SCATTERING THEORY FOR THE WIGNER EQUATION

HASSAN EMAMIRAD AND PHILIPPE ROGEON

ABSTRACT. We prove that the Wigner equation is well-posed in
LP(R*™) for some potential V. From the formalism established by
Markovich, we show the completeness of wave operators for the
Wigner equation in L?. Using estimations proved by Castella and
Perthame on the one hand, and the LP — L? estimations for the
Schridinger group on the other hand, we prove the existence of the
wave operators in L>P spaces.

1. INTRODUCTION

Let us denote by Hy := —%2A and H := —%2A + V the free and perturbed hamil-
tonian operators in LP(R") (1 < p < o0), where 7 is the Planck’s constant. If ¢ is the
solution of the correspondent Schrodinger equation

.. 0p
(Sch) g =

¢(z,0) = po(z)

then the Wigner transformation of ¢, denoted

w = W(s,€) = (2m) " / e (:v + %) v (w - %) dy

will satisfy the Wigner, or quantum Liouville equation

(Wil) %_171:) +¢ - Vaw — Py(z, V,g)w =0
’U)(IL',&,O) =wo = W‘PO'

In this equation Pj is a pseudo-differential operator defined either in symbolic form

Ph(:L‘, Vg) = % [V($ + igv,g) — V(:E — ing (1.1)

or by
Py(z,Ve)w = kp, >§ w
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with

Fn(,€) = (2m) "2, [% [V (m + gy> _v (x - gy>” (©).

In (Wil), the operator Ly := Lo + Pp(z,V¢) is a bounded perturbation of Ly :=
—£-V, whenever the perturbation Py is bounded . It’s in particular true if the potential
V € L™ (see (2.3)). For more general consequence, see Theorem 4.3 below. It is well-
known that Lg generates a Cy-group of isometries in any LP(R?"). The existence of the
Wigner Cp-semigroup ef» on L2(R?") has been studied by Markovich and Ringhofer
in [11], and on L!(R?") by Emamirad and Rogeon [6].

In a Banach space (X, ||.||) the scattering theory connects the asymptotic behaviour
of the advection problem

ou
u(0) = wug
to those of (Wil), which can be written in abstract form
ow
YL
(AW) at i
w(0) =wo

The study of the asymptotic behavior, in the past and the future for these two
problems, leads to the following question in X: for an initial data, wg for (AW), is
there an initial data uy for (AP) such that

lim ”u(t) — wi(t)” =07

t—=o0

Since €' is isometric on X, the question reduces to the existence of the wave operators,
defined by

Wy (Lo, Lp) = s — lim e tLogtln (1.2)

t—+oo

In fact if these operators exist, then for any w(jf € X and u(jf = Wi(LO,Lh)w(df, we
would obtain :

||e“:°u(j)E - etLhwa—L” = Huf)t — eftLOetLhwf)t” —0

as t = £oo.

In [10], P. A. Markowich has treated the scattering problem in L?(R? x RY) and he
showed the existence of of th wave operators W (Ly, Lg) by proving the equivalence
between the Schrodinger and the Wigner, or quantum Liouville, equations. In this
paper Markowich constructs a unitary transformation which leads back (Wil) to a
new Schrodinger type equation in L2(R?"), then he deduced the existence of the wave
operators via those of Schrodinger equation.

In a Hilbert space L?(R? x R%) we have to replace (1.2) by

W(Lo, Ly) = s — lim e toettn P, (Ly) (1.3)

—+o00
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where P,.(Lp,) is the orthogonal projection on H,.(Lp), the absolutely continuous space
of L. In fact it is known that L is a skew-adjoint in L2(R? x R%) and it is shown in [11]
that Py, is bounded skew-symmetric operator, since D(Lp) = D(Ly) = D(Lg) = D(L}),
Ly, is also skew-symmetric and its spectrum lies in iR. This implies that in the Hilbert
space L?(R? x RE ) for the vectors fy out of Hqc(Lp), the operator acting on f; have
an oscillatory behavior and the limit (1.2) might not to exist.

