed@

Ad(zy) X = [% (zyexp th_lsc_l)}

— [% (zexp(t(Ad y)X)x_l)}
= Ad(z)(Ad(y)X)

This mapping is called the adjoint representation of G.

t=0

t=0

Proposition 2.2 — Int(g) is a normal subgroup of Aut(g) and for every r € G
we have

exp(Ad(z).X) = z.exp(X).x™* (20)

The differential of Ad. is the adjoint representation ad of the Lie algebra g and
we have the formulas:

Ad(exp X) = Exp(ad X) ; exp(Exp(ad X)Y) =exp XexpYexp(—X) (21)

Definition — A Lie group G is said to be nilpotent if its Lie algebra is nilpotent.

Proposition 2.3 — If G is a nilpotent Lie group, all the connected Lie subgroups
of G are nilpotent Lie groups and a quotient of G by a closed normal subgroup is
also a nilpotent Lie group.

Proor — If H is a subgroup of G its Lie algebra b is the set of X € g such
that exptX € H for all t € R, thus b is a Lie subalgebra of g and is nilpotent. If
H is closed normal, the mapping ¢ : G — G/H is continuous (and analytic),
thus its differential is Lie algebra homomorphism and onto. This shows that the
Lie algebra of G/H is a quotient of g and thus is nilpotent. a

There is also a group definition of nilpotent groups for connected Lie groups.
We define the descending central series for the group G tobe C'G = G , VTG =
|G, C7G], where the notation [H, K] means the subgroup generated by all com-
mutators hkh~'k~! h € H,k € K. Then we say that G is nilpotent if C'G = {e}
for some j € N. One can show that the group C/G is a Lie subgroup of G for
every j and its Lie algebra is C7g = [g,C? " 1g].

For nilpotent Lie groups, the relations between the group and its Lie algebra
are simple because we have the following results.

We denote by U,,, n € N the closed subgroup of matrix g = (¢;,;) € GL(n,R)
such that g;; = 1 for 1 <4 <n and g; ; = 0 for ¢« > j. The Lie algebra of U, is
n,, the set of strictly upper triangular matrix (cf. Exercise 2.6). The group U, is
called the standard unipotent group of order n.

We see that the exponential map of ny into U, is a diffeomorphism: in fact, it
is one to one because the inverse is the “logarithm” defined by

_1)k—1 O 1\k—1
logx:Z%(x—Id)k:Z(L(x—Id)k

k
k>1 k=1
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where x € U,, and Id is the identity operator (note: U, = Id+n,). For the
nilpotent Lie group U, the vector n(X,Y’) in the Campbell-Hausdorff formula
is clearly n(X,Y) = log(exp X expY) and we see that 7 is polynomial in the
coordinates of X and Y.

Theorem 2.3 — 1) Every analytic subgroup of U, is a simply connected closed
subgroup.

2) Conversely, if H is a simply connected nilpotent Lie group, there existsn € N
and an injective homomorphism of Lie groups of H in U,,.

PrROOF — 1) Let H be an analytic subgroup of U, and let h be the Lie
algebra of H. b is included in ny and by the Campbell-Hausdorff formula exp b
is a subgroup of U, which is closed because the map exp of n, onto U, is a
diffeomorphism. This also shows that exp maps a neighbourhood of 0 in h onto a
neighbourhood of 1 in H and that exp b is an open subgroup of H (and closed).
But H is connected so, H = exp}.

2) Let b be the Lie algebra of H. This Lie algebra is isomorphic to a subalgebra
b’ of ny = n, for an integer n. The set Exp h’ is a simply connected Lie subgroup
of U,, (Campbell-Hausdorff formula) with Lie algebra h, so H and Exph’ have
isomorphic Lie algebras. They are locally isomorphic and because the groups are
simply connected they are isomorphic as Lie groups. g

Corollary 2.2 — For every simply connected nilpotent Lie group G with Lie
algebra g, we have

(i) exp : ¢ — G is a diffeomorphism.

(i) There exists a unique map (X,Y) — n(X,Y) from g X g into g which
is polynomial into the coordinates of X and Y and such that expn(X,Y) =
expXexpY forall X andY in g.

(iii) Every analytic subgroup of G is a simply connected closed subgroup.

Proor — If G is simply connected and connected, the proof of the theorem
shows that there is a diffeomorphism of G onto a closed subgroup of n,, = ny for
an n € N. All things follows from this. g

Proposition 2.4 — Let G be a connected nilpotent Lie group with center Z.
Then

1) G/Z = Ad(G) is simply connected ;

2) Z is connected.

PROOF — 1) The mapping Ad : G — Ad(G) C GL(g) verifies zexp Xo~! =
exp (Ad(z)X) for every # € G and X € g. Thus, Ade = Id if and only if
rexpXxz~! = exp X for every X € g. This means that z.exp X = exp X.z for
every X. But G is connected and so it is generated by exp g (here G is nilpotent
so we have G = expg). This shows that ker(Ad) = Z and G/Z = Ad(G). The
group Ad(G) is an analytic subgroup of GL(g) whose Lie algebra is ad(g). We
choose a basis of g such that the matrix of all the operators ad X are strictly upper
triangular, thus Ad(G) = Expad(g) is isomorphic to a subgroup of n,, where n is
the dimension of g. The theorem above shows that Ad(G) is simply connected.
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2) Let Z° be the connected component of the neutral element of G. The
mapping 0 : G/Z° — G/Z is a covering (Z/Z° is discret and central in G/ Z°),
but G/Z is simply connected, so 6 is an isomorphism and Z = ZY is connected. i

Proposition 2.5 — Let G be a simply connected Lie group and let H an invariant
analytic subgroup of G. Then H is closed and G/H s simply connected.

PrROOF — The Lie algebra h of H is an ideal in g, the Lie algebra of G. Thus
g/b is a Lie algebra and we consider G; the simply connected Lie group with Lie
algebra g/h. Since G is simply connected, there is a unique Lie group morphism
p : G — G/H whose differential is the Lie algebra homomorphism g — g/b.
The kernel H; of p is a closed Lie group having § for Lie algebra. Since G
is simply connected, the group H; is connected and is equal to H. Moreover,
G/H = G, is simply connected. .

2.8.— MALCEV OR COEXPONENTIAL BASES IN NILPOTENT LIE GROUPS.

Proposition 2.6 — Let G be a simply connected nilpotent Lie group and § a
subalgebra of the Lie algebra g of G. Then there exists a basis {X1,...,Xp} of a
supplementary subspace of b such that if g;(t) = exptX;, the mapping

(tlv cee 7tp7X) — gp<tp) o gl(tl) eXpX

is a diffeomorphism from RP x § onto G.
Such a basis is a Malcev basis or a coexponential basis for h in g (cf.
Theorem 2.2.

PROOF — Since g is nilpotent there is a subalgebra gy of g whose dimension is
(dim g—1) and which contains . The subalgebra gg is an ideal. Let X € g, X € go,
then the map (¢,Y) — exptX.expY is a diffeomorphism of R x gy into G and
its image is a connected Lie subgroup of G which strictly contains G so it is G.
It is clear that we obtain the Malcev basis by iteration of this case. g

2.9.— COADJOINT ORBITS OF NILPOTENT LIE GROUPS.

Let G be a connected Lie group and g its Lie algebra. Above we have defined the
adjoint representation of G. Another important object for representation theory
of Lie groups is the coadjoint representation of G. It is the finite dimensional
representation Ad® of G in the dual space g* of the Lie algebra g and is defined
by the formula

feg, xeG, Y eg <Ad*z.f,Y>=<f,Adz LY >

The famous “orbit’s method” of A.A. Kirillov is the description of the space G by
the orbits of the representation Ad* in g*. For many simply connected Lie groups
the orbits of Ad™ in g* have “good” geometric properties. If G is a nilpotent
connected Lie group we have :
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Theorem 2.4 — The orbits of a nilpotent connected Lie group G under the action
of the coadjoint representation in g* are closed submanifolds of g*.

PrROOF — We write p for the representation Ad*. We prove this result by
a description of the coadjoint orbits by polynomial coordinates (cf. [3] Chapter
Ip. 7).

Let f € g* and Q = p(G).f the orbit of f. Since p is a unipotent representation,
dp is a nilpotent representation of g in g* (dp(X).f(Y) = f([Y, X]). We choose a
Jordan-Holder sequence for the action of p in g* :

{0} =V, CcVp1C---CVo=g"
with dimV; = n —i. Let m; be the natural projection V. — V/V, and
g; ={X € g; dp(X).f € V;}. The stabilizer of w;(f) is exp g;. We have g; C g,41
and g, = g(f). Let 1 < j; < j2 <--- < jqg < n be the index such that g;, # g, ,
and let e;, € V;, | —Vj., Xy € gj,_, such that X;.f = e;, (mod. V}, ). Clearly

Jk—1 Jk>
X1, Xo,..., X4 is a Malcev complementary basis of g(f). We complete e;, in a

suitable basis of g*. We put

exp(t1 X1)...exp(taXa).f = Y Pi(t1,... ta)e;
j=1

where the P; are polynomials. We have

a) P; is a polynomial in ¢1, ..., t; only, where k is the greatest integer such that
Jk<J

b) P;, (t1,... tq) =t + Qr(ty, ..., tg—1)-

This facts result of the following remarks : if j, > j, then X, € g;, so
exp(tXy).f = f (mod. V;) and we have

mjexp(t1X1)...exp(taXq).f = mjexp(t1Xy) ... exp(teXi).f
J
= 7Tj ZPi(tl’ e ,td)ei
i=1

We have also exp(tXy).f = f + te;, modVj, thus,

7, exp(t1X1) ...exp(tqXq).f = 7}, <exp(t1X1) exp(tp—1 Xk—1)-(f + tkejk))

Jk
=T}, ZPz‘(th s tg)e
1

It is clear that the map (t1,...,tq5) — (le (t1,.. ta),. .., P, (t1, ... ,td)) is a
manifold structure on Q and € is isomorphic to R<.

Now let g = lim exp(t{”X).. .exp(t&n)Xd).f. If the sequence (t\", ... ,tfin))
is bounded in R™ then it is clear that g € () else, let k the first index such that tlin)

is not bounded. Taking if it is needed a subsequence, the sequences t§”), . ,t,(j_)l
have finite limits. Then, we see by the proof above that P;, cannot have a limit. i
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2.10.— NOTES ON SOLVABLE LIE ALGEBRAS AND LIE GROUPS.
We define the derivated series of a Lie algebra by

D'g = [g,g] ; D*g = [D" g, D g

Definition — A Lie algebra is said to be solvable if there exists k € N such that
DFg = {0}.

It is clear that a nilpotent Lie algebra is solvable, but the converse is false (look
at the “ax + b” group).

A connected Lie group is solvable if its Lie algebra is solvable. If G is a simply
connected solvable Lie group its exponential mapping is not always bijective. A
simply connected Lie group such that the exponential mapping is bijective is said
to be an exponential group. We have a theorem of Dixmier (cf. [3] Chapter 1,
page 2)

Theorem 2.5 — Let G be a connected and simply connected Lie group. The
following conditions are equivalent:

1) For every X € g, ad X has no eigenvalue of the form ic, (o € R*, i2 = —1);

2) exp is an injective mapping ;

3) exp is onto ;

4) exp is a bijective mapping ;

5) exp is a diffeomorphism ;

6) The roots of g are Y(x)(1+ia), where a € R and v is a real linear form on g.

The representation theory for exponential groups is almost as complete as the
nilpotent one. In these notes we sometimes give the proofs for exponential groups
when this is not more difficult and we give the results otherwise.

We state below some useful results on solvable Lie groups. When we omit the
proof it may be found in [13].

Proposition 2.7 — Let G be a simply connected solvable Lie group and let H an
analytic subgroup of G. Then H is closed and simply connected. Furthermore, if
b is the Lie algebra of H, there exists a basis (€1,...,€m) of @ containing a basis
(€iyy---,€i,,) of b such that the map

/’I’(thg'ij) = expg(tie;, ) expg(t2€i,) - - expg(tmei,,)
=1

is a diffeomorphism from b to H.

Proposition 2.8 — Let G be a simply connected solvable Lie group. Then G has
no non-trivial compact subgroup.

PROOF — We proceed by induction on the dimension of G. Let K be a compact
subgroup of G. We denote by G’ the connected subgroup of G whose Lie algebra
is [g,g]. We may assume that G’ # 0 since otherwise G is a vector group and
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K = {e}. Since G is solvable, G’ # G and the compact subgroup KG'/G' of
the simply connected abelian group G/G’ is trivial by the above argument. So,
K C G’ and the dimension of G’ is lower than the dimension of G. We apply the
inductive hypothesis to prove that K is trivial. g

Proposition 2.9 — Let g be a solvable Lie algebra (on R or C). Then a = [g, g
s a nilpotent ideal of g.

PROOF — This is a by-product of the Lie theorem asserting that every solvable
Lie algebra is isomorphic to a subalgebra of triangular matrix. Then, d = [g, g] is
isomorphic to a subalgebra of n,, for some n € N. g

2.11.- EXERCISES.

Exercise 2.5 — Let G be a Lie group and 7, its tangent space at e € G the
neutral element. Let X be a vector field on G. We say that X is left invariant if,
for all z € G, y € G we have dL,(X,) = X,, where L, is the left product by =
and dL,(X,) is the image of the tangent vector X, by the tangent mapping dL,
at y.

a) Let X and Y two vector fields on G and ¢ an analytic function on G. Show
that if we define [X, Y] by

[X,Y]p=X(Yo) - Y(Xp)

then [X, Y] is a bracket on the space of vector fields on G which is a Lie algebra
(not finite dimensional).

b) The bracket of two left invariant vector fields is left invariant.

c¢) Show that the map X — X; from the space of left invariant vector fields
into T, is one to one. By definition the Lie algebra of G is T, with the bracket
corresponding to the bracket on the left invariant vector fields.

d) Let A be a finite dimensional algebra (with unit element 1) on R and A* the
set of nonsingular element of A. It is wellknown that A* is an open set in A so,
A* is a Lie algebra on R. Show that the Lie algebra of A* is A with the bracket
la, b] = ab — ba.

Exercise 2.6 — Show that the Lie algebra of the group U, is n,,.
Exercise 2.7 — Let N3 be the Heisenberg group. Let

X =

o O O
S O 8
ok W

X is an element of the Heisenberg Lie algebra. Show that the matrix ExptX is

1 tx tz+ %xy
ExptX=[0 1 ty
0 O 1
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Deduce from this that the Lie algebra of IN3 is the three dimensional Heisenberg
Lie algebra.

Exercise 2.8 — Let G be the “azx 4+ b” group. We set

v (; )

x em—l
ExptX = e ! z )y
0 1

Thus, the Lie algebra go of this group is the space of 2 x 2 line matrix.
Show that the mapping Exp is bijective.

show that

Exercise 2.9 — 1) The group “az + b” is simply connected.

2) The group SL(2,R) of 2 x 2 real matrix with determinant equal 1 is not
simply connected.

3) The group SL(2,C) (or SL(n,C)) is simply connected.

Exercise 2.10 — Every subalgebra and every quotient of a solvable Lie algebra is
solvable.

Exercise 2.11 — Let G be a connected nilpotent Lie group and g its Lie algebra.
Let 3 be the center of g. We denote D = {X € g; exp X = 1}.
Show that D is a discret subgroup of the vector group g and that the exponential

mapping induces a bijective mapping from g/D onto G. [Use the universal covering
of G.]

Exercise 2.12 — Show that if a solvable analytic group is not simply connected,
it has a non-trivial compact subgroup.

