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Abstract

Algorithms for computing exact distribution values of statistics-linear combination of some
multinomial variables called, 3-nomial variables, are derived. In the general case, there are
not explicit formulae of the cumulative distribution function of these statistics that allow the
direct computation of p-values. The exact distribution in the independent case and in some
dependent ones is studied. For each of the two cases of dependence, an algorithm based on
recursive relationships is proposed, giving the number of favorable cases and combinatorics to
minimize computation time. For each of these NFC algorithms, concurrent PGF algorithms and
some realized comparisons are presented.

Key words: Exact distribution algorithms, generalized linear rank statistics, optimized enumeration,
probability generating function.

1. Introduction

The study of some association indexes leads to a linear combination of one order
3-nomial variables. More precisely, we are concerned with the class of statistics

Tλ,a(Z(n)) :=
n∑

k=1

ank(Z1
nk + λZ2

nk). (1)
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where λ ∈ ]0, 1[ , a(n) = (an1, ..., ann) ∈ Rn are the deterministic parameters and Z(n) =
(Zn1, ..., Znn) is a random vector of one order 3-nomial variables, i.e., for k = 1, . . . , n,
Znk = (Z1

nk, Z2
nk, Z3

nk) ∼M3(1; p1, pλ, 1−p1−pλ). The limit cases T0,a and T1,a, obtained
for λ = 0 and λ = 1 correspond respectively to statistics linear-combination of Bernoulli
variables B(1, p1) and B(1, p1 + pλ). Hence, the class of statistics, given by equation (1),
could be considered as an extension of statistics linear combinations of Bernoulli variables
such as linear rank statistics (see. Capéraà and Van Cutsem (1988), Good (2005), Van
der Vaart (1988)). Consequently, the research of appropriated exact distribution methods
for the studied class of statistics (1) could extend the existing methodology for linear
combination of Bernoulli variables.

More precisely, we are concerned by the exact computation of the CFD value or p-value
associated to an observed value of Tλ,a under a given hypothesis H0 on the parameters
p1, pλ. We only consider null hypothesis H0 leading to the three types of decision rule
Dr1.a, Dr1.b, Dr2. These decision rules consist in rejecting the corresponding H0, resp.
for small Tλ,a values, for the large ones and for the extreme ones.

Let us set α1 = Pr(Tλ,a ≤ t|H0) and α2 = Pr(Tλ,a ≥ t|H0), the de�nition of the
p-value depends on the adopted decision rule. Here, the p-value is de�ned as follows

p− value(t) =





α1 if Dr1.a,

α2 if Dr1.b,

2min(α1, α2) if Dr2.

Other de�nitions of the p-value could be found in the paper of Gibbons and Pratt (1975),
which is a more complete discussion about this concept. Thus, the computation of the
p-value as de�ned below leads to the computation of the Tλ,a CDF values.

From a practical point of view, we encounter the statistics-linear combination of such
multinomial variables in two distinct situations. In the �rst situation, the studied statistic
is used to measure the level of concordance between assignations to classes of the same
set of objects, applying two distinct assignation rules. Although, the statistic given by
equation (1) generalizes the well assigned rate (Beninel and Grun Rehomme (2006)).
In the second one, the studied statistics are used to measure the level of association
between two ringed individuals given presence-absence data from a capture-recapture
design (Cairns and Schwager (1987), Roberts and Evans (1993)). Related to these two
situations, we give the following two examples.

Example 1: An independent case
This example is related to the estimation of a generalized concordance rate computed

over a �nite population of companies. Each company has to answer, at two di�erent
dates, the question of the type of its business. The �rst date is the creation and the
second one at a survey. Let Ω = {ω1, . . . , ωN} be the population of concerned companies
and the random pair (Z1, Z2)(Ω −→ {0, 1}2).

Given a company ω, (Z1(ω), Z2(ω)) = (1, 0) if the company responses are concordant;
(Z1(ω), Z2(ω)) = (0, 1) if di�erent but indicate nearest business; (0, 0) if discordant.
Let Z(ωk) := (Z1

Nk, Z2
Nk) and λ ∈ [0, 1], the generalized concordance rate over the

population is T := 1
N

∑N
k=1(Z

1
Nk +λZ2

Nk). Let us denote (Z1
nk, Z2

nk)k=1,...,n the sampling
random pairs, i.e., given an independent sample S = {ω∗1 , . . . , ω∗n} ⊂ Ω, (Z1

nk, Z2
nk)(S) =

(Z1, Z2)(ω∗k) = (Z1(ω∗k), Z2(ω∗k)). In this case sampling pairs are i.i.d. and when values
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ank are survey weights, the statistic given in (1) is the Horvitz-Thompson estimate of
the global rate T .
Table 1 gives an example of related data we use to illustrate computation of an observed
value of Tλ,a(Z(n)) and the associated p-value.
Table 1
Concordance scores of the 25 individuals from an observed sample

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Z1
nk 1 1 1 0 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0

Z2
nk 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1

103.ank 122 122 73 93 122 41 32 55 58 29 44 31 24 26 28 28 5 7 10 4 0 7 11 12 16

Here Tλ,a = 10−3(122+122+73+122+41+29+44+24+26+28+28+7+10+4+0+
11+12+λ(55+58+31+5+16)). For λ = 0.5, we have the observed value Tλ,a = 0.7855.
For normalized weights, as here, the minimum and maximum values of the statistic
Tλ,a(Z(n)), with respect to the sample Z(n), are min(Tλ,a) = 0 and max(Tλ,a) = 1 re-
spectively. Using the PNFC1 algorithm which we introduce in subsection 3.3.1, we obtain
the exact probability related to the p-value, P (T ≤ 0.7855 | p1 = pλ = 1

3 ) = 0.9977.

