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On representations of simply connected

nilpotent and solvable Lie groups

Introduction

In these notes following a course I gave during a visit at Pondicherry University
in 1992, I write the main results of the theory of representations of simply
connected nilpotent Lie groups (the Kirillov’s theory), and some generalizations
to simply connected solvable Lie groups.

After the basic properties of unitary representations of locally compact groups,
especially construction of induced representations and “Mackey’s machine” (Sec-
tion 1), I state the classical results on Lie groups and Lie algebras (section 2).

In section 3, I give the constuction of polarizations in solvable Lie algebras
and in section 4 the description of the the dual space of connected nilpotent Lie
groups, using the famous orbit method of A.A. Kirillov. For general solvable Lie
groups, I write in section 5 the construction of irreducible holomorphical induced
representations. This shows the use of complex polarizations.

The section 6 is devoted to a computation of the Kirillov’s character formula
and the Plancherel formula for nilpotent Lie groups and also a generalization to
some homogeneous spaces of nilpotent Lie groups.

In the last section, I write a survey (and some proofs) of the main results of
L. Pukanszky about solvable Lie groups.

The results given in these notes have been discovered during the years 1960-
1980. The most important contributions are due to A.A Kirillov, J. Dixmier,
P. Bernat, M. Vergne, M. Duflo, L. Pukanszky, L. Auslander, B. Kostant. It
is an introduction for topical research. At the present time, mathematicians
are concerned with problems about algebraic groups, homogeneous spaces of Lie
groups (Plancherel formulas, differential operators . . . ).

The results in these notes are well known and the proofs given are not new,
except for a part of section 6. I have used lectures or books among others, M. Räıs
[23], P. Bernat and Al. [3], A.A. Kirillov [14], P. Torasso [24], L. Corwin and
F. Greenleaf [5].

I have given many examples in low dimensional Lie groups, and many results
(more or less easy) are left in exercises.

I am grateful to Miss V. Gayatri, who attended my lectures, for a carefull
reading of a first version of these notes and a lot of remarks and corrections.



1. Basic facts on unitary representations

In this section G is a locally compact group which is separable. We give,
almost without proofs (but with references to litterature), classical results on
representation theory. A good introduction for this theory is G.W. Mackey [16] or
J. Dixmier [7]. For an abstract, you could read the chapter 1 of [1].

An unitary representation π of G in an Hilbert space H is an homomorphism
from G into the group U(H) of unitary operators on H and such that for every
v ∈ H the map

G −→ H
g Ã π(g).v

is continuous. We assume in these notes that the Hilbert spaces are separable
which is not a serious restriction since it is known that an irreducible unitary
representation of a connected Lie group has a separable space. It is also a well
known result (see [1]), that the continuity of the above map follows from the
measurability of the map g −→< π(g)v, w > for all v and w in H.

SOME BASIC DEFINITIONS

1.1.– Let π be an unitary representation of G in H and let V ⊂ H a closed
subspace which is invariant by every operator π(x) for x ∈ G. This defines a
new representation (π,V) in V. We say that it is a subrepresentation of π. It is
immediate that V⊥ is also π(G)−invariant, so it defines an other subrepresentation
of π.

1.2.– A representation π is said to be irreducible if it has no subrepresentation
other than the trivial ones. There is an other way to say this property: let π
and π′ two representations in H and H′ respectively. Let T be a bounded linear
operator from H into H′. The operator T is said to be an intertwining operator
between π and π′ if we have the relation

T ◦ π(x) = π′(x) ◦ T

for all x ∈ G. Usualy one denotes by Hom(π, π′) the space of intertwining
operators and we say that π and π′ are unitarly equivalent if there is a bijective
isometry in Hom(π, π′) and this is write π ' π′. The relation with irreducibillity
is described by the following lemma.
Lemma 1.1 — ( Schur Lemma cf. [17] p. 14). An unitary representation π in
H is irreducible if and only if Hom(π, π)= CIH.

It is easy to see that the equivalence classes of irreducible representations is a
set denoted by Ĝ.

1.3.– If G is an abelian group the Schur lemma proves that Ĝ is the set of
characters of G. In fact, if π ∈ Ĝ, for x ∈ G, π(x) ∈ Hom(π, π). So, by Schur
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lemma π(x) = χ(x)Id where χ(x) is a complex number and it is clear that χ(x) is
a character.

1.4.– If K ⊂ G is a closed subgroup, the operators π(k) for k ∈ K define a
representation of K in H. We say that it is the restriction of π to K and note
π|K this representation.

1.5.– Direct sum. Let π1, . . . , πn be representations in Hilbert spacesH1, . . . ,Hn

respectively. It is clear that one defines a new unitary representation of G in
H = ⊕n

i=1Hi by letting

π(x)(v1 + · · ·+ vn) = π1(v1) + · · ·+ πn(vn)

for all x ∈ G and vi ∈ Hi ; i = 1, . . . , n. π is said to be the direct sum of the πi.

1.6.– Hilbert integral. We only give a weak definition. Let X be a separable
locally compact topological space, H an Hilbert space, G a locally compact group
and for all x ∈ X, πx a representation of G in H. We denote by µ a Radon positive
measure on X. We consider the space V = L2(X,H) of all functions ϕ on X such
that

∫
X
‖ϕ‖2dµ(x) < ∞. We suppose that for all g ∈ G, ϕ ∈ V, ψ ∈ V , the map

x −→< πx(g)ϕ(x) , ψ(x) > is measurable. We define a new representation ρ by
the formula [

ρ(g)f
]
(x) = πx(g)f(x) f ∈ H, x ∈ X

This representation is denoted ρ =
∫ ⊕

X
πxdµ(x). If ν is a positive measure

equivalent to µ, we have ρµ ' ρν .

1.7.– EXAMPLES.

(a) Let G = R and H = C. Then U(H) = U = {z ∈ C ; |z| = 1}. So every
unitary representation of H is a continuous character χ of G (see 1.3) and it is
well known that there exists an y ∈ R such that χ(x) = eixy, for all x ∈ G.

(b) Let G = O(n,R),H = Cn and let π be the natural injection of G into the
group U(H). Then π is a unitary representation of G.

(c) The regular representation. Let G be any separable locally compact group.
We denote by µ its left Haar measure. Consider H = L2(G, µ). For g ∈ G define
the operotor λ(g) by [λ(g).f ](x) = f(g−1x). We have ‖λ(g).f‖ = ‖f‖, so λ(g) is
a unitary operator. Moreover, the map g −→ λ(g).f of G into H is continuous.
This is clear when f is a continuous function with compact support, from which
one deduces the case of other f ∈ L2(G, µ) by an easy exercise of measure theory.
The representation λ is called the left regular representation. The right regular
representation is defined by [ρ(g).f ](x) = ∆(g)

1
2 f(xg), for f ∈ L2(G, µ) where ∆

is the modular function of G and µ is the left Haar measure on G.
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1.8.– INDUCED REPRESENTATIONS.

We now describe the most important tool of the theory to build representations
of G from representations of closed subgroups. We start with a particular case
which is the only necessary for the class of groups we study in these notes.

(a) Let G be a locally compact group and consider H a closed subgroup of G.
Let σ be a representation of G in an Hilbert space H. Suppose that there is a
left-invariant measure ν on the locally compact quotient space G/H. We remark
that this is always the case if G and H are unimodular. Then we can construct
a new Hilbert space Hσ: we first denote by Cσ the set of all continuous functions
from G into H such that

(i) f(gh) = σ(h)−1f(g) for all g ∈ G and h ∈ G ;

(ii)
∫

G/H

‖f(g)‖2dν(g) < +∞

The function g −→ ‖f(g)‖2 is constant on each left coset of G/H, so the
integral in (ii) exists and we define an inner product on Cσ by the formula

< f, f ′ >=
∫

G/H

< f(g), f ′(g) > dν(g) (1)

We note Hσ the completion of Cσ for this inner product. Then, we define the
induced representation π = IndGHσ by left action of G on functions of Hσ

π(x).f(y) = f(x−1y)

for all (x, y) ∈ G×G. It is clear that π(x) is isometric and one to one, so there is
an unique unitary operator (also noted π(x)) in Hσ which is equal to π(x) on Cσ.
An easy computation shows that π(x) is an homomorphism from G into U(Hσ).
We want to prove that x −→ π(x) is continuous. Let x ∈ G, ε > 0 and ϕ ∈ Cσ.
We have

‖π(x)ϕ− ϕ‖2 =
∫

G/H

‖ϕ(x−1y)− ϕ(y)‖2dν(y)

and the function ψ : x −→ ‖ϕ(x−1y) − ϕ(y)‖2 is continuous and has a compact
support S. So, for every y ∈ S there is a neighbourhood Vy of 1 ∈ G such that
‖ϕ(x−1y)−ϕ(y)‖2 < ε for x ∈ Vy. The compactness of the support of ϕ (in G/H)
shows that there exists a neighbourhood V of G such that for all x ∈ V and y ∈ G,
‖ϕ(x−1y)− ϕ(y)‖2 < ε and the continuity follows easily.

(b) If there is no G−invariant measure on G/H, the construction of Hσ is more
complicated. Let us denote by ∆ (resp. δ) the modular function of G (resp. H).
So, we have if µG is the left Haar measure on G,

∫

G

f(xyx−1)dµG(y) = ∆(x)
∫

G

f(y)dµG(y) (2)

∫

G

f(y)dµG(y) =
∫

G

∆(y)−1f(y−1)dµG(y) (3)
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for all f ∈ K(G), the space of continuous functions with compact support on G
and x ∈ G. Similarly, we fix a left Haar measure on H and for h ∈ H let

χ(h) = ∆H,G(h) = δ(h)/∆(h) (4)

Let Kχ(G) be the space of continuous functions F with compact support from
G to C which verify

F (xh) = χ(h)F (x) (5)

For f ∈ K(G) we define fχ ∈ Kχ(G) by the formula

fχ(x) =
∫

H

f(xh)χ(h)−1dµH(h) (6)

It is wellknown (see [4] §2 prop. 2 and 3) that the map f −→ fχ is onto and if
f ∈ K(G) is such that fχ = 0 then µG(f) = 0, so, there is a positive linear form
µG,H on Kχ(G) such that

∫

G

f(x)dµG(x) =
∮

G/H

( ∫

H

f(xh)χ(h)−1dµH(h)
)
dµG,H(x) (7)

The linear form µG,H is G-invariant and unique up to a multiplicative scalar.
There is a theory of integrable functions for µG,H (cf. [4] §2 or [3] Chap. V by
M. Duflo). We can now define the space Hσ as follows : let Cσ the space of
continuous functions from G into H with compact support modulo H such that

f(xh) = χ(h)1/2σ(h)−1f(x) (x ∈ G, h ∈ H) (8)

On this space there is a scalar product

< f, f ′ >=
∮

G/H

< f(g), f ′(g) > dµG,H(g) (9)

and the Hilbert completionHσ of Cσ is the space of π = IndGHσ. The representation
π acts by left translation as in the previous case.

[π(x)]ϕ(y) = ϕ(x−1y) (10)

(c) Examples

(1) The left regular representation of G is the more simple example of
induced representation. The subgroup H is the trivial subgroup, the linear form
µG,H is the Haar measure of G : λG = IndGH(1).

(2) The Heisenberg group. Let us denote by N3 the group of 3× 3 matrix
with real coefficients
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M(a, b, c) =




1 a c
0 1 b
0 0 1




We have2

M(a, b, c).M(a′, b′, c′) = M(a + a′, b + b′, c + c′ + ab′)

M(a, b, c)−1 = M(−a,−b,−c + ab)

The center Z of N3 is the set of matrix M(0, 0, c) with c ∈ R. There is two
natural abelian subgroups of N3:

K = {M(a, 0, c) ; a ∈ R}

H = {M(0, b, c) ; b ∈ R}
The subgroups H and K are invariant subgroups of N3. Let z, y be two real

numbers and
χ
(
M(0, b, c)

)
= ei(by+cz) M(0, b, c) ∈ H (11)

For each (z, y), χ is a character of H, so χ is a one dimensional representation of
H. The space of χ is C. We can consider the induced representation ρz,y =IndGHχ.
It is interesting to give an explicit realization of this induced representation.

First we define the space of ρz,y. We look at the functions ϕ ∈ Hχ. We have

ϕ
(
M(a, b, c).M(0, β, γ)

)
= e−i(βy+γz)ϕ

(
M(a, b, c)

)

so if we notice that M(a, b, c) = M(a, 0, 0).M(0, b, c− ab) then

ϕ
(
M(a, b, c)

)
= e−i(by+(c−ab)z)ϕ

(
M(a, 0, 0)

)
(12)

and we see that ϕ is completly known with its values on the subgroup A =
{M(a, 0, 0); a ∈ R}. Conversely, every function φ : R −→ C gives a function
ϕ ∈ Hχ by the formula

ϕ
(
M(a, b, c)

)
= e−i(by+(c−ab)z)φ(a) (13)

The action of M ∈ N3 in N3/H ' A is the translation by the first parameter
a, so, the Lebesgue measure on A is N3−invariant and we can identify the space
Hχ with L2(A, da). Now, we describe the action of IndGHχ on this space.

Let φ be a function in K(A). The function ϕ defined by

ϕ
(
M(a, b, c)

)
= e−i(by+(c−ab)z)φ(a) (14)

2 We sometimes write (a, b, c) for M(a, b, c).



On unitary representations – 7 –

is in Hχ and we have

[ρz,y(a, b, c).ϕ](α, 0, 0) = ϕ
(
(−a,−b,−c + ab)(α, 0, 0)

)

= ϕ(α− a,−b,−c + ab)

= ϕ
(
(α− a, 0, 0)(0,−b,−c + αb)

)

= ei(by+(c−αb)z)φ(α− a)

Finally, the induced representation acting in L2(A, da) is defined by

[ρz,y(a, b, c).φ](α) = ei(by+(c−αb)z)φ(α− a) (15)

Proposition 1.1 — For each (y, z) ∈ R × R, z 6= 0 the representation ρz,y is
irreducible.

Proof — We want to show that ρz,y has no proper subrepresentation. For this
we take φ ∈ L2(A, da) = Hχ, φ 6= 0 and we prove that the only ρz,y(N3)−invariant
space containing φ is Hχ.

Let f be any function in L2(A, da) which is orthogonal to ρz,y(N3).φ. It is
enough to prove that f = 0. Since ρz,y(a, b, 0).φ(α) = e−ibzαφ(α − a) and z 6= 0
we see that for all (a, b) ∈ R× R

∫

R
eibαφ(α− a)f(α)dα = 0

This shows that the Fourier transform of the function ha : α −→ φ(α− a)f(α)
is zero so, ha is zero almost everywhere for all a ∈ R. By Fubini’s theorem, the
positive function (a, α) −→ |φ(α−a)||f(α)| is zero almost everywhere. By Fubini’s
theorem again, we have

0 =
∫ ( ∫

|f(α)||φ(α− a)|da
)
dα

=
∫
|f(α)|

∫
|φ(α− a)|dadα

=
∫
|f(α)|dα

∫
|φ(a)|da

and since φ 6= 0 this shows that f = 0.

1.9.– PROPERTIES OF INDUCTION.

(a) If σ ' σ′ are two equivalent representations of H ⊂ G then
IndGH σ ' IndGH σ′.

(b) If π ' ⊕n
i=1σi then IndGH π ' ⊕n

i=1IndGH σi (n is not necessarly a
finite number). So, if IndGH σ is irreducible, then σ is irreducible but the converse
is false (look at the regular representation).
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This result extends to Hilbert integrals. If π =
∫ ⊕

X
πxdµ(x) is an Hilbert integral

of representations of H then IndGH π ' ∫ ⊕
X

(IndGH πx) dµ(x).
(c) (Induction by stage). Let K ⊂ H be two subgroups of G and let

σ be a representation of K in H. Then

IndGKσ ' IndGH (IndHK σ) (16)

The proof of these results could be found in [16] and are good exercises to
understand induction.

(d) Let σ be a representation of H ⊂ G and γ ∈ Aut(G), (Aut(G) is
the group of automorphisms of G). It is clear that σ ◦ γ define a representation of
γ−1(H) in the same Hilbert space H.

Proposition 1.2 — We have (IndGH σ) ◦ γ ' Ind G
γ−1(H) (σ ◦ γ).

Proof — Let H be the space of σ, Hσ (resp. Hσ◦γ) the space of IndGH σ
(
resp.

Ind G
γ−1(H)

(
σ ◦ γ)

)
.

For a function ϕ ∈ Hσ we have

ϕ(gh) = σ(h)−1ϕ(g) h ∈ H

and for a function ψ ∈ Hσ◦γ we have

ψ(gk) = (σ ◦ γ)(k)−1ψ(g) k ∈ γ−1(H) (17)

For ϕ ∈ Hσ we define Tϕ(g) = ϕ
(
γ(g)

)
. Then, for k ∈ γ−1(H) we have

Tϕ(gk) = ϕ
(
γ(gk)

)

= ϕ
(
γ(g)γ(k)

)

Since k ∈ γ−1(H), γ(k) ∈ H and we have

Tϕ(gk) = σ
(
γ(k)

)−1
ϕ
(
γ(g)

)

= (σ ◦ γ)(k)−1Tϕ(g)

so, Tϕ verifies the relation (17).
If µ is a left-invariant measure on G/H, we define a left-invariant measure ν on

G/γ−1(H) by ν(E) = µ
(
γ(E)

)
for each Borel set E in G/γ−1(H), and we have

‖Tϕ‖2 =
∫

G/γ−1(H)

‖ϕ ◦ (
γ(ẋ)

)‖2dν(ẋ)

=
∫

G/H

‖ϕ(ẋ)‖2dµ(ẋ)

= ‖ϕ‖2
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Finally, we have to show that T is an intertwining operator between the two
representations

T
[
(IndGH σ)

(
γ(x)

)
ϕ
]
(y) =

[
(IndGH σ)

(
γ(x)

)
ϕ
](

γ(y)
)

= ϕ
(
γ(x)−1γ(y)

)

= ϕ
(
γ(x−1y)

)

= Tϕ(x−1y)

=
[
Ind G

γ−1(H) (σ ◦ γ)Tϕ
]
(y)

This completes the proof.

Corollary 1.1 — If x ∈ G and γ = γx is the inner automorphism of G defined
by x, then Ind G

x−1Hx (σ ◦ γx) ' IndGH σ.

Proof — This is clear by proposition 1.2 because IndGH σ ' (
IndGH σ

) ◦ γx

when γx is an inner automorphism of G.

(e) Let G be a locally compact group and let Z be a closed normal
subgroup of G. Let G be the locally compact group G/Z and p : G −→ G the
canonical map. If H is a closed subgroup of G, then H = p−1(H) is a closed
subgroup of G. If σ is a representation of H we define a representation σ of H
by σ(h) = σ

(
p(h)

)
, and σ(z) is the identical operator if z ∈ Z. We also define

π = IndGH σ and π(x) = π
(
p(x)

)
. It is clear that π is a representation of G.

Proposition 1.3 — We have π = IndGH σ.

Proof — We assume that there is an invariant measure on G/H. Let ϕ be a
function in Hσ, the space of IndGH σ. We have for g ∈ G and h ∈ H:

ϕ(gh) = σ(h)−1ϕ(g)

= σ
(
p(h)

)−1
ϕ(g)

so, ϕ is right-invariant by Z and there is one and only one function ψ on G
such that ψ ◦ p = ϕ. It is easy to see that ψ ∈ Hσ. The map ϕ −→ ψ is a
bijective intertwining operator for the two representations (we leave the details to
the reader . . . )

1.10.– IRREDUCIBILLITY CRITERION ; MACKEY’S THEORY.

As we have seen before, an induced representation is not always irreducible.
This is the case when the subgroup H is “too small ”. The philosophy of the
“Mackey’s machine” is to extend the representation to a subgroup between H and
G and to induce this new representation.

Let G be a locally compact group and A be an abelian closed normal subgroup
of G. The irreducible representations of A are the characters. We define a
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continuous action of G on Â by (g, χ) −→ χg where χg(x) = χ(g−1xg). We
also denote by Gχ the stabilizer of χ in G.

Gχ = {x ∈ G | χ(x−1ax) = χ(a), ∀a ∈ A}

This is a closed subgroup of G and there is a bijective map ġ −→ χg from the
homogeneous space G/Gχ onto the orbit G.χ in Â. This map is continuous but
not always an homeomorphism. When it is an homeomorphism, we say that A is
regularly embedded in G.

The following result is difficult. The proof is in [10] or [11]

Theorem 1.1 — The following are equivalent:
1) The map G/Gχ −→ G.χ is an homeomorphism ;
2) The orbit G.χ is a locally closed subset of Â ;
3) The space Â/G is a T0 topological space ;
4) The space Â/G is countably separated ;
5) For each quasi-invariant ergodic Borel measure µ there is a G-orbit Ω in Â

such that µ(Â\Ω) = 0

A quasi-invariant measure µ on a transformation group (X, G) is a Borel
measure such that µ(x.E) = 0 if and only if µ(E) = 0 for x ∈ G and E ⊂ X. Such
a measure is said to be ergodic if every G-invariant Borel set B, is a µ-null set or
Â\B is a µ-null set.

It is clear that A ⊂ Gχ for all χ ∈ Â, but there is not always a character
χ ∈ Ĝχ whose restriction to A is χ. We say that ρ ∈ Ĝχ extend a multiple of χ
if ρ(a) = χ(a)Id, ∀a ∈ A. The space of ρ has a dimension greater than one.

Now we are able to state the main theorem of Mackey [15] (in a special case).

Theorem 1.2 — Let G be a locally compact group, A a closed normal subgroup
of G, χ a character of A and Gχ the stabilizer of χ in G.

1) Let σ be an irreducible representation of Gχ whose restriction to A is a
multiple of χ. Then, IndGGχ

σ is irreducible ;
2) Let σ1 and σ2 two irreducible representations of Gχ whose restrictions to A

are multiple of χ. Then, IndGGχ
σ1 ' IndGGχ

σ2 if and only if σ1 ' σ2 ;
3) Let σ be an irreducible representation of Gχ whose restriction to A is a

multiple of χ. Then, the restriction of IndGGχ
σ to A is an Hilbert integral over

the orbit of χ in Â for a measure which is G-invariant and ergodic (a transitive
quasi-orbit). Every irreducible representations the restriction of which to A is such
an Hilbert integral is induced by an irreducible representation of Gχ as in 1).

Mackey has proved that, in the previous situation, there is always an irreducible
representation of Gχ whose restriction to A is a multiple of χ and he gave a con-
struction for all such representations of Gχ. Roughly speaking, this construction
gives a bijective map between irreducible representations of Gχ whose restrictions
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to A are multiple of χ and the dual space of an “extension” of the group Gχ/A.
This extension is the Mackey obstruction [15]. This construction is not needed in
these lectures.