Exercise 2.13 — Let H be a nilpotent analytic group whose underlying manifold
is R* and where the multiplication is given by

(x1,y1, 21, t1) (T2, Y2, 22, t2) = (T1 + T2 + 21t2, Y1 + Y2 + a21ts, 21 + 22, t1 + t2)

where « is a fixed real number. Let D be the discret central subgroup of
H consisting of the elements (p,q,0,0), with arbitrary integers p and ¢. Let
G = H/D. Show that if « is irrational then [G, G| is not closed in G.

Exercise 2.14 — Show that there is also coexponential bases in simply connected
exponential groups ([3], Chapter I 3.6 p. 5).

Exercise 2.15 — Let G be the simply connected solvable Lie group which Lie
algebra is defined by the basis {eq, ez, e3} and the brackets

[61 ) 62] = —€3 [61 ) 63] = €2

Show that the exponential mapping is not injective. [remark that the center of g
is 0 so g ~ adg. Compute the group Ad G ,which is not simply connected and
find a simply connected covering of Ad G].

Show that the center of G is not connected.



3. Polarizations in solvable Lie algebras

Let G be a connected and simply connected Lie group (we say simply connected
Lie group below). The almost universal method for building representations of G
is the following. Let f € g* be a linear form on the dual space g* of g. Let h be
a subalgebra of g such that [h,h] C ker f. Let H be the analytic subgroup of G
whose Lie algebra is h. As f([H, H']) = 0, for all H, H' in b, it is clear that the map
J1p is a Lie algebra homomorphism from f into R. If H is simply connected, there
is one and only one homomorphism x, : H — U = {u € C; |u| =1} such that

X; (exp H) = et/ (H) for every H € H. Thus X; is a one dimensional representation

of H and we can consider the representation p = Indg X; of G. We say that p

is a monomial representation and h is a (real) polarization at f. For nilpotent
(and exponential groups), all irreducible unitary representations are monomial.
For more general solvable Lie groups it is necessary to consider polarizations in
complexification of g. As it is not more difficult to study this situation I give the
proofs of this section are given for solvable Lie algebras.

3.1.- POLARIZATIONS.

Let g be a finite dimensional Lie algebra over R, f € g* and gc¢ the Lie algebra
over C which is the complexified of g, o(v) = ¥, the antilinear involution of gc.
Denote also by f the linear form on gc¢ extending f on g. We define a skew bilinear
form By on gc by Bf(X,Y) = f([X,Y]). The kernel of By in g is denoted g(f)

or g/ (and g(f)c or g in gc).

Let G be a connected Lie group whose Lie algebra is g. We have defined
previously the coadjoint representation of G in g*. It is denoted by Ad* and we
have for fe g, xr € Gand Y € g

<Ad*(z)f,Y>=<f, Ad(z Y >

We shall see below that the orbits of Ad™ in g* give the parametrization of G when
G is nilpotent (or exponential).

Definition — We say that a subalgebra b C gc is a polarization at f if
1) B¢(h,h) =0 and b has the maximal dimension of such subalgebras ;
2) b + b is a subalgebra of gc.
A polarization is said to be real if h = b.
The set of all polarizations at f is denoted by Pol(f) or Pol(f,g).

Definition — A polarization by is positive if the hermitian form H defined by
H(X,Y)=if([X,Y]) is positive on b (i.e. if([X,Y]) >0VX €bh, VY €b).
We can remark that if b is real, it is positive.

Example — Consider the Heisenberg Lie algebra ng = RX & RY & RZ with
(X,)Y]=Z.Let f=AZ* NeR* ) =CZaC(X +iY), hp =CZaC(X —iY).
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Then b; and by are polarizations at f. furthemore, H¢(X + Y, X +14Y) = 2\ so,
b is positive if an only if A > 0.

Every polarization h at f generates several other objects.

ec=0h+h oc=hnh
e=(h+h)Ng 0=bhnNg

If b is real then e=0 and h N g is a maximal isotropic subalgebra for By in g. We
see that 0c is the orthogonal of ec for By, this means that By is non-degenerated
on ec/0¢ or on ¢/d. The dimension of the space ¢/? is even.

Now we consider G' the simply connected group whose Lie algebra is g. Let D°
(resp. E°) the analytic subgroup whose Lie algebra is 0 (resp. ¢). Let G(f) be the
stabilizer of f in G for the coadjoint representation : it is not always a connected
subgroup of G. Its Lie algebra is g(f) so, G(f)°, the connected component of
G(f), is contained in D. If b is invariant by Ad (G(f)) then it can be shown
that D = D°G(f) is a closed subgroup and its Lie algebra is 0 (cf. [3] chap. 4). If
G is nilpotent or exponential this fact is not needed because we have the following
lemma.

Lemma 3.1 — Let G be an exponential group (simply connected) then the
stabilizer G(f) of f € g* for the coadjoint representation is connected.

PROOF — Let X € g such that Ad*(exp X).f = f. The set
S={teR; Ad*(exptX).f = f}

is a closed subgroup of R. If S is a discret subgroup, let ¢ty be its lowest positive
element. We have

Ad* (exp %)X).(Ad*(exp %)X).f— f) =—(Ad"(exp %OX).f— f)#0

t
So, ad* (—OX ) has an eigenvalue of the form imn with n # 0 and it is a contradiction
with G' exponential, so S = R and this shows that G(f) is connected. g

Definition — If a is an ideal of g a polarization by at f is admissible for a if hNac
is a polarization at f|,.

Definition — We say that a polarization b at f satisfies the Pukanszky condition
if Ad*(D).f = f +¢t.

Definition — Let v be an automorphism of g. A polarization by at f is vy-invariant
ify(h) = b.

The aim of this section is to build polarizations at f € g* which are positive,
admissible for an ideal a, which verify the Pukanszky condition and are Ad(x)-
invariant for x € G'y. This is a result of L. Auslander and B. Kostant but we give
here the simpler constructive proof of M. Vergne.

Remark — with the previous notations, we have hY = b; h_f = b, so ef =
gn(h+h)/ =(HnhnNng=0.
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3.2.—- CONSTRUCTION OF ISOTROPIC SUBALGEBRAS.

Let g be a solvable Lie algebra on k(= R or C). We say that g is completely
solvable if there exists a sequence of ideals S = (g;);=1..., such that

{0}=goCgnC---CgiCgir1 C---Cgn=g

with dimg; = ¢ for 0 < ¢ < n. Every nilpotent Lie algebra over k is completely
solvable and if k= C (or if k is an algebraicly closed field of characteristic zero),
every solvable Lie algebra is completely solvable but the following example shows
that this is not true if k= R.

Example — The solvable Lie algebra defined by
[61762] = —€3 [61, 63] = €2

is not completely solvable.

The main result of this section is a construction of (complex) polarization at
f € g* for every solvable Lie algebra over R. This construction is due to M. Vergne
(cf. [3], Chapter IV).

Let S = (g;) be a sequence of ideals in g a completely solvable Lie algebra and
S; = (8i)o<i<;- Let v be an automorphism of g such that v(g;) = g; for every
it =1...n. Let f be a linear form on g*, and for every i < n we put f; = f|g, and
gi(fi) the kernel of By, on g;. Finally, we put

P(f,8) = Zgi(fz')
i=0

Theorem 3.1 — 1) P(f,S) is a subalgebra and mazimal isotropic subspace for
Bf Py

2) P(£.8)Ng; = P(f;,S;) for every j <n ;

3) For all ¢ € g* such that @(P(f,S)) =0 we have P(f +¢,S) = P(f,S);

4) If v € Aut(g) is such that v(g;) = @i, @ = 0...n, then P(f,S) is
y—invariant.

We need some lemmas about bilinear forms on vector spaces.

Let V be a finite dimensional vector space on a field k and B a skew bilinear
form on k. The kernel of B is N(B) = {X ; B(X,Y)=0VY € V}. The form
B defines a nondegenerate form on V/N(B) so this space has an even dimension.
If W2 denotes the orthogonal of a space W, we remember that W is totally
isotropic if and only if W = W% or if and only if dim W = 1 (dimV + dim N(B))
and B(W, W) = 0.

Lemma 3.2 — (J. Dixmier [3] lemme 1.1.1 p. 49) Let V' be a subspace of V
whose codimension is one. Let B’ = Bly/ and N(B') the kernel of B’.
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e I[f N(B) C V', then N(B) C N(B’) and the codimension of N(B) in N(B') is
one ;
e I[f N(B) ¢ V', then N(B') C N(B) and the codimension of N(B') in N(B) is

one.

Proor — If N(B) C V' then N(B) C N(B’). Let X be a vector of V' which
is not in V’. N(B) is the kernel of the linear form on N(B’): Y — B(X,Y). So
the dimension of N(B’) is greater or equal than dim N(B) — 1. But the integers
dim V —dim N (B) and dim V/—dim N (B’) are even, so dim N (B) = dim N(B’)—1.

If N(B) ¢ V', we get avector X € N(B) not belonging to V' and let u € N(B’).
We have B(u,Y) = 0 VY € V'’ because u € N(B') and B(u,X) = 0 because
X € N(B). This shows that N(B’) C N(B), N(B)NV’ = N(B’) has codimension
one in N(B). g

Lemma 3.3 — Let V be as above and let S = (V;)o<i<n be a sequence of subspaces
{0y =VpcVycCc---CcV,CcViuC---CV, =V

such that dimV; = i for every i < n. If B; = Bly, and N(B;) is the kernel of B;
i V; then

1) P(B,S) = ZN(BZ-) is a mazximal isotropic subspace for B ;

=1
2) P(B,S) N ij = P(Bj,Sj) where Sj = (‘/i)OSiSj'

PrROOF — We prove this lemma by induction on the dimension of V.

By the previous lemma, we have two cases :
1) N(B,) C V1 and N(B,) C N(Bp—_1).

We have P(B,,,S,)NV,—1 = P(B,-1,S,-1) and P(B,,S,) is isotropic for B.
furthermore, by using the induction hypothesis

n— 1+ dim (N(B,-1))
2
n + dim (N (B,))
2

dim P(B,,S,) = dim P(By,_1,8p_1) =

this proves the first case.
9) N(B,)) ¢ Va_y and N(B,_1) C N(B,).

We have dim N(B,,) = dim N(B,-1) + 1 and P(B,,S,) = P(Bn-1,5,-1) +
N(B,,). Thus P(B,,S,) is isotropic for B and

— 14 dim (N(B,—
dim P(B,,S,) = dim P(B,_1,Sn_1) + 1 = n + 11112( ( 1)) 11
n + dim N (B,,)

2

clearly we also have P(B,,,S,)NV,_1 = P(B,,—1,S,-1). This completes the proof
of the lemma. i
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We now prove the theorem 3.1. By the above lemma P(f,S) is maximal
isotropic and P(f,S) Ng; = P(f;,S;). We prove that P(f,S) is a subalgebra.
Take X; € g;(f;) and X, € g;(f;) for i > j (so g; C g;). Because g; is an ideal of
g, [Xi, X,] € g; and for Y € g; we have by the Jacobi identity

f(“XivXjLYD +f(“vaY]in]) +f([[Y7Xl]7XJD =0

but f([[Xj,Y],Xq;D = 0 because [X;,Y] € g, C g and X; € g;(fi), and
F([[Y, X;], X;]) = 0 because [Y, X;] € g; and X; € g;(f;).

We prove 3) by induction on the dimension of g. We first remark that if
on € g and gon(P(fn,Sn)) = 0 then P(f,,S,) is isotropic for ¢, + fn, SO
dim P(f,,S,) < dim P(f, + ¢n,Sn)- If gu(fn + vn) C P(fn,Sn) we have
P(fn + Son;Sn) = P(fn—l + Qpn—hsn—l) + gn(fn + <pn) and by the induction
hypOtheSiS7 P(fn—l + (Pn—la'sn—l) = P(fn—la’sn—l) C P(fn78n> ThIlS, P(fn +
©n,Sn) C P(fn,Sn) and by the above inequality on the dimensions we see that
P(fn + ©n,Sn) = P(fn,Syn). Thus the only thing we have to show is

o If gn(fn) C gn—1, wWe have P(fnvsn) - P(fn—hsn—l) - P(fn—l +
@n—l»Sn—l) C P(fn +80n78n)- Let X,, € gn(fn +90n)7 Y, € P(fnaSn) C P(fn +
(,On,Sn) NGn—1. Then, [Xn,Yn] € gn_10N P(fn + (pn,8n> = P(fn_l + SOn—l,Sn—l)
S0,

0= (fn+ ) ([Xn, Ya]) = fu([Xn, Ya])
o If gn(fn) §Z In—1, then
dim P(fn,Sn) = dim P(fr,—1,Sn-1) + 1
= dimp(fn—l + Spn—bsn—l) +1
> dim P(fy, + ¢n, Sn)
and we have the equality by the begining remark.
The last assertion is clear because v(g;) = g; and v.f; = fi so, v(9:(fi)) = 8:(fi)
and P(f,S) is y—invariant. g
3.3.- ON THE PUKANSZKY CONDITION.

Proposition 3.1 — Let h be a subalgebra of gc such that f([h,h]) = 0 and
a(f)c C h. Then, the following conditions are equivalent :

1)Ad*DO.f = f+eb;

2) f+et C A G.f = Q(f) and b has mazimal dimension ;

3) Vo € ¢+, b is mazimal isotropic for f + .

PROOF — First we suppose 1). To show 2) it is enough to verify dimch =
%(dimg +dim g(f)) But by construction of ¢ and 0 we have dim¢ b = %(dimR e+
dimpg D). We must show that

dimp (g) + ding<f) = dimpge + dimg?
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The mapping 0 : © — Ad*2.f from D° in f + et is onto (by 1)). By
the Sard theorem, there is a point zyp € D° such that the differential of 4 is
onto. Thus, X — ad* X(Ad*zo.f) from ? to e is onto. So, A4 o-f —
{X;Ad* zo.f([X,0]) = 0} = e. This implies that 0/ = e because ? and e are
DP—invariant. Recall that g(f) C 0 and we have dim e +dim 0 = dim g+dim g(f).

We now show 2) = 3). Since we have ¢ € e, b is isotropic for f + . So it is
enough to show that g(f +¢) = g(f) for every ¢ € ¢*. But f+¢ = Ad* . f for an
z € G and we have g(Ad* z.f) = Ad* z.g(f) thus, dimg(f) = dim (Ad" z.g(f)).

If we assume 3), by a previous result the orbits Ad* D.g are closed for every
g € f + et so they are also closed and of course Ad* D°.f = f + et. .

Corollary 3.1 — Let b be a real subalgebra of g such that f([h,h]) = 0 and
H the analytic subgroup with Lie algebra by. Then, the following conditions are
equivalent :

1) Ad*HO.f = f +bt;

2) f+bt C Ad*G.f = Q(f) and b has maximal dimension ;

3) Vo € b, b is mazimal isotropic for f + .

PROOF — We only remark that the condition g(f)c C b is not necessary
because in this situation, e =0/ =0 s0 g(f) Co Ch. 4

Corollary 3.2 — 1) The polarization P(f,S) of the theorem 31 satisfies the
Pukanszky condition ;

2) If G is a nilpotent connected Lie group, all the polarizations satisfy the
Pukanszky condition.

PROOF — 1) is clear. If G is a nilpotent the orbits of D° in f + e are closed
(by Theorem 2.4) and they are always open. g

3.4— POSITIVE POLARIZATIONS.

In this paragraph we consider a real solvable Lie algebra g and gc¢ its complexi-
fied Lie algebra. we will show that it is possible to choose the flag S = (g;)i=1,... »
in gc such that P(f,S) is a positive polarization at f € g*.