Example 2: A dependent case
In some capture-recapture experiments, one observes over a set of successive dates,

the presence or absence at a given geographical area, ringed individuals from a �nite
animal population. The problem, we focus on is the measure of the association of two
ringed individuals oX , oY . Denote T the set of dates where the two individuals could
be observed. Consider the associated presence-absence variables X, Y (T −→ {0, 1}),
i.e., X(t) = 1 (resp. Y (t) = 1) if oX (resp. oY ) is present on the site; X(t) = 0 (resp.
Y (t) = 0) otherwise.

Let us de�ne the random pair (Z1, Z2) (T → {(0, 1), (1, 0), (0, 0)}), by Z1 = XY ,
Z2 = (1 − X)(1 − Y ). Hence, Z1

nk = 1 when the two individuals are simultaneously
present at the kth date, Z2

nk = 1 when absent simultaneously and Z3
nk = 1 when only

one is present. We measure the association of the individuals o1, o2 by

p(o1, o2) = P (Z1 = 1) + λP (Z2 = 1) = p1 + λpλ, (2)

where λ ∈ [0, 1]. The λ values depends on how the model of association takes into account
the information of simultaneous absences. This de�nition extends the de�nition given in
(Cairns and Schwager (1987)) for the particular case λ = 0. In the context of spatial
association, Rao and Simple Matching indexes are based on a similar de�nition of the
association (Hubaleck (1982)).
Given an observed sample {(Xn1, Yn1), . . . , (Xnn, Ynn)} of (X, Y ) values corresponding to
the successive dates {t1, . . . , tn} and considering {an1, . . . , ann} as the associated weights,
Tλ,a is an estimate of the association p(o1, o2).

As an example of such data, we present in table 2 some ecological data related to a
capture-recapture study (Bretagnolle and Beninel (1994), Delstrade (1999)).

The permutational approach used to study the statistic Tλ,a considers as possible
samples those generated from the observed one, using pairs of permutations, i.e., each

3
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Table 2
Presence-absence process of two ringed individuals and corresponding Z1, Z2 values.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Xnk 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1
Ynk 0 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1
Z1

nk 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1
Z2

nk 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
103ank 89 26 51 32 61 45 35 41 26 28 29 25 54 30 50 36 29 42 28 50 41 30 26 34 62

pair of permutations (σ1, σ2) of the set {1, . . . , n}, corresponds to a possible sample
{((σ1X)nk, (σ2Y )nk) : k = 1, . . . , n}.

We have
n∑

k=1

(σ1X)nk =
n∑

k=1

Xnk = uX ,

n∑

k=1

(σ2Y )nk =
n∑

k=1

Ynk = uY .

Corresponding to data presented in table 2, we have uX = 15, uY = 16. The associated
possible samples {(Z1

nk, Z2
nk) : k = 1, . . . , n} are such that Z1

nk = (σ1X)nk(σ2Y )nk

and Z2
nk = (1 − (σ1X)nk)(1 − (σ2Y )nk). In this case, the random pairs (Z1

nk, Z2
nk) are

dependent.
Here the estimate of the association is Tλ,a = 10−3(51 + 61 + 41 + 54 + 50 + 29 + 50 +

62 + λ(32 + 36)). For λ = 0.5, one obtains Tλ,a = 0.432. To evaluate this observed value,
we refer to maximum and minimum possible values of Tλ,a using formulae in subsection
2.2 obtaining max(Tλ,a) = 0.851 and min(Tλ,a) = 0.159. However, the use of the p-value
is more informative on how large or how small an observed value is.

Using PNFC2 algorithm described in subsection 3.3.2, we obtain
P (Tλ,a ≤ 0.432|H0) = 0.3862.

Here H0 consists in assessing the uniform distribution for pairs of permutations (σ1, σ2).
To rely the Z distribution, we establish that under this null hypothesis p1 =

uXuY

n2
and

pλ =
(n− uX)(n− uY )

n2
.

In the general case, there is no explicit formula for the exact CDF of statistics Tλ,a.
For large n values, central limit theorems could be used to derive an approximate CDF,
having satis�ed some conditions on the deterministic parameters (see. Billingsley (1995),
Van der Vaart (1988)).