1.11.– TYPE OF A LOCALLY COMPACT GROUP

Let H be an Hilbert space (separable) and L(H) the algebra of all continuous
operators on H. Let W be a subset of L(H). Denote by W ′ the set

W ′ = {T ;T ∈ W , T ◦ w = w ◦ T , ∀w ∈ W}

It is clear that W ′ is a subalgebra of L(H) : it is the commuting algebra of W .
We denote by W ′′ the bicommuting algebra (W ′)′.

Definition — 1) A subalgebra W of L(H) is said to be a Von Neumann algebra
if it is invariant by adjoint involution and if W = W ′′.

2) We say that a Von Neuman algebra is a factor if W ∩W ′ = C Id.

If W is any subset of L(H), W ′ is a Von Neuman algebra because for a Von
Neumann algebra W we have W ′′ = W .

If π is a representation of a locally compact group G, π(G)′′ is a Von Neumann
algebra. The representation π is a factorial representation if π(G)′

(
or π(G)′′

)
is

a factor. This means that π(G)′ ∩ π(G)′′ = C Id.
The Von Neumann algebra π(G)′′ contains π(G) and is exactly the smallest

Von Neumann algebra which contains π(G). It is clear from definitions that π is
irreducible if and only if π(G)′ = C Id so, π is of course a factorial representation.
A multiple of a factorial representation is also a factorial representation.

On a factor we can define traces. A trace t on a factor W is a map defined only
on positive elements W+ of W and with values in [0,∞] such that:

1) If x ∈ W+, y ∈ W+ then t(x + y) = t(x) + t(y) ;
2) If x ∈ W+ and λ > 0 then t(λx) = λt(x) ;
3) If z ∈ W then t(zz∗) = t(z∗z).
The trace t is finite if t(x) < ∞ for every x ∈ W+ and semi finite if

t(x) = sup{t(y) ; y ≤ x ; t(y) < ∞}. We say that t is faithful if for x ∈ W+,
t(x) = 0 implies x = 0.

The trace t is normal if for every set F ⊂ W which is a “upper filtering set”
with upper bound T , then t(T ) is the upper bound of t(F).

We are now able to state the classification of factorial representations.

Definition — Let π be a factorial representation of a locally compact group G.
• π is type I ⇐⇒ π is a multiple of an irreducible representation of G ;
• π is type II ⇐⇒ π is not type I and there exists a semi-finite (or finite) normal

faithful trace on π(G)′ ;
• π is type III ⇐⇒ π is not type I or type II.

Definition — A locally compact group G is type I if every factor representation
of G is type I. This is equivalent to say that every factorial representation is a
multiple of an irreducible one.
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It is known that if a group is not type I, it has factorial representations of type
II and type III.

There are large classes of type I groups : abelian, compact, semi-simple
connected Lie groups, nilpotent and completely solvable connected Lie groups
but, there exists connected solvable Lie groups which are not type I. Only type I
groups have computable dual space. The structure of the dual space of non type
I locally compact groups is very bad ! We will study (as a survey) the Pukanszky
theory for non type I solvable groups where only a kind of “smooth” factorial
representations is used instead of irreducible one’s.

1.12.– EXERCISES.

Exercise 1.1 – Let λ be the left regular representation of a nontrivial locally
compact group G and let ρ be the right regular representation.

Prove that for all x ∈ G the operator λ(x) ∈ Hom(ρ, ρ) and that ρ is not
irreducible.

Exercise 1.2 – By using the Fourier transform on Rn, show that the regular
representation of Rn is equivalent to

∫ ⊕cRn χdχ

Exercise 1.3 – The “ax + b” group and the Mackey’s Machine.

We denote by G the “ax + b” group which is the group of 2× 2 matrix
(

a b
0 1

)

with a > 0 and b ∈ R.
We denote by H the normal abelian subgroup of matrix such that a = 1.
a) Compute the orbits of G in H and Ĥ for the adjoint representation.
b) Let χ ∈ Ĥ, χ 6= 1. Prove that the stabilizer Gχ of χ in G is H.
c) Apply the Mackey theorem and prove that there are two irreducible inequiv-

alent representations induced from H.
d) Compute the space Ĝ.



2. Nilpotent Lie algebras and Lie groups

2.1.– LIE ALGEBRAS.

A Lie algebra g is a finite dimensional vector space over a field k on which
there is a bilinear form named the bracket and denoted by [ , ] with the following
properties

[x, y] = −[y, x], ∀x ∈ g, ∀y ∈ g

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (18)

for all (x, y, z) in g. The equality 18 is the Jacobi identity.
A subspace a of g is said to be an ideal (resp. a subalgebra), if [x, a] ∈ a for all

x ∈ g and all a ∈ a (resp. a ∈ g).
In these notes, the field k is R or C.

An important example of Lie algebra is the Lie algebra of all n×n square matrix
(or endomorphisms of a vector space) with the bracket [M, N ] = MN −NM .

Exercise 2.1 – Let {e1, e2, . . . , en} a basis of a Lie algebra g. For i ≤ n, j ≤ n we

write [ei, ej ] =
n∑

k=1

Ck
i,j ek. The scalars Ck

i,j are the structural constants of the Lie

algebra g. Write the equations between the Ck
i,j equivalent to the Jacobi identity.

2.2.– NILPOTENT LIE ALGEBRAS.

Let g be a Lie algebra. We define inductively the descending central series by

C0g = g and Ck+1g = [g, Ckg] for k ∈ N
and the ascending central series by Z0g = 0, Zk+1g is the inverse image in g of
the center of g/Zkg.

Definition — A Lie algebra is said to be nilpotent if there exists n such that
Cng = 0.

Let n be the smallest integer such that Cng = 0. Then, Cn−1g is central in g,
so the center of a nilpotent Lie algebra is never zero.

A linear map σ : g −→ g′ is a Lie algebra homomorphism if for all x, y in g, we
have σ([x, y]) = [σ(x), σ(y)].

Proposition 2.1 — Let g be a Lie algebra and let r ∈ N. The following conditions
are equivalent:

a) Crg = 0 ;
b) There exists a sequence of ideals

0 = ar ⊂ ar−1 ⊂ · · · ⊂ a1 ⊂ a0 = g
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such that [g, ak] ⊂ ak+1, 0 ≤ k ≤ r − 1 ;
c) Zrg = g.

Proof — Almost obvious (exercise).

If g and g′ are two Lie algebras we define obviously a direct product Lie algebra
g×g′, and if a is an ideal of g the quotient g/a has a natural structure of Lie algebra
such that the map g −→ g/a is a Lie algebra homomorphism: [x, y] = [x, y]. It is
easy to show that if g and g′ are nilpotent then g×g′ is nilpotent, every subalgebra
and quotient of nilpotent Lie algebra is nilpotent (an exercise for the reader !).

2.3.– EXAMPLES.

a) An abelian Lie algebra is nilpotent.
b) The Heisenberg Lie algebra is nilpotent.
c) The list of nilpotent Lie algebras of dimension lower than 5. This list of

nilpotent Lie algebras (up to isomorphism) has been established by Dixmier [6].
We give this list because it is very useful for examples. We don’t write the direct
products and give the nonzero brackets [ei, ej ] for a basis (e1, e2, . . . , en) and for
i < j.
Dimension 2 : only the abelian one ;
Dimension 3 : only the Heisenberg Lie algebra ;
Dimension 4 : one class denoted g4 with the brackets

[e1, e2] = e3 ; [e1, e3] = e4

Dimension 5 : there is six algebras
g5,1

[e1, e2] = e5 ; [e3, e4] = e5

g5,2

[e1, e2] = e4 ; [e1, e3] = e5

g5,3

[e1, e2] = e4 ; [e1, e4] = e5

[e2, e3] = e5

g5,4

[e1, e2] = e3 ; [e1, e3] = e4

[e2, e3] = e5

g5,5

[e1, e2] = e3 ; [e1, e3] = e4

[e1, e4] = e5

g5,6

[e1, e2] = e3 ; [e1, e3] = e4

[e1, e4] = e5 ; [e2, e3] = e5

Lists of nilpotent Lie algebras for dimension 6 and 7 can be found in several
works (many examples are studied in [18]).
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d) Denote by n+ the set of n×n square matrix (ai,j) such that ai,j = 0 if j ≤ i.
Then n+ is a subalgebra of the Lie algebra of all n × n square matrix. For every
k ∈ N such that 0 ≤ k ≤ n we denote by nn,k the set of matrix X = (xi,j)1≤i,j≤n

such that xi,j = 0 if i ≥ j − k. We see that nn,k+1 ⊂ nn,k for k ≤ n − 2,
nn,0 = n+, nn,n−1 = 0 and [n+, nn,k] = nn,k+1 and now it is clear that n+ is
nilpotent.

e) An example of an algebra which is not nilpotent. The set of n× n matrix m
such that trace(m)= 0 (i.e. Σiai,i = 0) is a Lie algebra because trace([m,m′])=
trace(mm′ −m′m) = 0, so it is a subalgebra of the Lie algebra of n × n matrix.
For n = 2 this Lie algebra is denoted sl(2,R). Let

e =
(

0 1
0 0

)
f =

(
0 0
1 0

)
h =

(
1 0
0 −1

)

By an obvious computation we see that [e, f ] = h, [h, e] = 2e, [h, f ] = −2f so,
[g, g] = C1g = g and Ckg = g for all k ∈ N. This shows that sl(2,R) is not a
nilpotent Lie algebra.

2.4.– EXERCISES.

Exercise 2.2 – Let g be a nilpotent Lie algebra the dimension of which is equal
to n and let a be a subalgebra of g which dimension is n − 1. Show that a is an
ideal of g.

Exercise 2.3 – Show that the set of n× n matrix




0 x 0 . . . 0 xn

0 0 x 0 0 xn−1

...
...

...
0 0 · · · · · · x x2

0 0 · · · · · · 0 x1

0 0 · · · · 0 0




is a nilpotent Lie subalgebra of L(Rn).

Exercise 2.4 – Let g be the Lie algebra of matrix

(
a b
0 0

)
a ∈ R, b ∈ R

and let h be the subalgebra of g defined by the matrix above with a = 0. Then h
is nilpotent, g/h is nilpotent but g is not nilpotent.

2.5.– THE ENGEL THEOREM.

We give this theorem without proof (cf. [24] or books on Lie Algebras).
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Theorem 2.1 — Let g be a finite dimensional Lie algebra, V a finite dimensional
vector space and ϕ : g −→ L(V ) an homomorphism of Lie algebras such that ϕ(X)
is nilpotent for every X ∈ g. Then there exists a flag

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

such that ϕ(X).Vj ⊂ Vj−1 for each X ∈ g, so, ϕ(g) is a nilpotent Lie algebra.

Corollary 2.1 — If g is a finite dimensional Lie algebra such that adX is nilpotent
for all X ∈ g then g is a nilpotent Lie algebra.

Proof — By Engel theorem we have a flag

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = g

such that ad g.Vi ⊂ Vi−1, so, the vector spaces Vi are ideals of g and this is exactly
the nilpotency of g.

Definition — Let g be a nilpotent Lie algebra and h a subalgebra of g. We say
that a sequence of linearly independant (modulo h) elements X1, . . . , Xk of g is a
Malcev complementary basis of h in g if

h0 = h hj = h⊕ RX1 ⊕ · · · ⊕ RXj 1 ≤ j ≤ k

and hj are subalgebras of g.

This Malcev complementary basis is said to be a strong Malcev basis if each hj

is an ideal in g.

Theorem 2.2 — Let g be a finite dimensional nilpotent Lie algebra and let h
be a subalgebra (resp. an ideal) of g, then, h admits a Malcev (resp. strong
complementary basis).

Proof — If h is an ideal of g, then the adjoint representation of g induces an
action of g in g/h by nilpotent operators adg/hX. By Engel’s theorem, we find
vectors X1, . . . , Xk ∈ g such that X1 +h, . . . , Xk +h is a basis of g/h such that the
matrix of every adg/h is strictly upper triangular. So it is clear that X1, . . . , Xk is
a strong Malcev complementary basis of h in g.

If h is a proper subalgebra and not an ideal of g, we prove the result by induction
on the codimension of h. By Engel’s theorem apply to the action of h in g/h, we
get X ∈ g such that [X1, h] ⊂ h. The subalgebra h is an ideal in the subalgebra
h1 = RX1⊕h and the codimension of h1 is lower than the codimension of h in g, so,
we apply the induction hypothesis to find the rest of the Malcev complementary
basis.

2.6.– LIE GROUPS.

Definition — A Lie group is a group G which is an analytic manifold such that
the mapping (x, y) −→ xy−1 of G×G (product manifold) is analytic.
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The dimension of a Lie group is its dimension as a manifold.

EXAMPLES.

1.– If V is a finite dimensional vector space, the group GL(n, V ) of linear
automorphisms of V is a Lie group. It is an open subset of L(V ) and it is well
known that the maps (u, v) −→ u ◦ v and u −→ u−1 are analytic.

2.– The group G2 of 2× 2 matrix
(

a b
0 1

)
a > 0, b ∈ R

is a Lie group. As a manifold, it is isomorphic to R∗+ × R and it is clear that the
product and inverse maps are analytic.

An homomorphism of a Lie group G into a Lie group G′ is an analytic
homomorphism of groups.

For a Lie group G we denote by G0 the connected component of the neutral
element e of G and by Ge the tangent space of G at e.

2.7.– THE LIE ALGEBRA OF A LIE GROUP

Let G be a Lie group. For x ∈ G, the left translation Lx : y −→ Lx(y) = xy is
an analytic map from G onto G. A vector field Z on G is said to be left invariant
if for all x ∈ G, dLxZ = Z. Given a tangent vector X ∈ Ge there exists one and
only one left invariant vector field X̃ defined by

[
X̃ f

]
(x) =

[ d

dt
f
(
x(γ(t))

)]
t=0

where f ∈ C∞(G), x ∈ G, and t −→ γ(t) is any curve on G with tangent vector
X for t = 0 and γ(0) = e.

For two vectors fields we can define a bracket (cf. Exercise 2.5) and it is easy to
see that the bracket of two left invariant vector fields is also left invariant. So the
tangent vector space at e ∈ G has a structure of Lie algebra. It is the Lie algebra
g of G.

Now, we give general results on Lie groups without proofs because these results
are easier for nilpotent groups.

1) Given X ∈ g there is one and only one analytic homomorphism θX from R
into G such that dθX(0) = X and we put expX = θX(1).

2) We have exp(t + s)X = exp tX exp sX for all s and t in R and X ∈ g. So we

have θX(t) = exp tX and for a function f on G,
d

dt
f(exp tX)|t=0 = X̃f where X̃

is the left invariant vector field corresponding to X ∈ g.
3) There is a neigbourhood V ⊂ g of 0 such that if X ∈ V and Y ∈ V then

we have exp X expY = exp η(X, Y ) where η(X, Y ) is in the Lie algebra generated
by X and Y . We have η(X, Y ) = X + Y + 1

2 [X,Y ] + . . . , the other terms of this
formulas are expressions like [Y [X[. . . [Y, X]] . . . ]]. This is the Campbell-Hausdorff
formula.
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4) Let G be a Lie group and g its Lie algebra. Let h be a Lie subalgebra of g.
There exists one and only one connected Lie subgroup H (analytic subgroup) of
G whose Lie algebra is h. This subgroup is not always closed and not always a
submanifold of G.

5) If g is a Lie algebra there is one and only one connected and simply connected
Lie group G (up to an isomorphism) with Lie algebra g. It is clear from the
Campbell-Hausdorff formula that if two Lie groups have the same Lie algebra
then they are localy isomorphic. If G is connected and simply connected and if G′

is a connected Lie group with the same Lie algebra the local isomorphism from G
into G′ expand to a global homomorphism ϕ. The kernel of ϕ is a central discret
subgroup of G. So, every connected Lie group is a quotient of G by a central
discret subgroup.

6) Let GL(Rn) be the set of all linear automorphisms of Rn (or equivalently
n × n non singular real square matrix). It is a Lie group which is an open set
in the space M(n,R) of all real n × n square matrix, so L(Rn) is identical to
the tangent space of GL(Rn) at identity. For X ∈ L(Rn) and t ∈ R the map

t −→ Exp tX =
∞∑

k=0

tk

k!
Xk is an analytic homomorphism of R into GL(Rn), so we

have, with the above notations dθX(0) = X and we can see that the bracket [X, Y ]
as left invariant vector fields is XY −Y X in L(Rn) (Exercise 2.5). So L(Rn)is the
Lie algebra of GL(n,R).

7) Let g be a Lie algebra over R, and as above denote by GL(g) the group of
non singular endomorphisms of g. We denote by ad the mapping X −→ ad X
for X ∈ g where ad X(Y ) = [X,Y ] for all Y in g. The set ad(g) is a subalgebra
of L(g). Let Int(g) denote the analytic subgroup of GL(g) whose Lie algebra is
ad(g); Int(g) is called the adjoint group of g.

The group Aut(g) of all automorphisms of g is a closed subgroup of GL(g)
Thus, it is a Lie subgroup of GL(g). Let δ(g) be the Lie algebra of Aut(g). The
exponential mapping from δ(g) into Aut(g) is the restriction of Exp thus, we have
Exp(ta) ∈ Aut(g) for each a ∈ δ(g) and t ∈ R. This means that for all X, Y ∈ g
we have Exp(ta)([X, Y ]) = [Exp(ta)X, Exp(ta)Y ] for all t ∈ R. We differentiate
this relation and for t = 0 we get

a([X, Y ]) = [a(X), Y ] + [X, a(Y )] (19)

thus, a is a derivation of g. Conversely, if a is a derivation of g we see, by
computing the operator ak for k ∈ N with the formula (19) that Exp(ta)([X,Y ]) =
[Exp(ta)X, Exp(ta)Y ] for all t ∈ R and thus δ(g) consists of all derivations of g. By
using the Jacobi identity we see that ad(g) ⊂ δ(g) and therefore Int(g) ⊂ Aut(g).

For x ∈ G we denote by Ad x or AdG(x) the differential of the inner
automorphism of G defined by u −→ xux−1 at the identity. It is clear that
Ad is an homomorphism from G into GL(g) because we have for x, y ∈ G and
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X ∈ G

Ad(xy)X =
[ d

dt

(
xy exp tXy−1x−1

)]
t=0

=
[ d

dt

(
x exp(t(Ad y)X)x−1

)]
t=0

= Ad(x)
(
Ad(y)X

)

This mapping is called the adjoint representation of G.

Proposition 2.2 — Int(g) is a normal subgroup of Aut(g) and for every x ∈ G
we have

exp(Ad(x).X) = x. exp(X).x−1 (20)

The differential of Ade is the adjoint representation ad of the Lie algebra g and
we have the formulas:

Ad(expX) = Exp(adX) ; exp(Exp(ad X)Y ) = exp X exp Y exp(−X) (21)

Definition — A Lie group G is said to be nilpotent if its Lie algebra is nilpotent.

Proposition 2.3 — If G is a nilpotent Lie group, all the connected Lie subgroups
of G are nilpotent Lie groups and a quotient of G by a closed normal subgroup is
also a nilpotent Lie group.

Proof — If H is a subgroup of G its Lie algebra h is the set of X ∈ g such
that exp tX ∈ H for all t ∈ R, thus h is a Lie subalgebra of g and is nilpotent. If
H is closed normal, the mapping ϕ : G −→ G/H is continuous (and analytic),
thus its differential is Lie algebra homomorphism and onto. This shows that the
Lie algebra of G/H is a quotient of g and thus is nilpotent.

There is also a group definition of nilpotent groups for connected Lie groups.
We define the descending central series for the group G to be C1G = G , Cj+1G =
[G, CjG], where the notation [H, K] means the subgroup generated by all com-
mutators hkh−1k−1, h ∈ H, k ∈ K. Then we say that G is nilpotent if CjG = {e}
for some j ∈ N. One can show that the group CjG is a Lie subgroup of G for
every j and its Lie algebra is Cjg = [g, Cj−1g].

For nilpotent Lie groups, the relations between the group and its Lie algebra
are simple because we have the following results.

We denote by Un, n ∈ N the closed subgroup of matrix g = (gi,j) ∈ GL(n,R)
such that gi,i = 1 for 1 ≤ i ≤ n and gi,j = 0 for i > j. The Lie algebra of Un is
nn the set of strictly upper triangular matrix (cf. Exercise 2.6). The group Un is
called the standard unipotent group of order n.

We see that the exponential map of n+ into Un is a diffeomorphism: in fact, it
is one to one because the inverse is the “logarithm” defined by

log x =
∑

k≥1

(−1)k−1

k
(x− Id)k =

∞∑

k=1

(−1)k−1

k
(x− Id)k
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where x ∈ Un and Id is the identity operator (note: Un = Id+n+). For the
nilpotent Lie group Un, the vector η(X, Y ) in the Campbell-Hausdorff formula
is clearly η(X,Y ) = log(exp X expY ) and we see that η is polynomial in the
coordinates of X and Y .

Theorem 2.3 — 1) Every analytic subgroup of Un is a simply connected closed
subgroup.

2) Conversely, if H is a simply connected nilpotent Lie group, there exists n ∈ N
and an injective homomorphism of Lie groups of H in Un.

Proof — 1) Let H be an analytic subgroup of Un and let h be the Lie
algebra of H. h is included in n+ and by the Campbell-Hausdorff formula exp h
is a subgroup of Un which is closed because the map exp of n+ onto Un is a
diffeomorphism. This also shows that exp maps a neighbourhood of 0 in h onto a
neighbourhood of 1 in H and that exp h is an open subgroup of H (and closed).
But H is connected so, H = exp h.

2) Let h be the Lie algebra of H. This Lie algebra is isomorphic to a subalgebra
h′ of n+ = nn for an integer n. The set Exp h′ is a simply connected Lie subgroup
of Un (Campbell-Hausdorff formula) with Lie algebra h, so H and Exp h′ have
isomorphic Lie algebras. They are locally isomorphic and because the groups are
simply connected they are isomorphic as Lie groups.

Corollary 2.2 — For every simply connected nilpotent Lie group G with Lie
algebra g, we have

(i) exp : g −→ G is a diffeomorphism.
(ii) There exists a unique map (X,Y ) −→ η(X,Y ) from g × g into g which

is polynomial into the coordinates of X and Y and such that exp η(X, Y ) =
expX exp Y for all X and Y in g.

(iii) Every analytic subgroup of G is a simply connected closed subgroup.

Proof — If G is simply connected and connected, the proof of the theorem
shows that there is a diffeomorphism of G onto a closed subgroup of nn = n+ for
an n ∈ N. All things follows from this.

Proposition 2.4 — Let G be a connected nilpotent Lie group with center Z.
Then

1) G/Z = Ad(G) is simply connected ;
2) Z is connected.