Recall that we denote by o the conjugaison X — X in gc.

Definition — We say that S = (g;)i=1,...n is & “good” sequence of ideals of gc
if we have the following property:

If g; is not o-invariant, then g;,_1 and g;41 are o-invariant.

Proposition 3.2 — If g is a solvable real Lie algebra, there exists “good”
sequences in gc.

PrROOF — We consider a Jordan-Holder sequence in g:
0=goCoC - Cogn=9

with dimg;/g;—1 =1 or 2 and the action of g in g;/g;,_1 is 0 or irreducible. It is
enough to consider the sequence

0=goc Cgic C - Cgnc =4C
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and if dimg;c/gi—1c = 2 we choose a complex g; such that g, € gic with
dim gic/g; = 1. B

We recall that the hermitian form Hy is defined by H(X,Y) =if([X,Y]).
Lemma 3.4 — Let S = (g;)i=1..n be a good sequence in gc.

1) If g; is an ideal which is non o-invariant, then [giv1, giv1] C Gi—1 ;

2) If i # j or if g; is o-invariant, then Hy(g:(f:),9;(f;)) = 0.

PROOF — 1) Since g is solvable [g;+1,8:+1] is contained in g;. We remark
that g;—1 + [@i+1,8i+1] is a o-invariant ideal contained in g;, so it is g;—1 and
[Git+1,8i+1] C gi-1-

2) We suppose i > j so g; C g; for the two cases. If X; € gi(fi), X; € g;(f;) C
g; C g, we have X; C g; so fi([Xi, X;]) =0. g

Proposition 3.3 — If S is a good sequence of ideals of gc then P(f,S) is a
polarization at f.

PROOF — By the previous results, it is enough to prove that P(f,S)+ P(f,S)
is a subalgebra of gc. Let i > j, X; € g,(fi), X; € g,(f;). It is enough to show
that [X;, X;] € P(f,S).

e If i > j or if 0(g;) = @i, then g; C g;. If u € g

FUXG X)) + £, ul, X)) + f(([[u, X3], X5]) = 0

But, [Xj,u] C g; C g; and [X;,u] C g; so, f([[X;,u],X;]) = 0 because
X; € gi(f;). Furthermore, [u, X;] € g; so, f([u,X;],X;]) = 0. Thus, we have
(X3, X;5] € 9;(f;) € P(f,S).

oIfi=jandg; #g;, wehave g;,_; = gi—1 and g, 1 = @i+1, [gi+1,0i+1] C Gi—1
by the lemma. So, [X;, X il € gi—1 and by the Jacobi identity like before, we see
that [YZ,XJ] C gi—l(fi—l- B

Proposition 3.4 — There ezists a good sequence of ideals of gc such that P(f,S)
1S a positive polarization at f.

PROOF — Let & = (g;)i=1,....n be a good sequence of ideals of gc, f € g* and

P(f,S) = Z 9i(fi). Let g be the lowest index such that P(f;,,S;,) is not positive.
i=0

By the previous lemma, there exists an X, in g;,(f;,) such that H¢(X,;,, X;,) <0
and g;, # @;,- We replace the good sequence by the new good sequence where g;,
is replace by §;, and now if X;, € §;,, Hy(Xi,, Xi,) = —H(Xiy, X4,) is positive.
It is clear that P(f;,,Si,) = P(fi,—1,Si,—1) + CXj, is a positive polarization at
fio- We go on with the index i; > ip such thatP(f;,,S;,) is not positive and
because n is finite, we see that it is possible to choose the good sequence such that
P(f,8) is positive. g

We remark that if a is an ideal of g, we can choose the sequence S such that ac
is one of the g; (by choosing a good sequence of gc/ac and a sequence of ideals of
gc included in a). So, P(f,S) is admissible for a.
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We have proved the following theorem.

Theorem 3.2 — Let g be a real solvable Lie algebra and a an ideal of g,
f e g5 f = fla, Gy and Gy the stabilizers of f and f' for the coadjoint
representation of G, the simply connected group with Lie algebra g. Then there
erists a positive polarization H at f which is admissible for a and verify the
Pukanszky condition. Furthermore, b is invariant for the action of Gy and hNa
is wnvariant for the action of Gy .

3.5.— REAL POLARIZATIONS.

If G is a nilpotent connected Lie group, its Lie algebra is of course completely
solvable so, we may apply the results of 3.2 to g with k= R. We obtain a subalgebra
h which is a maximal isotropic subspace of g : it is a real polarization at f € g*.
The same is true if g is completely solvable.

If G is solvable, real polarizations does not exist in general (Exercise 3.2), but
real polarizations exist if G is an exponential group as we see below.

We say that S = (g;) is a good sequence of subalgebras of g if it verify the
condition : if g; is not an ideal then g;_; and g;11 are ideals of g. If g is solvable
then there exists good sequences of ideals : to see this, get a (real) Jordan-Holder
sequence of g. The quotients g;41/g; have the dimension 1 or 2. If dimg;11/g; = 2
we can take any subspace g’ of g; which contains g; and of codimension 1 in g;1.
This subspace is clearly a subalgebra and the new sequence is a good sequence of
ideals of g.

Now, we define a particular solvable Lie algebra : the Diamond Lie algebra, 04.
This algebra is a fondamental example. The non-zero brackets of 04 are:

[61762] = €3 [61763] = —€2

[62, 63] = €4

Exercise 3.1 — Let f = e} € 0;. Show that there is no real subalgebra which is
also a maximal isotropic subspace (cf. [3] Chap. IV).

Proposition 3.5 — (Brezin-Dizmier criterion, [3] Chapter 4 p. 83) Let g be a
real solvable Lie algebra. If none of the subalgebra have a quotient isomorphic to 04
then, for every f € g* there exists a polarization at f and satisfying the Pukanszky
condition.

Corollary 3.3 — If g is an exponential Lie algebra and f € g* then, there exists
a real polarization § at f and b satisfy the Pukanszky condition.

Exercise 3.2 — Consider the Diamond Lie algebra 94 and f = ej. We have
g(f) = Rey @ Re; . The dimension of polarizations at f is three.

There is no real subalgebra containing g(f) and with dimension 3, but show
that there are two and only two subalgebras of gc which are polarizations at f:

b =a(f)c ®C(ez +ies) and b = g(f)c & C(ez — ie3)
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Show that f([ez + ies, e — ie3]) = —2i so, b is positive and b is not positive.

If n = Rey @ Reg @ Rey, then n is the Heisenberg Lie algebra and h Nne =
C® C(eq +ie3) is a polarization of n¢ at f|n which is not a real polarization. This
proves that it is not always possible to find a polarization h at f such that h Nn¢
is a real polarization at f|, for n a nilpotent ideal of g.

Exercise 3.3 — There exists nilpotent Lie algebras such that polarizations are
not all obtained by the M. Vergne construction. Let n = g5 with the following
nonzero brackets:

le1,e2] = eq, [e1,e4] =e5, [e2,e3] = €5

Let f = ef. Show that n(f) = Res = 3 and h = Re; @ Rey @ Res cannot be
obtained with a good sequence of n.



4. The dual space of a simply connected nilpotent Lie group

In this section we describe the irreducible unitary representations of a simply
connected nilpotent Lie group. First we prove a classical useful lemma.

Lemma 4.1 — (A.A. Kirillov) Let g be a nilpotent Lie algebra of dimension
greater than one and with a one dimensional center 3. Then there exists linearly
independant elements X, Y, Z of g and a linear form X\ on g such that 3 =
RZ, [X,)Y]=2Z, [T.Y] = NT)Z, VT € g. Furthermore, go = ker A is an ideal of
g containing Y and Z, g = go ®RX, and a = RY ®RX is an abelian ideal central
in go such that [g,a] = 3.

PROOF — We choose a non zero element Z € 3. The quotient g/3 is a nilpotent
Lie algebra, so its center 3; is non zero. The corresponding ideal 3; in g is such
that [31,9] C 3. We choose Y € 31 such that Y ¢ 3. Thus, for T € g we have
[T,Y] = XN(T)Z and X is a non zero linear form. There is X such that [X,Y] = Z.

Let T'e g and U € ker A\. By the Jacobi identity we have

[[Ta U]? Y] = _[[Ua Y]a T] - [[Y7 T]? U]

but [U,Y] € 3 and [Y,T] € 3 so, A([T,U]) = 0. This shows that ker A is an ideal in
g. The relation [T,Y] = A(T)Z shows that a is an ideal (abelian) and it is clear
that g =ker \@ RX. g

Theorem 4.1 — Let G be a simply connected nilpotent Lie group and let p be an
irreducible unitary representation of G. Then there exists an analytic subgroup H
of G and a character x of H such that p = Indgx.

PrROOF — We prove this result by induction on dim G. If dim G = 1 the result
is clear. We suppose that the theorem is true for groups whose dimension is lower
than r» > 1.

Let Z be the center of G and j its Lie algebra. For every z € Z the operator
p(z) € Hom(p, p). By Schur lemma we have p(z) = w(z)Id where w(z) € C and it
is clear that w is a unitary character of Z. We consider the kernel Z’ of w in Z.
It is a closed subgroup of Z and its neutral component Z; is a simply connected
subgroup of G (by corollary 2.2) on which p is the identity operator.

Let p be the canonical map p : G — G/Z| There is a unique irreducible
representation p’ such that p = p’ op (cf. 1.7 (e)). By the induction hypothesis,
if dim Z{; > 1, we have a character x’ of an analytic subgroup H' C G’ such that
p = Ind<, X'. Let x = X’ o p the character of the closed subgroup p~'(H’) = H.
It is easy to see that

p=p op=Indfx op=Indgx

We are now concerned by the situation dim Zj = 0 (or dimZ = 1). We can
use the Kirillov’s lemma. Let Z, X, Y be the three elements defined in this
lemma. The subspace a = RZ @ RY is an abelian ideal of g. Let A be the (simply
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connected) analytic group whose Lie algebra is a. It is a vector group and the map
| — X, defined by x,(exp X) = e!<bX>"(y € A) is an homomorphism from a*

onto A. For z € G we have (remark that [(Z) # 0 otherwise Zy#0)

z.x,(exp X) = ¥ (z7 exp X 1)
=X, (exp Ad(z71).X)
ei<l,Ad(m_1)X>

_ i<Ad (@) LX>
= XAd*(z).1(exp X)

so the action of G on A corresponds to the action of Ad* (G) on a*. We want to
apply the Mackey’s theorem so, we need to compute the G-orbits in a* (= A\)
According to the previous lemma we have g = RX & go where [gg,a] = 0 so, if
T € go, Ad"(expT).l =1 for every [ € a*. This shows that the orbits of G in
a* are only the orbits of the one parameter group exp(RX) (note that {X} is a
Malcev basis for go).

Let | = aY™* + 3Z* € a*. We have to compute ¢ = Ad*(exptX).l for t € R.
Let T € a.

o(T) = Ad" (exp tX).U(T) =<1, Ad (exp(—tX).T) >

=<1, Exp (ad(—tX).T) >
t2
=<1, T—t[X,T] + §[X’ (X, T]]+ >

but [X,T] € 3 so o(T) =<1,T —t[X,T] > and we see that ¢ =1 — t5Y™*. Thus,
the orbit of aY™* is {aY*} and the orbit of [ ¢ RY* is [+RY ™. They are closed so,
by Glimm’s theorem, A is regularly embeded in G. By the previous computation
we also see that the stabilizer G; of | € A or X, € a"is Gif ]l € RY" and
Gy = exp go otherwise. But we have seen that [(Z) # 0 so, by Mackey’s theorem,
there exists an irreducible representation pg of G¢ such that p = Indg0 po and

by the induction hypothesis pg = Indi}) X; for a connected subgroup H and an
f € g5- Using induction by stage we see that p = Indg X; m
Proposition 4.1 — Let p and p’ be two irreducible representations of G which

are not equal to identity on the center. Then p ~ p' if and only if they have the
same restriction to the center of G.

PROOF — We only sketch the proof which is almost the same that the previous
one. If the two representations have the same restriction to the center, the crucial
case is when dim 3 = 1. Then, using the notations of the previous proposition, we
remark that they are built by Mackey theory with two characters x, and Xl’ in

the same G-orbit in A. So we may suppose they are identical. But A is the center
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of Gy and the two representations are induced from representations of G such
that the restriction to A is x,. By induction hypothesis these representations of

Gy are equivalent and by induction p ~ p/. i

Proposition 4.2 — Let h C g be the Lie algebra of a subgroup H of G
and x a character of H. There exists f € §* such that for every X € b and
Y €h, f([X,Y]) =0 and x(exp X) = e!</X>,

PrROOF — The character x is an homomorphism of Lie groups from H into
U = {z; z € C, |2Z| = 1} so, its differential dx = if is a Lie algebra homomorphism
from b into the abelian Lie algebra R. So, we have f([X,Y]) =0 for X,Y € b.
The last expression of x is clear because i f is the differential of x. g

Definition — Let f € g* and let b be a subalgebra of g. Then we say that b is
isotropic at f if f|jy 5 = 0. Given f € g* we denote by S(f) the set of subalgebras
of g which are isotropic at f.

The previous theorem may be restated as follows.

Theorem 4.2 — For each unitary irreducible representation p of G, there exists
feg and b € S(f) such that if H is the analytic subgroup of G with Lie algebra
h then p = Indg X; where X; is the character of H defined by f.

For f € g* we recall that we denote by G(f) or Gy the stabilizer of f with
respect to the action of Ad* in g* and by g(f) or g/ the kernel of the bilinear form
By defined by Bf(X,Y) = f([X,Y]) for X egand Y € g.

Proposition 4.3 — Let G be a simply connected nilpotent Lie group with Lie
algebra g, and let f € g*. Then G is the analytic subgroup of G with Lie algebra

g/

PROOF — By lemma 3.1 G is connected and it is closed. If X, Y € g/ then for
teR, < f,Exp(adtX).Y >= f(Y), so Ad" exp(—tX).f = f for all t € R. this
shows that X belongs to the Lie algebra of G¢. Conversely, by differentiating the
relation Ad”" exp(tX).f(Y) = f(Y) for exp(X) € Gy, we see that f([X,Y]) =0
so, X egl. g

We have seen (cf. Theorem 2.4 and its proof) that every orbit Q@ = Ad" G.f
is a closed manifold of g*. It is isomorphic to the quotient space G/Gy by the
map * — Ad"(z).f. The tangent space at f to € is the image of g under the
differential X — ad*(X).f whose kernel is g/, so the dimension of €2 is equal to
dimg — dim g/. On the other hand, g/ is the kernel of the bilinear form B fong
defined by Bf(X,Y) = f([X,Y]). We have seen that this form is skew symmetric
and induces a non-degenerate form on g/g/. Thus, the common dimension of g/g/
and (2 is even.

Proposition 4.4 — Let G be a simply connected nilpotent Lie group and g its
Lie algebra. Let f € g*. Then there exists a real polarization § at f such that
p(f,h) = Indgxf is irreducible.



— 38 — G.Grélaud

PROOF — The proof is by induction on the dimension of G. The result is clear
if dim G = 1. Let 3 be the center of g.