The existence of two other wave operators W (Lp, Ly) depends on completeness of
Wi (Lg, L). We say that the wave operators Wy (Lg, Ly) are complete if and only if

Im (Wi (Lo, Lp)) = Im (Pac(Lo)) -

In [13, p. 19], it is shown that if the operators Wi (Lo, Ly) exist. Then they are
complete if and only if W (Ls, Lg) exist. In the next section we complete [10] by
proving the completeness of the wave operators.

The scattering theory for the Schrédinger problem in L?(R™) has been widely treated
by many authors. We base ourself on the famous work of S. Agmon [1] and we use
the assumptions of this work for ensuring the existence and completeness of the wave
operators. Our proof is based on a result of Umeda [16] on the completeness of pseudo-
differential wave operators.

The scattering theory for Schrodinger equation in LP(R™) is already undertook by
many authors (see [18] and the references therein). In general these studies are mo-
tivated by nonlinear Shrodinger problems. In the last section we prove that one can
obtain the wave operators W (Lp, Lg) on L?P(R? x RE) by weaken considerably the
assumptions on the potential V for L?(R? x R’g) Our proof is based on the Weyl
calculus formula

(Wey) eltboye=itHo — v/ (z — itV,)

(see Lemma 2.2 for the precise definition of this expression) together with Strichartz
type estimation due to Castella and Perthame. Some results of this paper are already
annonced in a Note [7].

2. WELL-POSEDNESS OF THE WIGNER PROBLEM IN LP(R2").

Before treating of scattering, we study the well-posedness of the Wigner problem in
the L'(R?") and L?(R?") spaces. Then, by interpolation, we can write an estimation
of Py(x;Ve)f in LP, for 1 <p < 2.

Let us denote by
fo) = 1FA© = [ (@) da
the Fourier transform of f and by H® the Sobi)lev space
HY(R") = {u € §'; ||ull s < oo},
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with the norm

1/2
fullae = ([ @+ lePrlaP ac)
We recall that, for u € H*(R"), when s > n/2, we have u € L'(R"), and

[l < Cllullas,

with C' = /Rn(l +1¢1%)7* dé.

Lemma 2.1. If the potentiel V is in an H*(R™) space, with s > n/2, then
(a) The operator P, = Py(z, V) is bounded in L'(R*"), and

0
1Ph(z, Ve)wllr < ]lwl (2.1)

with § = 2(27) "™2C||V || us.
(b) The Wigner operator Ly = Lo + Py generates a Cy-group Si(t) = etr on L'(R? x
]R’g) satisfying
ISn(®)fll < Mifl VEeR (22)
Proof.
(a) We have Pp(z, Ve)w = kp 1; w with

kn(z,€) = (2m) "2, [% [V (x + g;,) v (:v _ gy>” (©.

But [:FyV (x n gyﬂ (€) = ;—: [F.V(z+ 2)] (%)
and then
o o2 f  Zwee ()]

= [[[F=V (@ + 2)] (n)]]1-

Now we write
|1 Pr(z, Ve)wllr = ||kn : wlly

<sup ([ 1ina,6)] dc) Ll

From the fact that

sup IIkh(ﬂi;f)HLl(RQ) <

IA
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we get the estimation (2.1).

(b) The operator Ly is a perturbation of the advection operator Ly. When V =
0, the advection equation is regented by the unitary Cy-group Sy, defined by
So(t)w(z, &) = w(x — &t,€). Since Py is bounded, from the perturbation theorem
by the bounded operators (see [9, 12]), Ly generates a Cy-group of type (1,d/h),
satisfying (2.2). Consequentely, the problem (Wil) is well-posed in L'(R? x RE)-
(see [6, 15]).

O
There is a similar result in L?(R?")

Lemma 2.2. Suppose that V € L>®(R") is a bounded potential. Then we have

1Pa(z, Vo) Fll> < 2V leol - (23
Proof. We denote by V the function V' € L*°(R") and the multiplication operator
V: S(R')>f—V(z)f(z) e S'(R).