Proof — 1) The mapping Ad : G −→ Ad(G) ⊂ GL(g) verifies x exp Xx−1 =
exp

(
Ad(x)X

)
for every x ∈ G and X ∈ g. Thus, Adx = Id if and only if

x expXx−1 = exp X for every X ∈ g. This means that x. exp X = exp X.x for
every X. But G is connected and so it is generated by exp g (here G is nilpotent
so we have G = exp g). This shows that ker(Ad) = Z and G/Z = Ad(G). The
group Ad(G) is an analytic subgroup of GL(g) whose Lie algebra is ad(g). We
choose a basis of g such that the matrix of all the operators ad X are strictly upper
triangular, thus Ad(G) = Exp ad(g) is isomorphic to a subgroup of nn where n is
the dimension of g. The theorem above shows that Ad(G) is simply connected.
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2) Let Z0 be the connected component of the neutral element of G. The
mapping θ : G/Z0 −→ G/Z is a covering (Z/Z0 is discret and central in G/Z0),
but G/Z is simply connected, so θ is an isomorphism and Z = Z0 is connected.

Proposition 2.5 — Let G be a simply connected Lie group and let H an invariant
analytic subgroup of G. Then H is closed and G/H is simply connected.

Proof — The Lie algebra h of H is an ideal in g, the Lie algebra of G. Thus
g/h is a Lie algebra and we consider G1 the simply connected Lie group with Lie
algebra g/h. Since G is simply connected, there is a unique Lie group morphism
p : G −→ G/H whose differential is the Lie algebra homomorphism g −→ g/h.
The kernel H1 of p is a closed Lie group having h for Lie algebra. Since G1

is simply connected, the group H1 is connected and is equal to H. Moreover,
G/H = G1 is simply connected.

2.8.– MALCEV OR COEXPONENTIAL BASES IN NILPOTENT LIE GROUPS.

Proposition 2.6 — Let G be a simply connected nilpotent Lie group and h a
subalgebra of the Lie algebra g of G. Then there exists a basis {X1, . . . , Xp} of a
supplementary subspace of h such that if gj(t) = exp tXj, the mapping

(t1, . . . , tp, X) −→ gp(tp) · · · g1(t1) exp X

is a diffeomorphism from Rp × h onto G.
Such a basis is a Malcev basis or a coexponential basis for h in g (cf.

Theorem 2.2.

Proof — Since g is nilpotent there is a subalgebra g0 of g whose dimension is
(dim g−1) and which contains h. The subalgebra g0 is an ideal. Let X ∈ g, X 6∈ g0,
then the map (t, Y ) −→ exp tX. exp Y is a diffeomorphism of R × g0 into G and
its image is a connected Lie subgroup of G which strictly contains G0 so it is G.
It is clear that we obtain the Malcev basis by iteration of this case.

2.9.– COADJOINT ORBITS OF NILPOTENT LIE GROUPS.

Let G be a connected Lie group and g its Lie algebra. Above we have defined the
adjoint representation of G. Another important object for representation theory
of Lie groups is the coadjoint representation of G. It is the finite dimensional
representation Ad∗ of G in the dual space g∗ of the Lie algebra g and is defined
by the formula

f ∈ g∗, x ∈ G, Y ∈ g <Ad∗ x.f , Y >=<f , Adx−1.Y >

The famous “orbit’s method” of A.A. Kirillov is the description of the space Ĝ by
the orbits of the representation Ad∗ in g∗. For many simply connected Lie groups
the orbits of Ad∗ in g∗ have “good” geometric properties. If G is a nilpotent
connected Lie group we have :
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Theorem 2.4 — The orbits of a nilpotent connected Lie group G under the action
of the coadjoint representation in g∗ are closed submanifolds of g∗.

Proof — We write ρ for the representation Ad∗. We prove this result by
a description of the coadjoint orbits by polynomial coordinates (cf. [3] Chapter
I p. 7).

Let f ∈ g∗ and Ω = ρ(G).f the orbit of f . Since ρ is a unipotent representation,
dρ is a nilpotent representation of g in g∗ (dρ(X).f(Y ) = f([Y,X]). We choose a
Jordan-Holder sequence for the action of ρ in g∗ :

{0} = Vn ⊂ Vn−1 ⊂ · · · ⊂ V0 = g∗

with dim Vi = n − i. Let πj be the natural projection V −→ V/Vj and
gj = {X ∈ g; dρ(X).f ∈ Vj}. The stabilizer of πj(f) is exp gj . We have gj ⊂ gj+1

and gn = g(f). Let 1 ≤ j1 < j2 < · · · < jd ≤ n be the index such that gjk
6= gjk−1

and let ejk
∈ Vjk−1 − Vjk

, Xk ∈ gjk−1 such that Xk.f = ejk
(mod. Vjk

). Clearly
X1, X2, . . . , Xd is a Malcev complementary basis of g(f). We complete ejk

in a
suitable basis of g∗. We put

exp(t1X1) . . . exp(tdXd).f =
n∑

j=1

Pj(t1, . . . , td) ej

where the Pj are polynomials. We have
a) Pj is a polynomial in t1, . . . , tk only, where k is the greatest integer such that

jk ≤ j
b) Pjk

(t1, . . . , td) = tk + Qk(t1, . . . , tk−1).
This facts result of the following remarks : if jk > j, then Xk ∈ gj , so

exp(tXk).f = f (mod. Vj) and we have

πj exp(t1X1) . . . exp(tdXd).f = πj exp(t1X1) . . . exp(tkXk).f

= πj

j∑

i=1

Pi(t1, . . . , td)ei

We have also exp(tXk).f = f + tejk
modVjk

thus,

πjk
exp(t1X1) . . . exp(tdXd).f = πjk

(
exp(t1X1) exp(tk−1Xk−1).(f + tkejk

)
)

= πjk

jk∑
1

Pi(t1, . . . , td)ei

It is clear that the map (t1, . . . , td) −→
(
Pj1(t1, . . . , td), . . . , Pjd

(t1, . . . , td)
)

is a
manifold structure on Ω and Ω is isomorphic to Rd.

Now let g = lim
n→∞

exp(t(n)
1 X1) . . . exp(t(n)

d Xd).f . If the sequence (t(n)
1 , . . . , t

(n)
d )

is bounded in Rn then it is clear that g ∈ Ω else, let k the first index such that t
(n)
k

is not bounded. Taking if it is needed a subsequence, the sequences t
(n)
1 , . . . , t

(n)
k−1

have finite limits. Then, we see by the proof above that Pjk
cannot have a limit.
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2.10.– NOTES ON SOLVABLE LIE ALGEBRAS AND LIE GROUPS.

We define the derivated series of a Lie algebra by

D1g = [g, g] ; Dkg = [Dk−1g,Dk−1g]

Definition — A Lie algebra is said to be solvable if there exists k ∈ N such that
Dkg = {0}.

It is clear that a nilpotent Lie algebra is solvable, but the converse is false (look
at the “ax + b” group).

A connected Lie group is solvable if its Lie algebra is solvable. If G is a simply
connected solvable Lie group its exponential mapping is not always bijective. A
simply connected Lie group such that the exponential mapping is bijective is said
to be an exponential group. We have a theorem of Dixmier (cf. [3] Chapter 1,
page 2)

Theorem 2.5 — Let G be a connected and simply connected Lie group. The
following conditions are equivalent:
1) For every X ∈ g, adX has no eigenvalue of the form iα, (α ∈ R∗, i2 = −1) ;
2) exp is an injective mapping ;
3) exp is onto ;
4) exp is a bijective mapping ;
5) exp is a diffeomorphism ;
6) The roots of g are ψ(x)(1+ iα), where α ∈ R and ψ is a real linear form on g.

The representation theory for exponential groups is almost as complete as the
nilpotent one. In these notes we sometimes give the proofs for exponential groups
when this is not more difficult and we give the results otherwise.

We state below some useful results on solvable Lie groups. When we omit the
proof it may be found in [13].

Proposition 2.7 — Let G be a simply connected solvable Lie group and let H an
analytic subgroup of G. Then H is closed and simply connected. Furthermore, if
h is the Lie algebra of H, there exists a basis (ε1, . . . , εm) of g containing a basis
(εi1 , . . . , εim) of h such that the map

µ
( m∑

j=1

tjεij

)
= expG(t1ei1) expG(t2ei2) . . . , expG(tmeim)

is a diffeomorphism from h to H.

Proposition 2.8 — Let G be a simply connected solvable Lie group. Then G has
no non-trivial compact subgroup.

Proof — We proceed by induction on the dimension of G. Let K be a compact
subgroup of G. We denote by G′ the connected subgroup of G whose Lie algebra
is [g, g]. We may assume that G′ 6= 0 since otherwise G is a vector group and
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K = {e}. Since G is solvable, G′ 6= G and the compact subgroup KG′/G′ of
the simply connected abelian group G/G′ is trivial by the above argument. So,
K ⊂ G′ and the dimension of G′ is lower than the dimension of G. We apply the
inductive hypothesis to prove that K is trivial.

Proposition 2.9 — Let g be a solvable Lie algebra (on R or C). Then a = [g, g]
is a nilpotent ideal of g.

Proof — This is a by-product of the Lie theorem asserting that every solvable
Lie algebra is isomorphic to a subalgebra of triangular matrix. Then, d = [g, g] is
isomorphic to a subalgebra of nn for some n ∈ N.

2.11.– EXERCISES.

Exercise 2.5 – Let G be a Lie group and Te its tangent space at e ∈ G the
neutral element. Let X be a vector field on G. We say that X is left invariant if,
for all x ∈ G, y ∈ G we have dLx(Xy) = Xxy where Lx is the left product by x
and dLx(Xy) is the image of the tangent vector Xy by the tangent mapping dLx

at y.
a) Let X and Y two vector fields on G and ϕ an analytic function on G. Show

that if we define [X, Y ] by

[X, Y ]ϕ = X(Y ϕ)− Y (Xϕ)

then [X, Y ] is a bracket on the space of vector fields on G which is a Lie algebra
(not finite dimensional).

b) The bracket of two left invariant vector fields is left invariant.
c) Show that the map X −→ X1 from the space of left invariant vector fields

into Te is one to one. By definition the Lie algebra of G is Te with the bracket
corresponding to the bracket on the left invariant vector fields.

d) Let A be a finite dimensional algebra (with unit element 1) on R and A∗ the
set of nonsingular element of A. It is wellknown that A∗ is an open set in A so,
A∗ is a Lie algebra on R. Show that the Lie algebra of A∗ is A with the bracket
[a, b] = ab− ba.

Exercise 2.6 – Show that the Lie algebra of the group Un is nn.

Exercise 2.7 – Let N3 be the Heisenberg group. Let

X =




0 x z
0 0 y
0 0 0




X is an element of the Heisenberg Lie algebra. Show that the matrix Exp tX is

Exp tX =




1 tx tz + t2

2 xy
0 1 ty
0 0 1
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Deduce from this that the Lie algebra of N3 is the three dimensional Heisenberg
Lie algebra.

Exercise 2.8 – Let G be the “ax + b” group. We set

X =
(

x y
0 0

)

show that

Exp tX =
(

etx (etx−1)
x y

0 1

)

Thus, the Lie algebra g2 of this group is the space of 2× 2 line matrix.
Show that the mapping Exp is bijective.

Exercise 2.9 – 1) The group “ax + b” is simply connected.
2) The group SL(2,R) of 2 × 2 real matrix with determinant equal 1 is not

simply connected.
3) The group SL(2,C) (or SL(n,C)) is simply connected.

Exercise 2.10 – Every subalgebra and every quotient of a solvable Lie algebra is
solvable.

Exercise 2.11 – Let G be a connected nilpotent Lie group and g its Lie algebra.
Let z be the center of g. We denote D = {X ∈ g ; exp X = 1}.

Show that D is a discret subgroup of the vector group g and that the exponential
mapping induces a bijective mapping from g/D onto G. [Use the universal covering
of G.]

Exercise 2.12 – Show that if a solvable analytic group is not simply connected,
it has a non-trivial compact subgroup.

Exercise 2.13 – Let H be a nilpotent analytic group whose underlying manifold
is R4 and where the multiplication is given by

(x1, y1, z1, t1)(x2, y2, z2, t2) = (x1 + x2 + z1t2, y1 + y2 + αz1t2, z1 + z2, t1 + t2)

where α is a fixed real number. Let D be the discret central subgroup of
H consisting of the elements (p, q, 0, 0), with arbitrary integers p and q. Let
G = H/D. Show that if α is irrational then [G, G] is not closed in G.

Exercise 2.14 – Show that there is also coexponential bases in simply connected
exponential groups ([3], Chapter I 3.6 p. 5).

Exercise 2.15 – Let G be the simply connected solvable Lie group which Lie
algebra is defined by the basis {e1, e2, e3} and the brackets

[e1 , e2] = −e3 [e1 , e3] = e2

Show that the exponential mapping is not injective. [remark that the center of g
is 0 so g ' ad g. Compute the group Ad G ,which is not simply connected and
find a simply connected covering of Ad G].

Show that the center of G is not connected.



3. Polarizations in solvable Lie algebras

Let G be a connected and simply connected Lie group (we say simply connected
Lie group below). The almost universal method for building representations of G
is the following. Let f ∈ g∗ be a linear form on the dual space g∗ of g. Let h be
a subalgebra of g such that [h, h] ⊂ ker f . Let H be the analytic subgroup of G
whose Lie algebra is h. As f([H, H ′]) = 0, for all H,H ′ in h, it is clear that the map
f|h is a Lie algebra homomorphism from h into R. If H is simply connected, there
is one and only one homomorphism χ

f
: H −→ U = {u ∈ C ; |u| = 1} such that

χ
f
(exp H) = eif(H) for every H ∈ H. Thus χ

f
is a one dimensional representation

of H and we can consider the representation ρ = IndGHχ
f

of G. We say that ρ

is a monomial representation and h is a (real) polarization at f . For nilpotent
(and exponential groups), all irreducible unitary representations are monomial.
For more general solvable Lie groups it is necessary to consider polarizations in
complexification of g. As it is not more difficult to study this situation I give the
proofs of this section are given for solvable Lie algebras.

3.1.– POLARIZATIONS.

Let g be a finite dimensional Lie algebra over R, f ∈ g∗ and gC the Lie algebra
over C which is the complexified of g, σ(v) = v, the antilinear involution of gC.
Denote also by f the linear form on gC extending f on g. We define a skew bilinear
form Bf on gC by Bf (X, Y ) = f([X, Y ]). The kernel of Bf in g is denoted g(f)
or gf (and g(f)C or gf

C in gC).
Let G be a connected Lie group whose Lie algebra is g. We have defined

previously the coadjoint representation of G in g∗. It is denoted by Ad∗ and we
have for f ∈ g∗, x ∈ G and Y ∈ g

<Ad∗(x)f , Y >=<f , Ad(x−1)Y >

We shall see below that the orbits of Ad∗ in g∗ give the parametrization of Ĝ when
G is nilpotent (or exponential).

Definition — We say that a subalgebra h ⊂ gC is a polarization at f if
1) Bf (h, h) = 0 and h has the maximal dimension of such subalgebras ;

2) h + h is a subalgebra of gC.

A polarization is said to be real if h = h.
The set of all polarizations at f is denoted by Pol(f) or Pol(f, g).

Definition — A polarization h is positive if the hermitian form H defined by
H(X, Y ) = if([X, Y ]) is positive on h (i.e. if([X, Y ]) ≥ 0 ∀X ∈ h, ∀Y ∈ h).

We can remark that if h is real, it is positive.

Example — Consider the Heisenberg Lie algebra n3 = RX ⊕ RY ⊕ RZ with
[X,Y ] = Z. Let f = λZ∗, λ ∈ R∗, h1 = CZ ⊕C(X + iY ), h2 = CZ ⊕C(X − iY ).



Polarizations in Lie algebras – 27 –

Then h1 and h2 are polarizations at f . furthemore, Hf (X + iY, X + iY ) = 2λ so,
h is positive if an only if λ > 0.

Every polarization h at f generates several other objects.

eC = h + h dC = h ∩ h
e= (h + h) ∩ g d= h ∩ g

If h is real then e=d and h ∩ g is a maximal isotropic subalgebra for Bf in g. We
see that dC is the orthogonal of eC for Bf , this means that Bf is non-degenerated
on eC/dC or on e/d. The dimension of the space e/d is even.

Now we consider G the simply connected group whose Lie algebra is g. Let D0

(resp. E0) the analytic subgroup whose Lie algebra is d (resp. e). Let G(f) be the
stabilizer of f in G for the coadjoint representation : it is not always a connected
subgroup of G. Its Lie algebra is g(f) so, G(f)0, the connected component of
G(f), is contained in D0. If h is invariant by Ad

(
G(f)

)
then it can be shown

that D = D0G(f) is a closed subgroup and its Lie algebra is d (cf. [3] chap. 4). If
G is nilpotent or exponential this fact is not needed because we have the following
lemma.

Lemma 3.1 — Let G be an exponential group (simply connected) then the
stabilizer G(f) of f ∈ g∗ for the coadjoint representation is connected.

Proof — Let X ∈ g such that Ad∗(exp X).f = f . The set

S = {t ∈ R; Ad∗(exp tX).f = f}
is a closed subgroup of R. If S is a discret subgroup, let t0 be its lowest positive
element. We have

Ad∗(exp
t0
2

X).
(
Ad∗(exp

t0
2

X).f − f
)

= −(
Ad∗(exp

t0
2

X).f − f
) 6= 0

So, ad∗(
t0
2

X) has an eigenvalue of the form iπn with n 6= 0 and it is a contradiction

with G exponential, so S = R and this shows that G(f) is connected.

Definition — If a is an ideal of g a polarization h at f is admissible for a if h∩aC
is a polarization at f |a.
Definition — We say that a polarization h at f satisfies the Pukanszky condition
if Ad∗(D).f = f + e⊥.

Definition — Let γ be an automorphism of g. A polarization h at f is γ-invariant
if γ(h) = h.

The aim of this section is to build polarizations at f ∈ g∗ which are positive,
admissible for an ideal a, which verify the Pukanszky condition and are Ad(x)-
invariant for x ∈ Gf . This is a result of L. Auslander and B. Kostant but we give
here the simpler constructive proof of M. Vergne.

Remark – with the previous notations, we have hf = h; hf = h, so ef =
g ∩ (h + h)f = (h ∩ h) ∩ g = d.
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3.2.– CONSTRUCTION OF ISOTROPIC SUBALGEBRAS.

Let g be a solvable Lie algebra on k(= R or C). We say that g is completely
solvable if there exists a sequence of ideals S = (gi)i=1...n such that

{0} = g0 ⊂ g1 ⊂ · · · ⊂ gi ⊂ gi+1 ⊂ · · · ⊂ gn = g

with dim gi = i for 0 ≤ i ≤ n. Every nilpotent Lie algebra over k is completely
solvable and if k= C (or if k is an algebraicly closed field of characteristic zero),
every solvable Lie algebra is completely solvable but the following example shows
that this is not true if k= R.
Example — The solvable Lie algebra defined by

[e1, e2] = −e3 [e1, e3] = e2

is not completely solvable.
The main result of this section is a construction of (complex) polarization at

f ∈ g∗ for every solvable Lie algebra over R. This construction is due to M. Vergne
(cf. [3], Chapter IV).

Let S = (gi) be a sequence of ideals in g a completely solvable Lie algebra and
Sj = (gi)0≤i≤j . Let γ be an automorphism of g such that γ(gi) = gi for every
i = 1 . . . n. Let f be a linear form on g∗, and for every i ≤ n we put fi = f |gi and
gi(fi) the kernel of Bfi on gi. Finally, we put

P (f,S) =
n∑

i=0

gi(fi)

Theorem 3.1 — 1) P (f,S) is a subalgebra and maximal isotropic subspace for
Bf ;

2) P (f,S) ∩ gj = P (fj ,Sj) for every j ≤ n ;
3) For all ϕ ∈ g∗ such that ϕ

(
P (f,S)

)
= 0 we have P (f + ϕ,S) = P (f,S) ;

4) If γ ∈ Aut(g) is such that γ(gi) = gi, i = 0 . . . n, then P (f,S) is
γ−invariant.

We need some lemmas about bilinear forms on vector spaces.

Let V be a finite dimensional vector space on a field k and B a skew bilinear
form on k. The kernel of B is N(B) = {X ; B(X,Y ) = 0 ∀Y ∈ V }. The form
B defines a nondegenerate form on V/N(B) so this space has an even dimension.
If WB denotes the orthogonal of a space W , we remember that W is totally
isotropic if and only if W = WB or if and only if dimW = 1

2

(
dim V + dim N(B)

)
and B(W,W ) = 0.

Lemma 3.2 — (J. Dixmier [3] lemme 1.1.1 p. 49) Let V ′ be a subspace of V
whose codimension is one. Let B′ = B|V ′ and N(B′) the kernel of B′.
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• If N(B) ⊂ V ′, then N(B) ⊂ N(B′) and the codimension of N(B) in N(B′) is
one ;

• If N(B) 6⊂ V ′, then N(B′) ⊂ N(B) and the codimension of N(B′) in N(B) is
one.

Proof — If N(B) ⊂ V ′ then N(B) ⊂ N(B′). Let X be a vector of V which
is not in V ′. N(B) is the kernel of the linear form on N(B′) : Y → B(X, Y ). So
the dimension of N(B′) is greater or equal than dim N(B) − 1. But the integers
dim V −dim N(B) and dim V ′−dim N(B′) are even, so dim N(B) = dim N(B′)−1.

If N(B) 6⊂ V ′, we get a vector X ∈ N(B) not belonging to V ′ and let u ∈ N(B′).
We have B(u, Y ) = 0 ∀Y ∈ V ′ because u ∈ N(B′) and B(u,X) = 0 because
X ∈ N(B). This shows that N(B′) ⊂ N(B), N(B)∩V ′ = N(B′) has codimension
one in N(B).

Lemma 3.3 — Let V be as above and let S = (Vi)0≤i≤n be a sequence of subspaces

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vi ⊂ Vi+1 ⊂ · · · ⊂ Vn = V

such that dimVi = i for every i ≤ n. If Bi = B|Vi and N(Bi) is the kernel of Bi

in Vi then

1) P (B,S) =
n∑

i=1

N(Bi) is a maximal isotropic subspace for B ;

2) P (B,S) ∩ Vj = P (Bj ,Sj) where Sj = (Vi)0≤i≤j.

Proof — We prove this lemma by induction on the dimension of V .
By the previous lemma, we have two cases :

1) N(Bn) ⊂ Vn−1 and N(Bn) ⊂ N(Bn−1).
We have P (Bn,Sn) ∩ Vn−1 = P (Bn−1,Sn−1) and P (Bn,Sn) is isotropic for B.

furthermore, by using the induction hypothesis

dim P (Bn,Sn) = dim P (Bn−1,Sn−1) =
n− 1 + dim

(
N(Bn−1)

)

2

=
n + dim

(
N(Bn)

)

2

this proves the first case.
2) N(Bn) 6⊂ Vn−1 and N(Bn−1) ⊂ N(Bn).