Exact computation of probabilities P (Tλ,a ≤ t|H0) is studied for small n values, i.e.,
values for which computation is feasible in an acceptable amount of time. For the limit
cases λ = 1 and λ = 0, di�erent exact computation methods exist. Our aim here is to
extend these methods to our class of statistics. The existing methods deal with exact
distribution algorithms. The recent development of computation tools implies impor-
tant advances of these kinds of algorithms. We classify these exact algorithms in three
categories:
• A �rst class covers algorithms which compute some or all coe�cients of the prob-

ability generating function (we abbreviate PGF). This class of algorithms covers the
earlier algorithm of Streiberg and Röhmel (1986) called shift algorithm. This algorithm

4
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is based on a recurrence formula giving the probability generating function. Using the
same representation of PGF, Hothorn and Hornick (2002) extend the algorithm to statis-
tics incorporating real or rational scores.

For these algorithms the representation of the PGF is in a matrix form. The use of
symbolic methods introduced by Di Buchianico (1999) and Van de Wiel (2001) optimizes
signi�cantly the time of computation. Another kind of optimization in the context of
symbolic methods is proposed by Van de Wiel (2001) (Split up algorithm).
• The second class of exact algorithms is based on the use of characteristic functions.

The algorithm consists in solving a linear complex equations system giving the probability
distribution. The equations system is obtained by applying the inversion theorem in the
discrete case (Brigham (1988)). The most famous algorithm of this class is the FFT
algorithm of Pagano and Trichler (1983).
• The third class of algorithms is based on the number of favorable cases and covers

what we call NFC algorithms. These algorithms are built using recursions giving the
number of favorable cases associated to the probability one wishes to compute. The
number of terms to compute recursively is minimized at each step when possible. As
examples of such algorithms, we have the algorithms developed in (Castagliola (1996))
and (Beninel and Husson (1999)) for statistics linear combination of Bernoulli variables
and the Network algorithm of Mehta and Patel (1983), used in the StatXact software,
for a larger set of statistics.

The p-value is computed using only an NFC algorithm or a PGF algorithm. These
two approaches will be compared in the two real contexts discussed below and leading
to an i.i.d case and a dependent case.
Next developments are organized as follows. In section 2 we give some combinatoric re-
sults to build functions NFC1 and NFC2 (computing numbers of favorable cases) called
in the PNFC algorithms which compute p-values. These results consist in a recursive
relationship giving the number of favorable cases and other results to optimize the com-
putation time. In section 3, we present results to build PGF algorithms computing p-value
in the studied contexts. Section 4 is devoted to the software and section 5 to simulations
and examples.

2. NFC Algorithms

Let us set N1 =
∑n

k=1 Z1
nk and Nλ =

∑n
k=1 Z2

nk. For (N1, Nλ) = (k, l), Tλ,a(Z(n))
values could be written as

∑k
j=1 anij + λ

∑l
j=1 anik+j

where (i1, ..., ik+l) ⊂ {1, . . . , n}.
For j0, k, l ∈ {0, . . . , n} such that k + l ≤ n− j0, consider the set

Eλ,a(k, l, t|j0) = {(i1, . . . , ik+l) ⊂ {j0 + 1, . . . , n} :
k∑

j=1

anij + λ

l∑

j=1

anik+j
≤ t}

and denote Kλ,a(k, l, t|j0) its cardinal.
The particular set Eλ,a(k, l, t|0) corresponds to the set of favorable cases Z(n) associ-

ated to events {Tλ,a(Z(n)) ≤ t|(N1, Nλ) = (k, l)}. To calculate the associated probability,
it su�ces to compute Kλ,a(k, l, t|0), i.e., and to use the following equation

P (Tλ,a ≤ t|(N1, Nλ) = (k, l)) =
Kλ,a(k, l, t|0)

(n
k )(n−k

l )
. (3)

5
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Consequently, to compute the p-value, i.e., the total probability, for the two context
described below, we use equation

P (Tλ,a ≤ t) =
∑

k,l

P ((N1, Nλ) = (k, l))
(n
k )(n−k

l )
Kλ,a(k, l, t|0). (4)

Given the distribution of the random pair (N1, Nλ), computation of
P (Tλ,a ≤ t) values leads to computation of Kλ,a(k, l, t|0) values. As algorithms based
on the number of favorable cases, we propose algorithms PNFC1 and PNFC2 correspond-
ing resp. to the independent and the dependent case de�ned below. Each, of these two
algorithms, uses a recurrence relation to compute Kλ,a(k, l, t|0) and they di�er by the
(N1, Nλ) distribution. These two NFC algorithms will be compared respectively to PPGF1
and PPGF2 concurrent PGF algorithm we present in section 3.

2.1. An example of enumeration

The table 3 shows counted combinations when computing numbers Kλ,a(1, 2, t|0) for
t = 7.0 or t = 8.0, with λ = 0.5 and a = {1, 2, 3, 4, 5, 6, 7}.

