Corrigé de l'examen du 12 janvier 2004

Exercice 1. La série $\sum u_n$ est à termes positifs et $u_n \sim \frac{1}{n^{\frac{3}{2}}}$, cette série est donc convergente (car $\sum \frac{1}{n^{\alpha}}$ converge dès que $\alpha > 1$).

La série $\sum v_n$ n'est pas à termes positifs. On remarque que

$$\lim_{n \to \infty} \frac{(n-1)^2}{n^2 + 1} = 1$$

donc le terme général de la série n'a pas une limite nulle, ce qui entraîne la divergence de la série.

La série $\sum w_n$ est à termes positifs (évident). On peut écrire

$$w_n = \sqrt{n^3 + 1} - \sqrt{n^3 - 1} = \frac{(\sqrt{n^3 + 1} - \sqrt{n^3 - 1})(\sqrt{n^3 + 1} + \sqrt{n^3 - 1})}{\sqrt{n^3 + 1} + \sqrt{n^3 - 1}}$$
$$= \frac{2}{\sqrt{n^3 + 1} + \sqrt{n^3 - 1}} \sim \frac{2}{2\sqrt{n^3}} = \frac{1}{\sqrt{n^3}}$$

Le terme général étant équivalent à $\frac{1}{n^{\frac{3}{2}}}$, on conclut que la série converge.

Pour déterminer la nature de $\sum s_n$, effectuons un développement limité qui permettra aussi de donner le signe de s_n .

$$\left(\frac{n-3}{n}\right)^n = e^{n\ln(1-\frac{3}{n})} = e^{n(-\frac{3}{n}-\frac{9}{2n^2}+o(\frac{1}{n^2}))}$$
$$= e^{-3}e^{-\frac{9}{2n}+o(\frac{1}{n})} = e^3\left(1-\frac{9}{2n}+o(\frac{1}{n})\right)$$

On a donc $s_n \leq 0$ pour n tendant vers l'infini et

$$s_n \sim e^{-3} \left(-\frac{9}{2n} \right) = -\frac{9e^{-3}}{2n}$$

Cette série est donc divergente car de même nature que $\sum \frac{1}{n}$.

Exercice 2

1) La fonction $x \to \frac{1}{x}$ est la dérivée de $x \to \ln x$ pour x > 0, donc $x \to \frac{1}{x(\ln x)^2}$ est la dérivée de $x \to -\frac{1}{\ln x}$. Il en résulte

$$I_a = \int_2^a \frac{dx}{x(\ln x)^2} = \left[-\frac{1}{\ln x} \right]_2^a = \frac{1}{\ln 2} - \frac{1}{\ln a}$$

Cette intégrale admet pour limite $\frac{1}{\ln 2}$ lorsque a tend vers l'infini. Par conséquent, l'intégrale I est convergente et sa valeur est $\frac{1}{\ln 2}$ par définition.

2) La fonction $x \to \frac{1}{x(\ln x)^2}$ est décroissante. En effet, \ln est croissante, de même pour $x \to x(\ln x)^2$ d'où la décroissance de la fonction inverse. [On peut aussi calculer la dérivée de cette fonction et vérifier qu'elle est négative]. On est alors dans la situation où la série est de même nature que l'intégrale $I = \int_2^\infty \frac{dx}{x(\ln x)^2}$, c'est-à-dire convergente d'après 1).

Exercice 3

Les extrema locaux sont à rechercher parmi les points qui vérifient

$$\frac{\partial f}{\partial x}(x,y) = \frac{\partial f}{\partial y}(x,y) = 0$$

soit

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) &= 2(x-1) + 2(x+2y-5) = 4x + 4y - 12 = 0\\ \frac{\partial f}{\partial y}(x,y) &= 2(y-1) + 4(x+2y-5) = 4x + 10y - 22 = 0 \end{cases}$$

donc, $x = \frac{4}{3}$, $y = \frac{5}{3}$, seule solution du système.

Pour déterminer complètement la nature du point $(\frac{4}{3}, \frac{5}{3})$, calculons les dérivées partielles secondes :

$$r = \frac{\partial^2 f}{\partial x^2}(x, y) = 4$$
 ; $t = \frac{\partial^2 f}{\partial y^2}(x, y) = 10$; $s = \frac{\partial^2 f}{\partial y \partial x}(x, y) = 4$

Donc $s^2-rt=16-40=-24<0$ et r>0. Il s'agit d'un minimum local.

En fait ce minimum est global. En effet, la fonction f est continue, positive et tend vers l'infini lorsque l'une des variables tend vers l'infini. Elle admet donc un (au moins !) minimum global donc local. Comme il n'y a qu'un seul minimum local, c'est le minimum global.

Le carré de la distance d'un point P=(x,y,z) au point M=(1,1,1) de \mathbb{R}^3 est $d_P^2=(x^2-1)^2+(y-1)^2+(z-1)^2$. Si P appartient au plan d'équation z=x+2y-4, on a, en reportant la valeur de z

$$d_P^2 = (x-1)^2 + (y-1)^2 + (x+2y-5)^2$$

Le minimum de la distance de M à un point du plan est donc obtenu pour $x=\frac{4}{3},y=\frac{5}{3}$ ce qui donne $d_{min}=\sqrt{\frac{2}{3}}$

Exercice 4

Pour déterminer la nature de l'intégrale étudions séparément les 2 intégrales

$$I_1 = \int_0^1 \frac{\sin t \ln t}{t\sqrt{t+1}} dt$$
 et $I_2 = \int_1^\infty \frac{\sin t \ln t}{t\sqrt{t+1}} dt$

Sur l'intervalle]0,1[, la fonction à intégrer est de signe constant négatif (car $\ln t < 0$ sur cet intervalle). On peut utiliser les majorations suivantes :

$$\left| \frac{\sin t \ln t}{t\sqrt{t+1}} \right| \leqslant \left| \frac{\sin t}{t} \right| |\ln t| \leqslant |\ln t|$$

 $\operatorname{car}\left|\frac{\sin t}{t}\right|\leqslant 1$ et $\sqrt{t+1}>1$. Or l'intégrale $\int_0^1 \ln t\ dt$ est absolument convergente (calculable à l'aide d'une primitive $(t\ln t-t)$ et $\lim_{t\to 0}(t\ln t)=0$). Il s'ensuit que I_1 est absolument convergente donc convergente.

Pour étudier I_2 , remarquons par exemple que $\lim_{t\to\infty}\left(\frac{\sin t \ln t}{t^{\frac{1}{4}}}\right)=0$ donc, il existe une constante

K majorant $\left| \frac{\sin t \ln t}{t^{\frac{1}{4}}} \right|$ sur l'intervalle $[1, \infty[$. Il en résulte que pour tout $X \in [1, \infty[$,

$$\int_{1}^{X} \left| \frac{\sin t \ln t}{t \sqrt{t+1}} \right| dt \leqslant \int_{1}^{X} K \frac{1}{t^{\frac{3}{4}} \sqrt{1+t}} dt$$

$$\leqslant \int_{1}^{X} K \frac{1}{t^{\frac{3}{4} + \frac{1}{2}}} dt \leqslant K \int_{1}^{\infty} \frac{1}{t^{\frac{5}{4}}} dt$$

La dernière intégrale étant convergente car l'exposant $\frac{5}{4}$ est supérieur à 1, on est assuré que l'intégrale I_2 , et par suite I, est absolument convergente.