We have dimN(Bn) = dim N(Bn−1) + 1 and P (Bn,Sn) = P (Bn−1,Sn−1) +
N(Bn). Thus P (Bn,Sn) is isotropic for B and

dim P (Bn,Sn) = dim P (Bn−1,Sn−1) + 1 =
n− 1 + dim

(
N(Bn−1)

)

2
+ 1

=
n + dim N(Bn)

2

clearly we also have P (Bn,Sn)∩Vn−1 = P (Bn−1,Sn−1). This completes the proof
of the lemma.
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We now prove the theorem 3.1. By the above lemma P (f,S) is maximal
isotropic and P (f,S) ∩ gj = P (fj ,Sj). We prove that P (f,S) is a subalgebra.
Take Xi ∈ gi(fi) and Xj ∈ gj(fj) for i ≥ j (so gj ⊂ gi). Because gj is an ideal of
g, [Xi, Xj ] ∈ gj and for Y ∈ gj we have by the Jacobi identity

f(
[
[Xi, Xj ], Y

]
) + f(

[
[Xj , Y ], Xi

]
) + f(

[
[Y, Xi], Xj

]
) = 0

but f(
[
[Xj , Y ], Xi

]
) = 0 because [Xj , Y ] ∈ gj ⊂ gi and Xi ∈ gi(fi), and

f(
[
[Y, Xi], Xj

]
) = 0 because [Y,Xi] ∈ gj and Xj ∈ gj(fj).

We prove 3) by induction on the dimension of g. We first remark that if
ϕn ∈ g∗n and ϕn

(
P (fn,Sn)

)
= 0 then P (fn,Sn) is isotropic for ϕn + fn, so

dim P (fn,Sn) ≤ dim P (fn + ϕn,Sn). If gn(fn + ϕn) ⊂ P (fn,Sn) we have
P (fn + ϕn,Sn) = P (fn−1 + ϕn−1,Sn−1) + gn(fn + ϕn) and by the induction
hypothesis, P (fn−1 + ϕn−1,Sn−1) = P (fn−1,Sn−1) ⊂ P (fn,Sn). Thus, P (fn +
ϕn,Sn) ⊂ P (fn,Sn) and by the above inequality on the dimensions we see that
P (fn + ϕn,Sn) = P (fn,Sn). Thus the only thing we have to show is

gn(fn + ϕn) ⊂ P (fn,Sn).

• If gn(fn) ⊂ gn−1, we have P (fn,Sn) = P (fn−1,Sn−1) = P (fn−1 +
ϕn−1,Sn−1) ⊂ P (fn + ϕn,Sn). Let Xn ∈ gn(fn + ϕn), Yn ∈ P (fn,Sn) ⊂ P (fn +
ϕn,Sn) ∩ gn−1. Then, [Xn, Yn] ∈ gn−1 ∩ P (fn + ϕn,Sn) = P (fn−1 + ϕn−1,Sn−1)
so,

0 = (fn + ϕn)([Xn, Yn]) = fn([Xn, Yn])

• If gn(fn) 6⊂ gn−1, then

dim P (fn,Sn) = dim P (fn−1,Sn−1) + 1

= dim P (fn−1 + ϕn−1,Sn−1) + 1

≥ dim P (fn + ϕn,Sn)

and we have the equality by the begining remark.
The last assertion is clear because γ(gi) = gi and γ.fi = fi so, γ

(
gi(fi)

)
= gi(fi)

and P (f,S) is γ−invariant.

3.3.– ON THE PUKANSZKY CONDITION.

Proposition 3.1 — Let h be a subalgebra of gC such that f([h, h]) = 0 and
g(f)C ⊂ h. Then, the following conditions are equivalent :

1) Ad∗D0.f = f + e⊥ ;
2) f + e⊥ ⊂ Ad∗G.f = Ω(f) and h has maximal dimension ;
3) ∀ϕ ∈ e⊥, h is maximal isotropic for f + ϕ.

Proof — First we suppose 1). To show 2) it is enough to verify dimC h =
1
2

(
dimg+dim g(f)

)
. But by construction of e and d we have dimC h = 1

2

(
dimR e+

dimR d
)
. We must show that

dimR(g) + dimRg(f) = dimRe + dimRd
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The mapping θ : x −→ Ad∗ x.f from D0 in f + e⊥ is onto (by 1)). By
the Sard theorem, there is a point x0 ∈ D0 such that the differential of θ is
onto. Thus, X −→ ad∗X(Ad∗ x0.f) from d to e⊥ is onto. So, dAd∗ x0.f =
{X; Ad∗ x0.f([X, d]) = 0} = e. This implies that df = e because d and e are
D0−invariant. Recall that g(f) ⊂ d and we have dim e+dim d = dim g+dim g(f).

We now show 2) =⇒ 3). Since we have ϕ ∈ e⊥, h is isotropic for f + ϕ. So it is
enough to show that g(f +ϕ) = g(f) for every ϕ ∈ e⊥. But f +ϕ = Ad∗ x.f for an
x ∈ G and we have g(Ad∗ x.f) = Ad∗ x.g(f) thus, dim g(f) = dim

(
Ad∗ x.g(f)

)
.

If we assume 3), by a previous result the orbits Ad∗D0.g are closed for every
g ∈ f + e⊥ so they are also closed and of course Ad∗D0.f = f + e⊥.

Corollary 3.1 — Let h be a real subalgebra of g such that f([h, h]) = 0 and
H the analytic subgroup with Lie algebra h. Then, the following conditions are
equivalent :

1) Ad∗H0.f = f + h⊥ ;
2) f + h⊥ ⊂ Ad∗G.f = Ω(f) and h has maximal dimension ;
3) ∀ϕ ∈ h⊥, h is maximal isotropic for f + ϕ.

Proof — We only remark that the condition g(f)C ⊂ h is not necessary
because in this situation, e = df = d so g(f) ⊂ d ⊂ h.

Corollary 3.2 — 1) The polarization P (f,S) of the theorem 31 satisfies the
Pukanszky condition ;

2) If G is a nilpotent connected Lie group, all the polarizations satisfy the
Pukanszky condition.

Proof — 1) is clear. If G is a nilpotent the orbits of D0 in f + e⊥ are closed
(by Theorem 2.4) and they are always open.

3.4.– POSITIVE POLARIZATIONS.

In this paragraph we consider a real solvable Lie algebra g and gC its complexi-
fied Lie algebra. we will show that it is possible to choose the flag S = (gi)i=1,...,n

in gC such that P (f,S) is a positive polarization at f ∈ g∗.
Recall that we denote by σ the conjugaison X −→ X in gC.

Definition — We say that S = (gi)i=1,...,n is a “good” sequence of ideals of gC
if we have the following property:

If gi is not σ-invariant, then gi−1 and gi+1 are σ-invariant.

Proposition 3.2 — If g is a solvable real Lie algebra, there exists “good”
sequences in gC.

Proof — We consider a Jordan-Holder sequence in g:

0 = g0 ⊂ g1 ⊂ · · · ⊂ gn = g

with dim gi/gi−1 =1 or 2 and the action of g in gi/gi−1 is 0 or irreducible. It is
enough to consider the sequence

0 = g0C ⊂ g1C ⊂ · · · ⊂ gnC = gC
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and if dim giC/gi−1C = 2 we choose a complex g̃i such that g̃i ∈ giC with
dim giC/g̃i = 1.

We recall that the hermitian form Hf is defined by Hf (X,Y ) = if([X, Y ]).
Lemma 3.4 — Let S = (gi)i=1...n be a good sequence in gC.

1) If gi is an ideal which is non σ-invariant, then [gi+1 , gi+1] ⊂ gi−1 ;
2) If i 6= j or if gi is σ-invariant, then Hf

(
gi(fi), gj(fj)

)
= 0.

Proof — 1) Since g is solvable [gi+1, gi+1] is contained in gi. We remark
that gi−1 + [gi+1, gi+1] is a σ-invariant ideal contained in gi, so it is gi−1 and
[gi+1, gi+1] ⊂ gi−1.

2) We suppose i ≥ j so gj ⊂ gi for the two cases. If Xi ∈ gi(fi), Xj ∈ gj(fj) ⊂
gj ⊂ gi, we have Xj ⊂ gi so fi([Xi, Xj ]) = 0.

Proposition 3.3 — If S is a good sequence of ideals of gC then P (f,S) is a
polarization at f .

Proof — By the previous results, it is enough to prove that P (f,S)+P (f,S)
is a subalgebra of gC. Let i ≥ j, Xi ∈ gi(fi), Xj ∈ gj(fj). It is enough to show
that [Xi, Xj ] ∈ P (f,S).
• If i > j or if σ(gi) = gi, then gj ⊂ gi. If u ∈ gj

f([[Xi, Xj ], u]) + f([[Xj , u], Xi]) + f([[u,Xi], Xj ]) = 0

But, [Xj , u] ⊂ gj ⊂ gi and [Xj , u] ⊂ gi so, f([[Xj , u], Xi]) = 0 because
Xi ∈ gi(fi). Furthermore, [u, Xi] ∈ gj so, f([u, Xi], Xj ]) = 0. Thus, we have
[Xi, Xj ] ∈ gj(fj) ⊂ P (f,S).
• If i = j and gi 6= gi, we have gi−1 = gi−1 and gi+1 = gi+1, [gi+1, gi+1] ⊂ gi−1

by the lemma. So, [Xi, Xj ] ∈ gi−1 and by the Jacobi identity like before, we see
that [Xi, Xj ] ⊂ gi−1(fi−1.

Proposition 3.4 — There exists a good sequence of ideals of gC such that P (f,S)
is a positive polarization at f.

Proof — Let S = (gi)i=1,...,n be a good sequence of ideals of gC, f ∈ g∗ and

P (f,S) =
n∑

i=0

gi(fi). Let i0 be the lowest index such that P (fi0 ,Si0) is not positive.

By the previous lemma, there exists an Xi0 in gi0(fi0) such that Hf (Xi0 , Xi0) < 0
and gi0 6= gi0 . We replace the good sequence by the new good sequence where gi0

is replace by gi0 and now if Xi0 ∈ gi0 , Hf (Xi0 , Xi0) = −Hf (Xi0 , Xi0) is positive.
It is clear that P (fi0 ,Si0) = P (fi0−1,Si0−1) + CXi0 is a positive polarization at
fi0 . We go on with the index i1 > i0 such thatP (fi1 ,Si1) is not positive and
because n is finite, we see that it is possible to choose the good sequence such that
P (f,S) is positive.

We remark that if a is an ideal of g, we can choose the sequence S such that aC
is one of the gi (by choosing a good sequence of gC/aC and a sequence of ideals of
gC included in a). So, P (f,S) is admissible for a.
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We have proved the following theorem.

Theorem 3.2 — Let g be a real solvable Lie algebra and a an ideal of g,
f ∈ g∗, f ′ = f |a, Gf and Gf ′ the stabilizers of f and f ′ for the coadjoint
representation of G, the simply connected group with Lie algebra g. Then there
exists a positive polarization h at f which is admissible for a and verify the
Pukanszky condition. Furthermore, h is invariant for the action of Gf and h ∩ a
is invariant for the action of Gf ′ .

3.5.– REAL POLARIZATIONS.

If G is a nilpotent connected Lie group, its Lie algebra is of course completely
solvable so, we may apply the results of 3.2 to g with k= R. We obtain a subalgebra
h which is a maximal isotropic subspace of g : it is a real polarization at f ∈ g∗.
The same is true if g is completely solvable.

If G is solvable, real polarizations does not exist in general (Exercise 3.2), but
real polarizations exist if G is an exponential group as we see below.

We say that S = (gi) is a good sequence of subalgebras of g if it verify the
condition : if gi is not an ideal then gi−1 and gi+1 are ideals of g. If g is solvable
then there exists good sequences of ideals : to see this, get a (real) Jordan-Holder
sequence of g. The quotients gi+1/gi have the dimension 1 or 2. If dim gi+1/gi = 2
we can take any subspace g′ of gi which contains gi and of codimension 1 in gi+1.
This subspace is clearly a subalgebra and the new sequence is a good sequence of
ideals of g.

Now, we define a particular solvable Lie algebra : the Diamond Lie algebra, d4.
This algebra is a fondamental example. The non-zero brackets of d4 are:

[e1, e2] = e3 [e1, e3] = −e2

[e2, e3] = e4

Exercise 3.1 – Let f = e∗4 ∈ d∗4. Show that there is no real subalgebra which is
also a maximal isotropic subspace (cf. [3] Chap. IV).

Proposition 3.5 — (Brezin-Dixmier criterion, [3] Chapter 4 p. 83) Let g be a
real solvable Lie algebra. If none of the subalgebra have a quotient isomorphic to d4

then, for every f ∈ g∗ there exists a polarization at f and satisfying the Pukanszky
condition.

Corollary 3.3 — If g is an exponential Lie algebra and f ∈ g∗ then, there exists
a real polarization h at f and h satisfy the Pukanszky condition.

Exercise 3.2 – Consider the Diamond Lie algebra d4 and f = e∗4. We have
g(f) = Re4 ⊕ Re1 . The dimension of polarizations at f is three.

There is no real subalgebra containing g(f) and with dimension 3, but show
that there are two and only two subalgebras of gC which are polarizations at f :

h = g(f)C ⊕ C(e2 + ie3) and h = g(f)C ⊕ C(e2 − ie3)
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Show that f([e2 + ie3, e2 − ie3]) = −2i so, h is positive and h is not positive.
If n = Re2 ⊕ Re3 ⊕ Re4, then n is the Heisenberg Lie algebra and h ∩ nC =

C⊕C(e2 + ie3) is a polarization of nC at f |n which is not a real polarization. This
proves that it is not always possible to find a polarization h at f such that h ∩ nC
is a real polarization at f |n for n a nilpotent ideal of g.

Exercise 3.3 – There exists nilpotent Lie algebras such that polarizations are
not all obtained by the M. Vergne construction. Let n = g5 with the following
nonzero brackets:

[e1, e2] = e4, [e1, e4] = e5, [e2, e3] = e5

Let f = e∗5. Show that n(f) = Re5 = z and h = Re1 ⊕ Re2 ⊕ Re5 cannot be
obtained with a good sequence of n.



4. The dual space of a simply connected nilpotent Lie group

In this section we describe the irreducible unitary representations of a simply
connected nilpotent Lie group. First we prove a classical useful lemma.

Lemma 4.1 — (A.A. Kirillov) Let g be a nilpotent Lie algebra of dimension
greater than one and with a one dimensional center z. Then there exists linearly
independant elements X, Y, Z of g and a linear form λ on g such that z =
RZ, [X,Y ] = Z, [T, Y ] = λ(T )Z, ∀T ∈ g. Furthermore, g0 = ker λ is an ideal of
g containing Y and Z, g = g0⊕RX, and a = RY ⊕RX is an abelian ideal central
in g0 such that [g, a] = z.

Proof — We choose a non zero element Z ∈ z. The quotient g/z is a nilpotent
Lie algebra, so its center z̃1 is non zero. The corresponding ideal z1 in g is such
that [z1, g] ⊂ z. We choose Y ∈ z1 such that Y 6∈ z. Thus, for T ∈ g we have
[T, Y ] = λ(T )Z and λ is a non zero linear form. There is X such that [X,Y ] = Z.

Let T ∈ g and U ∈ kerλ. By the Jacobi identity we have

[[T,U ], Y ] = −[[U, Y ], T ]− [[Y, T ], U ]

but [U, Y ] ∈ z and [Y, T ] ∈ z so, λ([T,U ]) = 0. This shows that kerλ is an ideal in
g. The relation [T, Y ] = λ(T )Z shows that a is an ideal (abelian) and it is clear
that g = ker λ⊕ RX.

Theorem 4.1 — Let G be a simply connected nilpotent Lie group and let ρ be an
irreducible unitary representation of G. Then there exists an analytic subgroup H
of G and a character χ of H such that ρ = IndGHχ.

Proof — We prove this result by induction on dim G. If dim G = 1 the result
is clear. We suppose that the theorem is true for groups whose dimension is lower
than r > 1.

Let Z be the center of G and z its Lie algebra. For every z ∈ Z the operator
ρ(z) ∈Hom(ρ, ρ). By Schur lemma we have ρ(z) = ω(z) Id where ω(z) ∈ C and it
is clear that ω is a unitary character of Z. We consider the kernel Z ′ of ω in Z.
It is a closed subgroup of Z and its neutral component Z ′

0 is a simply connected
subgroup of G (by corollary 2.2) on which ρ is the identity operator.

Let p be the canonical map p : G −→ G/Z ′
0 There is a unique irreducible

representation ρ′ such that ρ = ρ′ ◦ p (cf. 1.7 (e)). By the induction hypothesis,
if dim Z ′

0 > 1, we have a character χ′ of an analytic subgroup H ′ ⊂ G′ such that
ρ′ = IndG

′

H′χ′. Let χ = χ′ ◦ p the character of the closed subgroup p−1(H ′) = H.
It is easy to see that

ρ = ρ′ ◦ p = IndGHχ′ ◦ p = IndGHχ

We are now concerned by the situation dim Z ′
0 = 0 (or dim Z = 1). We can

use the Kirillov’s lemma. Let Z, X, Y be the three elements defined in this
lemma. The subspace a = RZ⊕RY is an abelian ideal of g. Let A be the (simply
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connected) analytic group whose Lie algebra is a. It is a vector group and the map
l −→ χ

l
defined by χ

l
(exp X) = ei<l,X>, (χ ∈ A) is an homomorphism from a∗

onto Â. For x ∈ G we have (remark that l(Z) 6= 0 otherwise Z ′
0 6= 0)

x.χ
l
(exp X) = χ

l
(x−1 expXx)

= χ
l
(expAd(x−1).X)

= ei<l,Ad(x−1)X>

= ei<Ad∗(x).l,X>

= χAd∗(x).l(exp X)

so the action of G on Â corresponds to the action of Ad∗(G) on a∗. We want to
apply the Mackey’s theorem so, we need to compute the G-orbits in a∗ (= Â).
According to the previous lemma we have g = RX ⊕ g0 where [g0, a] = 0 so, if
T ∈ g0, Ad∗(exp T ).l = l for every l ∈ a∗. This shows that the orbits of G in
a∗ are only the orbits of the one parameter group exp(RX) (note that {X} is a
Malcev basis for g0).

Let l = αY ∗ + βZ∗ ∈ a∗. We have to compute ϕ = Ad∗(exp tX).l for t ∈ R.
Let T ∈ a.

ϕ(T ) = Ad∗(exp tX).l(T ) =<l , Ad
(
exp(−tX).T

)
>

=<l , Exp
(
ad(−tX).T

)
>

=<l , T − t[X, T ] +
t2

2
[X, [X,T ]] + · · ·>

but [X, T ] ∈ z so ϕ(T ) =<l , T − t[X, T ]> and we see that ϕ = l − tβY ∗. Thus,
the orbit of αY ∗ is {αY ∗} and the orbit of l 6∈ RY ∗ is l+RY ∗. They are closed so,
by Glimm’s theorem, A is regularly embeded in G. By the previous computation
we also see that the stabilizer Gl of l ∈ Â or χ

l
∈ a∗ is G if l ∈ RY ∗ and

G0 = exp g0 otherwise. But we have seen that l(Z) 6= 0 so, by Mackey’s theorem,
there exists an irreducible representation ρ0 of G0 such that ρ = IndGG0

ρ0 and
by the induction hypothesis ρ0 = IndG0

H χ
f

for a connected subgroup H and an

f ∈ g∗0. Using induction by stage we see that ρ = IndGHχ
f
.

Proposition 4.1 — Let ρ and ρ′ be two irreducible representations of G which
are not equal to identity on the center. Then ρ ' ρ′ if and only if they have the
same restriction to the center of G.

Proof — We only sketch the proof which is almost the same that the previous
one. If the two representations have the same restriction to the center, the crucial
case is when dim z = 1. Then, using the notations of the previous proposition, we
remark that they are built by Mackey theory with two characters χ

l
and χ

l
′ in

the same G-orbit in Â. So we may suppose they are identical. But A is the center
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of G0 and the two representations are induced from representations of G0 such
that the restriction to A is χ

l
. By induction hypothesis these representations of

G0 are equivalent and by induction ρ ' ρ
′
.

Proposition 4.2 — Let h ⊂ g be the Lie algebra of a subgroup H of G
and χ a character of H. There exists f ∈ h∗ such that for every X ∈ h and
Y ∈ h, f([X,Y ]) = 0 and χ(exp X) = ei<f,X>.

Proof — The character χ is an homomorphism of Lie groups from H into
U = {z; z ∈ C, |zz| = 1} so, its differential dχ = if is a Lie algebra homomorphism
from h into the abelian Lie algebra R. So, we have f([X, Y ]) = 0 for X, Y ∈ h.
The last expression of χ is clear because if is the differential of χ.

Definition — Let f ∈ g∗ and let h be a subalgebra of g. Then we say that h is
isotropic at f if f |[h,h] = 0. Given f ∈ g∗ we denote by S(f) the set of subalgebras
of g which are isotropic at f .

The previous theorem may be restated as follows.

Theorem 4.2 — For each unitary irreducible representation ρ of G, there exists
f ∈ g∗ and h ∈ S(f) such that if H is the analytic subgroup of G with Lie algebra
h then ρ = IndGHχ

f
where χ

f
is the character of H defined by f .

For f ∈ g∗ we recall that we denote by G(f) or Gf the stabilizer of f with
respect to the action of Ad∗ in g∗ and by g(f) or gf the kernel of the bilinear form
Bf defined by Bf (X,Y ) = f([X, Y ]) for X ∈ g and Y ∈ g.

Proposition 4.3 — Let G be a simply connected nilpotent Lie group with Lie
algebra g, and let f ∈ g∗. Then Gf is the analytic subgroup of G with Lie algebra
gf .

Proof — By lemma 3.1 Gf is connected and it is closed. If X, Y ∈ gf then for
t ∈ R, < f , Exp(ad tX).Y >= f(Y ), so Ad∗ exp(−tX).f = f for all t ∈ R. this
shows that X belongs to the Lie algebra of Gf . Conversely, by differentiating the
relation Ad∗ exp(tX).f(Y ) = f(Y ) for exp(X) ∈ Gf , we see that f([X, Y ]) = 0
so, X ∈ gf .

We have seen (cf. Theorem 2.4 and its proof) that every orbit Ω = Ad∗G.f
is a closed manifold of g∗. It is isomorphic to the quotient space G/Gf by the
map x −→ Ad∗(x).f . The tangent space at f to Ω is the image of g under the
differential X −→ ad∗(X).f whose kernel is gf , so the dimension of Ω is equal to
dim g− dim gf . On the other hand, gf is the kernel of the bilinear form Bf on g
defined by Bf (X, Y ) = f([X,Y ]). We have seen that this form is skew symmetric
and induces a non-degenerate form on g/gf . Thus, the common dimension of g/gf

and Ω is even.

Proposition 4.4 — Let G be a simply connected nilpotent Lie group and g its
Lie algebra. Let f ∈ g∗. Then there exists a real polarization h at f such that
ρ(f, h) = IndGHχ

f
is irreducible.
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Proof — The proof is by induction on the dimension of G. The result is clear
if dim G = 1. Let z be the center of g.