Table 3
Admissible combinations

ai1 ai2 ai3 ai1 ai2 ai3 ai1 ai2 ai3

1 2 3,4,5,6,7 2 1 3,4,5,6,7 3 1 2,4,5,6,7
3 4,5,6,7 3 4,5,6,7 2 4,5,6,[7]
4 5,6,7 4 5,6,[7] 4 [5],[6]
5 6,7 5 [6],[7]
6 [7]

ai1 ai2 ai3 ai1 ai2 ai3 ai1 ai2 ai3

4 1 2,3,5,[6],[7] 5 1 2,3,[4] 6 1 [2],[3]
2 3,[5],[6] 2 [3],[4]
3 [5]

Kλ,a(1, 2, 8.0|0) is the number of combinations (ai1 , ai2 , ai3) ⊂ {1, . . . , 7} such that
ai1 + 0.5(ai2 + ai3) ≤ 8 and it is equal to 56. To obtain the number Kλ,a(1, 2, 7.0|0),
we subtract the number of combinations (ai1 , ai2 , [ai3 ]) from Kλ,a(1, 2, 8.0|0). We obtain
Kλ,a(1, 2, 7.0|0) = 39.

The second array gives, for the same parameters, numbers Kλ,a(1, 2, t|j0) for di�erent
j0 values.

6
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Table 4
Numbers of admissible combinations

j0\t 0 1 2

7.0 39 10 0
8.0 56 21 3

2.2. Recursive relationships

Denote
∑

λ,a(k, l|j) the set of sums corresponding to Tλ,a(Z(n)) values when
(N1, Nλ) = (k, l) and call S+

λ,a(k, l) , S−λ,a(k, l|j) resp. the associated maximum and min-
imum. In what recurs, we suppose without loss of generality, that an1 ≤ an2 ≤ ... ≤ ann.
We have

S+
λ,a(k, l) = λ(an,n−k−l+1 + ... + an,n−k) + an,n−k+1 + ... + an,n,

S−λ,a(k, l|j) = an,j+1 + ... + an,j+k + λ(an,j+k+1 + ... + an,j+k+l).

Note that, the only maximum is independent from j and this justi�es the adopted nota-
tions. Computation of Kλ,a(k, l, t|j) depends on t value.

To begin, let us consider t values outside the interval [S−, S+] which covers the
particular situations at limits. For these t values we have the following equation

Kλ,a(k, l, t|j) =





(n−j
k )(n−j−k

l ) if t ≥ S+
λ,a(k, l),

0 if t < S−λ,a(k, l|j) .

(5)

For the general case, we derive the following recurrence relation on which we build the
enumeration algorithm.

Kλ,a(k, l, t|0) =
n−k−l+1∑

j=1

Kλ,a(k − 1, l, t− anj |j) + Kλ,a(k, l − 1, t− λanj |j)

with boundary condition

Kλ,a(0, 0, t|j) =





1 if t ≥ 0,

0 elsewhere.

In practice, this relation is implemented in NFC2 to compute Kλ,a(k, l, t|j). In the
following section, we propose an improvement in order to shorten computational time.
The optimization of the algorithm consists in reducing the number of recursions at each
step. The simpli�cations proposed rely on the intrinsic properties of the deterministic
parameters, i.e., the sequence a(n) and the parameter λ.

2.3. Optimization

Optimization is achieved using, whenever possible, the result given by equation (5) to
compute numbers Kλ,a(k, l, t|j).

7
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At step j, we decompose Kλ,a(k, l, t|j) as a sum of numbers de�ned analytically and
numbers de�ned recursively. Let us set

M1(k, l, t) := Max{j : S+
λ,a(k − 1, l) ≤ t− anj},

m1(k, l, t) := min{j : S−λ,a(k − 1, l|j) > t− anj},
Mλ(k, l, t) := Max{j : S+

λ,a(k, l − 1) ≤ t− λanj}
and

mλ(k, l, t) := min{j : S−λ,a(k, l − 1|j) > t− λanj}.
We easily establish inequalities mλ ≥ m1 ≥ M1 + 1 ≥ Mλ + 1.

Let us set

A1(k, l, t) :=
M1∑

j=1

(n−j
k−1)(

n−j−k+1
l ),

Aλ(k, l, t) :=
Mλ∑

j=1

(n−j
k)(n−j−k

l−1 ),

R1(k, l, t) :=
m1−1∑

j=1

Kλ,a(k − 1, l, t− anj |j)

and

Rλ(k, l, t) :=
mλ−1∑

j=1

Kλ,a(k, l − 1, t− λanj |j).

Using equation (5), we can derive from (2.2) the following reduced recurrence relation
Kλ,a(k, l, t|0) = A1(k, l, t) + Aλ(k, l, t) + R1(k, l, t) + Rλ(k, l, t). (6)

2.4. Other results

Let S = {s1, ..., sn} a sequence of real scores, j ∈ {1, ..., n}, k ≤ n− j and t ∈ R. let us
set

NS(k, t|j) = ]{(1, ..., k) ⊂ {j + 1, ..., n} :
k∑

i=1

si ≤ t}. (7)

In (Beninel and Husson (1999)) we introduced an algorithm (called, here, NFC1) for
computation of numbers NS(k, t|j). This algorithm will be used as a function in NFC2
devoted to two sequences of scores and computing Kλ,a(k, l, t|j). The call of NFC1 in NFC2
occurs at the step k = 0 or l = 0. The number of combinations resulting from the two
sequences of scores a(n) and λa(n) and the number of combinations among one sequence,
i.e., a(n) or λa(n), are linked by the following equations

