Examen du 4 septembre 2003 (14 heures – 18 heures) Aucun document ni calculatrice autorisés.

Questions de cours (5 points) Calculer, avec toutes les justifications nécessaires, le développement limité de $\arctan x$ à l'ordre 5 au voisinage de 0.

Exercice (4 points) Calculer l'intégrale

$$\int_{-1}^{1} \frac{dt}{2t^2 - 2t + 1}$$

Problème (11 points) On considère l'espace vectoriel \mathbb{R}^3 . Les vecteurs de la base canonique sont notés $\{e_1,e_2,e_3\}$. On étudie l'application linéaire f de \mathbb{R}^3 dans lui-même dont la matrice dans la base canonique est

$$M(f) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

On note I l'application identique de \mathbb{R}^3 et de la même manière la matrice de cette application. On notera $f^0=I$ (resp. $M(f)^0=I$) et $f^n=f\circ f^{n-1}$ (resp. $M(f)^n=M(f).M(f)^{n-1}$).

1) Calculer les vecteurs $f(e_1)$, $f(e_2)$, $f(e_3)$ en utilisant la base canonique de \mathbb{R}^3 . Déterminer le rang de la matrice M(f) (ou le rang de f).

2) Calculer $M(f)^2$ et en déduire deux nombres a et b tels que

$$f^2 = af + bI$$

3) En utilisant la question 2, calculer f^3 comme combinaison linéaire de f et I et montrer de même qu'il existe des nombres a_n et b_n , que l'on ne cherchera pas à calculer dans cette question, tels que

$$f^n = a_n f + b_n I$$

(on donnera des relations de récurrence entre a_n , b_n et a_{n-1} , b_{n-1} .) On remarquera que l'on a aussi $M(f)^n = a_n M(f) + b_n I$.

4) Prouver que $(b_n - a_n) = (a_{n-1} - b_{n-1}) = (-1)^n$.

5) On pose $E_1=(1,-1,0),\ E_2=(1,0,-1),\ E_3=(1,1,1).$ Vérifier que $\mathfrak{B}=\{E_1,\ E_2,\ E_3\}$ est une base de \mathbb{R}^3 . Calculer la matrice N(f) de f dans cette base.

6) Calculer la matrice de f^n dans la base ${\mathcal B}$ et en déduire que

$$a_n = \frac{1}{3} (2^n - (-1)^n)$$
 $b_n = \frac{1}{3} (2^n + 2(-1)^n)$

7) Soit t un nombre réel. On pose

$$A(t) = \lim_{k \to \infty} \sum_{n=0}^{k} a_n \frac{t^n}{n!} \qquad B(t) = \lim_{k \to \infty} \sum_{n=0}^{k} b_n \frac{t^n}{n!}$$

Calculer A(t) et B(t).

On utilisera sans démonstration le fait que pour tout x réel, $e^x = \lim_{k \to \infty} \sum_{n=0}^k \frac{x^n}{n!}$

8) On note g(t) l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 telle que

$$g(t) = A(t)f + B(t)I$$

Montrer que pour tous réels t, s on a $g(t + s) = g(t) \circ g(s)$.