First we suppose that z′ = ker(f |z) is non zero. If Z ′ = exp(z′) we consider the
simply connected Lie group G′ = G/Z ′ whose Lie algebra is g′ = g/z′. Let f ′ be
the linear form induced by f on g′. By the induction hypothesis, there exists a
polarization h′ at f ′ in g′ such that IndG

′

H′χ
f ′

is irreducible. We denote by p the

canonical projections from g onto g′ and from G onto G′. Let be h = p−1(h
′
). It

is a maximal isotropic subalgebra for f thus it is a real polarization at f . We have
ρ(f, h) = ρ(f ′, h′) ◦ p. Thus ρ(f, h) is irreducible.

We suppose now that ker(f |z) = 0. This means that dim z = 1. We choose
three elements X0, Y0, Z0 and λ and g0 as in lemma 4.1. Let G0 be the analytic
subgroup with Lie algebra g0. Then a = RY0⊕ z is an ideal which is central in g0.
We denote by f0 the restriction of f to g0 and we consider a polarization h0 at f0

in g0. As a is central in g0 we have a ⊂ h0 thus hf
0 ⊂ af . But if U ∈ g0 and t ∈ R,

we have f([U + tX0 , Y0]) = t f(Z0), which implies af = g0. So, hf
0 ⊂ g0 and we

have
h0 = hf0

0 = hf
0 ∩ g0 = hf

0

Thus h0 is a real polarization at f in g. By the induction hypothesis we can take
h0 such that IndG0

H0
χ

f0
is irreducible as a representation of G0.

Let A = exp a. In the proof of the Theorem 4.1 we have seen that A is regularly
embedded in G and that Gχ

f0
= G0 because χ

f
is non zero on z. Furthermore,

A is contained in exp(h0) = H0 and is central so we have for a ∈ A, x ∈ exp g0

and ϕ a fonction in the space of ρ(f0, h0)

ρ(f0, h0)(a)ϕ(x) = ϕ(a−1x) = ϕ(xa−1) = χ
f0

(a)ϕ(x)

This shows that ρ(f0, h0)|A is a multiple of χ
f0

. We can apply Mackey’s theorem

which shows that IndGG0
ρ(f0, h0) is irreducible but by the theorem of induction by

stages this representation is equivalent to ρ(f, h).

Theorem 4.3 — (A.A. Kirillov) Let G be a simply connected nilpotent Lie group
with Lie algebra g and let f ∈ g∗.

1) If h is isotropic at f , the following conditions are equivalent :
a) IndGHχ

f
is irreducible ;

b) h is a real polarization at f ;
2) For two real polarizations h1 and h2 at f , the representations ρ(f, h1) and

ρ(f, h2) are equivalent.

Proof — We first prove a lemma.
Lemma 4.2 — If h is an isotropic subalgebra at f such that IndGHχ

f
is irreducible

then h contains the center of g.

Proof — (Of the lemma) Let z be the center of g. Let h
′

= z + h. We

have H
′

= HZ and by induction by stages ρ ' IndGHχ
f
' IndG

H
′ IndH

′

H χ
f
.
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If ρ is irreducible, then π = IndH
′

H χ
f

is also irreducible. But H
′

= HZ and
for a function ϕ in the space of π, h ∈ H, k ∈ H and z ∈ Z we have
π(h)ϕ(zk) = ϕ(h−1zk) = χ

f
(h−1)−1χ

f
(k)−1ϕ(z) = χ

f
(h)ϕ(zk), because z is in

the center of G. So π is a multiple of a character and is irreducible. This implies
that the space of π is one dimensional and since π is an induced representation,
this is possible only if H = H

′
and thus z ⊂ h.

We start with the proof of the theorem which is by induction on the dimension
of G. If dim G = 1, the result is clear. We suppose dimG > 1 and the result true
for groups with dimension lower than dim G. We denote by ρ(f, h) or ρ(f, h, g)
the representation IndGHχ

f
.

1) We suppose z
′

= ker f ∩ z 6= 0 and let G
′

= G/Z
′
, p : G −→ G

′
the

canonical projection (and by the same notation the coresponding projection for
Lie algebras), and p(f) the linear form on g

′∗ such that f
′ ◦ p = f . If h is a

(real) polarization at f then p(h) is a polarization at p(f) and conversely, if h
′
is a

polarization at p(f) ∈ g
′∗

, p−1(h
′
) is a polarization at f because z

′ ⊂ g(f). Thus,
if ρ(f, h) = ρ(f

′
, p(h)) ◦ p is irreducible, ρ(f

′
, p(h)) is irreducible and by induction

hypothesis, p(h) is a polarization at p(f) so h is a polarization at f . Conversely, if
p(h) is a polarization at p(f), ρ(f

′
, p(h)) is irreducible and ρ(f, h) = ρ(f

′
, p(h)) ◦ p

is also irreducible.
For the second assertion of the theorem, we remark that if h1 and h2 are

two polarizations at f , p(h1) and p(h2) are two polarizations at p(f) so, =
ρ(f

′
, p(h1)) ' ρ(f

′
, p(h2)) by induction hypothesis, and

ρ(f, h1) = ρ(f
′
, p(h1)) ◦ p = ρ(f

′
, p(h2)) ◦ p = ρ(f, h2)

2) We may now suppose that z
′

= 0 or dim z = 1 and f |z 6= 0. We use the
lemma 6 and get three elements X, Y, Z in g such that [X, Y ] = Z. Let a = z⊕RY
and g0 the centralizer of a. The polarization h contains z.

2.a) We first consider the case h ⊂ g0. Of course if h is a polarization at f , h is
a polarization at f0 = f |g0, then ρ(f0, h, g0) is irreducible and as in the proof of
theorem 9 ρ(f, h, g) = IndGG0

ρ(f0, h, g0) is irreducible by the Mackey theorem.
Conversely, if ρ(f, h, g) = IndGG0

ρ(f0, h, g0) is irreducible, IndGG0
ρ(f0, h, g0) is

irreducible and h is a polarization at f0. But gf ⊂ g0 so gf ⊂ gf0
0 by lemma

3, and gf ⊂ h thus, h is a polarization at f in g0.
2.b) It remains the case h 6⊂ g0 and the second assertion. We study this case

by showing that there exists h′ ⊂ g0 such that ρ(f, h) = ρ(f, h′).
We set a = z ⊕ RY . If a ⊂ h we have h = hf ⊂ af = g0 and since f |z 6= 0 we

may suppose f |z(Z) = 1. and λ(Z) = 0 (by lemma 4.1), we see that λ|h and f |h
are linearly independent so, we can choose X ∈ h, h = h0 + RX and f(X) = 0.
We consider h′ = h0 ⊕ RY . Since f([h′, h′]) = 0 and dim h = dim h′, h′ is a real
polarization at f .
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Lemma 4.3 — We have ρ(f, h) ' ρ(f, h′)

Proof — Let k = h + a ⊂ g and K = exp k. We have

ρ(f, h) ' IndGK ρ(f |k, h, k) and ρ(f, h′) ' IndGK ρ(f |k, h′, k)

so, it is enough to prove ρ(f |k, h, k) ' ρ(f |k, h′, k). To prove this, we first consider
the subspace k1 = ker(f) ∩ h0 and we show that k1 is an ideal in k. We have
k = h0 ⊕ RY ⊕ RX and h = h0 + RX (recall that h0 = h ∩ g0). Since f |z is not
zero and z ⊂ h0 we have k = k1 ⊕ RY ⊕ RX ⊕ RZ. Now, if we remark that h0 is
an ideal of codimension 1 in h and h′ we see that

[X, k1] ⊂ [h, h] ⊂ ker(f) ∩ h0

[Y, k1] ⊂ [h′, h′] ⊂ ker(f) ∩ h0

and this proves our assertion.

We denote by K1 the analytic subgroup of K with Lie algebra k1, K = K/K1

which is a simply connected group, p : K −→ K the canonical projection,
X = p(X), Y = p(Y ), and Z = p(Z). It is clear that K is isomorphic to the
Heisenberg group. We look at the linear form g on k deduced from f on g :
we have g(Z) = 1, g(X) = g(Y ) = 0. Thus g is Z

∗
and p(h) = RX ⊕ RZ,

p(h′) = RY ⊕ RZ, so we have

ρ(g, h) ' ρ
(
Z
∗
, p(h)

) ◦ p1 and ρ(g, h′) ' ρ
(
Z
∗
, p(h′)

) ◦ p1

and it is enough to prove ρ
(
Z∗,RX ⊕RZ

) ' ρ
(
Z∗,RY ⊕RZ

)
for the Heisenberg

group.

Computations on the Heisenberg group
We take a basis {X, Y, Z} with [X,Y ] = Z and the polarizations h1 = RX⊕RZ,

h2 = RY ⊕ RZ. We want to prove ρ(Z∗, h1) ' ρ(Z∗, h2). For this we can look at
the computation of the first section, where Z∗ correspond to the character with
y = 0, z = 1, ρ1 = ρ(Z∗, h1) acts on the space L2(R) and

ρ1(a, 0, 0)ϕ(α) = eiαaϕ(α)

ρ1(0, b, 0)ϕ(α) = ϕ(α− b)

ρ1(0, 0, c)ϕ(α) = eicϕ(α)

For ρ2 = ρ(Z∗, h2) we have

ρ2(a, 0, 0)ϕ(α) = ϕ(α− a)

ρ2(0, b, 0)ϕ(α) = e−iαbϕ(α)

ρ2(a, 0, 0)ϕ(α) = eicϕ(α)
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and an obvious computation shows that the Fourier transform defined by

Fϕ(y) =
1√
2π

∫

R
ϕ(x)eixydx

is an unitary operator realizing the equivalence.
The previous theorem shows that ρ(f, h) is independant of the polarization h

at f so, we have defined a map f −→ ρ(f) from g∗ into Ĝ. In fact, this map is
constant on each orbit of the coadjoint representation of G as we show now.

Proposition 4.5 — If x ∈ G, f ∈ g∗ and x.f = Ad∗ x.f , then we have
ρ(x.f) ' ρ(f) and this defines a map from the quotient space g∗/G of orbits
of the coadjoint representation of G into Ĝ.

Proof — Let x ∈ G, f ∈ g∗ and h a polarization at f . We show that
x.h = Ad x(h) is a polarization at x.f . First, we have for h, h′ ∈ h, using the fact
that Ad(x) is a Lie algebra isomorphism and h is a polarization at f

x.f([x.h, x.h′]) = f
(
Ad(x−1).[Ad x.h,Ad x.h′]

)

= f([h, h′]) = 0

because Furthermore, gx.f = x.gf (exercise), so dim gx.f = dim(x.gf ) = dim gf .
We deduce immediately by dimension argument, that x.h is totally isotropic at
x.f , so it is a polarization at x.f .

We can now compute ρ(x.f)

ρ(x.f, x.h) ' Ind G
x−1Hx (χ

x.f
)

' Ind G
x−1Hx (x.χ

f
)

' IndGHχ
f

(corollary 1.1 section 1.9)

' ρ(f, h)

This achieves the proof.

We can state the main theorem of this section due to A.A. Kirillov.

Theorem 4.4 — If G is a connected simply connected nilpotent Lie group, the
map f −→ ρ(f) induces a bijective map from g∗/G onto the dual space Ĝ of G.

Proof — According to the previous proposition we have only to prove the
surjectivity but, by theorem 4.2, if π ∈ Ĝ, π ' IndGHχ

f
where χ

f
is a character of

H. Thus, we can apply the first result of theorem 4.3 to see that H = exp h with
h a polarization at f , so π ' ρ(f, h).
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4.1.– THE CASE OF EXPONENTIAL GROUPS

Almost all the results of this section extend to groups of exponential type. The
Kirillov bijection is a result of P. Bernat (cf. [3] chap. IV). The main new fact is
that not every real polarization at f ∈ g∗ gives an irreducible representation
of G but for each f ∈ g∗ there exists a real polarization h at f such that
IndGHχ

f
is irreducible. The necessary and sufficient condition for h to give an

irreducible representation is the Pukanszky condition discovered by L. Pukanszky
(of course !) in [19]. If this condition is not verified, IndGHχ

f
is a finite sum of

irreducible representations, the decomposition in irreducible ones is given by the
orbits which intersect f + h⊥ as an open set in f + h⊥, each orbit Ω with this
property corresponds to a subrepresentation of IndGHχ

f
with a multiplicity equal

to the number of connected components of Ω ∩ f + h⊥. This is due to M. Vergne
(cf. [3] Chap. VII).

Exercise 4.1 – Compute the dual space of the “ax + b” group using the Kirillov-
Bernat mapping. Let {X, Y } be a basis of the Lie algebra such that [X, Y ] = Y .
Show that h = RY and k = RX are polarizations at Y ∗ but IndGHχ

Y ∗
is irreducible

and IndGKχ
Y ∗

is not irreducible. Compute the decomposition of IndGKχ
Y ∗

into
irreducible representations.



5. Holomorphical induction,

irreducible representations of solvable Lie groups.

5.1.– DEFINITIONS AND GENERALITIES

Let G be a locally compact solvable group. To define holomorphical induced
representations we have to consider some subrepresentations of an induced repre-
sentation σ of a closed subgroup H of G.

We denote by E ′(G) the space of compact supported measures on G. Let
ν ∈ E ′(G) and let f be a locally integrable function on G (for the Haar measure
µG). Then the function x −→ ∫

f(xy)dν(y) is almost everywhere defined and
locally µG-integrable. We denote by ρ(ν)f this function. Similarly we write
λ(ν)f(x) =

∫
f(y−1x)dν(y).

Let Σ be a set of such measures ν and let U be a representation of a closed
subgroup H of G. We consider the representation π of G induced by U . Let
Hπ be its space. We denote by HΣ

π the subspace of functions ϕ ∈ Hπ such that
ρ(ν)ϕ = 0 for every ν ∈ Σ.

It can be shown that this space is closed and G-invariant so, it defines a
subrepresentation of π. To see the G-invariance of HΣ

π we can use the fact that

πxf(y) = f(x−1y) = δx−1f(y) (definition)

ρ(ν)(πxf)(y) = ρ(ν)(δx−1)f(y) = (δx−1)ρ(ν)f(y).

We have used the fact that ρ(ν1)λ(ν2)f = λ(ν2)ρ(ν1)f (Exercise).
The assertion that HΣ

π is closed, is a consequence of the fact that the map
f −→ ∫

G
h(x)ρ(ν)f(x)dµG(x) is continuous (see Duflo [3] p. 110).

So Σ defines a subrepresentation of IndGHU , but of course, if Σ is badly choosen
this subrepresentation may be 0.

We now apply this construction to Lie groups and polarizations. Let G be a Lie
group, g its Lie algebra and f ∈ g∗. We choose a polarization h at f . We take for Σ
a set of distributions with compact supports

(
Σ ⊂ D′C(G)

)
. We denote by Dn(G)

the space of measures hµG with h ∈ D(G). For α ∈ Dn(G) and ν ∈ D′C(G) we
have α ∗ u ∈ Dn(G) so we can consider ρ(α ∗ ν) for α ∈ Dn(G) and ν ∈ E ′(G). If
Σ ⊂ D′C(G) we define

HΣ
π = {f ∈ Hπ | ρ(α ∗ ν)f = 0 ∀α ∈ Dn(G) ∀ν ∈ Σ}

For instance, if f is C∞ on G we can define ρ(ν)f by ρ(ν)f(y) =
∫
G

f(xy)dν(y),
so if X ∈ g is the distribution

d

dt
f(exp tX)|t=0

we have
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ρ(X)f(x) =
d

dt

(
f(x exp tX)

)|t=0

and we define ρ(Z) by linearity for Z = X + iY with X ∈ g, Y ∈ g

ρ(X + iY )f(x) = [ρ(X) + iρ(Y )]f(x).

Now, let h be a polarization at f ∈ g∗, d = h∩ g, e = (h + h)∩ g. Suppose that
h is Gf -invariant. We denote by D0, E0, G0

f the subgroups with Lie algebras
d, e, gf . Since h is Gf -invariant, Gf normalizes D0 and E0 so D = GfD0 and
E = GfE0 are subgroups of G. If h is a “good polarization” like those defined in
the previous section, it can be shown that E and D are closed subgroups of G but
Gf is not connected for all solvable groups so E and D are not always connected.
The groups D and D0 have the same Lie algebra because G0

f ⊂ D0 (gf
C ⊂ h∩ h).

The same argument can be used for E and E0.
We have f([d, d]) = 0 so there exists a character χ

f
∈ D̂0 such that dχ

f
= if .

But it is not always true that this character extends to a character of D.

Definition — We say that f ∈ g∗ is an integral form if there exists a character
ηf of Gf such that its differential is if |g(f).

Until the end of the section we suppose that f is an integral form. Since ηf and
χ

f
are equal on G0

f we have a character χ̃
f

on D = GfD0 which extends χ
f

and
ηf . We note χ

f
= χ̃

f
.

We denote by H(f, χ
f
, h, g) the completion of the space of functions ϕ on G

which are C∞ and such that





1) ϕ(xd) = ∆D,G(d)
1
2 χ

f
(d)−1ϕ(x) x ∈ G, d ∈ D

2)
∮

G/D

| ϕ |2 dµG,D < ∞

3) ρ(Y )ϕ(x) = [−if(Y ) +
1
2

tr adg/e(Y )]ϕ(x) Y ∈ h x ∈ G

and π = ind(f, hf , h,G) acts by left translations on H(f, χ
f
, h, g).

Remarks : 1) ∆D,E = 1 because there is an invariant measure on E/D ; to show
this let B̃f the bilinear form on e/d deduced from Bf on g ; it is non degenerate
and ω = B̃f ∧B̃f · · ·∧B̃f defines a D-invariant differential form of maximal degree
on E/D so ∆D,E = 1.

2) If Y ∈ D = h ∩ g the condition 3) follows from 1) because ∆D,E = 1 on D
so ∆D,G = ∆E,G.

3) If d ∈ D0 the condition 1) follows from 3).
If G = E, it can be shown that the space H(f, ηf , h, E) is exactly the space of

C∞ functions on E such that
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ϕ(xd) = χ
f
(d)−1ϕ(x) d ∈ D x ∈ E∫

E/D
| ϕ(x) |2 dµE,D(x) < ∞

ρ(Y )ϕ = −i〈f, Y 〉ϕ Y ∈ h

We see that the set Σ of the definition is equal to the set of distributions defined
by Y ∈ h. For holomorphic induction there is also a theorem of induction by stages.

Theorem 5.1 — ([3] prop 4.2.1 p. 112) Let K ⊂ H ⊂ G and V a representation
in H. Let Σ be a set of measures with support in H. Let ν ∈ Σ and ν′ be the
element of E ′(G) defined by

h −→
∫

H

∆H,G(u)−1/2h(u)dν(u)

where h is a function on H and let Σ′ = {ν′ ; ν ∈ Σ}, thus we have

ind(V, k, g,Σ′) ' IndGH
(
ind(V, k, h, Σ)

)

We have the following corollary.

Corollary 5.1 — Let h be a polarization at f ∈ g∗, e, d, E, D . . . defined as
previously, thus if χ

f
is a character of D whose differential is if |d we have

IndGE
(
ind(f, χ

f
, h, E)

) ' ind(f, χ
f
, h,G)

We will show that the space of an holomorphical induced representation may
be 0 even if G is a simply connected nilpotent group. The theory of orbits for
solvable Lie groups is to show that if f ∈ g∗ is an integral form, it is possible to
build an irreducible representation by holomorphical induction and if G is type I

every π ∈ Ĝ is obtained by this method.

5.2.– In these notes I only show how it is possible to build irreducible
representations of solvable Lie groups and I give in the next section a survey
of the other results with examples for typical cases.

We consider a simply connected real solvable Lie group G with Lie algebra g.
We choose an ideal n ⊂ g which is nilpotent and contains [g, g]. We denote by N
the Lie subgroup exp n of G. We fix f ∈ g∗ and we suppose that f is an integral
form. We have to prove the following theorem :

Theorem 5.2 — If f is an integral form, and if h is a positive polarization
at f , admissible for n, Gf -invariant and verifies the Pukanszky condition, then
if χ

f
is a character of D = GfD0 whose differential is if |d, the representation

ind(f, χ
f
, h, g) is irreducible and does not depend of h verifying these conditions.
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The idea of the proof is to show that the holomorphical induced representation is
equivalent to a standard induced representation obtained by the Mackey machine
from an extension of an irreducible representation σ of N . Of course σ is equivalent
to the representation ρ(f |n) by the Kirillov theory but unfortunately the realization
of σ is not obtained from a real polarization. So an important step of the proof is to
show that for nilpotent groups the representation built by holomorphical induction
from complex polarization is equivalent to the representation of the Kirillov theory.

An other serious problem is to show that it is possible to extend a multiple of
ρ(f |h) to a representation of the stabilizer Gf |h.N of ρ(f |h). After this step, the
Mackey machine gives an irreducible representation of G and the last step is to
show that this representation is equivalent to ind(f, χ

f
, h, G).

5.3.– THE CASE OF NILPOTENT LIE GROUPS

We consider a nilpotent connected and simply connected Lie group N and
f ∈ n∗. We choose a positive polarization h at f . Recall that this means
if([X, X]) ≥ 0 for all X ∈ h.

We have to consider the space H(f, N) of functions ϕ on N such that




d

dt

(
ϕ(x exp tY )

)|t=0 = −if(Y )ϕ(x) x ∈ N , Y ∈ h
∫

N/D

| ϕ(x) |2 dẋ < ∞

where dẋ is an invariant measure on N/D.
This space is exactly the space of the holomorphical induced representation

ind(f, χ
f
, h, N) because tr adn|d X = 0 for a nilpotent Lie algebra n and the

first condition is equivalent to the global condition ϕ(xd) = χ
f
(d)−1ϕ(x) for

d ∈ D = exp d because Gg is connected, so D is connected.

Theorem 5.3 — Let h be a positive polarization at f ∈ h∗. Then the repre-
sentation ind(f, χ

f
, h, N) is irreductible and equivalent to the representation ρ(f)

constructed by the Kirillov orbits method.

Proof — Let d = h ∩ g, e =
(
(h + h) ∩ g

)
, then Nf is connected so

E = E0 = exp e and D = exp d. If f ′ = f |e then we have by stage induction
theorem

ind(f, χ
f
, h, N) ' IndNE

(
ind(f, χ

f ′
, h,E)

)

thus we just have to prove that there exists a real polarization h0 at f ′ ∈ e∗ such
that

ind(f ′, h,E) ' ind(f ′, h0, E)

because for a real polarization h0 we have

ind(f ′, h0, E) ' IndED′0 χ
f
' ρ(f)

where ρ(f) is the Kirillov representation.
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Let b = d ∩ ker f .
Lemma 5.1 — The group B = exp b is normal in E and E/B is an Heisenberg
group with center D/B.