First we suppose that 3’ = ker(f|;) is non zero. If Z’ = exp(3’) we consider the
simply connected Lie group G’ = G/Z’ whose Lie algebra is g’ = g/3’. Let f’ be
the linear form induced by f on g’. By the induction hypothesis, there exists a
polarization h’ at f’ in g’ such that Indgl/ Xy is irreducible. We denote by p the

canonical projections from g onto g’ and from G onto G’. Let be h = p_l(f]/). It
is a maximal isotropic subalgebra for f thus it is a real polarization at f. We have

p(f,0) = p(f',b") op. Thus p(f,bh) is irreducible.
We suppose now that ker(f|;) = 0. This means that dimz = 1. We choose

three elements Xy, Yy, Zp and A and g¢ as in lemma 4.1. Let Gg be the analytic
subgroup with Lie algebra go. Then a = RY{; & 3 is an ideal which is central in gg.
We denote by fo the restriction of f to go and we consider a polarization hy at fy
in go. As a is central in gg we have a C by thus l‘)g Cal. Butif U € go and t € R,
we have f([U +tXq, Yy]) =t f(Zy), which implies a/ = go. So, bg C go and we
have
ho = bl = bl Ngo = b}

Thus by is a real polarization at f in g. By the induction hypothesis we can take
bho such that Indgg Xy, 18 irreducible as a representation of Gy.

Let A = expa. In the proof of the Theorem 4.1 we have seen that A is regularly
embedded in G and that GXfo = G because X; is non zero on 3. Furthermore,

A is contained in exp(hg) = Hy and is central so we have for a € A, = € expgo
and ¢ a fonction in the space of p(fo, ho)

p(fo,bo)(a)p(x) = p(a”'z) = p(za™") = x; (a)p(x)

This shows that p(fo, ho)|a is a multiple of x 5o+ We can apply Mackey’s theorem

which shows that Indg) p(fo, o) is irreducible but by the theorem of induction by
stages this representation is equivalent to p(f,h). g

Theorem 4.3 — (A.A. Kirillov) Let G be a simply connected nilpotent Lie group
with Lie algebra g and let f € g*.
1) If b is isotropic at f, the following conditions are equivalent :
a) Indg Xy is irreducible ;
b) b is a real polarization at f ;
2) For two real polarizations hy1 and ba at f, the representations p(f,h1) and
p(f,b2) are equivalent.

PrROOF — We first prove a lemma.
Lemma 4.2 — If by is an isotropic subalgebra at f such that Indg X; 18 irreducible
then by contains the center of g.

PrOOF — (Of the lemma) Let 3 be the center of g. Let h =3+bH We

have H = HZ and by induction by stages p =~ Ind€

G 1 H
Xy = IndH/IndHXf.
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’

If p is irreducible, then ™ = IndIf{ X; is also irreducible. But H = HZ and
for a function ¢ in the space of 71, h € H, k € H and z € Z we have
m(h)p(zk) = p(h~1zk) = Xf(hfl)*le(k)*lgo(z) = Xf(h)gp(zk), because z is in
the center of G. So 7 is a multiple of a character and is irreducible. This implies
that the space of 7 is one dimensional and since 7 is an induced representation,
this is possible only if H = H' and thus 3ChHh g

We start with the proof of the theorem which is by induction on the dimension
of G. If dim G = 1, the result is clear. We suppose dim G > 1 and the result true
for groups with dimension lower than dim G. We denote by p(f,h) or p(f,b,g)
the representation Indg X;-

1) We suppose 3 = ker fN3 # 0 and let G = G/Z', p : G — G the
canonical projection (and by the same notation the coresponding projection for
Lie algebras), and p(f) the linear form on g * such that f op = f. If h is a
(real) polarization at f then p(h) is a polarization at p(f) and conversely, if b isa
polarization at p(f) € g/*, pil(f)/) is a polarization at f because 3 C g(f). Thus,
if p(f,h) = p(f ,p(h)) o p is irreducible, p(f ,p(h)) is irreducible and by induction
hypothesis, p(h) is a polarization at p(f) so b is a polarization at f. Conversely, if
p(B) is a polarization at p(f), p(f ,p(h)) is irreducible and p(f,h) = p(f ,p(h)) op
is also irreducible.

For the second assertion of the theorem, we remark that if h; and by are
two polarizations at f, p(h1) and p(h2) are two polarizations at p(f) so, =

o(f ,p(b1)) ~ p(f . p(b2)) by induction hypothesis, and

p(f,01) = p(f ,p(01)) o p=p(f ,p(ha2)) o p= p(f,bh2)

2) We may now suppose that 3 = 0 or dimz = 1 and f|3 # 0. We use the
lemma 6 and get three elements X, Y, Z in g such that [X,Y] = Z. Let a = 3@ RY
and gg the centralizer of a. The polarization h contains j.

2.a) We first consider the case h C go. Of course if b is a polarization at f, b is
a polarization at fo = f|go, then p(fo,h,go) is irreducible and as in the proof of
theorem 9 p(f,h,g) = Indg) p(fo,b,80) is irreducible by the Mackey theorem.

Conversely, if p(f,h,g9) = Indg'op(fg,b,go) is irreducible, Indgop(fo,h,go) is
irreducible and h is a polarization at fy. But gf C go so g/ C gy° by lemma
3, and g/ C b thus, b is a polarization at f in go.

2.b) It remains the case h ¢ go and the second assertion. We study this case
by showing that there exists b’ C go such that p(f,h) = p(f,b’).

We set a =3@RY. If a C h we have h = h/ C a/ = go and since fls # 0 we
may suppose f|;(Z) = 1. and A(Z) = 0 (by lemma 4.1), we see that Ay and f|h
are linearly independent so, we can choose X € b, h = ho + RX and f(X) = 0.
We consider ' = hg @ RY. Since f([h’,h']) = 0 and dimbh = dimb’, b’ is a real
polarization at f.
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Lemma 4.3 — We have p(f,5) ~ p(f,b’)
PrROOF — Let t=h+a C gand K =expt. We have

p(f,9) =~ IndS p(fle, b, 8) and p(f, ") =~ IndS p(fle, ', ¢)

so, it is enough to prove p(fle, b, €) =~ p(fle, b’,€). To prove this, we first consider
the subspace £, = ker(f) N hp and we show that € is an ideal in . We have
t=bho @RY @ RX and h = hp + RX (recall that ho = h N go). Since f|; is not
zero and 3 C ho we have ¢ = ¢, @ RY & RX & RZ. Now, if we remark that hg is
an ideal of codimension 1 in h and §’ we see that

[X, €] C [h,b] C ker(f)Nho
[V, 8] C [b', '] C ker(f) Nho

and this proves our assertion.

We denote by K the analytic subgroup of K with Lie algebra ¢, K = K/K;
which is a simply connected group, p : K —— K the canonical projection,
X =p(X), Y =p), and Z = p(Z). It is clear that K is isomorphic to the
Heisenberg group. We look at the linear form g on ¢ deduced from f on g :
we have g(Z) = 1, g(X) = g(Y) = 0. Thus g is Z and p(h) = RX & RZ,
p(h") =RY @ RZ, so we have

p(g,h) = p(Z",p(h)) op1 and p(g,b") =~ p(Z",p(H’)) o p1

and it is enough to prove p(Z*,RX @ RZ) o~ p(Z*, RY & RZ) for the Heisenberg
group.

Computations on the Heisenberg group

We take a basis {X,Y, Z} with [X, Y] = Z and the polarizations h; = RX®RZ,
ho = RY @ RZ. We want to prove p(Z*,h1) >~ p(Z*,b2). For this we can look at
the computation of the first section, where Z* correspond to the character with
y=0, z=1, p1 = p(Z*,h1) acts on the space L?(R) and

[Xe2e

p1(a,0,0)p(a) = e *“p(a)
p1(0,b,0)p(a) = p(a — b)
p1(0,0, c)p(cr) = *p(c)

For py = p(Z*,h2) we have

p2(a,0,0)p(a) = p(a — a)
P2 (07 b, 0)90<O‘) = e—iab(‘p<a>
p2(a7 0, 0)90<O‘) = eicgp(a)
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and an obvious computation shows that the Fourier transform defined by

Foly) = \/LQ—W/RsO(w)e”ydrc

is an unitary operator realizing the equivalence.
The previous theorem shows that p(f,h) is independant of the polarization b

at f so, we have defined a map f — p(f) from g* into G. In fact, this map is
constant on each orbit of the coadjoint representation of G' as we show now.

Proposition 4.5 — Ifx € G, f € g* and z.f = Ad"z.f, then we have
plx.f) ~ p(f) and this defines a map from the quotient space g*/G of orbits
of the coadjoint representation of G into G.

ProOF — Let x € G, f € g" and h a polarization at f. We show that
x.h = Ad z(h) is a polarization at x.f. First, we have for h, h’ € b, using the fact
that Ad(z) is a Lie algebra isomorphism and b is a polarization at f

z.f([z.h,z.h])) = f(Ad(z™").[Adz.h, Ad z.h/])
= f([h,I']) =0
because Furthermore, g%/ = z.g/ (exercise), so dim g*/ = dim(z.g’) = dimg/.
We deduce immediately by dimension argument, that x.h is totally isotropic at

x.f, so it is a polarization at z.f.
We can now compute p(z.f)

pz.f,zh) = Ind, Ty, (X, ;)
~ Ind _1GH$ (x.Xf)
o~ IndHXf
~ p(f,h)

(corollary 1.1 section 1.9)

This achieves the proof. g
We can state the main theorem of this section due to A.A. Kirillov.

Theorem 4.4 — If G is a connected simply connected nilpotent Lie group, the
map f — p(f) induces a bijective map from g*/G onto the dual space G of G.

PROOF — According to the prev10us pr0p081t10n we have only to prove the
surjectivity but, by theorem 4.2, if 7 € G o IndH X; where X; is a character of
H. Thus, we can apply the first result of theorem 4.3 to see that H = exp b with
b a polarization at f, so m ~ p(f,h).
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4.1— THE CASE OF EXPONENTIAL GROUPS

Almost all the results of this section extend to groups of exponential type. The
Kirillov bijection is a result of P. Bernat (cf. [3] chap. IV). The main new fact is
that not every real polarization at f € g* gives an irreducible representation
of G but for each f € g* there exists a real polarization h at f such that
Indg X; is irreducible. The necessary and sufficient condition for h to give an
irreducible representation is the Pukanszky condition discovered by L. Pukanszky
(of course!) in [19]. If this condition is not verified, Indg X; is a finite sum of
irreducible representations, the decomposition in irreducible ones is given by the
orbits which intersect f 4 h' as an open set in f + h*, each orbit Q with this
property corresponds to a subrepresentation of Indg X; with a multiplicity equal

to the number of connected components of QN f + h+. This is due to M. Vergne
(cf. [3] Chap. VII).

Exercise 4.1 — Compute the dual space of the “ax 4+ b” group using the Kirillov-
Bernat mapping. Let {X,Y} be a basis of the Lie algebra such that [X,Y] =Y.
Show that h = RY and € = RX are polarizations at Y* but Indg Xy-+ 18 irreducible

and Indg Xy~ is not irreducible. Compute the decomposition of Indg Xy~ into
irreducible representations.



5. Holomorphical induction,

irreducible representations of solvable Lie groups.

5.1.— DEFINITIONS AND GENERALITIES

Let G be a locally compact solvable group. To define holomorphical induced
representations we have to consider some subrepresentations of an induced repre-
sentation o of a closed subgroup H of G.

We denote by &£'(G) the space of compact supported measures on G. Let
v € &'(G) and let f be a locally integrable function on G (for the Haar measure
pc). Then the function z — [ f(zy)dr(y) is almost everywhere defined and
locally pg-integrable. We denote by p(v)f this function. Similarly we write
W) (@) = [ £y )du(y).

Let ¥ be a set of such measures v and let U be a representation of a closed
subgroup H of G. We consider the representation 7w of G induced by U. Let
H, be its space. We denote by HZ the subspace of functions ¢ € H, such that
p(v)p =0 for every v € X.

It can be shown that this space is closed and G-invariant so, it defines a
subrepresentation of 7. To see the G-invariance of H> we can use the fact that

mof(y) = f(z7'y) =6,-1f(y)  (definition)

p() (72 f)(y) = p(V)(02-1) f(y) = (62-1)p(¥) [ (y).

We have used the fact that p(v1)A\(v2)f = A(v2)p(11)f (Exercise).
The assertion that HZ> is closed, is a consequence of the fact that the map
f— Jgh(@)p(v)f(z)dug(z) is continuous (see Duflo [3] p. 110).

So ¥ deﬁnes a subrepresentation of Indg U, but of course, if ¥ is badly choosen
this subrepresentation may be 0.

We now apply this construction to Lie groups and polarizations. Let G be a Lie
group, g its Lie algebra and f € g*. We choose a polarization h at f. We take for 3
a set of distributions with compact supports (X C D, (G)). We denote by D,,(G)
the space of measures hug with h € D(G). For a € D,(G) and v € D (G) we
have a x u € D,,(G) so we can consider p(a *v) for a € D,,(G) and v € £'(G). If
Y C D(G) we define

HE ={f€H,|plaxv)f=0 VaeDn(G)VVGE}

For instance, if f is C*° on G we can define p(v)f by p(v = [q flzy)dv(y),
so if X € g is the distribution

d
Ef(exp tX)|t=o0

we have
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p(X) () = S (f(rexptX))imo

and we define p(Z) by linearity for Z = X +iY with X € g, Y € ¢

p(X +iY) f(z) = [p(X) +ip(Y)]f(2).

Now, let b be a polarization at f € g*, 0 =hNg, ¢ = (h+bh)Ng. Suppose that
b is G g-invariant. We denote by DY E°, G(} the subgroups with Lie algebras
9, e, g/. Since b is G ¢-invariant, G normalizes D° and E° so D = G;D° and
E = G;E° are subgroups of G. If h is a “good polarization” like those defined in
the previous section, it can be shown that E and D are closed subgroups of G but
G'; is not connected for all solvable groups so E and D are not always connected.

The groups D and D" have the same Lie algebra because G(} c D (gé c hnh).
The same argument can be used for E and E°.

We have f([0,9]) = 0 so there exists a character X; € D such that dx, =if.
But it is not always true that this character extends to a character of D.

Definition — We say that f € g* is an integral form if there exists a character
ns of Gy such that its differential is i f|g(s)-

Until the end of the section we suppose that f is an integral form. Since 1y and
X, are equal on G?c we have a character 5{}: on D = G;D° which extends X; and
n¢. We note Xy = Q;

We denote by H(f, Xp b,g) the completion of the space of functions ¢ on G
which are C* and such that

(1) p(wd) = Ap.g(d)2x,(d)'p(x) 2€G, deD

2)% | ¢ |? dug.p < o0
G/D

| 3) p(V)p(x) = [-if (V) + %tradg/e(y)lw(w) Yeh zeG

and 7 = ind(f, hs, b, G) acts by left translations on H(f, X; s h,9).

REMARKS : 1) Ap g = 1 because there is an invariant measure on E/D ; to show
this let B ¢ the bilinear form on ¢/d deduced from By on g; it is non degenerate
and w = B f AB Foe ‘AB ¢ defines a D-invariant differential form of maximal degree
on E/D so Ap g = 1.

2) If Y € D = hn g the condition 3) follows from 1) because Ap g =1 on D
SO AD,G = AE,G-

3) If d € Dy the condition 1) follows from 3).

If G = E, it can be shown that the space H(f,ny, b, E) is exactly the space of
C*® functions on E such that
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p(zd) = x, () "p(x) deD zeE
fE/D | o(z) |? dug,p(z) < o0
p(Y)p=—i(f,Y)p Ye€b

We see that the set 3 of the definition is equal to the set of distributions defined
by Y € h. For holomorphic induction there is also a theorem of induction by stages.

Theorem 5.1 — ([3] prop 4.2.1 p. 112) Let K C H C G and V a representation
in H. Let ¥ be a set of measures with support in H. Let v € ¥ and V' be the
element of £'(G) defined by

h—s / At ()2 h(u)dv(u)
H
where h is a function on H and let ¥’ = {v' ; v € ¥}, thus we have

ind(V, ¢, 9,%') ~ Ind$ (ind(V, £, 5, %))

We have the following corollary.