Kλ,a(k, 0, t|j) = Na(k, t|j) (8)
and

Kλ,a(0, k, t|j) = Nλa(k, t|j). (9)

8
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In order to simplify, we use only one of the Na or the Nλa functions, applying the following
equation. For λ 6= 0

Na(k,
t

λ
|j) = Nλa(k, t|j). (10)

The algorithm NFC2 and NFC1 could be viewed as an adaptation of the network algorithm
(Mehta and Patel (1983)). The associated network is a rooted tree where a level is de�ned
as the number of nodes from the root. One could de�ne the level as the set of nodes with
the same k + l value. At each of these levels, each call of the recursive function de�nes a
step, at each step we have to determine mλ,m1,M1,Mλ and to compute the value A1+Aλ

and to recall the recursive function as necessary as it appears in number R1 + Rλ .

2.5. Some inequalities

For j, k, l ∈ N such that k + j + l ≤ n and t ∈ R, we have

Na(k + l, t|j) ≤ 1
(k+l

k )
Kλ,a(k, l, t|j) ≤ Nλa(k + l, t|j). (11)

These inequalities could be used to derive upper and lower bounds of the p-value. They
also allow detection of the extreme values using only an algorithm of computation among
a unique sequence of scores.

3. The algorithms

The algorithms we propose di�er on the (N1, Nλ) distribution and the chosen enumer-
ation method (NFC or PGF ).

3.1. (N1, Nλ) distribution

3.1.1. The independent case
Here the null hypothesis H0, concerns p1, pλ values. In our simulation we consider the

null hypothesis H0 : p1 = pλ = 1
3 . Zn1, . . . , Znn are indepen-

dent and follow aM3(1, p1, pλ, 1−p1−pλ) distribution. Hence (N1, Nλ, N −N1−Nλ) ∼
M3(n, p1, pλ, 1− p1 − pλ). Consequently for k, l such that 0 ≤ k + l ≤ n,

P ((N1, Nλ) = (k, l)) = (n
k )(n−k

l )pk
1pl

λ(1− p1 − pλ)n−k−l. (12)

3.1.2. The dependent case
Here, the null hypothesisH0 is that the pairs of permutations are uniformly distributed.

Consequently, Zn1, . . . , Znn are such that N1 ∼ H(n, uX , uY ) and Nλ = n−uX−uY +N1.
Let us set M1 = min (uX , uY ), m1 = max (0, uX + uY − n) and l(k) = n−uX−uY +k.

For k ∈ {m1, . . . , M1}, l = l(k),

P ((N1, Nλ) = (k, l)) = P (N1 = k) =
(uX

k )(n−uX

uY −k )
(n
uY

)
. (13)
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3.2. PPGF algorithms

Consider P (x, y, w) an homogeneous polynomial of variables x, y, w and
P (x, y, w)[ykwl] the polynomial (of variable x) derived from P (x, y, w), as a sum of the
coe�cients associated to ykwl.
Denote GT,k,l the PGF associated to the conditional distribution of T with respect to
(N1, Nλ) = (k, l)

GT,k,l(x) :=
n∏

i=1

(1 + yxai + wxλai)[ykwl]. (14)

The global generating function associated to T is

GT (x) =
∑

k,l: 0≤k+l≤n

µ(k, l)GT,k,l(x), (15)

where
µ(k, l) =

P ((N1, Nλ) = (k, l))
(n
k )(n−k

l )
.

In the following we present the PGF corresponding to two distinct situations developed
in the introduction. For these situations two distinct PGF algorithms are built.

3.2.1. PPGF1: An algorithm using PGF in the i.i.d case
For this case, the distribution of the random pair (N1, Nλ) is given by equation (12);

substituting in equation (15), we obtain

GT (x) =
∑

k,l

pk
1p1

λ(1− p1 − pλ)n−k−l
n∏

i=1

(1 + yxai + wxλai)[ykwl],

or, equivalently

GT (x) =
n∏

i=1

(1− p1 − pλ + p1x
ai + pλxλai). (16)

In what follows, we suppose that the conditions on the scores (ank) are satis�ed, allowing
a polynomial representation of the PGF, i.e., GT (x) =

∑
k ck xdk . Given the scores

ank, the parameter λ and p1, pλ the probabilities values under H0, the algorithm PPGF1
compute coe�cients ck, the associated degrees dk and derive at the end the p-value, that
is probability P (T ≤ t) =

∑{ck : dk ≤ t}. To compute the coe�cients ck under interest,
we use directly the polynomial form of the global PGF. As a possible improvement of
the algorithm, one could adapt Split Up algorithm of Van de Wiel (2001).