Proof — Since E is nilpotent it is enough to show that e/b is an Heisenberg
Lie algebra of center d/b. First we show that ker f 6= d. To this end we show that
f is non zero on gf ⊂ d. Let (gi)i=1,··· ,n be a Jordan-Holder sequence of ideals and
j the first index such that f |gj = 0 and f |gj−1 6= 0. We have [g, gj−1] ⊂ gj thus
gj−1 ⊂ gf . We have d/b which is a one dimensional subspace. We prove now that
d is an ideal of e. We need some tedious computations concerning Bf on e/d. We
have (e/d)C = h/dC ⊕ h/dC. We define J as the operator on e/d whose eigenspace
with eigenvalue −i is h/dC and eigenspace with eigenvalue +i is h/dC. We have
J2 = −Id and this defines a complexe structure on e/d.

We denote by S the bilinear form defined by S(x, y) = B(x, Jy).

Lemma 5.2 — S is a symetric bilinear form on e/d non degenerated, positive if
h is positive.

Proof — We verify that B is J-invariant. If h1, h2, h
′
1, h

′
2 are in h we have

B(h1 + h2, h
′
1 + h

′
2) = B(h1, h

′
2) + B(h2, h

′
1)

= B(−ih1, ih
′
2) + B(ih2,−ih′1)

= B(Jh1, Jh′2) + B(Jh2, Jh′1)

= B
(
J(h1 + h2), J(h′1 + h

′
2

)

so, S(x, y) = B(x, Jy) = B(Jx, J2y) = B(Jx,−y) = B(y, Jx) = S(y, x)
Furthermore, if x ∈ h, iJx = x so,

if([x, y]) =
i

4
f([x + iJx, y − iJy])

=
i

4
[
f([x, y]) + f([iJx, y]) + f([x,−iJy]) + f([iJx,−iJy])

]

=
i

4
(
B(x, y) + if([Jx, y])− if([x, Jy]) + f([Jx, Jy])

)

=
i

2
B(x, y) +

i

4
(
iB(J2x, Jy)− if([x, Jy])

)

=
i

2
B(x, y) +

1
2
S(x, y)

so, 2if([x, x]) = S(x, x) + iB(x, x) and

2if([x, x]) = S(x, x)

Thus h is a positive polarization if and only if S ≥ 0.
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Now let X be an element of d and ad X = π(X) the operator in e/d. Let Y and
Z in e. By Jacobi identity we have

f
([

[X, Y ], Z
])

+ f
([

[Y, Z], X
])

+ f
([

[Z, X], Y
])

= 0

and by the equality df = e, f
([

[Y, Z], X
])

= 0, this means B(π(X)Y, Z) +

B(Y, π(X)Z) = 0. But the spaces h/dC and h/dC are invariant by ad X, so π(X)
commutes with J and

B(π(X)Y, JZ) = −B(Y, π(X)JZ) = −B(Y, Jπ(X)Z)

or
S(π(X)Y, Z) = −S(Y, π(X)Z).

This proves that π(X) is anti-orthogonal for S, so it is semi-simple but it is
nilpotent, so it is zero. This means that [X, e] ⊂ d and d is an ideal in e. On the
other hand we have [e, d] ⊂ ker f so [e, d] ⊂ b and b is an ideal of e, d/b is central
in e/b. We must show that d/b is exactly the center of e/b but if X ∈ d/b there
exists Y ∈ e/b such that f([X,Y ]) 6= 0 (because df = e) so, [X, Y ] 6= 0 in e/b and
X is not in the center e/b.

To show that e/b is Heisenberg it remains to prove that W = e/d is abelian.
Let a be the center of W : then

Lemma 5.3 — If J(a) = a then W is abelian.

Proof — First a is non zero because e is nilpotent. Moreover, a is J-invariant
so J |a is non degenerated, B is non degenerated on a and we have W = a ⊕ aB .
The center of aB is contained in the center of W so W = a.

Let u be an element of the center of W and M = ad Ju. We have to prove that
M = 0.
1) [M, J ] = 0. Let u ∈ a and v ∈ W . We have u + iJu ∈ h/dC and v + iJv ∈ h/dC
so

J(u + iJu) = Ju− iu = −i(u + iJu)
k = [u + iJu, v + iJv] = i[Ju, v]− [Ju, Jv] ∈ h/dC

so Jk = −ik implies iJ [Ju, v] − J [Ju, Jv] = [Ju, v] + i[Ju, Jv]. This shows that
[Ju, v] = −J [Ju, Jv] or J [Ju, v] = [Ju, Jv]. This is exactly J.M(v) = M(J(v)).

2) We suppose M 6= 0. Then we take v ∈ W such that Mv 6= 0 and M2v = 0.
By Jacoby identity we have easily (exercice)

B(x, [x, [y, z]]) = B(ad2(x).y, z) + 2B(adx.y, adx.z) + B(y, ad2(x).z)



Holomorphical induction – 49 –

and B(u, [y, z]) = 0 for u ∈ a.
Now for x = Ju, y = v, z = Jv,

B(Ju, [Ju, [v, Jv]]) = B(M2y, z)︸ ︷︷ ︸
=0

+2B([Ju, v], [Ju, Jv]) + B(Jv,M2z)︸ ︷︷ ︸
=0

= 2B(Mv,MJv)

= 2B(Mv, JMv)

= 2S(Mv, Mv)

but
B

(
Ju,

[
Ju, [v, Jv]

])
= B

(
u, J

(
M([v, Jv])

))

= B
(
u,MJ([v, Jv])

)

= B
(
u,

[
Ju, J [v, Jv]

])
= 0 (u ∈ a)

This is a contradiction so M = 0.

We come back to our main proof. We have an Heisenberg group Nk = E/B
and a polarization h which is positive such that h + h = nkC, h ∩ h = zC = (d/b)C
and f 6= 0 on h ∩ h = gf

C. In this situation it is known that there exist an
intertwining operator between this representation and the representation ρ(f)
which is an equivalence ([3] Chap. VII) but, since the two representations has the
same restriction to the center, it is enough to show that the previous is irreducible.
this can be proved by using a description of the space by holomorphical functions
on n/z.

For most simplicity we give the proof only for N = N3. In the course of the
proof it is shown that for an Heisenberg group the space H(f, h,G) is non zero if
and only if h is a positive polarization.

We take h ∈ Pol(f) (not a real polarization) such that h + h = nC, dimC h = 2.
We denote h = W⊕zC where W is a one dimensional subspace. We have [X, Y ] = Z
and f = Z∗. We can choose ε = aX + bY ∈ W, a = a1 + ia2, b = b1 + ib2 ∈ C

ε = (a1X + b1Y ) + i(a2X + b2Y ) = x + iy

and [x, y] = (a1b2 − a2b1)Z.
If [x, y] = 0, x and y are colinear : ε = k.x or k′y so x ∈ h, y ∈ h and h is not

a complex polarization (it is real) so we can choose ai, bi, i ∈ {1, 2} such that
[x, y] = Z, h = C(x + iy)⊕ CZ h = C(x− iy)⊕ CZ.

We have

if([x + iy, x + iy]) = if([x,−iy]) + if([iy, x])

= f([x, y])− f([y, x]) = 2 > 0

and if([x− iy, x− iy]) = if([x, iy]) + if([−iy, x]) = −2.
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This shows that h is a positive polarization and h is not positive.
We now define the space of the holomorphic induced representation. It is the

space of functions ϕ on N3 such that





ϕ(exp u exp tZ) = e−itϕ(exp u) u ∈ n, t ∈ R
d

dt

(
ϕ(exp u exp tx)

)|t=0 + i
d

dt

(
ϕ(exp u exp ty)

)|t=0 = −if(x + iy)ϕ(exp u) = 0
∫

N/Z

‖ϕ‖2dxdy ≤ ∞

Let u = ax + by + cZ. We have by Hausdorff formula

ϕ(exp u exp tx) = ϕ(exp(u + tx− tbZ))

ϕ(exp u exp ty) = ϕ(exp(u + ty + taZ))

so the second formula becomes (we consider functions on g by ϕ(a, b, c) −→
ϕ(exp u))

(∂ϕ

∂a
− b

∂ϕ

∂c

)
(exp u) + i

(∂ϕ

∂b
+ a

∂ϕ

∂c

)
(exp u) = 0

but by the first formula of the definition of the space of the representation :
∂

∂c
ϕ(exp u) = −iϕ(exp u) so ϕ(exp u) = e−icψ(a, b) where ψ is any function and

∂ϕ

∂a
+ i

∂ϕ

∂b
+ (−b + ia)(−iϕ) = 0

∂ϕ

∂a
+ i

∂ϕ

∂b
+ (a + ib)ϕ = 0

Now, if we look at the function ψ we have

∂ψ

∂a
+ i

∂ψ

∂b
= −(a + ib)ψ

It is clear that the function ψ0(a, b) = e−
a2+b2

2 is a solution for this equation

so, by taking ψ = ψ0v we get
∂v

∂a
+ i

∂v

∂b
= 0. This means that v is a holomorphic

function so, we see that H(f, h, N) is the space of functions of the form

ϕ(exp u) = e−ice−
a2+b2

2 v(a + ib)

where v is holomorphic and such that
∫

R2
|v(a + ib)|2e−(a2+b2)da db < ∞
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(The Lebesgue measure on R2 corresponds to the invariant measure for the action
of N in N/Z).

Remark. If h is replaced by h then we obtain ψ0(a, b) = e
a2+b2

2 and we see that
H(f, h, N) is equal to 0 so, the condition h positive is an essential condition.

It remains to show that the representation is irreducible. This can be proved by
using same method than for the irreducibility of the ordinary representation and
we leave this computation to the reader. It is also possible to give an intertwining
unitary operator between this representation and the Kirillov’s one. We only
sketch the proof (see [3] Chapter VII). We see that all the monomials zn are in
H(f, h, N). To build an operator the idea is to associate to zn a good multiple of
the Hermite function on L2(R). Precisely the intertwining operator is defined by

Tψ(t) =
1√
2

exp
[
− a2 + b2

2

] ∫

R
exp

(− 1
4
(α + iβ)2

)
ψ(α + iβ)dβ

=
1√
2

∫

R
e−

α2+β2

4 e2iαβψ(α + iβ)dβ

We now go back to representation of the simply-connected Lie group G. We
denote by n a nilpotent ideal of g which contains [g, g]. We fix l ∈ g∗ and denote by
f the restriction of l to n and by ρ(f) the irreducible representation of N obtained
by Kirillov’s theory.

Lemma 5.4 — The stabilizer Gρ of ρ(f) in G is NGf where Gf is the stabilizer
of f ∈ n∗ under the action of G in n∗ by the coadjoint representation. Moreover
Gρ = NGf is a closed subgroup of G.

Proof — Let x ∈ G and Ad∗(x)ρ(f) ' ρ(f). We have Ad∗(x)ρ(f) '
ρ(Ad∗x.f) ' ρ(f). So Ad∗ x.f and f are in the same N -orbit in n∗. There
exists n ∈ N such that Ad∗(x).f = Ad∗(n).f so n−1x ∈ Gf and x ∈ NGf .
This proves that NGf is a subgroup of G and Gf normalizes N . To show that
GfN is closed it is enough to prove that GfN is the set of x ∈ G such that
Ad∗(x).f ⊂ Ad∗(N).f = Ωf . The easy proof is left to the reader.

Now let h be a (complex) polarization at f ∈ n∗ and ρ(f, h, χ
f
, N) the

holomorphical induced representation of N . This representation is irreducible and
equivalent to ρ(f). We denote by T (h) a unitary intertwining operator between
ρ(f) and ρ(f, h, χ

f
,N) ; T (h) is an operator from H(f), space of ρ(f) onto H(f, h)

space of ρ(f, h, χ
f
,N). For h ⊂ gC we define the subalgebras e, d and the subgroups

E, D of N .
For ϕ in the space of ρ(f, h, χ

f
, N) we define for all x ∈ Gf , n ∈ N

σ(x, h)ϕ(n) = |detn/d Ad(x)|− 1
2 ϕ(x−1nx)

In the following we denote by r(x) the number | detn/d Ad(x)|− 1
2 .
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It is clear that σ(x, h) is an unitary operator in H(f, h) and we verify easily that
for n ∈ N

σ(x, h)ρ(f, h, χ
f
,N)(n)σ(x, h)−1 = ρ(f, h, χ

f
,N)(xnx−1).

We define ν(x, h) = T (h)−1σ(x, h)T (h). It is clear by the previous formula that
ν(x, h) is an intertwining operator between ρ(f) and ρ(f)(x

−1), and ν(x, h) does
not depend of T (h).

Theorem 5.4 — The operator ν(x, h) does not depend of the choice of h ∈ Pol(f).

Proof — See [3] p. 197.
The proof is by induction on the dimension of n. After several reductions, the

crucial case is when e = (h + h) ∩ n is an Heisenberg algebra of dimension 3 or
5. In this situation it is possible to write an explicit intertwining operator and to
compute ν(x, h).

We choose a polarization h at f which is invariant by every x ∈ Gf (recall
that this is possible by the results of the section 3). Then we have clearly
ν(xy, h) = ν(x, h).ν(y, h) and ν defines a representation of Gf in H(ρ). We have
the following result.

Proposition 5.1 — Let K̂ be the semi direct product of Gf and N , K̂ =
Gf×sN . Then there exists a canonical representation µ̂ of K̂ whose restriction
to N is ρ(f) and µ̂(x, n) = ν(x).ρ(f)(n).

To build a representation of GfN we need to find a representation of K̂ which is
identity on Gf ∩N but it is not true for µ̂.
We now compute a representation of Gf which is equal to µ̂ on Gf ∩N .

Lemma 5.5 — Gf ∩N = Nf .

Proof — We leave it to the reader.

Let h be a polarization at l ∈ g∗ having all the properties defined in the section
3. We use the following notations and relations (Exercise) :

h1 = h ∩ nC ; h2 = h ∩ gf
C, we have h = h1 + h2

e = e1 + e2 ; d = d1 + d2 ; [e2, e1] ⊂ e1 ; [d2, d1] ⊂ d1.

We denote by m the restriction of l to gf = nl.

Lemma 5.6 — The stabilizer of m in Gf is GlNf .

Proof — Let x ∈ Gf such that x.l|gf = l|gf . Then x.l − l ∈ (gf )⊥ and since
x ∈ Gf , x.l − l ∈ n⊥ so (x.l − l) ∈ (gf + n)⊥.
Let X ∈ gf and Y ∈ g, then [X, Y ] ∈ n then,

exp X.l(Y ) = l(Y + [X,Y ]) = (l −X.l)(Y )
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and Nf .l = l + nf .l but nf .l =
(
(nf )l)⊥ (exercise) and

(
(nf )l)⊥ ⊃ (gf + n) so

Nf .l ⊃ l + (gf + n)⊥. This shows that x.l = n.l where n ∈ Nf and n−1x ∈ Gl.

We now choose l an integral form on g.
Let q = ker f |n∩gf and Q = exp q. The following technical result is proved in

[3] p. 207 and left to the reader.

Proposition 5.2 — Let M = G0
fGl ;

a) [Gf , Gf ] ⊂ Nf ; [Gf ,Nf ] ⊂ Q ; [G0
f ,Mm] ⊂ Q. Gf/Q is a nilpotent (non

connected) group and G0
f/Q is a simply connected nilpotent group with center

Nf/Q.
b) if l 6= 0 then denote by χm the character of Mm with differential im. Then

M/ kerχm is a connected Heisenberg group with center Mm/ kerχm .

We denote D2 = D0
2Gl. E2 = E0

2Gl. Since D2 ⊂ D the character χ
l

of
Gl extends to a character χm of D2 and we consider now the representation
ρ(m,χm , h2, Gf ) of Gf and show the irreducibility.

Using stage induction theorem we only have to prove that ρ(m,χm , h2,M)
is irreducible. By the previous proposition we can consider M nilpotent (non
connected) but M = M0Gl and the representation ρ0 = ρ(m,χm |D0

2
, h2,M

0) is
irreducible and independant of h2 (M0 is Heisenberg) then we only have to prove
that ρ(m,χm , h2, M)|M0 = ρ0.

Lemma 5.7 — ρ(m,χm , h2, M)|M0 ' ρ0.

Proof — For ϕ ∈ H(m,χn , h2,M) we define Tϕ = ϕ|M0 . By the definition of
the spaces of the representations it is almost evident that T is a unitary operator
which intertwines the two representations.

Now we have an irreducible representation of Gf . We consider the representa-
tion ρ̂(m,χm) of K̂ = Gf ×s N such that ρ̂(m, χm)(x, n) = ρ(m,χm , h2, Gf )(x)
and we cosider the representation ξ̂(l, ηl) = µ̂(f)⊗ ρ̂(m,χ

f
).

Proposition 5.3 — The representation ξ̂(l, ηl) is irreducible and for a ∈ Nf =
Gf∩N , ξ̂(l, ηl)(a, a−1) = Id. Thus ξ̂(l, nl) defines a representation ξ(l, ηl) of GfN
whose restriction to N is ρ(f).

Proof — The irreducibility of µ̂ and ρ̂ implies easily that ξ̂ is irreducible.

It is clear that Nf = Gf ∩N and the kernel of the map K̂
θ−→ GfN defined

by θ(x, n) = xn is the set of (a, a−1), a ∈ Nf .
If ϕ ∈ H(f, h1, N) (the space of ξ̂(l, ηl)) we compute easily that, using

|detn/d1 a| = 1, (a ∈ N)

ν̂(a, a−1)ϕ(n) = ηf (a)ϕ(n).

If ϕ ∈ H(m, ηm, h2, Gf )

ρ
(
a−1ϕ(x)

)
= ϕ(ax) = ϕ(x(x−1ax)) = ηf (x−1ax)ϕ(x)
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(this is because x−1ax ∈ Nf , [GfGf ] ⊂ Nf ) and now x ∈ Gf stabilizes f so
ηf (x−1ax) = ηf (a) and the proposition is clear.

By Mackey machine we have

Theorem 5.5 — If l is an integral form on g then Ind G
GfN

ξ(l, ηl) ' ρ(l, ηl) is an
irreducible representation of G.

The last step is the following theorem

Theorem 5.6 — We have ρ(l, ηl, h,G) ' Ind G
GfN

(ξ(l, ηl)).

The proof, long and tedious is, after some reduction, by computing an explicit
intertwining operator between the two representations. (See the complete proof
in [3] p. 212)

5.4.– THE MAIN RESULT OF AUSLANDER AND KOSTANT.

In this section we have built for every integral form l on g an irreducible
representation of G. We remark that this representation depends of l but also
of χ

l
the character which extends χ

l
|G0

l
(G0

l : the connected component of Gl).
We denote by R the set of (l, χ

l
), l ∈ g∗, χ

l
a character of Gl whose differential is

il|g(l). The group G acts in R by x.(l, χ
l
) = (Ad∗ x.l, χx

l
) because χx

l
is a character

of GAd∗ x.l = x.Gl.
It is not too difficult to see that if (l, χ

l
) and (l′, χ

l′
) are in the same G-orbit

of R then the representation ρ(l, χ
l
) and ρ(l′, χ

l′
) are equivalent.

We denote by R/G the quotient space of R by Ad∗(G). A result of Auslander
and Kostant is that the mapping from R/G into Ĝ is bijective if and only if G is
type I and we have the theorem .

Theorem 5.7 — Let G be a simply connected solvable Lie group with Lie algebra
g. Then G is type I if and only if

1) The orbits of G in g∗ are locally closed ;
2) All form l ∈ g∗ are integral.

The proof, which is difficult, is one of the most important of [2].



6. On the Plancherel formula

and Kirillov character formula

The aim of this section is a generalization of the classical Fourier inversion
formula on Rn. This well known formula can be written as follows : if ϕ is a C∞
function on Rn with compact support, then

ϕ(0) =
∫

Rn∗

∫

Rn

ϕ(x)ei<l,x> dx dl (∗)

for a suitable choice of Lebesgue measures dx and dl on Rn and Rn∗.
For a non abelian Lie group G like a simply connected nilpotent group the

character x −→ ei<l,x> may be replaced by an irreducible representation π, but
the integral π(ϕ) =

∫
ϕ(x)π(x) dx must be defined for π ∈ Ĝ and unfortunately it

is not a number but an operator and to extend the formula (∗) we need to replace
the value of the Fourier transform of ϕ at l by the trace of the operator π(ϕ).

It will be shown in this section that the map Tπ : ϕ −→ tr(π(ϕ)) is a distribution
on G. It is the so called global character of π. By the exponential mapping, Tπ

becomes a distribution on g and the famous Kirillov formula gives the value of
the Fourier transform of Tπ ◦ exp : it is exactly the canonical G-invariant measure
νπ on the orbit Ωπ of π under the coadjoint representation of G. The Plancherel
formula is

ϕ(e) =
∫

g∗/G

∫

Ω

(ϕ ◦ exp)b(l)dνΩ(l) dµ(l) =
∫
bG tr(π(ϕ))dµ(π)

where µ is quotient measure of the Lebesgue measure on g∗ by the action of
Ad∗(G).

In fact, in these notes I will give a more general Plancherel formula. I start
from a character χ

f
of a normal connected closed subgroup H of G (nilpotent

simply connected) and a function ϕ ∈ D(G), then, there exists an (unbounded)
operator Uπ on the space Hπ of π ∈ Ĝ such that π(ϕ)Uπ is a trace class operator
and tr(π(ϕ)Uπ) is the Fourier transform of a well-defined Hf -invariant measure
on Ωπ ∩ (f + h⊥) where hf = {X ∈ g, f([X, h]) = 0} such that

∫

H

ϕ(h)χ
f
(h)dh =

∫

f+h⊥/Hf

tr
(
πω(ϕ)Uω

)
dµ(ω)

(ω is a Hf -orbit in f + h⊥) and µ is a measure on (f + h⊥/Hf ).
When H = {e} we have exactly the classical Plancherel formula and the character
formula.

We organize the section as follows :
1) - Definition of π(ϕ) for π a representation and ϕ ∈ D(G). Computation for an
induced representation.

2) - The C∞ vectors and the distribution vectors for π ∈ Ĝ.
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3) - The character formula.
4) - The Plancherel formula.

6.1.– Let G be a unimodular locally compact group, π a representation of G in
Hπ and ϕ ∈ L1(G) for the Haar measure µG on G. We define π(ϕ) by the formula

< π(ϕ)x, y >=
∫

G

ϕ(u) < π(u)x, y > dµG(u) ∀x ∈ Hπ, ∀y ∈ Hπ

and we have the notation

π(ϕ) =
∫

G

ϕ(u)π(u)du

It is evident that ‖π(ϕ)‖ ≤ ‖ϕ‖1 for ϕ ∈ L1(G). Now, if ϕ,ψ are two functions
on L1(G) we see by using the Fubini theorem that for almost all g ∈ G the integral

ϕ ∗ ψ(g) =
∫

G

ϕ(h−1g)ψ(h)dµG(h)

is convergent and ϕ ∗ ψ ∈ L1(G). Furthermore, ‖ϕ ∗ ψ‖1 ≤ ‖ϕ‖1‖ψ‖1. This
function ϕ ∗ ψ is the convolution product of ϕ and ψ. Moreover if ϕ ∈ L1(G)
we define the function ϕ∗ by ϕ∗(g) = ϕ(g−1), g ∈ G and the map ϕ −→ ϕ∗ is
an involution of L1(G). The space L1(G) endowed with convolution product and
involution ∗ is an involutive Banach algebra.