Corollary 5.1 — Let b be a polarization at f € g*, ¢,0,E, D ... defined as
previously, thus if X; is a character of D whose differential is if|, we have

Indg (md(f, Xf’ b, E)) ~ lnd(fa Xf7 h7 G)

We will show that the space of an holomorphical induced representation may
be 0 even if G is a simply connected nilpotent group. The theory of orbits for
solvable Lie groups is to show that if f € g* is an integral form, it is possible to
build an irreducible representation by holomorphical induction and if G is type I
every w € G is obtained by this method.

5.2— In these notes I only show how it is possible to build irreducible
representations of solvable Lie groups and I give in the next section a survey
of the other results with examples for typical cases.

We consider a simply connected real solvable Lie group G with Lie algebra g.
We choose an ideal n C g which is nilpotent and contains [g, g]. We denote by N
the Lie subgroup expn of G. We fix f € g* and we suppose that f is an integral
form. We have to prove the following theorem :

Theorem 5.2 — If f is an integral form, and if b is a positive polarization
at f, admissible for n, G¢-invariant and verifies the Pukanszky condition, then
if X; is a character of D = GyD° whose differential is ifly, the representation

ind(f, X b, ) is irreducible and does not depend of b verifying these conditions.
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The idea of the proof is to show that the holomorphical induced representation is
equivalent to a standard induced representation obtained by the Mackey machine
from an extension of an irreducible representation o of IN. Of course o is equivalent
to the representation p(f|,) by the Kirillov theory but unfortunately the realization
of o is not obtained from a real polarization. So an important step of the proof is to
show that for nilpotent groups the representation built by holomorphical induction
from complex polarization is equivalent to the representation of the Kirillov theory.

An other serious problem is to show that it is possible to extend a multiple of
p(fly) to a representation of the stabilizer G'¢|y.IN of p(f|h). After this step, the
Mackey machine gives an irreducible representation of G' and the last step is to
show that this representation is equivalent to ind(f, X h,G).

5.3.— THE CASE OF NILPOTENT LIE GROUPS

We consider a nilpotent connected and simply connected Lie group NN and
f € n*. We choose a positive polarization § at f. Recall that this means
if([X,X]) >0 for all X €b.

We have to consider the space H(f, N) of functions ¢ on N such that

%(go(xeXptY))!tzo =—if(Y)p(z) axeN,Yeh

/ | o(x) |2 dT < 0o
N/D

where dz is an invariant measure on N /D.

This space is exactly the space of the holomorphical induced representation
ind(f, Xf,f),N) because trad,, X = 0 for a nilpotent Lie algebra n and the
first condition is equivalent to the global condition ¢(zd) = Xf(d)*lgo(:z:) for
d € D = expd because G, is connected, so D is connected.

Theorem 5.3 — Let b be a positive polarization at f € h*. Then the repre-
sentation ind(f, X b, N) is irreductible and equivalent to the representation p(f)
constructed by the Kirillov orbits method.

PROOF — Let 0 = hnNng, ¢ = ((b +b) N g), then Ny is connected so
E = E° = expe and D = expd. If f/ = f|. then we have by stage induction
theorem

ind(f,x;,, V) = Indg (ind(f, x ., b, E))

thus we just have to prove that there exists a real polarization hg at f’ € ¢* such
that

ind(flv h?E) = ind(f/7 hOa E)

because for a real polarization hy we have
ind(f’, bo, E) ~ Indg(,) Xp ™~ p(f)

where p(f) is the Kirillov representation. g



Holomorphical induction — 47 —

Let b =02 Nker f.
Lemma 5.1 — The group B = exp b is normal in E and E/B is an Heisenberg
group with center D/B.

PROOF — Since E is nilpotent it is enough to show that ¢/b is an Heisenberg
Lie algebra of center 9/b. First we show that ker f # 9. To this end we show that
f is non zero on gf C 0. Let (g;)i=1,.. »n be a Jordan-Holder sequence of ideals and
J the first index such that f|s, = 0 and f|g,_, # 0. We have [g,g;_1] C g; thus
gj—1 C g/. We have 0/b which is a one dimensional subspace. We prove now that
0 is an ideal of e. We need some tedious computations concerning By on ¢/d. We
have (¢/0)c = h/dc © h/oc. We define J as the operator on ¢/0 whose eigenspace
with eigenvalue —i is h/dc and eigenspace with eigenvalue +i is h/oc. We have
J? = —1d and this defines a complexe structure on ¢/9. i

We denote by S the bilinear form defined by S(z,y) = B(z, Jy).

Lemma 5.2 — S is a symetric bilinear form on ¢/0 non degenerated, positive if
b is positive.

PROOF — We verify that B is J-invariant. If hy, ho, b, b, are in h we have

B(hlaE/Q) + 3(527 hll)
ihy,ihy) + B(ihy, —ih))

Jhi, JhY) + B(Jha, Jh))

B(J (hy + Toa), J (R, + h2>

B(hy + ha, B, + Toy)

— B(-
— B(

so, S(z,y) = B(x, Jy) = B(Jz, J?y) = B(Jz, —y) = B(y, Ja) = S(y, )
Furthermore, if x € §, 1Jx = x so,

if([z,9]) = 1 f(le +iJz,y —iJy])

Flw,y]) + f([ T2, y)) + f([z, —iTy]) + f([iJz, —iTy))]
Bz, y) +if([Jz,y]) —if ([z, Jy]) + f([ Tz, Ty]))
B(z,y) + 4( B(J%x, Jy) —if [z, Jy]))

B(z,y) + S(w Y)

[\D| . [\_')| S| . ,.[;| . ,.J;| .

~—~

so, 2if([z,z]) = S(z,z) +iB(z,z) and
2if([z,Z]) = S(z,x)

Thus h is a positive polarization if and only if S > 0.
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Now let X be an element of 0 and ad X = 7(X) the operator in ¢/d. Let Y and
Z in e. By Jacobi identity we have

7(11x.v1.2]) + £([v. 20, x]) + £([12.x1,Y]) =0

and by the equality ?f = e, f([[Y, Z],XD = 0, this means B(n(X)Y,Z) +

B(Y,n(X)Z) = 0. But the spaces h/d¢c and h/0¢ are invariant by ad X, so 7(X)
commutes with J and

B(n(X)Y,JZ) = —B(Y,7(X)JZ) = —B(Y, Jn(X)Z)

or

S(r(X)Y, Z) = —S(Y,x(X)Z).

This proves that 7(X) is anti-orthogonal for S, so it is semi-simple but it is
nilpotent, so it is zero. This means that [X,¢] C ? and 0 is an ideal in e. On the
other hand we have [e,d] C ker f so [¢,?] C b and b is an ideal of ¢, 9/b is central
in ¢/b. We must show that 0/b is exactly the center of ¢/b but if X € 9/b there
exists Y € e/b such that f([X,Y]) # 0 (because 0/ = ¢) so, [X,Y] # 0 in ¢/b and
X is not in the center ¢/b.

To show that e¢/b is Heisenberg it remains to prove that W = ¢/0 is abelian.
Let a be the center of W : then

Lemma 5.3 — If J(a) = a then W is abelian.

PROOF — First a is non zero because ¢ is nilpotent. Moreover, a is J-invariant
so J|4 is non degenerated, B is non degenerated on a and we have W = a @ a.
The center of a? is contained in the center of W so W = a. .

Let u be an element of the center of W and M = ad Ju. We have to prove that
M = 0.
1) [M,J]=0. Let u € a and v € W. We have u+iJu € h/d¢c and v+ iJv € h/0o¢
SO

J(u+iJu) = Ju —iu = —i(u + iJu)
k= [u+iJu,v+iJv] =i[Ju,v] — [Ju, Jv] € h/oc

so Jk = —ik implies iJ[Ju,v] — J[Ju, Jv] = [Ju,v] + i[Ju, Jv]. This shows that
[Ju,v] = —=J[Ju, Jv] or J[Ju,v] = [Ju, Jv]. This is exactly J.M(v) = M(J(v)). g

2) We suppose M # 0. Then we take v € W such that Mv # 0 and M?v = 0.
By Jacoby identity we have easily (exercice)

B(z, [z, [y, 2]]) = B(ad®(x).y, 2) + 2B(ad 2.y, ad z.z) + B(y,ad?(z).2)
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and B(u, [y, z]) =0 for u € a.
Now for x = Ju, y = v, z = Ju,

B(Ju, [Ju, [v, Jv]]) = B(M?y, 2) +2B([Ju, ], [Ju, Jv]) + B(Jv, M*2)
=0 =0
= 2B(Mwv, M Jv)
= 2B(Mwv, JMv)
= 2S(Mv, Mv)

but
B(Ju, [Ju v, Jv

(u M ([v, Jv])))
(u, M J([v, Jv)))
(u, [Ju, J[v,Jv]]) =0 (u € a)

B
B
B

This is a contradiction so M = 0. i

We come back to our main proof. We have an Heisenberg group N, = E/B
and a polarization h which is positive such that h 4+ b = npe, hNh = 3¢ = (2/b)c
and f # 0on hNh = g{:. In this situation it is known that there exist an
intertwining operator between this representation and the representation p(f)
which is an equivalence ([3] Chap. VII) but, since the two representations has the
same restriction to the center, it is enough to show that the previous is irreducible.
this can be proved by using a description of the space by holomorphical functions
on n/3.

For most simplicity we give the proof only for N = NN3. In the course of the
proof it is shown that for an Heisenberg group the space H(f, b, G) is non zero if
and only if b is a positive polarization.

We take h € Pol(f) (not a real polarization) such that h + b = n¢, dime b = 2.
We denote ) = W3¢ where W is a one dimensional subspace. We have [X,Y] =
and f = Z*. We can choose e =aX +bY € W, a=aj +1ias, b=01 +1by € C

g = (alX + b1Y) + i(agX + bQY) =x+ Zy

and [z,y] = (a1be — asb1)Z.

If [x,y] =0, x and y are colinear : € = k.x or k'y so x € h, y € h and b is not
a complex polarization (it is real) so we can choose a;,b;, i € {1, 2} such that
[2,y] = Z,h =C(x +iy) ®CZ bh=C(x —iy) ® CZ.

We have

if ([x + iy, x +dy]) = if ([, —iy]) + i f([iy, z])
= f([z,y]) = f(ly,z]) =2>0

and if ([ — iy, x — iy]) = if ([z, 1)) + i f([~iy, z]) = —2.
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This shows that h is a positive polarization and  is not positive.
We now define the space of the holomorphic induced representation. It is the
space of functions ¢ on N3 such that

[ plexpuexptZ) = e Lp(expu) uen, telR

d d . )
7 (go(expuexp tx)) lt=0 + ZE (gp(expuexp ty)) lt=o = —if(z +iy)p(expu) =0

| lelPandy < oc
N/zZ

\

Let uw = ax + by + cZ. We have by Hausdorff formula

p(expuexptr) = p(exp(u + tx — tbZ))

p(expuexpty) = p(exp(u + ty + taZ))
so the second formula becomes (we consider functions on g by ¢(a,b,c) —
p(expu))

but by the first formula of the definition of the space of the representation :
0 .
—p(expu) = —ip(expu) so p(expu) = e *“¢(a,b) where v is any function and

dc
dp .0y . L
Ba + 2y + (=b+ia)(—ip) =0
Op  Op N
9 —H%—F(a%—lb)@—O
Now, if we look at the function v we have
oy oY .
Ba —i—z% = —(a+1ib)y

a2 2
It is clear that the function vg(a,b) = e~ 7~ is a solution for this equation
so, by taking ¢ = ¥gv we get 8—U + i 20— 0. This means that v is a holomorphic
a

function so, we see that H(f,h, N) is the space of functions of the form

2 2
ic a“+b

plexpu) =e “e” 2 wv(a+ib)

where v is holomorphic and such that

lv(a + ib)]Qe_(a2+b2)da db < o0
R2
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(The Lebesgue measure on R? corresponds to the invariant measure for the action
of Nin N/Z).

— @24 p2
REMARK. If h is replaced by b then we obtain ¥y(a,b) = e 7 and we see that
H(f,h,N) is equal to 0 so, the condition h positive is an essential condition.

It remains to show that the representation is irreducible. This can be proved by
using same method than for the irreducibility of the ordinary representation and
we leave this computation to the reader. It is also possible to give an intertwining
unitary operator between this representation and the Kirillov’s one. We only
sketch the proof (see [3] Chapter VII). We see that all the monomials 2" are in
H(f, b, N). To build an operator the idea is to associate to z™ a good multiple of
the Hermite function on L2(R). Precisely the intertwining operator is defined by

Ty(t) = %exp [— a ;b ] /Rexp ( — i(a—kiﬁ)z)w(a—kiﬁ)dﬁ

- %/Re_aziﬁze%aﬁtb(a+iﬂ)dﬁ

We now go back to representation of the simply-connected Lie group G. We
denote by n a nilpotent ideal of g which contains [g, g]. We fix [ € g* and denote by
f the restriction of [ to n and by p(f) the irreducible representation of IN obtained
by Kirillov’s theory.

Lemma 5.4 — The stabilizer G, of p(f) in G is NGy where Gy is the stabilizer
of f € n* under the action of G in n* by the coadjoint representation. Moreover
G, = NGy is a closed subgroup of G.

PROOF — Let # € G and Ad"(z)p(f) =~ p(f). We have Ad™(x)p(f) =~
p(Ad*z.f) ~ p(f). So Ad*z.f and f are in the same N-orbit in n*. There
exists n € N such that Ad*(z).f = Ad*(n).f so n™'z € Gy and * € NGY.
This proves that NG is a subgroup of G and Gy normalizes IN. To show that
G N is closed it is enough to prove that GyIN is the set of x € G such that
Ad*(z).f C Ad*(IN).f = Q. The easy proof is left to the reader. g

Now let h be a (complex) polarization at f € n* and p(f,f),xf,N) the
holomorphical induced representation of IN. This representation is irreducible and
equivalent to p(f). We denote by T'(h) a unitary intertwining operator between

p(f) and p(f.b.x;. N); T(h) is an operator from H(f), space of p(f) onto H(f, h)
space of p(f, b, X N). For i C gc we define the subalgebras ¢, and the subgroups

E, D of N.
For ¢ in the space of p(f,h,xf,N) we define for all z € Gy, n € N

o(w,h)p(n) = | detn/n Ad(w)| 2 p(z~ )

In the following we denote by 7(x) the number |det, s Ad(z)| " =.
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It is clear that o(z,b) is an unitary operator in H(f,h) and we verify easily that
forne N

o(a,0)p(f,0, X, N)(n)o(z, )" = p(f, b, x;, N)(znz™?).

We define v(z,h) = T(h) " to(z,h)T(h). It is clear by the previous formula that

v(z,h) is an intertwining operator between p(f) and p(f)(“:_l), and v(z,bh) does
not depend of T'(h).

Theorem 5.4 — The operator v(x, ) does not depend of the choice of h € Pol(f).

PROOF — See [3] p. 197.

The proof is by induction on the dimension of n. After several reductions, the
crucial case is when ¢ = (h 4+ b) N n is an Heisenberg algebra of dimension 3 or
5. In this situation it is possible to write an explicit intertwining operator and to
compute v(z,h). g

We choose a polarization h at f which is invariant by every z € Gy (recall
that this is possible by the results of the section 3). Then we have clearly
v(zy,h) = v(x,bh).v(y,bh) and v defines a representation of G in H(p). We have
the following result.