3.2.2. PPGF2: The algorithm for a dependent case
Here we use equation (13) to substitute in equation (15) and we derive the global PGF

for this dependent case, i.e.,

GT (x) =
M1∑

k=m1

µ(k)
n∏

i=1

(1 + yxai + wxλai))[ykwl(k)], (17)

10



Acc
ep

te
d m

an
usc

rip
t 

where
µ(k) =

(uX

k )(n−uX

uY −k )

(n
uY

)(n
k )(n−k

n−uX−uY +k)
. (18)

Let GT,k,l(k)(x) =
∑

m ck,mxdm be the polynomial form of the conditional PGF.
Given the scores (ank), the parameter λ and the data(uX , uY , t), to compute the
p-value given by P (T ≤ t), PPGF2 works as follow: for each k ∈ {m1, .., M1}, we compute
Sk(t) =

∑
m{ck,m : dm ≤ t} and µ(k), and obtain the researched probability

P (T ≤ t) =
∑M1

k=m1
µ(k) Sk(t). Quantities Sk(t) are computed via a direct use of the

polynomial form of the conditional PGF. An optimization of the computation time could
be obtained using an adaptation of Split Up algorithm.

3.3. PNFC algorithms

Algorithms PNFC1 and PNFC2 to compute p-value resp. are proposed for the i.i.d case
and for dependent one. Computation is based on the equation (4) and uses as a called
function NFC2 the programming of the recurrence relation given by equation (6). These
two PNFC algorithms di�er only on the used distribution of the counting pair (N1, Nλ).

3.3.1. PNFC1
Here, we use equation (12) to substitute in equation (4). Given p1, pλ, λ, t and the

sequence a of scores, PNFC1 returns the probability

P (T ≤ t) =
∑

k,l: 0≤k+l≤n

pk
1pl

λ(1− p1 − pλ)n−k−lKλ,a(k, l, t|0). (19)

For the particular case H0 : p1 = pλ = 1
3 , we have to compute

P (T ≤ t|H0) =
1
3n

∑

k,l: 0≤k+l≤n

Kλ,a(k, l, t|0).

3.3.2. PNFC2
In an analogous manner we use equation (13) and substitute in equation (4), PNFC2

returns

P (T ≤ t|H0) =
M1∑

k=m1

µ(k)Kλ,a(k, n− uX − uY + k, t|0). (20)

Here µ(k) is given by equation (18) and m1,M1 in subsection 3.1.2.

4. Software

The di�erent programs presented in this paper are available at the web site:
http://www-math.univ-poitiers.fr/�grelaud/stat/.

The programs computing p-value, i.e., PNFC1, PNFC2, PPGF1, PPGF2 are presented in two
�le formats. A Maple format to be loaded with the Maple Software and a html format.
In the html �le, we present the source of the program and comments and documentation
to improve portability.

11
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The choice of the Maple Software is to bene�t from the use of tools devoted to com-
putation related to polynomials. The only functions NFC1 and NFC2 are presented in
Maple langage and R langage.

5. Examples and some simulations

In what concerns example 1, the appropriate algorithms to compute p-value are
PNFC1 and PPGF1. We have as input λ = 0.5, t = 0.7855, the sequence a25 given in table
1. The algorithm PNFC1 returns P (T ≤ 0.7855) = 0.9977 after 1177 seconds. Computing
using PPGF1 makes the system run out of memory after 186 seconds.

For the example 2, we obtain using PNFC2 P (Tλ,a ≤ 0.432) = 0.3862 and with 105
seconds time length. Here also the PPGF algorithm, PPGF2 makes the system out of
memory.

The realized simulations consist in the testing of the program computing the number
of favorable cases. For the programs PNFC and PPGF computing probabilities, tests
and simulations are realized. In the iid case, simulations allow some comparison of PPGF1
and PNFC1. For the dependent case, we only give some examples; simulations to compare
PPGF2 and PNFC2 have to be completed.

5.1. Computing the number of favorable cases

Here, to test the performance of the program NFC2, simulations are made using an
Intel Pentium 4 Cpu AT compatible. These simulations consist in generating randomly
score sequences a(n) and in computing Kλ,a(k, l, t | 0) the number of combinations of
interest. Performance in the sense of computing time depends upon the length of the
score sequences, the position of the t-values and the integer k, l values.

We undertook three small simulation studies to test the performance of the proposed
algorithm. Such a performance is evaluated by the mean time of computation obtained
from N = 100 sequences of scores (generated randomly from the uniform distribution).

5.1.1. On the position of the t value
For �xed λ, a(n) we considered di�erent values between the maximum S+ and the

minimum S−. Computing time appears as an increasing function of absolute deviation
of t value from the extreme values.

5.1.2. On the scores sequence
The computation time depends on the dispersion of the score sequence. This dispersion

determines relatively the position of the t value to the extreme S+ and S−. In general,
the algorithm is fast for n ≤ 30 and is more e�cient for extreme values.

5.1.3. On the (k, l) values
Computation time increases with (k + l) and decreases with |k − l| value. Here t is not

�xed as an absolute value but only by its relative value on the interval [S−, S+].