If ϕ and ψ are in L1(G) we easily prove (Exercise for the reader) that if π is a
representation of G we have π(ϕ∗ψ) = π(ϕ)π(ψ) and π(ϕ∗) = π(ϕ)∗. This means
that π becomes a representation of the involutive Banach algebra L1(G).

6.2.– THE OPERATOR π
(
ϕ

)
FOR AN INDUCED REPRESENTATION π.

We suppose that π is an unitary representation of G induced by a character
χ

f
, f ∈ g∗, of a closed connected subgroup H of G. We have for π = IndGHχ

f
:

Theorem 6.1 — Let ϕ ∈ D(G), u and v two functions in Hπ continuous with
compact support modulus H. Then,

< π(ϕ)u, v >=
∫

G/H

∫

G/H

K(x, y)u(y)v(x) dµG,H(x) dµG,H(y)

where

K(x, y) =
∫

H

ϕ(xhy−1)χ
f
(h)dµH(h).

In other words, π(ϕ) is an operator defined by the continuous kernel K(x, y).

Proof — Recall that we can choose Haar measures on G and H such that for
ϕ ∈ K(G)
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∫

G

ϕ(x)dµG(x) =
∫

G/H

∫

H

ϕ(xh)dµH(h) dµG/H(ẋ).

So we have for u and v continuous with compact support modulus H,

< π(ϕ)u, v > =

=
∫

G

ϕ(y) < π(y)u, v > dµG(y)

=
∫

G

ϕ(y)
∫

G/H

u(y−1x)v(x)dµG,H(ẋ)dµG(y)

=
∫

G/H

∫

G

ϕ(y)u(y−1x)dµG(y)v(x)dµG,H(ẋ) (Fubini)

=
∫

G/H

∫

G

ϕ(x, y)u(y−1)dµG(y)v(x)dµG,H(ẋ) (Invariance of µ)

=
∫

G/H

∫

G

ϕ(x, y−1)u(y)dµG(y)v(x)dµG,H(ẋ) (Invariance of µ)

=
∫

G/H

∫

G/H

∫

H

ϕ
(
x(yh)−1

)
u(yh)dµH(h)dµG,H(y)v(x)dµG,H(ẋ)

=
∫

G/H

∫

G/H

∫

H

ϕ
(
xhy−1

)
u(yh−1)dµH(h)dµG,H(ẏ)v(x)dµG,H(ẋ)

=
∫

G/H

∫

G/H

∫

H

ϕ
(
xhy−1

)
χ

f
(h)u(y)dµH(h)dµG,H(ẏ)v(x)dµG,H(ẋ)

=
∫

G/H

∫

G/H

K(x, y)u(y)v(x)dµG,H(ẏ)dµG,H(ẋ).

Now let π be an irreducible representation obtained by the Kirillov method :
we have B = exp h where h is a real polarization at f . Let X1, . . . , Xk be a Malcev
basis for B. For ϕ ∈ Hπ we denote by ϕ̃ the function on Rk defined by

ϕ̃(t1, . . . , tk) = ϕ
(
exp(t1X1) · · · exp(tkXk)

)
.

The covariance of the functions in Hπ shows that the map ϕ −→ ϕ̃ is bijective
and the definition of invariant measures shows that it is in fact a norm preserving
map between Hπ and L2(Rk) where 2k is the dimension of the orbit of π.

6.3.– THE C∞-VECTORS AND THE DISTRIBUTION VECTORS OF π∈ Ĝ.

Definition — Let ρ be a representation of G in Hρ. We say that v ∈ Hρ is a C∞
vector if for any ω ∈ Hρ, the coefficient cv,w defined by

cv,w(g) =< ρ(g)v, w >
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is a C∞ function on G.

We denote by H∞ρ the space of C∞ vectors of ρ. It is clear that H∞ρ is an
invariant subspace of Hρ but it is not closed for any ρ.

If v ∈ H∞ρ the map ω −→ cv,w is continuous from Hρ into C∞(G), thus, for
λ ∈ E ′(G) the set of compact supported distributions on G, there exists a unique
vector ρ(λ)v such that < ρ(λ)v, w >=< λ, cv,w >.

Lemma 6.1 — For every λ ∈ E ′(G), ρ(λ)v ∈ H∞ρ , (v ∈ H∞ρ ).

Proof —

< ρ(g)ρ(λ)v, w > =< ρ(λ)v, ρ(g−1)w >

=
∫

G

< ρ(x)v, ρ(g−1)w > dλ(x)

=
∫

G

< ρ(gx)v, w > dλ(x)

= cv,w ∗ λ̌(g)

and cv,w ∗ λ̌ is a ∞ function if λ ∈ E ′(G).

Remarks. 1) If λ is a function in D(G), then this shows that ρ(λ)v is a C∞
vector ;

2) We easily check that if λ and µ are in E ′(G) we have ρ(λ ∗ µ) = ρ(λ)ρ(µ),
so, we have extended ρ to a representation of E ′(G).

In the particular case of an irreducible representation π of a nilpotent Lie group
G (simply connected), we have a useful structure theorem for Hπ (cf. [5]).

Theorem 6.2 — If π ∈ Ĝ is realized in the space L2(Rm) by using a Malcev basis,
the space H∞π is the Schwartz space S(Rm) and if ϕ ∈ D(G), π(ϕ) is a continuous
operator from S ′(Rm) (the space of tempered distributions) into S(Rm).

We can now use the kernels theorem to state that π(ϕ) is defined by a kernel
kπ ∈ S(Rm × Rm), but we have seen that this kernel is

K(x, y) =
∫

H

ϕ(xhy−1)dµH(h)

Thus, in the realization of π in L2(Rm), this function is in S(Rm × Rm).
Furthermore, the kernels theorem also states that any continuous operator U from
S(Rm) into S ′(Rm) is defined by a kernel kU ∈ S ′(Rm × Rm). So, for such an U ,
we have an other operator π(ϕ) ◦ U from S(Rm) into S(Rm).

The following proposition is the key of the Kirillov character formula.

Proposition 6.1 — Let T be a nuclear operator from S ′(Rm) into S(Rm) with
kernel KT ∈ S(Rm×Rm) and S an operator from S(Rm) into S ′(Rm) with kernel
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KS ∈ S ′(Rm × Rm). Then, T ◦ S is a nuclear operator from S(Rm) into S(Rm)
and the trace of T ◦ S is

tr(T ◦ S) =< KT (x, y), KS(y, x) >

Proof — It is clear that T ◦S is a continuous operator from S(Rm) into S(Rm)
so it is nuclear. We have KT ∈ S(Rm × Rm) ' S(Rm)⊗̂S(Rm) so there exists
families of functions ϕi ∈ S(Rm) and ψi ∈ S(Rm) such that

KT (x, y) =
∑

i

tiϕi(x)ψi(y)

where the series is convergent in S(Rm × Rm).
We denote by ϕ⊗ψ the rank one operator defined by ϕ⊗ψ(v) = (v, ψ)ϕ. It is

a trace class operator and tr(ϕ⊗ ψ) =< ϕ, ψ >.
Now, if v and w are two functions in S(Rm) we have

< ϕi ⊗ ψi.v, w > =<< v, ψi > ϕi, w >

=< v, ψi >< φi, w >

=
∫ ∫

v(y)w(x)ψi(y)ϕi(x) dydx

This shows that ϕi ⊗ ψi is defined by the kernel ϕi(x)ψi(y) and clearly

< Tv, w >=
∞∑

i=0

ti < ϕi ⊗ ψiv, w >

so,

T ◦ S(v) =
∞∑

i=0

tiϕi ⊗ ψi(Sv)

=
∞∑

i=0

ti < Sv, ψi > ϕi

=
∞∑

i=0

ti < v, S∗ψi > ϕi

=
∞∑

i=0

tiϕi ⊗ S∗ψi(v)

an we can compute the trace of T ◦ S

tr(T ◦ S) =
∞∑

i=0

ti tr(ϕi ⊗ S∗ψi)

=
∞∑

i=0

ti < ϕi, S
∗ψi >
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but S∗ is defined by the kernel K∗
S(x, y) = KS(y, x) so

tr(T ◦ S) =
∑

i

ti < ϕi(x)ψi(y), KS(y, x) >

=
〈 ∑

i

tiϕi(x)ψi(y), KS(y, x)
〉

= < KT (x, y) , KS(y, x) >

and the proof is complete.

We want to apply this result to a special operator U ∈ L(S(Rm),S ′(Rm)
)
. We

recall that h is such that f([h, h]) = 0 and h is an ideal of g. For g ∈ g we define
hg = {X ∈ g , g([X, h]) = 0}.
Lemma 6.2 — 1) For all g ∈ f + h⊥, hf = hg ;

2) for all g ∈ f + h⊥, there exists a real polarization bg at g such that
h ⊂ bg ⊂ hf ;

3) for all g ∈ f + h⊥, Ad∗(G).g∩(f + h⊥) = Ad∗(Hf ).g, where Hf = exp hf .

Proof — 1) If X ∈ g and Y ∈ h then for g ∈ f + h⊥ , g([X, Y ]) = f([X, Y ]) ;
2) Let 0 = a0 ⊂ · · · ⊂ an = g be a Jordan-Holder sequence of g such that h is

one of the ai. Then if

ai(gi) = {X ∈ ai, g|ai([X, ai]) = 0}

the polarization bg =
∑n

i=1 ai(gi) at g is an answer to the problem ;
3) It is clear that Ad∗(Hg).g ⊂ Ωg ∩ (f + h⊥) where Ωg is the orbit of g ∈ g∗.

Conversely, if h ∈ Ωg ∩ (f + h⊥), there exists x ∈ G such that h = Ad∗ x.g. But
f |h = h|h = (Ad∗ x.g)|h = Ad∗(x).(g|h) = Ad∗(x).(f |h). So, x ∈ Hf = Hg.

We denote by Bg the subgroup exp bg.

Proposition 6.2 — Let ϕ and ψ two C∞ vectors for πg, the Kirillov represen-
tation defined by g ∈ f + h⊥. Then, ϕψ is Bg-invariant and the formula

< Ugϕ,ψ >=
∫

Hg/Bg

ϕ(x)ψ(x)dẋ

where dx is the Hg-invariant measure on Hg/Bg, defines in the realization of πg

in L2(Rm) a nuclear operator Ug from S(Rm) into S ′(Rm).

Proof — We choose a Malcev basis of bg such that the vectors X1, . . . Xk are
in hf and the others form a malcev basis of hf in g. The operator Ug becomes Ũg

< Ũπg ϕ̃, ψ̃ > =
∫

Rk

ϕ̃(t1, . . . , tk, 0, . . . , 0)ψ̃(t1, . . . , tk, 0, . . . , 0) dt1 · · · dtk
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and the result is clear.

Now we have to choose carefully a basis of g (which depends on g ∈ f + h⊥). We
denote by Bg the bilinear form Bg(X,Y ) = g([X, Y ]). We deduce a nondegenarate
form on hf/(g(g)+ h) and on g/g(g). Since bg is a maximal isotropic subspace for
Bg, we have a duality between g/bg and bg/g(g). We denote by p the dimension
of bg/h and by k the common dimension of g/hf and (g(g) + h)/g(g). We choose
a basis of g

X1, . . . , Xl, h1, . . . , hk, e1, . . . , ep, ep+1, . . . , e2p, hk+1, . . . , h2k

such that
— X1, . . . , Xl is a basis of g(g) ;
— X1, . . . , Xl, h1, . . . , hk is a basis of g(g) + h ;
— X1, . . . , Xl, h1, . . . , hk, e1, . . . , ep is a basis of bg ;
— X1, . . . , Xl, h1, . . . , hk, e1, . . . , ep, ep+1, . . . , e2p is a basis of hf

and such that if i ≤ k, j ≤ k, Bg(hi, hk+j) = δi,j and if i ≤ p, j ≤
p, Bg(ei, ep+j) = δi,j .

Now we have measures dh = dX1 · · · dXl dh1 · · · dhk on g(g) + h, db =
dh de1 · · · dep on bg, dy = db dep+1 · · · de2p on hf and dx = dy dhk+1 · · · dh2k

on g, and measures on the quotient spaces g/hf , hf/bg, bg/(h + g(g)) and
(h + g(g))/g(g). This gives corresponding measures on groups and quotients on
G by the exponential mapping. If E is a vector subspace of g with a Lebesgue
measure, we fix on E⊥ the Lebesgue measure which is the Fourier transform of
the Lebesgue measure on E.

We denote by ωg the Hf -orbit of the restriction q(g) of g to hf . We define the
canonical measure dωg on ωg by the form

ν̂g =
1

(2π)pp!
Bg ∧ · · · ∧Bg =

1
(2π)p

e∗1 ∧ · · · ∧ e∗2p

At the end, we choose on Ωg∩(f + h⊥) the measure dΩg product of the measure
dωg and of the measure dh⊥ on (hf )⊥. Thus, dΩg is defined by

νg =
1

(2π)p+k
e∗1 ∧ · · · ∧ e∗2p ∧ h∗k+1 ∧ · · · ∧ h∗2k

It is now possible to formulate the character formula.

Theorem 6.3 — Let g ∈ f + h⊥ and θ ∈ D(G). Then

tr
(
πg(θ)Uπg

)
=

∫

Ωg∩(f+h⊥)

(θ ◦ exp)∧(l) dΩg(l)

where (θ◦exp)∧ is the Fourier transform of θ ◦exp and dΩg the canonical measure
defined by νg.
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Proof — Let π = πg and U = Ug until the end of this proof. By the previous
computations of the trace of π(θ)U we have, because U = U∗

tr
(
π(θ)U

)
= < Kθ(x, y), U >

=
∫

Hf/Bg

Kθ(x, x) dẋ

where Kθ(x, y) =
∫
Bg

θ(xby−1)χg (b) db (x, y) ∈ G × G by a previous result
(note that Hf = Hg). Thus,

tr
(
π(θ)U

)
=
∫

Hf/Bg

∫

Bg

θ(xbx−1)χg (b) dbdẋ

=
∫

Hf/Bg

∫

bg

θ
(
exp(Ad x.Y )

)
χg (exp Y ) dY dẋ

=
∫

Hf/Bg

∫

bg

(
θ ◦ exp ◦Ad x

)
(Y ) ei<g, Y > dY dẋ

=
∫

Hf/Bg

∫

b⊥g

(
θ ◦ exp ◦Ad x

)∧(g + l)dldẋ

=
∫

Hf/Bg

| det(Ad x)−1|
∫

b⊥g

(
θ ◦ exp)∧

(
Ad∗ x(g + l)

)
dldẋ

=
∫

Hf/Bg

∫

b⊥g

(
θ ◦ exp)∧

(
Ad∗ x(g + l)

)
dldẋ

(because det(Ad x) = 1).
But bg verifies the Pukanszky condition so g + b⊥g = Ad∗Bg.g. The map-

ping Ad∗ from Bg/G(g) on g + b⊥g is bijective and transforms the measure
dh1 · · · dhkde1 · · · dep in the measure dh∗k+1 · · · dh∗2kde∗p+1 · · · de∗2p so,

∫

b⊥g

(θ ◦ exp)∧(Ad∗ x.(g + l)) dl =
∫

Bg/G(g)

(θ ◦ exp)∧
(
Ad∗(xb).g

) 1
(2π)p+k

dḃ

Now we have

tr
(
π(θ)U

)
=

∫

Hf/Bg

∫

Bg/G(g)

(θ ◦ exp)∧
(
Ad∗(xb).g

) 1
(2π)p+k

dḃdẋ

=
∫

Hf/G(g)

(θ ◦ exp)∧
(
Ad∗(x).g

) 1
(2π)p+k

dẋ

but Ωg ∩ ( f + h⊥ ) = Ad∗(Hf ).g and Ad∗ carries the Hf−invariant measure on
Hf/G(g) in de∗1 · · · de∗2pdh∗1 · · · dh∗k so, we have

tr
(
π(θ)U

)
=

∫

Ωg∩(f+h⊥)

(θ ◦ exp)∧(l) dΩg(l)
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and this is our character formula.

Corollary 6.1 — For every θ ∈ D(G) we have

tr
(
π(θ)

)
=

∫

Ωg

(θ ◦ exp)∧(l) dΩg(l)

where dΩg is the invariant measure on Ωg defined by 1
(2π)pp!Bg ∧ · · · ∧ Bg, the

exterior product of p forms Bg with 2p = dim Ωg.

Proof — We have only to apply the previous theorem with h = {0}.
Corollary 6.2 — The previous corollary gives a new proof of the injectivity of
the Kirillov mapping

Proof — If ρ(f) = ρ(g) we have tr(πf

(
θ)

)
= tr(πg

(
θ)

)
for all θ ∈ D(G) so,

by the corollary above this distribution has a Fourier transform supported by Ωg

and also Ωf so, Ωf = Ωg.

6.4.– THE PLANCHEREL FORMULA

We denote by r the maximum of the dimension of g(f) for f ∈ g∗. The number
n − r is the maximum of the dimension of the G-orbits in g∗ and the maximum
of the rank of the map X −→ ad∗X.g for g ∈ g∗.

By fixing a basis on g and a basis on g∗ this map is a n×n matrix the coefficients
of which are linear polynomials in the coordinates of g. So, if we consider a minor
m(g) with rank n − r, nonzero on g∗, we see that the set O of g ∈ g∗ such that
det

(
m(g)

) 6= 0 is a Zariski dense open set of g∗ on which the dimension of g(f)
(and the dimension of orbits) is constant and maximum. By the same proof there
exists a set Of ⊂ f + h⊥ which is Zariski dense in f + h⊥ and on which the
dimension of g(f) is constant. Moreover g(g) ∩ h is independant of g ∈ f + h⊥

(Exercise).
Now we have a to use a lemma from Duflo-Räıs in [9].

Lemma 6.3 — Let dl be the Lebesgue measure on g∗ and dΩg the canonical G-
invariant measure on the orbit Ωg = Ad∗(G).g. Then, there exists a measure µ
on the quotient space O/ Ad∗(G) such that for each integrable or positive Borel
function ϕ ∫

g∗
ϕ(l)dl =

∫

O/G

∫

Ωg

ϕ(l)dΩg(l)dµ(ġ)

From this lemma we deduce an other result.

Lemma 6.4 — There exists a positive Borel measure dµ on the space (f + h⊥)/Hf

of orbits of the group Hf in f + h⊥ such that for each integrable or positive Borel
function on f + h⊥

∫

f+h⊥
ϕ(l) dl =

∫

Of /Hf

∫

Ωg∩(f+h⊥)

ϕ(l) dΩg(l) dµ(l)
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Proof — We have to consider the group Hf with Lie algebra hf . Let
a = h ∩ ker(f |h). It is an ideal of hf which is contained in ker g for all g ∈ f + h⊥

(Exercise), so, h/a is central in hf/a. We denote by (hf
a)∗ the set of linear forms

on hf/a the restriction of which to h/a is equal to f . So by the previous lemma
we have a measure µ̃ on (hf

a)∗/Hf such that
∫

hf
a

ϕ(l) dl̃ =
∫

(hf
a)∗/Hf

∫

Hf.(g|hf
a)

ϕ(l) dωg(l̃)

where dωg is the the measure on the orbit Ad∗(Hf ).(g|hf ) ⊂ (hf
a)
∗
.

(
here is

an identification of Ad∗(Hf )(g|hf ) and its image in (hf
a)∗ because H stabilizes

(g|hf )
)
. But we have dΩg = dωg dh⊥ where dh⊥ is the Fourier transform of dh

on hf . It is a measure (Lebesgue) on hf . So, dl̃dh⊥ is a Lebesgue measure on
(hf

a)∗ × (hf )⊥ ' (
(g/a)|(h/a)

)∗. Now it is an easy computation to state the result
by using the map g −→ g/a.

Theorem 6.4 — (Plancherel formula). Let Of the open set of f + h⊥ defined
previously. Let dµ the measure defined in the previous lemma and Uwl

the operator
associated to πl ∈ Ĝ then, for θ ∈ D(G) we have

∫

H

θ(h)χ
f
(h) dh =

∫

Of /Hf

tr(πωl̃
(θ)Uωl̃

)dµ(l̃)

Proof — Let I(θ) =
∫
H

θ(h)χ
f
(h) dh. By using the classical Fourier transform

we have
I(θ) =

∫

h

θ(exp Y ) eif(Y ) dY

=
∫

h⊥
(θ ◦ exp)∧(l + f) dl

and by the previous theorem :

I(θ) =
∫

Of /Hf

∫

Ωg∩(f+h⊥)

(θ ◦ exp)∧(l) dΩg(l) dµ(l̃)

and now by the character formula :

I(θ) =
∫

Of /Hf

tr(πωl̃
(θ)Uωl̃

)dµ(l̃)

which completes the proof.

Exercise 6.1 – Compute the Plancherel Formula for the Heisenberg group with
dimension 2n + 1.

Prove that for these Heisenberg groups the results in this section are true
without the hypothesis of H normal in G.



7. A survey on representation theory

for non type I solvable Lie groups.

Let G be a connected, simply connected solvable Lie group which is not type
I. There are two obstructions to build irreducible unitary representations by the
method described in the section 5.

1) A linear form g ∈ g is not always integral ;
2) The G-orbits in g∗ are not always locally closed.
We will consider in this section two clasical examples of such groups and

we describe for these groups the most important features due to L. Pukanszky
([20],[21] and [22]).

7.1.– TWO EXAMPLES

1– The Mautner group

The Mautner group is the five dimensional connected simply connected Lie
group G whose Lie algebra is given by a basis e1, . . . , e5 and the nonzero brackets :

[e1, e2] = e3 ; [e1, e3] = −e2

[e1, e4] = θe5 ; [e1, e5] = −θe4

where θ is an irrational number.
This Lie algebra is the semi direct product of R and the abelian Lie algebra R4.

Of course, we have G = exp(Re1) exp(⊕4
i=1Rei). There is another realization of

G as a semi direct product R×s C2. The action of R on C2 is given by

t.(z1, z2) = (eitz1, eiθtz2) t ∈ R, z1 ∈ C, z2 ∈ C

This group is not a regular semi direct product (exercise 7.1), so we cannot apply
Mackey theory to compute the dual space of G. We will prove that this group
is non type I by using the Auslander-Kostant’s caracterization of type I groups
described at the end of section 5.

a) Computation of orbits in g∗.