Proposition 5.1 — Let K be the semi direct product of Gy and N, K =

GsxsN. Then there exists a canonical representation i1 of KK whose restriction
to N is p(f) and ji(x,n) = v(x).p(f)(n).

To build a representation of Gy /N we need to find a representation of K which is
identity on Gy N N but it is not true for f.
We now compute a representation of G’y which is equal to zz on Gy N N.

Lemma 5.5 — Gy NN = Ny.
Proor — We leave it to the reader. i

Let b be a polarization at [ € g* having all the properties defined in the section
3. We use the following notations and relations (Exercise) :

bp=hNnc; ha=hNgl, wehaveh=hy +bhy

e=e te; 0=01+02; [e2,e1] Cery [02,01] C 01
We denote by m the restriction of [ to g/ = n'.
Lemma 5.6 — The stabilizer of m in G is G;Ny.

PROOF — Let « € Gy such that z.l|;; = I|ys. Then z.l — 1 € (g7)* and since
r€Gy, vl—lentso (vl—1) € (gf +n)t.
Let X € g/ and Y € g, then [X,Y] € n then,

exp XA(Y)=1(Y +[X,Y]) = (- X.0)(Y)
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and Nyl = 1+ n/.l but nf.l = ((nf)l)L (exercise) and ((nf)l)L D (g/ +n) so
N;.l D1+ (gf +n)t. This shows that .l = n.l where n € Ny and n™'z € G|. a

We now choose [ an integral form on g.
Let q = ker f[,ngs and @ = expq. The following technical result is proved in
[3] p. 207 and left to the reader.

Proposition 5.2 — Let M = G?CGZ ;

a) [Gy,Gy] C Ny ; [Gy,Ns CQ; [GY M, C Q. Gy/Q is a nilpotent (non
connected) group and G(} /Q is a simply connected nilpotent group with center
Ny/Q.

b) if l # 0 then denote by x,, the character of M, with differential im. Then
M /ker x,, is a connected Heisenberg group with center M,/ ker x,, .

We denote Dy = DIJG;. E, = ESG;. Since Dy C D the character X; of
G extends to a character x,, of Dy and we consider now the representation
p(m, X, b2, G¢) of Gy and show the irreducibility.

Using stage induction theorem we only have to prove that p(m,x,,, b2, M)
is irreducible. By the previous proposition we can consider M nilpotent (non
connected) but M = M°G,; and the representation py = p(M, X | DY b, M) is
irreducible and independant of by (MY is Heisenberg) then we only have to prove

that p(m7Xm7 hQ?M)|MO = po-
Lemma 5.7 — p<maXm7 b?vM)|Mo = po-

PrROOF — For ¢ € H(m, x,,, b2, M) we define T, = ¢|pg0. By the definition of
the spaces of the representations it is almost evident that 7' is a unitary operator
which intertwines the two representations. g

Now we have an irreducible representation of G'y. We consider the representa-
tion (1, x,n) of K = Gy x5 N such that (m, X, ) (,7) = p(1m, xom» b, G1)(3)

-~

and we cosider the representation £(I,m) = 7i(f) @ p(m, x; ).

-~

Proposition 5.3 — The representation &(1,n;) is irreducible and for a € Ny =
G/NN, &(l,m)(a,a™t) =1d. Thus £(1,n) defines a representation £(1,m;) of Gy N
whose restriction to N is p(f).

PROOF — The irreducibility of 1 and p implies easily that § is irreducible.

It is clear that Ny = Gy N N and the kernel of the map K i G N defined
by 6(z,n) = xn is the set of (a,a™t), a € Ny.

If o € H(f,b1,N) (the space of &(I,7;)) we compute easily that, using
|dety o, al =1, (a € N)

If RS H(m7nma b27 Gf)

-1

pla~ p(@)) = plar) = p(a(z'ax)) = np(e " az)p(x)
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(this is because 2 'ax € Ny, [G¢G¢] C Ny) and now = € Gy stabilizes f so

ns(x~taxr) = ns(a) and the proposition is clear. .

By Mackey machine we have

Theorem 5.5 — If [ is an integral form on g then IndG?Né*(l, m) ~ p(l,m) is an
irreducible representation of G.

The last step is the following theorem
Theorem 5.6 — We have p(l,n;,h, G) ~ Inde'N &,m))-

The proof, long and tedious is, after some reduction, by computing an explicit
intertwining operator between the two representations. (See the complete proof
in [3] p. 212)

5.4 - THE MAIN RESULT OF AUSLANDER AND KOSTANT.

In this section we have built for every integral form [ on g an irreducible
representation of G. We remark that this representation depends of [ but also
of x, the character which extends x,|go (GY : the connected component of G}).
We denote by R the set of (I, Xl)’ l € g%, x, a character of G; whose differential is
il|g1y- The group G acts in R by x.(I,x,) = (Ad" .1, Xf) because X, isa character
of GAd* rl — .%’.Gl.

It is not too difficult to see that if (I, x,) and (', Xl/) are in the same G-orbit
of R then the representation p(1,x,) and p(l’, X, ) are equivalent.

We denote by R/G the quotient space of R by i&d*(G). A result of Auslander

and Kostant is that the mapping from R/G into G is bijective if and only if G is
type I and we have the theorem .

Theorem 5.7 — Let G be a simply connected solvable Lie group with Lie algebra
g. Then G is type I if and only if

1) The orbits of G in g* are locally closed ;
2) All form 1 € g* are integral.

The proof, which is difficult, is one of the most important of [2].



6. On the Plancherel formula

and Kirillov character formula

The aim of this section is a generalization of the classical Fourier inversion
formula on R™. This well known formula can be written as follows : if ¢ is a C*
function on R” with compact support, then

0= [ [ ewe<te dra (+)

for a suitable choice of Lebesgue measures dxr and dl on R™ and R™*.

For a non abelian Lie group G like a simply connected nilpotent group the
character  — e*<\®> may be replaced by an irreducible representation 7, but
the integral m(¢) = [ ¢(x)m(z) dz must be defined for m € G and unfortunately it
is not a number but an operator and to extend the formula (%) we need to replace
the value of the Fourier transform of ¢ at [ by the trace of the operator ().

It will be shown in this section that the map T} : ¢ — tr(mw(y)) is a distribution
on G. It is the so called global character of w. By the exponential mapping, T
becomes a distribution on g and the famous Kirillov formula gives the value of
the Fourier transform of T} oexp : it is exactly the canonical G-invariant measure
v, on the orbit €2, of 7 under the coadjoint representation of G. The Plancherel
formula is

o0 = [ | tooenl o) an) = [ wxtrieinr

where p© is quotient measure of the Lebesgue measure on g* by the action of
Ad*(G).

In fact, in these notes I will give a more general Plancherel formula. I start
from a character X; of a normal connected closed subgroup H of G (nilpotent
simply connected) and a function ¢ € D(G), then, there exists an (unbounded)

operator U, on the space H, of m € G such that 7(p)U; is a trace class operator
and tr(m(¢)Uy) is the Fourier transform of a well-defined H/-invariant measure

on Q. N (f +bt) where b/ = {X € g, f([X,h]) = 0} such that

/ p(h)x; (h)dh = / tr (7, () Us) dp(w)
H bt/ HI
(wis a Hf-orbit in f +b*) and pu is a measure on (f +b+/HY).
When H = {e} we have exactly the classical Plancherel formula and the character
formula.
We organize the section as follows :
1) - Definition of m(¢p) for 7 a representation and ¢ € D(G). Computation for an
induced representation.

2) - The C* vectors and the distribution vectors for 7™ € G.
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3) - The character formula.
4) - The Plancherel formula.

6.1.— Let G be a unimodular locally compact group, 7 a representation of G in
Hr and ¢ € L'(G) for the Haar measure ug on G. We define 7(¢) by the formula

< m(p)r,y >= / ou) < m(u)z,y > duc(u) Ve € Hy, Yy € Hy
G

and we have the notation

r(p) = /G () (u)du

It is evident that ||z ()| < ||¢|l1 for ¢ € L'(G). Now, if o, 1) are two functions
on L*(G) we see by using the Fubini theorem that for almost all g € G the integral

% (g) = /G (b gy () duc (h)

is convergent and ¢ * ¢ € L'(G). Furthermore, ¢ * 1|1 < |l¢||1]j%|l;. This

function ¢ * ¢ is the convolution product of ¢ and . Moreover if ¢ € L'(G)
we define the function ¢* by ¢*(g9) = ¢(¢97 '), g € G and the map ¢ — ¢* is
an involution of L'(G). The space L'(G) endowed with convolution product and
involution * is an involutive Banach algebra.

If ¢ and v are in L'(G) we easily prove (Exercise for the reader) that if 7 is a
representation of G we have w(¢p*1) = 7w(p)m(v) and 7(¢*) = 7(¢)*. This means

that 7 becomes a representation of the involutive Banach algebra L'(G).

6.2— THE OPERATOR W(gp) FOR AN INDUCED REPRESENTATION 1.

We suppose that 7 is an unitary representation of G induced by a character

X f € g%, of a closed connected subgroup H of G. We have for m = Indg X;

Theorem 6.1 — Let ¢ € D(G), u and v two functions in H, continuous with
compact support modulus H. Then,

< n{Q)u,v >= /G . /G | K )G i s (2) i)

where

K(z,y) = /H p(xhy~")x, (h)dpr (h).

In other words, mw(p) is an operator defined by the continuous kernel K(z,y).

PROOF — Recall that we can choose Haar measures on G and H such that for
¢ € K(G)
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/G p(z)dpc(z /G/H/ (zh)dpp (h) dpg /e (2).

So we have for u and v continuous with compact support modulus H,
< m(p)u,v > =

- /G o) < 7,0 > duc(y)

— [ o) [ uly pe@die.n(@dic(y
G G/H

= [ ety i), ()  (Fubi)
G/H

:/ /gp(x,y)u(y_l)dug(y)mduG7H(ab) (Invariance of p)
G/H

— [ ey uwdne o) @idie.n (@) (nariance of )
G/H Ja
/G . /G . /H o(z Ju(yh)dpe (h)dpe,m (y)v(z)dpe, (i)

/ o(ahy ) u(yh™dpw (h)due, g (§)v(@)dpe, m ()

[ eleby™ ) ) utw)dus (Wi, (5o dnc )
/H JG/H

_ / / K (2, y)u(y)o@)duc a1 (0)due (@), 5
G/H JG/H

Now let m be an irreducible representation obtained by the Kirillov method :
we have B = exp ) where [ is a real polarization at f. Let X;,..., Xx be a Malcev
basis for B. For ¢ € H, we denote by ¢ the function on R¥ defined by

Pty ... tg) = gp(exp(thl) i -exp(thk)).

The covariance of the functions in H, shows that the map ¢ — ¢ is bijective
and the definition of invariant measures shows that it is in fact a norm preserving
map between H, and L?(R*) where 2k is the dimension of the orbit of .

6.3.— THE C*-VECTORS AND THE DISTRIBUTION VECTORS OF 7€ G.

Definition — Let p be a representation of G in H,. We say that v € H, is a C*°
vector if for any w € 'H,, the coefficient ¢, ,, defined by

cow(g) =< p(g)v, w >
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is a C* function on G.

We denote by H2° the space of C™ vectors of p. It is clear that H7® is an
invariant subspace of H, but it is not closed for any p.

If v € HY° the map w — ¢, ,, is continuous from H, into C*>*(G), thus, for
A € E'(Q) the set of compact supported distributions on G, there exists a unique
vector p(A)v such that < p(A\)v,w >=< A, ¢y 0 >.

Lemma 6.1 — For every A € £'(G), p(MN)v € HS®, (v € HO).

ProoOF —

< plg)p(N)v, w > =< p(N)v, p(g~")w >

N / < p(x)v, plg~")w > dA(x)
G

= / < p(gz)v, w > d\(z)
G ~

= Cyw * )‘(g)

and ¢, ., * \ is a co function if A € £'(G). .

Remarks. 1) If A is a function in D(G), then this shows that p(A)v is a C™
vector ;

2) We easily check that if A and p are in £'(G) we have p(A * u) = p(A)p(u),
so, we have extended p to a representation of £'(G).

In the particular case of an irreducible representation 7 of a nilpotent Lie group
G (simply connected), we have a useful structure theorem for H, (cf. [5]).

Theorem 6.2 — Ifmw € G is realized in the space L2(R™) by using a Malcev basis,
the space H° is the Schwartz space S(R™) and if ¢ € D(G), w(p) is a continuous
operator from S'(R™) (the space of tempered distributions) into S(R™).

We can now use the kernels theorem to state that m(y) is defined by a kernel
kr € S(R™ x R™), but we have seen that this kernel is

K(z,y) = /H o(xhy ") dpe (h)

Thus, in the realization of 7 in L?*(R™), this function is in S(R™ x R™).
Furthermore, the kernels theorem also states that any continuous operator U from
S(R™) into S’'(R™) is defined by a kernel ky € S'(R™ x R™). So, for such an U,
we have an other operator 7(¢) o U from S(R™) into S(R™).

The following proposition is the key of the Kirillov character formula.

Proposition 6.1 — Let T be a nuclear operator from S'(R™) into S(R™) with
kernel Kr € S(R™ xR™) and S an operator from S(R™) into S’'(R™) with kernel
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Kg € S'(R™ x R™). Then, T oS is a nuclear operator from S(R™) into S(R™)
and the trace of T o S is

tI‘(TO S) =< KT(I',y),KS(y,x) >

PROOF — It is clear that T0.S is a continuous operator from S(R™) into S(R™)
so it is nuclear. We have K7 € S(R™ x R™) ~ S(R™)®S(R™) so there exists
families of functions ¢; € S(R™) and 9; € S(R™) such that

Kr(z,y) = Z tipi(z)i(y)

where the series is convergent in S(R™ x R™).

We denote by ¢ ® 1 the rank one operator defined by ¢ ® 1 (v) = (v,v¥)p. It is
a trace class operator and tr(¢ ® ¢) =< @, 1) >.

Now, if v and w are two functions in S(R™) we have

< ¢1®E.U,w> =<< 0, Y > @i, w >
=< U,l/}i >< ¢i7w >

~ [ [ vtwyetee) dyds

This shows that ; ® 1; is defined by the kernel ¢;(z)v;(y) and clearly

o
<Tv,w >:Zti < ¢¢®Ev,w>
i=0
S0,

ToS() =Y tip; ®hi(Sv)
=0

Y ti< Sui >

1=0

= Zti <, 8% > ¢
i=0

oo
=) tipi ® S¥i(v)
i=0
an we can compute the trace of T'o S

(T oS) =) titr(p; @ 5

1=0

00
1=0
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but S* is defined by the kernel K¥(z,y) = Ks(y,z) so

tr(T o S) = Zti < wi(z)Yi(y), Ks(y, =) >

= (Y tipi)ii), Kslo) )

=< KT(-T,Z/), KS(Z/,ZU) >

and the proof is complete. g

We want to apply this result to a special operator U € L(S(R™),S’(R™)). We
recall that b is such that f([h,h]) = 0 and b is an ideal of g. For g € g we define

b ={X € g,9([X,b]) = 0}.

Lemma 6.2 — 1) Forallgc f +bt, b/ =p9;

2) for all g € f+bt, there exists a real polarization b, at g such that
hcCb,Chl;

8) forallg € f+bt, Ad*(G).gN(f +b*) = Ad*(H7).g, where H' = exph/.