12



Acc
ep

te
d m

an
usc

rip
t 

Table 5
The behavior of the computation time in seconds (and the number K of admissible combinations) with
respect to t-value (here λ = 0.5 and n = 15).

t min +0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +1.4 +1.6 +1.8 +2.0 +2.2
K 1 51 490 2019 6099 15055 31292 58194 95313 143645 197346 253741
Mean time 0.00 0.02 0.03 0.09 0.17 0.30 0.54 0.72 1.02 1.22 1.42 1.44

+2.4 +2.6 +2.8 5.063 +3.0 +3.8 +4.0 +4.2 +4.4 max
304328 347341 378344 399451 411064 417095 419463 420266 420413 420420
1.31 1.08 0.86 0.57 0.34 0.19 0.08 0.01 0.00 0.00

Table 6
Computation time with respect to (k − l) value (here n = 15, k + l = 11, t = 4.4 and λ = 0.5).

k − l 11 9 7 5 3 1 -1 -3 -5 -7 -9 -11
time ∼ 0 ∼ 0 0.05 0.28 0.98 2.02 2.52 1.76 0.64 0.12 ∼ 0 ∼ 0

5.2. Comparing PNFC1 and PPGF1

In the beginning we present examples of results when processing the two algorithms
on a unique sequence of scores (ank). These results allow some comparison of the two
algorithms from a computational time point of view and could be used to verify the
exactness of computation. The scores sequences are generated randomly; we use the
Rand function of Maple and must be ordered in an increasing order to be considered in
input and λ = 0.5 (the default value).

Example 3: n = 10
Consider the generated sequence a = {21, 29, 37, 41, 42, 47, 56, 70, 76, 82}. The following
table returns for di�erent t values, the associated probability P (T ≤ t) and the compu-
tation time when using resp. PNFC1, PPGF1.

Table 7
Computation time in seconds and probability with PPGF1 and PNFC1.

t 30 80 130 180 230 280 330 380 430 480 530

PNFC1 0.141 0.344 0.781 1.545 1.985 2.375 3.078 3.719 4.20 4.38 4.75
PPGF1 0. 0. 0.094 0.203 0.360 0.625 0.844 1.141 1.250 1.391 1.281
Prob 0.0002 0.0054 0.041 0.160 0.388 0.66 0.87 0.99 0.996 0.9999 1

Example 4: n = 15
The generated sequence here is a = {4, 9, 10, 29, 66, 75, 104, 113, 119, 125, 134, 138, 144,
148, 150}.

In a second step we repeat simulations to compare in a more consistent manner PNFC1
and PGF1. We organize simulations as follows: We �x the n and x values. For each pair
(n, x) we generate randomly from the uniform distribution N sequences of scores a(n)
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Table 8
Computation time in seconds and probability with PPGF1 and PNFC1. ∗∗ : System out of memory.

t 70 120 170 220 270 320 370 420 470

PNFC1 4 6.8 10.162 14.39 20.79 30.64 43.25 65.46 83.57
PPGF1 0. 0.109 0.235 0.593 1.5 3.59 7.98 15.56 94.031
Prob 0.00002 0.00012 0.00056 0.0019 0.0054 0.0134 0.0294 0.057 0.101

520 570 600 650 700 750 800 850 900 950 1000 1050 1100

111.079 135.359 122 168 203 227 250 272 298 319 342 361 383
644.43 3826 ** ** ** ** ** ** ** ** ** ** **
0.166 0.251 0.31 0.42 0.53 0.65 0.75 0.83 0.90 0.94 0.97 0.98 0.99

(N = 10 for n = 15 and N = 5 for n = 20 ). For each sequence of scores, we compute
P (T ≤ x max(T )). The following table gives for each pair (n, x) the mean time to compute
associated probability.
Table 9
Computation time in seconds; for each double line, the �rst one gives performance of PNFC1 and the
second one for PPGF1.

n\x 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 0, 7 0, 8 0, 9

n = 15 1.95 3.4 5.15 6.9 8.7 10.2 11.0 11.1 12.7
0.59 1.13 1.20 3.25 7.63 14.62 77.73 ** **

n = 20 17.5 31.12 47.30 64.9 85 106 132 160 192
0.17 5.4 5.93 19.5 148.7 ** ** ** **

5.3. Comparing PNFC2 and PPGF2

A more complete simulation, taking into account of all the parameters,
i.e., (λ, x, n, uX , uY , a, . . .), is to organize. Here, we only present some examples results
from tests to give an idea about the computation time performance of these two algo-
rithms.

Example 5:
Consider the generated scores sequence a = {3, 4, 5, 5, 9, 10, 23, 33, 44, 44, 47, 62, 67, 70, 72}
and �x t = 24 for example. Table 10 presents computation time and P (T ≤ 24) values
with respect to (uX , uY ) values.

For the realized tests, the two algorithms work when min (uX , uY ) ≤ 20 and PNFC2 is
more rapid . Computation time increases highly when the x value increases and depends
on the uX , uY values more than on the n value.