Set X =
5∑

i=1

αiei ∈ g. We realize ad X by a matrix

adX =




0 0 0 0 0
α3 0 −α1 0 0
−α2 α1 0 0 0
θα5 0 0 0 −θα1

−θα4 0 0 θα1 0
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and we obtain Exp adX = Ad exp X

Ad expX =




1 0 0 0 0
α2−α2 cos α1+α3 sin α1

α1
cos α1 − sin α1 0 0

α3−α2 sin α1−α3 cos α1
α1

sin α1 cosα1 0 0
α4−α4 cos θα1+α5 sin θα1

α1
0 0 cos θα1 − sin θα1

α5−α4 sin θα1−α5 sin θα1
α1

0 0 sin θα1 cos θα1




It will be useful to write x = α1e1, and y = α2e2 + · · ·+ α5e5. We have

Ad∗ exp x =




1 0 0 0 0
0 cos α1 sin α1 0 0
0 − sin α1 cos α1 0 0
0 0 0 cos θα1 sin θα1

0 0 0 − sin θα1 cos θα1




and by using (ad y)2 = 0 we have

Ad∗ exp y =




1 −α3 α2 −θα5 θα4

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




These matrix are written in the dual basis e∗1, . . . , e
∗
5

Proposition 7.1 — The orbit of g = e∗3 + e∗5 is not locally closed.

Proof — With the previous notations we have

expx exp y.g = (α2 + θα4)e∗1 + sin α1e
∗
2 + cos α1e

∗
3 + sin(θα1)e∗4 + cos(θα1)e∗5

This shows that the trace of the orbit in the plan P = Re∗4 ⊕ Re∗5 is obtained for
α2 + θα4 = 0 and α1 = 2kπ, k ∈ Z. So, the trace of the orbit is the set

S = {sin(2kθπ)e∗4 + cos(2kθπ)e∗5 ; k ∈ Z}

and this set S is not locally closed because θ 6∈ Q so its closure is a circle C and
S is not open in C.

This result and theorem 5.7 show that G is not type I. We now look at the
integral forms. We have gg = Re3 ⊕ Re5 ⊕ R(θe2 − e4) and (G)0g = exp gg. To
compute the stabilizer Gg of g, we set u = exp x exp y and we see that u ∈ Gg if
and only if α2 + θα4 = 0, α1 = 2kπ and θα1 = 2k′π where k and k′ are integers.
Since θ is not a rational number, we have α1 = 0 so Gg is connected. It follows
that the form g is integral and there is only one class of irreducible representations
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obtained by Auslander-Kostant method described in section 5 : it is πg = IndGKχg

where K = exp(⊕5
i=2Rei) and χg is the character of K corresponding to g|k.

Exercise 7.1 – Show that the Mautner group is not a regular semi direct product
of exp(Re1) and exp(⊕4

i=1Rei). Use the realization in R×s C2 with the action of
R on C2 given by t.(z1, z2) = (eitz1, eiθtz2) t ∈ R, z1 ∈ C, z2 ∈ C.

Exercise 7.2 – Verify that every g ∈ g∗ is integral but Gg is not always connected.
For instance, prove that Ge∗2 = exp(2πZe1) exp(Re2 ⊕ Re4 ⊕ Re5).

2– The Dixmier group

This group is given by its Lie algebra g which is seven dimensional. Let e1, . . . , e7

be a basis of R7. The nonzero brackets are :

[e1, e2] = e3 ; [e1, e4] = e5 ; [e1, e5] = −e4

[e2, e6] = e7 ; [e2, e7] = −e6

This algebra is the semi direct product of the Heisenberg algebra k = ⊕3
i=1Rei

and the abelian Lie algebra b = ⊕7
i=4Rei so, G = exp k exp h = exp h exp k is the

simply connected Lie group with Lie algebra g. The center of g is Re3 and its
greatest nilpotent ideal is ⊕7

3Rei = [g, g] and is abelian. It can be shown that g is
a regular semi direct product of exp k and exp h ([8]).

a) Computation of orbits in g∗.
Let X =

∑7
i=1 θiei ∈ g. The matrix of ad X is :

adX =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
−θ2 θ1 0 0 0 0 0
θ5 0 0 0 −θ1 0 0
−θ4 0 0 θ1 0 0 0
0 θ7 0 0 0 0 −θ2

0 −θ6 0 0 0 θ2 0




In the following, we set x = θ1e1 + θ2e2 + θ3e3 and y = θ4e4 + θ5e5 + θ6e6 + θ7e7.
We can then compute Ad exp = Exp ad x:

Exp ad x.e1 = e1 − θ2e2 Exp ad x.(e4 + ie5) = e−iθ1(e4 + ie5)
Exp ad x.e2 = e2 − θ1e3 Exp ad x.(e6 + ie7) = e−iθ2(e6 + ie7)
Exp ad x.e3 = e3

We can write the matrix of Ad∗ expx :

Ad∗ exp x =




1 0 θ2 0 0 0 0
0 1 −θ1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 cos θ1 − sin θ1 0 0
0 0 0 sin θ1 cos θ1 0 0
0 0 0 0 0 cos θ2 − sin θ2

0 0 0 0 0 sin θ2 cos θ2
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and by a similar computation :

Ad∗ exp y =




1 0 0 −θ5 θ4 0 0
1 0 0 0 −θ7 θ6

1 0 0 0 0
1 0 0 0

(0) 1 0 0
1 0

1




We denote as usual by {e∗1, . . . , e∗7} the dual basis of {e1, . . . , e7} in g∗. It is
easy to show that for any f ∈ g∗, the coadjoint orbit G.f of f is locally closed, so
the first condition of theorem 5.7 is verified. We now prove that some orbits are
not integral.

Proposition 7.2 — The linear form g = e∗3 + e∗4 + e∗6 is not integral.

Proof — We first compute stabilizers. We have :

(exp x exp y).g = (θ2−θ5)e∗1−(θ1+θ7)e∗2+e∗3+cos θ1e
∗
4+sin θ1e

∗
5+cos θ2e

∗
6+sin θ2e

∗
7

(22)
Thus, it is clear that the orbit is homeomorphic to R2 × T2. On the other hand,
we compute easily

gg = Re3 ⊕ Re4 ⊕ Re6 ; Gg = exp(Re3 ⊕ Re4 ⊕ Re6)

From (22) we deduce that exp x exp y ∈ Gg if and only if

{
θ1 ∈ 2πZ ; θ2 − θ5= 0
θ2 ∈ 2πZ ; θ1 + θ7= 0

so Z ∈ Gg if and only if it can be written

Z = exp(θ3e3) exp(2kπe1 + 2k′πe2) exp(2k′πe5 − 2kπe7) exp(θ4e4 + θ6e6)
where k, k′ ∈ Z ; θ3, θ4, θ6 ∈ R

But exp(2kπe1 + 2k′πe2) = exp(2k′πe2) exp(2kπe1) exp(θ′3e3) where θ′3 ∈ R.
Furthermore, the two elements exp(2kπe1) and exp(2k′πe5) are commuting so
Z ∈ Gg if and only if :

Z = exp(θ′′3 e3) exp(2k′πe2) exp(2k′πe5) exp(2kπe1) exp(−2kπe7) exp(θ4e4 + θ6e6)

= exp(θ′′3 e3) exp
(
2k′π(e2 + e5)

)
exp

(
2kπ(e1 − e7)

)
exp(θ4e4 + θ6e6)

It is now clear that

Gg = exp
(
2πZ(e2 + e5)

)
exp

(
2πZ(e1 − e7)

)
exp(Re3 ⊕ Re4 ⊕ Re6)
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Now let
◦
Gg be the kernel of the restriction of χg to (G0

g) (connected component

of the neutral element of Gg). This group is
◦
Gg = exp

(
R(e3 − e4)⊕ R(e6 − e4)

)
.

At this step, we have to use a first result of L. Pukanszky in [20].

Proposition 7.3 — Let g be a linear form on a solvable Lie algebra g . With
the previous notations, χg extends to a character of Gg (or equivalently g is an

integral form) if and only if the quotient group Gg/
◦
Gg is abelian.

To use this proposition we consider another group Gg : it is the pullback image

of the center of Gg/
◦
Gg in Gg by the canonical projection.

Exercise 7.3 – Prove that

Gg = {x ∈ Gg ; xax−1a−1 ∈ ◦
G ∀a ∈ ◦

Gg}

and
◦
Gg ⊂ Gg.

We show that Gg 6= Gg. Let z and z′ be two elements of Gg

z = exp(θ3e3) exp(2kπe1 + 2k′πe2) exp(2k′πe5 − 2kπe7) exp(θ4e4 + θ6e6)
z′ = exp(θ′3e3) exp(2k1πe1 + 2k′1πe2) exp(2k′1πe5 − 2k1πe7) exp(θ′4e4 + θ′6e6)

By using the formula exp x exp y = exp(Exp adx.y) exp x, we see that elements
of exp(2πZe1 + 2πZe2) and exp h are commuting, so
zz′ = exp(θ′3e3) exp(2kπe1 + 2k′πe2) exp(2k1πe1 + 2k′πe2) exp(θ3e3)

× exp(2k′πe5 − 2kπe5) exp(2k′1π − 2k1πe7) exp(θ4e4 + θ6e6) exp(θ′4e4 + θ′6e6)
Furthermore,
exp(2kπe1 + 2k′πe2) exp(2k1πe1 − 2k′πe2) =

exp
(
2k1πe1 + 2k′πe2 + 4π2(kk′1 − k′k1)e3

)
exp(2kπe1 + 2k′πe2)

and at the end
zz′ = exp(θ′3e3) exp

(
2k1πe1 + 2k′1πe2 + 4π2(kk′1 − k′k1)e3

)
× exp(2k′1πe5 − 2k1πe7) exp(θ′4e4 + θ′6e6).z

It results from this that z′ ∈ Gg if and only if for all k, k′ ∈ Z

Z = exp(2k1πe1 + 2k′1πe2 + 4π2(kk′1 − k′k1)e3) exp(−2k1πe1 − 2k′1e2) ∈
◦
Gg

But, using the formula giving the product in exp k (Heisenberg group), we have

Z = exp
(
4π2(kk′1 − k′k1)e3

)

Since exp e3 6∈
◦
Gg, z′ ∈ ◦

Gg if and only if kk′1−k′k1 = 0 for all k and k′ in Z, thus,
k1 = 0, k′1 = 0 and Gg = G0

g as we expected. The form g is not integral.
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If we look carefully at the construction of the section 5, we see that to build
a factorial or irreducible representation of a solvable Lie group G, it is enough to
get a representation (factorial or irreducible) of Gg whose restriction to

◦
Gg is a

multiple of χg . L. Pukanszky has shown that there exists factorial representations
whose restriction to G0

g are multiple of χg . The complete result is the following :

Proposition 7.4 — Let G be any connected, simply connected solvable Lie group
and g ∈ g∗. Then the character χg extends to a character χg of Gg. The
representation σg = IndGg

Gg
χg is a type I or type II factorial representation of

Gg. Furthermore it is type I if and only if Gg/Gg is a finite group.

This proposition gives rise to two descriptions of a representation of G :
1) The first one by holomorphical induction as in section 5. We choose a good

polarization b at g and let D = D0Gg. The character χg extends to a character of
D denoted by χg yet. It is clear that we can form the holomorphical representation
ρg = ind(g, h, χg).

2) To state the second form, let N = [G, G]. The Lie algebra of N is n = [g, g].
This group is a simply connected nilpotent Lie group (see section 3), so we can
form the Kirillov representation π corresponding to the orbit of g|n in n∗. A result
of L. Pukanszky says that Kπ = NGg is the greatest closed subgroup of G such
that π extends to a representation π of Kπ. We can choose the represntation π

such that its restriction to Gg is a multiple of χg ∈ Ĝg. We can now form the
representation ρ′g = Ind GKπ

π.

Proposition 7.5 — We have ρg ' ρ′g and this representation is a factorial
representation which have the type of σg = IndGg

Gg
χg so, by the previous theorem,

it is type I if and only if Gg/Gg is a finite group.

If we apply this result to the Dixmier group and the linear form g = e∗3 +e∗4 +e∗6
discussed above, we see that Gg = G0

g ⊂ N , Kπ = N and since Gg/Gg is not a
finite group, the representation ρ = IndGN (πg|n) is a type II factorial representation.

7.2.– THE GENERALIZED ORBITS

For general simply connected solvable Lie groups, the factorial representation
ρg is not the best one. For instance, it has not good properties for Plancherel
formula. The “good” representation is somewhat more subtle: we need to pack
the previous factorial representations associated to orbits for all the “bad” orbits
(not locally closed), closed to one of them. We now describe this “package”.

Let K be a locally compact separable group acting on a metric space X. We
recall that the action is said to be regular if every orbit is locally closed (see the
end of section 1). We have seen that if the orbits in g∗ of a connected simply
connected solvable Lie group G are not all locally closed, this group is not type I.
Definition — Let G be a locally compact group, X a topological space and
(k, x) −→ k.x a continuous action of K on X. We define the relation R on X by
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xRy ⇐⇒ K.x = K.y
where K.x and K.y are the closures of the K-orbits of x and y.

Exercise 7.4 – Prove the following lemma.
a) If Y ⊂ X such that Y is locally closed and K-invariant, the R-class of any

x ∈ Y is contained in Y .
b) If the orbit K.x is locally closed, then the R-class of x is the K-orbit K.x.
[b) is implied by a)].
L. Pukanszky has shown that if K is a solvable group (connected and simply

connected), then the R classes are locally closed. More generally, we have the
following theorem.

Theorem 7.1 — Suppose there exists a Lie group K̃ containing K such that
[K̃, K̃] ⊂ K and whose action on X is regular. Let x be an element of X, Ω its
R class, K̃.x the stabilizer of x in K̃. Then,
1) K̃.y does not depend on y ∈ K̃.x and we have Ω = (KK̃x).x.
2) Ω is locally closed and is homeomorphic to the homogeneous space K(Ω̃)/K(Ω̃)x.

If G is a solvable group, we can choose for K the connected simply connected
Lie group G̃ whose Lie algebra is an algebraic Lie algebra g̃ containing g and such
that [g̃, g̃] = [g, g] = n. Until the end of this section we suppose that K̃ = G̃.

We denote by R(g∗) the set of {(g, χ) ; g ∈ g∗, χ ∈ Gg}. The action of G
on this space is the natural action on g and χ. The topology on R(g∗) is given
by convergent sequences : (gn, χn) −→ (g, χ) if and only if gn −→ g and for all
cn ∈ Ggn such that cn −→ c ∈ Gg, χn(cn) −→ χ(c). The G-orbits in R(g∗) are
the generalized orbits. As we said before, the generalized orbits are locally closed.

It is not difficult to see that the groups H̃ = G̃gN , H = GgN , H = GgN

and
◦

H = G0
gN are invariant for g in O. They are closed subgroups of G̃ with

connected component equal to H0 = G0
gN . We denote by H

◦
the set of characters

of H equal to 1 on H0.

Exercise 7.5 – Prove that Gg/G0
g ' H/H0 and (Gg/G0

g )̂ ' H
◦
.

Theorem 7.2 — Let O be a generalized orbit of R(g∗). There exists a non zero
positive G-invariant Borel measure on O, unique up to a multiplicative scalar.

Proof — Let p = (g, χ) ∈ O. We use the previous notations, and we denote
by J the closure of

(
(G× {1})(G̃×H

◦
H)ρ

)◦ in G̃×H
◦
H). By what preceeds we

know that O is homeomorphic to J/Jp where the G action on O is the action of
G× {1} on J/Jp. Since Jp contains (G×H

◦
H)p, the closure of (G× {1})× Jp is

also J-invariant so, if there exists a G-invariant measure on O, it is unique up to
a multiplicative scalar.

We now prove that such a measure exists. It is enough to show that the
restriction of the modular function of J to Jp is equal to the modular function
of Jp, that is, for all a ∈ Jp :

∣∣ det(Ad a|j)
∣∣ =

∣∣ det(Ad a|jp)
∣∣ where j is the Lie
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algebra of J . But we have [j, j] = [g, g] = n so,
∣∣ det(Ad a|j)

∣∣ =
∣∣ det(Ad a|n)

∣∣
and

∣∣ det(Ad a|jp)
∣∣ =

∣∣ det(Ad a|jp∩n)
∣∣ and since [g(g), g(g)] ⊂ n(g) we have∣∣ det(Ad a|jp∩n)

∣∣ =
∣∣ det

(
Ad a|g(g)

)∣∣. It is enough to verify that
∣∣ det(Ad a|g)

∣∣ =∣∣ det
(
Ad a|g(g)

)| or equivalently
∣∣ det

(
Ad a|g(g)

)∣∣ = 1. We know that a stabilizes
g so also stabilizes the non degenerated skew bilinear form on g/g(g) defined by
B(u, v) = g([u, v]) and this completes our proof.

7.3.– THE CENTRAL REPRESENTATIONS OF PUKANSZKY

By a previous proposition, for each p = (g, χ) ∈ R = R(g∗) we can build
a factorial representation π(p) of G which is type I or type II. Just before, we
have defined a positive G-invariant measure µO on each generalized orbit O ⊂ R.
We shall prove now that the set of representations π(p) is a µO-measurable field
of representations and that the representation F(O) =

∫ ⊕
π(g, χ)dµO(g, χ) is

factorial and we shall give conditions such that this representation is type I.
Let p0 = (g0, χ) a fixed element of O. Then, with the above notations O = J.p0.

Let h0 be a polarization at g0 which verifies all the “good” conditions and invariant
under the action of Jp0 . For p = a.p0 (a ∈ J), let be hp = a.h0 which is a
polarization at g because h0 is invariant under Jp. Thus, we have defined a field
of polarizations and with these polarizations, a field of concrete representations
on O :

T (p) = ρ(g, hp, χ) p = (g, χ) ∈ O
We now consider a borel section s from O into J , that is a borel map such
that p = s(p).p0. This is possible because J/Jp is homeomorphic to O. we
put T ′(p) = s(p).T (p0). It is clear that T ′(p) is equivalent to T (p). To prove
that the field {T (p)}p∈O is µO-integrable, it is enough to prove that the field
{T ′(p)}p∈O is µO-integrable. Since the space H′p of T ′(p) is equal to H′p0

, the
space of T (p0) for all p ∈ O, so it is µO−measurable. Now it is enough to verify
that the field of representations {T ′(p)}p∈O is µO−measurable, that is for all u
and v in Hp0 and x ∈ G the function : p −→ (T ′(p)x(u) , v) is measurable. But
as we have T ′(p)x = T (p0)

(
s(p)−1xs(p)

)
we see that this is a borel function hence

a measurable function.
So the field {T ′(p)}p∈O is µO−integrable and as

∫ ⊕
T ′(p)dµO(p) depends only

on the class of the T ′(p) we can write

F(O) =
∫ ⊕

π(g, χ)dµO(g, χ)

Theorem 7.3 — The representations F(O) are factorial representations.

Proof — We write T =
∫ ⊕

T (p)dµO(p), W for the space of diagonal operators,
W ′ the commuting algebra of W , R(T ) the Von Neumann algebra generated by
T (G) and Z(T ) its center. Since for each x ∈ G, T (x) ∈ W ′, we have R(T ) ⊂ W ′.
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Thus, if A ∈ Z(T ) we have A ∈ W ′ and A is a decomposable operator.

A =
∫ ⊕

A(p)dµO(p)

We have to verify that A is a scalar multiple of identity operator. If x ∈ G
then, T (x)A = AT (x) so T (p)xA(p) = A(p)T (p)x for µO-almost all x. Using
a counting dense subset of G and changing if it needs A(p) on a µO-null set,
we have T (p)xA(p) = A(p)T (p)x for all p ∈ O and x ∈ G. Thus, for all
p ∈ O, A(p) ∈ R

(
T (p)

)′. Since A ∈ R(T ) we can find a sequence (An) of linear
combinations of operators T (x), x ∈ G such that An −→ A according to the
strong topology. We now replace An by a subsequence such that An(p) −→ A(p)
strongly for almost all p or all p if we change An(p) on a µO-null set. We have
An(p) ∈ R

(
T (p)

)
so A(p) ∈ R

(
T (p)

)
. At last, A(p) ∈ Z

(
T (p)

)
and since T (p) is a

factorial representation, we have A(p) = ϕ(p)Ip where Ip is the identity operator
in the space of T (p).

We have now to show that ϕ is constant almost everywhere. Let x a fixed
element in G. The representation T (x.p) is equivalent to T (p) and there exists an
unitary operator U fromHp on Hx.p such that T (x.p)y = UT (p)yU−1 for all y ∈ G
so, for all n ∈ N, An(x.p) = UAn(p)U−1. By considering the limit when n −→∞
we see that A(x.p) = UA(p)U−1, that is ϕ(x.p) = ϕ(p) for all x ∈ G. This shows
that ϕ, which is a borel function, is also G-invariant on O, but the action of G
into O is ergodic (because the action of J/Jp is ergodic since (G×{1})Jp is dense
in J) so ϕ is a constant function.

Proposition 7.6 — The representation F(O) is type I if and only if
1) O is a G-orbit ;
2) For one p = (g, χ) ∈ O, thus for all p, Gg/Gg is a finite group.

Proof — If the conditions are satisfied, F(O) =
∫ ⊕

π(g, χ)dµO(g, χ) where
O is a G-orbit, so all the representations π(g, χ) are equivalent and type I (by
theorem 7.5). A wellknown result on Hilbert integrals (cf. [16]) say that F(O) is
also a multiple of the same representation π(g, χ).

Conversely, if F(O) is type I it is a multiple of an irreducible representation σ
and another wellknown fact on Hilbert integrals (cf. [16] Th. 2.7 p. 201) say that
π(g, χ) is type I for almost all (g, χ) ∈ O and factorial representations multiple of
σ. We deduce from this that the measure µO is concentrated on a single G-orbit
Ω and the second condition is verified. Now, if O contains an orbit Ω′ 6= Ω, there
exists a ∈ J such that a.Ω = Ω′ and a.µO would be a G-invariant measure on O
concentrated on Ω′ hence not a multiple of µO. By theorem 7.2 this is not possible
and this shows that O is a single orbit.

We now state without proof some others important results of L. Pukanszky
about these representations F(O) for O ∈ R(g∗).
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Theorem 7.4 — Let G be a simply connected solvable Lie group.
1) There exists a positive Borel measure µ on a Borel space X (the space of

classes of factorial representations of G) such that

λ '
∫ ⊕

X

F(Ox)dµ(x)

where λ is the left regular representation of G and except on a µ-null set the
representations F(Ox) and F(Oy) are not equivalent for x 6= y. This is a weak
form of the Plancherel formula (cf. [20]).

2) If we denote by F(O)∗ the representation of the C∗-algebra of G, correspond-
ing to F(O) and by Ker(F(O)∗) its kernel, the map O −→ Ker(F(O)∗) is one to
one from the set of generalized orbits onto the space of primitive ideals or kernels
of irreducible representations of the C∗-algebra of G(cf. [22]).

3) The representations F(O) are semi-finite, this means that they are type I or
type II (cf. [21]).

Exercise 7.6 – Let G be the Mautner group with the notations of the begining
of this section. Let g = e∗3 + e∗5, let O be its generalized orbit and let H be the
connected group with Lie algebra h = [g, g] = ⊕5

i=2Rei. Show that

F(O) =
∫

R

∫ 2π

0

∫ 2π ⊕

0

IndGH (χgβ,α0,α1
)dβdα0dα1

where gβ,α0,α1 = βe∗1 + sin α1e
∗
2 + cosα1e

∗
3 + sin α0e

∗
4 + cos α0e

∗
5.

æ
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