ProOF — 1) If X ¢ gand Y € b then for g € f +bL , g([X,Y]) = f([X,Y]);
2) Let 0 =ap C -+ C a, = g be a Jordan-Holder sequence of g such that b is
one of the a;. Then if

ai(gi) = {X €ai, g Cli([X7 al]) = 0}

the polarization b, = >""" | a;(¢;) at g is an answer to the problem ;

3) It is clear that Ad*(H?Y).g C Q, N (f + bhT) where Q, is the orbit of g € g*.
Conversely, if h € Q, N (f + h), there exists x € G such that h = Ad* z.g. But
fly = hly = (Ad" z.g)[y = Ad"(z).(gly) = Ad"(2).(fly). So, x € H = HY. 4

We denote by B, the subgroup exp b,.

Proposition 6.2 — Let ¢ and 1 two C° wvectors for m,, the Kirillov represen-
tation defined by g € f +ht. Then, oy is By-invariant and the formula

<%%¢>=/ o(x)Y(x)di

H9/B,
where dx is the H9-invariant measure on HY9/B,, defines in the realization of m
in L*(R™) a nuclear operator U, from S(R™) into S'(R™).

Proor — We choose a Malcev basis of b, such that the vectors Xi,... X}, are
in h/ and the others form a malcev basis of h/ in g. The operator U, becomes U,

< Un, @, >:/ Gt1, .o by 0, 0Vh(ty, .oty O, .., 0)dty - - dty,
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and the result is clear. i

Now we have to choose carefully a basis of g (which depends on g € f + h*). We
denote by By the bilinear form By(X,Y) = g([X,Y]). We deduce a nondegenarate
form on h7 /(g(g) +b) and on g/g(g). Since b, is a maximal isotropic subspace for
By, we have a duality between g/b, and b,/g(g). We denote by p the dimension
of b,/h and by k the common dimension of g/h7 and (g(g) + h)/g(g). We choose
a basis of g

Xiyeooy Xiyhay ooy hgy€1,000 5 €py€piay ey €2p, iy, ooy hag

such that

— X1,..., X is a basis of g(g) ;

— Xy,..., Xy, hy,... , hg is a basis of g(g) + b ;

— X1,..., Xy, ha, ... hy, e1,... e, is a basis of by ;

— X1,..., X, hay oo hg, €1, .. €ep, €pit, ..., €2y 1S a basis of hf
and such that if ¢ < k, j < k, By(hi,hgy;) = 0;; and if ¢ < p, j <
P, Bylei,epij) = dij-

Now we have measures dh = dX;---dX;dhy---dhg on g(g) + b, db =
dhdey ---de, on by, dy = dbdepy1---dez, on f)f and dr = dydhg41---dhog
on g, and measures on the quotient spaces g/h’, b//b,, b,/(h + g(g)) and
(b 4+ g(g9))/a(g). This gives corresponding measures on groups and quotients on
G by the exponential mapping. If F is a vector subspace of g with a Lebesgue
measure, we fix on E+ the Lebesgue measure which is the Fourier transform of
the Lebesgue measure on F.

We denote by w, the H f-orbit of the restriction ¢(g) of g to h7. We define the
canonical measure dw, on wy by the form

1 1
)= —- B, A--AB, =
Y9 T myppl 9 9= (2P

* *
61/\"'/\62p

At the end, we choose on Q,N(f + h1) the measure dQ), product of the measure
dw, and of the measure dh* on (h/)L. Thus, df, is defined by

1
T ANes, ARy A AR,

Vg = —(27r)P+k el

It is now possible to formulate the character formula.

Theorem 6.3 — Let g € f + bt and 0 € D(G). Then
tr (mg(0)Ux,) = / (0 0 exp)™ (1) dQ,(1)
QgN(f+b+)

where (oexp)”™ is the Fourier transform of @ oexp and dQ, the canonical measure
defined by v,.
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PrROOF — Let m = w4 and U = U, until the end of this proof. By the previous
computations of the trace of 7(0)U we have, because U = U*

tr (7(0)U) = < Kyp(z,y), U >

= / Ko(z,x)dt
HY/B,

where Ky(x,y) fB (xby =1 )X, (b) db (x,y) € G x G by a previous result
(note that Hy = H ) Thus,

0(exp(Adz.Y)) x,(expY) dYdi

/ / 0(xbx™")x, (b) dbdx
H/B,

:/ / (foexpoAdz)(Y)e' <9 Y>dydi

H b

:/ (00 expoAdz)’ (g + Ddldi
H

= |det(Adz)~' [ (Qoexp)(Ad* z(g+1))dld
Hf/B, bt

— / / (60 exp) (Ad* 2(g + 1)) didé
HY/B, Jo}

(because det(Adz) = 1).
But b, verifies the Pukanszky condition so g + b; = Ad" B,.g. The map-

ping Ad* from B,/G(g) on g + bgL is bijective and transforms the measure
dhy ---dhgdey - - - dey in the measure dhy_ - dh;lkdezle e degp S0,

NAd* = o exp)” “(x _
/bgL(HoeXp) (Ad x.(g+l))dl—/Bg/G(g)(9 D) (Ad" (21).9) G b

Now we have

tr (r(0)U) = /Hf/Bg /BQ/G(Q) (6 0 exp)” (Ad*(zb).g) ﬁ dbdi:

1
:/Hf/G(g)(eoexp) <Ad @) >Wd

but Q, N ( f+ht)=Ad"(H’).g and Ad" carries the H/ —invariant measure on
H'/G(g) in def - - - de,dh} - - - dhj so, we have

i (r(6)U) = /Q IR CGERUEC
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and this is our character formula. i

Corollary 6.1 — For every § € D(G) we have

tr (w(9)) = /Q (6 0 exp)™(1) dQy, (1)

g

where dS), is the invariant measure on ), defined by mBg A - A By, the
exterior product of p forms By with 2p = dim €),.

PROOF — We have only to apply the previous theorem with h = {0}. g

Corollary 6.2 — The previous corollary gives a new proof of the injectivity of
the Kirillov mapping

ProoF — If p(f) = p(g) we have tr(ms(6)) = tr(my(6)) for all § € D(G) so,
by the corollary above this distribution has a Fourier transform supported by €,
and also Qf so, Qf =, g

6.4.— THE PLANCHEREL FORMULA

We denote by r the maximum of the dimension of g(f) for f € g*. The number
n — r is the maximum of the dimension of the G-orbits in g* and the maximum
of the rank of the map X — ad* X.g for g € g*.

By fixing a basis on g and a basis on g* this map is a n xn matrix the coefficients
of which are linear polynomials in the coordinates of g. So, if we consider a minor
m(g) with rank n — r, nonzero on g*, we see that the set O of g € g* such that
det (m(g)) # 0 is a Zariski dense open set of g* on which the dimension of g(f)
(and the dimension of orbits) is constant and maximum. By the same proof there
exists a set Oy C f+ bt which is Zariski dense in f+ ht and on which the
dimension of g(f) is constant. Moreover g(g) N b is independant of g € f + h*
(Exercise).

Now we have a to use a lemma from Duflo-Rals in [9].

Lemma 6.3 — Let dl be the Lebesgue measure on g* and d), the canonical G-
invariant measure on the orbit Qy = Ad*(G).g. Then, there exists a measure p
on the quotient space O/ Ad*(G) such that for each integrable or positive Borel

function ¢
[ ewa=[ [ ewawaup

From this lemma we deduce an other result.

Lemma 6.4 — There exists a positive Borel measure dy on the space (f + b))/ H/
of orbits of the group H' in f + b+ such that for each integrable or positive Borel
function on f + bt

N dl = lngld l
/Wsoo /O » /ng(fww() 1) du(l)
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PROOF — We have to consider the group HY with Lie algebra hf. Let
a = hNker(fly). It is an ideal of b/ which is contained in ker g for all g € f + b+

(Exercise), so, h/a is central in h7 /a. We denote by (béc )* the set of linear forms
on b/ /a the restriction of which to b/a is equal to f. So by the previous lemma

we have a measure i on (h1)* /H such that

/ (1) dl = / / (1) duog ()
bl (w)/HT JHI.(g|b])

where dw, is the the measure on the orbit Ad*(HY).(glys) C (l‘){)* (here is
an identification of Ad*(HY)(glys) and its image in (b{)* because H stabilizes
(9lps)). But we have d0, = dwydh' where dh'- is the Fourier transform of dh
on hf. Tt is a measure (Lebesgue) on h/. So, didht is a Lebesgue measure on
(02)* x (h7)F =~ ((8/9)|(h/a)) " Now it is an easy computation to state the result
by using the map g — g/a. g

Theorem 6.4 — (Plancherel formula). Let Oy the open set of f+b> defined
previously. Let dy the measure defined in the previous lemma and U, the operator

associated to m € G then, for 6 € D(G) we have

[ o man= [t (0)0)dul)

Oy/HY

PrROOF — Let I(0) = [}, H(h)xf (h) dh. By using the classical Fourier transform
we have

I1(0) = [ O(expY) e/ Y) gy

/
[ @een) s na

1

and by the previous theorem :
-/ (010 exp)" (1) d (1) du(l)
Oy /HI JQ0(f+b+)
and now by the character formula :
10)= [ talr 0L )du()
Of/HI

which completes the proof. g

Exercise 6.1 — Compute the Plancherel Formula for the Heisenberg group with
dimension 2n + 1.

Prove that for these Heisenberg groups the results in this section are true
without the hypothesis of H normal in G.



7. A survey on representation theory

for non type I solvable Lie groups.

Let G be a connected, simply connected solvable Lie group which is not type
I. There are two obstructions to build irreducible unitary representations by the
method described in the section 5.

1) A linear form g € g is not always integral ;

2) The G-orbits in g* are not always locally closed.

We will consider in this section two clasical examples of such groups and

we describe for these groups the most important features due to L. Pukanszky
([20],[21] and [22]).

7.1- TWO EXAMPLES

1- The Mautner group
The Mautner group is the five dimensional connected simply connected Lie

group G whose Lie algebra is given by a basis e, ..., e5 and the nonzero brackets :
[e1,e2] =e3 ;5 ler,e3] = —e2
[e1,ea] =fes 5 [e1,e5] = —fey

where 6 is an irrational number.

This Lie algebra is the semi direct product of R and the abelian Lie algebra R?.
Of course, we have G = exp(Re;) exp(®;_;Re;). There is another realization of
G as a semi direct product R x, C2. The action of R on C? is given by

t.(z1, 20) = (e 21, eietZQ) teR, 21 €C, 20 €C
This group is not a regular semi direct product (exercise 7.1), so we cannot apply
Mackey theory to compute the dual space of G. We will prove that this group
is non type I by using the Auslander-Kostant’s caracterization of type I groups
described at the end of section 5.

a) Computation of orbits in g*.

5
Set X = Zaiei € g. We realize ad X by a matrix

i=1

0 0 0 0 0

a3 0 —Q1 0 0

ad X = — Q9 a1 0 0 0

90&5 0 0 0 —‘90&1
—Oay O 0 Oovq 0
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and we obtain Expad X = Adexp X

1 0 0 0 0
as—o COSCO:;JFOtS Sin oy coso; —sinoag 0 0
Adexp X = aa=az Smgras <22 sinag cosag 0 0
vg—ovg cos By +as sin Oag 0 0 cosfa; —sinfaq
i
as—og sin fag —as sin fog 0 0 sin 9041 COS 9&1

g

It will be useful to write x = aje1, and y = aseq + - -+ + ases. We have

1 0 0 0 0

0 cosay; sinog 0 0
Ad*expr=| 0 —sina; cosaq 0 0

0 0 0 cosbay  sinfay

0 0 0 —sinfay;  cosBoy

and by using (ady)? = 0 we have

1 —a3 ay —0Oas 6Ooy
0 1 0 0 0
Ad"expy=|[0 0 1 0 0
0 O 0 1 0
0 O 0 0 1
These matrix are written in the dual basis e, ..., ef

Proposition 7.1 — The orbit of g = e3 + e is not locally closed.

Proor — With the previous notations we have
expxexpy.g = (g + 0ay)e] + sinages + cos age; + sin(faq ey + cos(fay)er

This shows that the trace of the orbit in the plan P = Re} @ Ref is obtained for
as + 0ay = 0 and oy = 2km, k € Z. So, the trace of the orbit is the set

S = {sin(2k0Om)e; + cos(2kOm)e; ; k € Z}

and this set S is not locally closed because 6 ¢ Q so its closure is a circle C' and
S is not open in C. g

This result and theorem 5.7 show that G is not type I. We now look at the
integral forms. We have g/ = Res @ Res ® R(fey — e4) and (G)) = expg?. To
compute the stabilizer G, of g, we set u = expzexpy and we see that v € G if
and only if as + 0oy = 0, a1 = 2k7 and Oy = 2k’'m where k and k' are integers.
Since 6 is not a rational number, we have a; = 0 so G is connected. It follows

that the form g is integral and there is only one class of irreducible representations
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obtained by Auslander-Kostant method described in section 5 : it is my, = Indg Xg
where K = exp(®°_,Re;) and X, is the character of K corresponding to gle.

Exercise 7.1 — Show that the Mautner group is not a regular semi direct product
of exp(Rey) and exp(P;_,Re;). Use the realization in R x, C? with the action of
R on C? given by t.(z1,20) = (e21, €2) teR, 21 €C, 2, € C.

Exercise 7.2 — Verify that every g € g* is integral but G, is not always connected.
For instance, prove that G.; = exp(27Ze; ) exp(Rey © Rey © Res).

2— The Dixmier group

This group is given by its Lie algebra g which is seven dimensional. Let ey, ..., e7
be a basis of R”. The nonzero brackets are :

[61762] =e€e3 [61764] =e€5 [61,65] = —€4

lea, el =er ;5 [ea,er] = —eg

This algebra is the semi direct product of the Heisenberg algebra £ = ©?_; Re;
and the abelian Lie algebra b = @Z:4Rei so, G = exptexph = exphexpt is the
simply connected Lie group with Lie algebra g. The center of g is Res and its
greatest nilpotent ideal is ®IRe; = [g, g] and is abelian. It can be shown that g is
a regular semi direct product of exp £ and expbh ([8]).

a) Computation of orbits in g*.
Let X = 21'7:1 f;e; € g. The matrix of ad X is:

0 0 0 0 0 0 0
0 0 0 0 0 0 0
-6 6, 0 O 0 0 0
adX =] 65 0 0 0 -6, 0 0
-6, 0 0 6, O 0 0
0 6 0 0 0 0 —06s
0 —6 0 O 0 6 0

In the following, we set x = #1e1 + O2eq + O3e3 and y = Oseq + O5e5 + Ogeg + Orer.
We can then compute Adexp = Expad z:
Expadz.e; = e; — Oaeq Expadz.(es +ies) = e (eq + ies)
Expadz.ea = €5 — O1e3 Expadz.(eg + ie7) = e 2 (eg + iex)
Expadz.e3 = e3

We can write the matrix of Ad" expz :

1 0 6 0 0 0 0

0 1 -6, 0 0 0 0

0 0 1 0 0 0 0
Ad*expzr=]0 0 0 cosf#; —sinb, 0 0

0O 0 O sinf; cosfy 0 0

0O 0 O 0 0 cosbly —sinfy

0 0 O 0 0 sinfy;  cosfy
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and by a similar computation :

1 0 0 —-6; 6, O 0
1 0 O 0 —0; 6
1 0 0 0 0
Ad*expy = 1 0 0 O
(0) 1 0 0
1 0
1
We denote as usual by {e7,...,es} the dual basis of {e1,...,er} in g*. It is

easy to show that for any f € g*, the coadjoint orbit G.f of f is locally closed, so
the first condition of theorem 5.7 is verified. We now prove that some orbits are

not integral.
Proposition 7.2 — The linear form g = e} + e} + e is not integral.
PrOOF — We first compute stabilizers. We have :
(expzexpy).g = (02—05)e] —(01+07)e5+e5+cos 01 e +sin 01 e; +cos fze;+sin Hoer
(22)
Thus, it is clear that the orbit is homeomorphic to R? x T2. On the other hand,
we compute easily

g7 =Rez ®Res ®Reg ; Gy = exp(Res ® Rey @ Reg)
From (22) we deduce that expxrexpy € G if and only if

01 € 277 ; 92—65:0
0, €277 : Oy +6.=0

so Z € G, if and only if it can be written

Z = exp(0se3) exp(2kme; + 2k'mes) exp(2k’mes — 2kmer) exp(fieq + Ogeq)
where k, K eZ ;o O3, 04,06 €R

But exp(2kme; + 2k'mes) = exp(2k’mes) exp(2kmer) exp(fhes) where 65 € R.
Furthermore, the two elements exp(2kme;) and exp(2k’mes) are commuting so
Z € G, if and only if :

Z = exp(0}e3) exp(2k'mes) exp(2k'wes ) exp(2kme; ) exp(—2kmer) exp(fseq + Oep)
= exp(fjes) exp (2k'm(e2 + e5)) exp (2km(e1 — e7)) exp(Baes + seq)
It is now clear that

G, = exp (2nZ(ea + e5)) exp (27Z(e1 — e7)) exp(Res @ Rey @ Reg)



On non type I solvable Lie groups — 69 —

Now let ég be the kernel of the restriction of x, to (GY) (connected component
of the neutral element of G,). This group is ég = exp(R(e3 — eq) D R(eg — e4)).
At this step, we have to use a first result of L. Pukanszky in [20].