Example 6:
Here a = {5, 6, 8, 21, 26, 30, 32, 46, 48, 88, 88, 92, 93, 98, 113, 115, 120, 128, 135, 135, 147, 173,
176, 194, 199}. Table 11 presents computational time and probability for di�erent fractil
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Table 10
Probability and computation mean time with PPGF2 and PNFC2 when UX = 4 and UY = 9 to 15

UY 9 10 11 12 13 14 15

P (T ≤ 24) 0.0056 0.0087 0.0100 0.0118 0.012 0.0119 0.0659
PPGF2 137 101.2 58 25 8.2 1.9 0.2
PNFC2 0.24 0.26 0.16 0.14 0.02 0.01 ∼ 0

x and (uX , uY ) values. We use the only PNFC2 program; PPGF2 fails with 'out of memory '
error message.
Table 11
Computational time in seconds and probability using PNFC2

x \ (uX , uY ) (5, 7) (5, 10) (5, 12) (10,10)

0.1 7.8 29 31 4.4
0.098 0.07 0.12 0.18

0.2 16.6 39 33 128.6
0.2 0.2 0.28 0.34

0.5 31 43 40.5 151
0.52 0.5 0.59 0.53

0.7 50 78 67 186
0.75 0.74 0.71 0.71

0.9 72 88 76 460
0.9 0.88 0.86 0.93

0.95 87 99 92 723
0.97 0.96 0.95 0.99

6. Conclusion

The simulations have to be completed. However, we give some concluding remarks,
based on the realized simulations and tests. In general cases, algorithms based on re-
cursions giving the number of favorable cases need time for computation. However, the
NFC algorithms could be optimized to shorten the computation time by the reduction of
some recursive computing. In cases where the probability generating function is available
in a direct polynomial form, as in the i.i.d context, PGF algorithms are faster for small
sequences of scores. For great n values, depending on the used computer, PGF algorithms
generate problems of memory occupancy. In the case when the polynomial form of the
PGF is obtained using some supplementary computing, as in the dependent case, NFC
algorithms could be more performant.

As a perspective, the PGF algorithms, we propose here, will be optimized, using an
adaptation of the Split up algorithm. Another kind of optimization of all these proposed
algorithms should be to use cutting rules when given the maximum level of signi�cance
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or to propose a minimal p-value using inequalities proposed in subsection 2.5 when over-
lapping a �xed computation time.

Acknowledgement
The authors would like to thank the three anonymous referees and associated editor

Professor Cristian Gatu for their many helpful comments and suggestions.

References

Beninel, F., Grun Rehomme, M. (2006). Evaluation of an allocation rule under some
cost constraints. Data Science and Classi�cation, Springer verlag , 67�73.

Beninel, F., Husson, F. (1999). An optimized algorithm to determine the values of the
exact C.D.F. of some discrete statistics. Computational Statistics 14, 2, 251�261.

Billingsley, P. (1995). Probability and Measure. Wiley series in probability and mathe-
matical statistics (third edition).

Bretagnolle, V., Beninel, F. (1994). Un indice d'association basé sur des variables tem-
porelles de présence-absence : application à l'étude des structures sociales. Ecology and
Statistical methods, INIST-CNRS, Cote INIST : Y 30598, 67-70

Brigham, E.O. (1988). The Fast Fourier Transform and Its Applications. Prentice-Hall.
Capéraà, Ph., Van Cutsem, B. (1988). Méthodes et Modèles en statistique non
paramétrique. Presses de l'université Laval, Dunod, Montreal.

Cairns, S.J., Schwager, S.J. (1987). A comparison of association indices. Anim. Behav. 35,
1454�1469.

Castagliola, P. (1996). An optimized algorithm for computing Wilcoxon's statistic when
N is small. Computational Statistics 11, 1, 1�10.

Delstrade, A. (1999). Foraging strategy in a social bird, the alpine chough: e�ect of
variation in quantity and distribution of food. Animal Behaviour 57, 299�305.

Di Buchianico, A. (1999). Combinatorics, computer Algebra and the Wilcoxon-Mann-
Whitney test. Journal of Statistical Planing and Inference 79, 349�364.

Gibbons, J.D., Pratt, J.W., (1975). P-values : interpretation and methodology. American
Statistician 29, 20�25.

Good, P. (2005). Permutation, parametric and Bootstrap tests of hypotheses. Springer-
Verlag, New York.

Hothorn, T., Hornick, K. (2002). Exact nonparametric inference in R. Compstat 2002.
Physica Verlag 14, 2, 355�361.

Hubaleck, Z. (1982). Coe�cients of association and similarity based on binary (presence-
absence) data : An evaluation. Biological Review 57, 669�689.

Mehta, C.R., Patel, R., (1983). A network algorithm for performing Fisher's exact test
in r × c contingency tables. JASA 78, 427�434.

Pagano, M., Trichler, D. (1983). On obtaining permutations distributions in polynomial
time. JASA 78, 435�440.

Roberts, G., Evans, P. R. (1993). A method for detection of non random association.
Behavioral Ecology and Sociobiology 15, 349�354.

Seber, G.A.F (1982). Estimating of animal abundance and related parameters. Charles
Gri�n and Company., London.

16



Acc
ep

te
d m

an
usc

rip
t 

Streiberg, B., Röhmel, J. (1986). Exact permutation and rank tests : An introduction to
some recently published algorithms. Statistical Software Newsletter 12, 10�17.

Van der Vaart, A. W., (1998). Asymptotic statistics. Cambridge series in statistical and
probabilistic mathematics.

Van de Wiel, M.A. (2001). The split up algorithm : a fast symbolic method for computing
p-values of rank statistics. Computational statistics 16, 519�538.

17