Proposition 7.3 — Let g be a linear form on a solvable Lie algebra g . With
the previous notations, x, extends to a character of Gy (or equivalently g is an

integral form) if and only if the quotient group G4/Gg is abelian.
To use this proposition we consider another group 59 : it is the pullback image

of the center of G,/G, in G4 by the canonical projection.

Exercise 7.3 — Prove that
G,={z€G,; zar ta ' € G Vae CO;g}

and (c:lr’g C 69.
We show that Eg # G,. Let z and 2’ be two elements of G,

z = exp(f3e3) exp(2kme; + 2k'mwes) exp(2k’mes — 2kmwer) exp(fieq + Osee)
2" = exp(f3e3) exp(2kimey + 2kjmes) exp(2k)mes — 2kimer) exp(Qyeq + Ogeq)

By using the formula exp z exp y = exp(Exp ad x.y) exp x, we see that elements
of exp(2nZe; + 2nZes) and exp h are commuting, so

zz' = exp(bhes) exp(2kme; + 2k'mes) exp(2k1mer + 2k'mes) exp(fses)
x exp(2k'mes — 2kmes) exp(2kim — 2ky1mer) exp(Oaeq + Oseq) exp(0)eq + Ofeq)

Furthermore,

exp(2kme; + 2k'meq) exp(2k1me; — 2k'meg) =
exp (2kimey + 2k mey + dm?(kk| — K'k1)es) exp(2kmer + 2k'mes)
and at the end
22 = exp(fhes) exp (2kimey + 2k mes + 4m2 (kK] — K'kq)es)
x exp(2kimes — 2kimer) exp(6)eq + Oeq).2
It results from this that 2’ € G, if and only if for all k, k' € Z

Z = exp(2k ey + 2k mey + 4n? (kK| — k'k1)es) exp(—2kime; — 2k}es) € Cov'g
But, using the formula giving the product in exp £ (Heisenberg group), we have

Z = exp (4n*(kk} — K'k1)es)

Since exp e3 & (??’g, Z e ég if and only if kk} — k'kq = 0 for all k and k" in Z, thus,
k1 =0, kK =0 and Eg = Gg as we expected. The form g is not integral. g
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If we look carefully at the construction of the section 5, we see that to build
a factorial or irreducible representation of a solvable Lie group G, it is enough to

[}
get a representation (factorial or irreducible) of G; whose restriction to G, is a
multiple of x . L. Pukanszky has shown that there exists factorial representations
whose restriction to GS are multiple of x,. The complete result is the following :

Proposition 7.4 — Let G be any connected, simply connected solvable Lie group
and g € g*. Then the character x, extends to a character X, of Gy4. The

representation o, = Indggyg is a type I or type II factorial representation of
9 —
G,. Furthermore it is type I if and only if G4/G is a finite group.

This proposition gives rise to two descriptions of a representation of G :

1) The first one by holomorphical induction as in section 5. We choose a good
polarization b at g and let D = Doég. The character Y, extends to a character of
D denoted by x s yet. Itis clear that we can form the holomorphical representation
Pg = il’ld(g, hJYg)'

2) To state the second form, let N = [G, G]. The Lie algebra of N isn = [g, g].
This group is a simply connected nilpotent Lie group (see section 3), so we can
form the Kirillov representation 7 corresponding to the orbit of g|, in n*. A result
of L. Pukanszky says that K, = N Eg is the greatest closed subgroup of G' such
that 7 extends to a representation 7™ of K. We can Ehoose the represntation 7
such that its restriction to Eg is a multiple of X, € Eg. We can now form the
representation pj = Indli .

Proposition 7.5 — We have p; ~ p’g and this representation is a factorial

representation which have the type of 04 = Indgg X, 50, by the previous theorem,
- g

it is type I if and only if G,/ G is a finite group.

If we apply this result to the Dixmier group and the linear form g = e5 +e} +¢€§
discussed above, we see that G, = G’g C N, K; = N and since G;/G, is not a

finite group, the representation p = Indf] (mq), ) is a type II factorial representation.

7.2— THE GENERALIZED ORBITS

For general simply connected solvable Lie groups, the factorial representation
pg is not the best one. For instance, it has not good properties for Plancherel
formula. The “good” representation is somewhat more subtle: we need to pack
the previous factorial representations associated to orbits for all the “bad” orbits
(not locally closed), closed to one of them. We now describe this “package”.

Let K be a locally compact separable group acting on a metric space X. We
recall that the action is said to be regular if every orbit is locally closed (see the
end of section 1). We have seen that if the orbits in g* of a connected simply
connected solvable Lie group G are not all locally closed, this group is not type I.

Definition — Let G be a locally compact group, X a topological space and
(k,z) — k.x a continuous action of K on X. We define the relation R on X by
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TRy <= K.z = K.y
where K.x and K.y are the closures of the K-orbits of x and y.

Exercise 7.4 — Prove the following lemma.

a) If Y C X such that Y is locally closed and K-invariant, the R-class of any
x €Y is contained in Y.

b) If the orbit K.z is locally closed, then the R-class of z is the K-orbit K.z.

[b) is implied by a)].

L. Pukanszky has shown that if K is a solvable group (connected and simply
connected), then the R classes are locally closed. More generally, we have the
following theorem.

Theorem 7.1 — Suppose there exists a Lie group K containing K such that
[K K] C K and whose action on X s reqular. Let x be an element of X, ) its
R class, K.z the stabilizer of T in K. Then,

1) K.y does not depend on y € K.z and we have ) = (Kgfc):c

2) Q is locally closed and is homeomorphic to the homogeneous space K (Q) /K ().

If G is a solvable group, we can choose for K the connected simply connected
Lie group G whose Lie algebra is an algebraic Lie algebra g containing g and such
that [g, 8] = [g, 9] = n. Until the end of this section we suppose that K = G.

We denote by R(g*) the set of {(g,%) ; g € g%, x € Gy4}. The action of G
on this space is the natural action on g and x. The topology on R(g*) is given
by convergent sequences : (gn, Xn) — (g, %) if and only if g, — ¢ and for all
cn € G, such that ¢, — ¢ € G, xn(cn) — x(c). The G-orbits in R(g*) are
the generalized orbits. As we said before, the generalized orbits are locally closed.

It is not difficult to see that the groups H = égN, H = G,N, H = agN
and H = GON are invariant for g in O. They are closed subgroups of G with

connected component equal to H® = GON We denote by H the set of characters
of H equal to 1 on HO.

Exercise 7.5 — Prove that G/GY ~ H/H° and (G,/GY))" ~ H.

Theorem 7.2 — Let O be a generalized orbit of R(g*). There exists a non zero
positive G-invariant Borel measure on O, unique up to a multiplicative scalar.

PROOF — Let p = (g,x) € O. We use the previous notations, and we denote
by J the closure of ((G x {1)(G x ﬁH)p)o in G x HH). By what preceeds we
know that O is homeomorphic to .J/.J, where the G action on O is the action of
G x {1} on J/J,. Since J, contains (G x ﬁI_H)p, the closure of (G x {1}) x J, is
also J-invariant so, if there exists a G-invariant measure on O, it is unique up to
a multiplicative scalar.

We now prove that such a measure exists. It is enough to show that the
restriction of the modular function of J to J, is equal to the modular function
of J,, that is, for all a € J, : ‘det(Ada|j)| = |det(Ada|jp)‘ where j is the Lie
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algebra of J. But we have [j,j] = [g,9] = n so, |det(Adal;)| = |det(Adaly)|
and ‘det(Ada]jp)} = |det(Ad a|jpmn)| and since [g(g),8(9)] C n(g) we have
| det(Adalj,nn)| = | det (Ad a|g(g))}. It is enough to verify that |det(Adaly)| =
| det (Ad alg(g))| or equivalently | det (Adalg(y))| = 1. We know that a stabilizes
g so also stabilizes the non degenerated skew bilinear form on g/g(g) defined by
B(u,v) = g([u,v]) and this completes our proof. g

7.3.— THE CENTRAL REPRESENTATIONS OF PUKANSZKY

By a previous proposition, for each p = (g,x) € R = R(g*) we can build
a factorial representation m(p) of G which is type I or type II. Just before, we
have defined a positive G-invariant measure pp on each generalized orbit O C R.
We shall prove now that the set of representations 7(p) is a po-measurable field
of representations and that the representation F(O) = f@ (g, X)dpo(g, x) is
factorial and we shall give conditions such that this representation is type I.

Let po = (g0, x) a fixed element of O. Then, with the above notations O = J.py.
Let b be a polarization at gy which verifies all the “good” conditions and invariant
under the action of J,,. For p = a.py (a € J), let be h, = a.ho which is a
polarization at g because ho is invariant under J,. Thus, we have defined a field
of polarizations and with these polarizations, a field of concrete representations

on O :
T(p) =p(9,9p,x) pP=1(9,x) €0

We now consider a borel section s from O into J, that is a borel map such
that p = s(p).po. This is possible because J/J, is homeomorphic to O. we
put 77(p) = s(p).T(po). It is clear that T’(p) is equivalent to T'(p). To prove
that the field {T'(p)}pco is po-integrable, it is enough to prove that the field
{T"(p)}peo is po-integrable. Since the space H,, of T"(p) is equal to H,, , the
space of T'(pg) for all p € O, so it is po—measurable. Now it is enough to verify
that the field of representations {T”(p)},c0o is po—measurable, that is for all u
and v in ‘H,, and z € G the function : p — (T7"(p),(u), v) is measurable. But
as we have T"(p), = T'(po) (s(p) 'zs(p)) we see that this is a borel function hence
a measurable function.

So the field {T"(p)}peco is pro—integrable and as f® T'(p)duo(p) depends only
on the class of the T"(p) we can write

D
F(O) = / (g, x)dpo (g, x)

Theorem 7.3 — The representations F(O) are factorial representations.

PROOF — We write T' = f@ T(p)duo(p), W for the space of diagonal operators,
W' the commuting algebra of W, R(T') the Von Neumann algebra generated by
T(G) and Z(T) its center. Since for each z € G, T'(x) € W', we have R(T) C W".
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Thus, if A € Z(T) we have A € W/ and A is a decomposable operator.

[©)
A= / A(p)dpo(p)

We have to verify that A is a scalar multiple of identity operator. If x € G
then, T'(z)A = AT(z) so T(p).A(p) = A(p)T(p). for pp-almost all x. Using
a counting dense subset of G and changing if it needs A(p) on a pe-null set,
we have T(p).A(p) = A(p)T(p), for all p € O and z € G. Thus, for all
pe O, Alp) € R(T(p))/. Since A € R(T) we can find a sequence (A,,) of linear
combinations of operators T'(x), x € G such that A, — A according to the
strong topology. We now replace A,, by a subsequence such that A, (p) — A(p)
strongly for almost all p or all p if we change A, (p) on a pp-null set. We have
An(p) € R(T(p)) so A(p) € R(T(p)). At last, A(p) € Z(T(p)) and since T(p) is a
factorial representation, we have A(p) = ¢(p)I, where I, is the identity operator
in the space of T'(p).

We have now to show that ¢ is constant almost everywhere. Let z a fixed
element in G. The representation T'(z.p) is equivalent to 7'(p) and there exists an
unitary operator U from H,, on H, ,, such that T'(x.p), = UT(p),U ! forally € G
so, for all n € N, A, (x.p) = UA,(p)U . By considering the limit when n — oo
we see that A(z.p) = UA(p)U ™1, that is p(x.p) = ¢(p) for all x € G. This shows
that ¢, which is a borel function, is also G-invariant on O, but the action of G
into O is ergodic (because the action of J/J, is ergodic since (G x {1})J,, is dense
in J) so ¢ is a constant function. g

Proposition 7.6 — The representation F(Q) is type I if and only if
1) O is a G-orbit ;
2) For one p = (g,x) € O, thus for all p, G,/G, is a finite group.

PROOF — If the conditions are satisfied, F(O) = f@ (g, xX)dpo(g, x) where
O is a G-orbit, so all the representations m(g, x) are equivalent and type I (by
theorem 7.5). A wellknown result on Hilbert integrals (cf. [16]) say that F(O) is
also a multiple of the same representation 7 (g, x).

Conversely, if F(O) is type I it is a multiple of an irreducible representation o
and another wellknown fact on Hilbert integrals (cf. [16] Th. 2.7 p. 201) say that
(g, x) is type I for almost all (g, x) € O and factorial representations multiple of
o. We deduce from this that the measure pup is concentrated on a single G-orbit
Q and the second condition is verified. Now, if O contains an orbit Q' # ), there
exists a € J such that a.Q = Q' and a.uo would be a G-invariant measure on O
concentrated on €2’ hence not a multiple of up. By theorem 7.2 this is not possible
and this shows that O is a single orbit. g

We now state without proof some others important results of L. Pukanszky
about these representations F(QO) for O € R(g*).
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Theorem 7.4 — Let G be a simply connected solvable Lie group.
1) There exists a positive Borel measure p on a Borel space X (the space of
classes of factorial representations of G) such that

&5}
Ac:([; F(O,)dp(x)

where X\ is the left regular representation of G and except on a p-null set the
representations F(Oy) and F(O,) are not equivalent for x # y. This is a weak
form of the Plancherel formula (cf. [20]).

2) If we denote by F(O)* the representation of the C*-algebra of G, correspond-
ing to F(O) and by Ker(F(O)*) its kernel, the map O — Ker(F(O)*) is one to
one from the set of generalized orbits onto the space of primitive ideals or kernels
of irreducible representations of the C*-algebra of G(cf. [22]).

3) The representations F(O) are semi-finite, this means that they are type I or

type II (cf. [21]).

Exercise 7.6 — Let G be the Mautner group with the notations of the begining
of this section. Let g = e3 + eZ, let O be its generalized orbit and let H be the
connected group with Lie algebra h = [g, g] = ®2_,Re;. Show that

2T 2w D
ﬂm:éé A Indg (X, .. ., Jd0dagdan

where g3 0,0, = B€] + sinage; + cos aje; + sin ape) + cos apes.
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