Here we recall Weyl’s formula:

eltHoye itho — (4 — itV ) (2.4)
where Hy = —1/2A and V(z — itV;) is a pseudo-differential operator defined by
V(o= itVa)f)a) = )" [ Vie+ e Fapdn
Y

For the seek of completness we give also an abridged proof of this formula. Take
Vizg) =z, 1<k<nand fed

F[eitHO Ve*itHOf] (&) = eitmzﬂf[xkeiitHo f1(6)
= €219, e7E2 ()
= 6P 210 P2 F ) 4 i P 2 Tiaf) (€)
= Fl(xy — itdg) f1(€)
Hence for the vector = we retrieve
eltHo pe=itHo — ;7

Now by using the Weyl calculus formula (see [14, p. 294] for a generalization of this
formula) we get (2.4) for any bounded function V.
Now, as eloV (z) = V(z — t£), we can write

e LogltHogeloy (g)e 1tHoe = e LoV (3 — (¢ — itVy))
=V(z +itVy)
where Hy ¢ = —1/2A,. Taking t = £h/2, we get

Py(z,Ve) = %[e_LOe_igH"‘feLoV(x)ei%HO'ﬁ

- e*LOei%HO’ﬁeLOV(z)e*i%HO’ﬁ] (2.5)



6 HASSAN EMAMIRAD AND PHILIPPE ROGEON

and we obtaint the result, since et’® et e*Ho¢ are unitary. O

Remark 2.3. Although that this Lemma implies that Ly generates a Cy-group Sk(t)
with [|Sp(®)]l2 < e(&IVIl=)lf] but this group is unitary in L2(R?"). In fact as we have
mentioned in Introduction by virtue of a result of [11], which uses the boundedness
of V, Ly is skew-sysmmetric operator. We can even obtain this result as in [10] for
unbounded potentials such as

V=Vi+Vs, VieL®®'), V;eLl(®),p>max{g,2},
or

V=Vi+V, Vi€L®R"), Ve L} (R"),Va(z)> —alz|> - B.

loc
with these assumptions the Hamilton operator H become essentially self-adjoint and
by a technique which will be developped in the next chapter, Markowich proves that
Ly, is unitary equivalent of a skew-adjoint operator.

Now we can establish, by interpolation, an estimation of P, on LP(R?") spaces, for
I1<p<2
Proposition 2.4. Let V € H* N L®(R"), with s > n/2. Then for all p € [1,2], and
all f € LP(R?"), Pyf € LP(R?™) and
||Pﬁf||p < Cp”f”p
2

. 1521422 2- .
with Cy =h™ 67 27 ?||[V]w” and § as in lemma 2.1.
Proof.  From Lemmas 2.1 and 2.2, for f € L' N L?(R?"), we have

[Paflly < Mil[flli and  [[Pafllz < Ma||f]l2
with M; = % and My = # [|V]|o. Then, by Riesz-Thorin theorem, for any « € [0,1]
we have Pyf € LP(R?"), with
1Pafllp < callfllp
wherep' =%+ (1-a)=1-% and ¢, = MMy
Since a =2 — %, so we get

«w= ()7 (i)’

1 2 _2
= 535 2Vl ¥ = G

O

For the estimation of the generated Cy-group in LP(R?"), we will use the unitary of
Sp(t) in L?(R?™).

Corollary 2.5. If the potential V € H*(R™) with s > n/2, then the Cy-group Sp(t) is
also well defined in LP(R?"), and we have
IS(@) fllp < e fll,  VieR

2—-2)
where ¢, = ——.
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Proof. This is an immediate consequence of (2.2) and the Riesz-Thorin theorem.[]

3. COMPLETENESS OF THE WAVE OPERATORS IN LZ(R2")

In [10], Markowich considered the following unitary transformation
C: L*(R x RY) > g+ Cg € L*(R* x R)

where Cg(r,s) = g(x,n), with r =z + 2 and s =z — 7. He showed that the action of
the Fourier transformation on (Wil) leads back to a new equation of type Schrodinger.
He established the

Lemma 3.1. (See [10].) The problem (Wil) is equivalent to

%z(r, s, 1) — %[ (—52% +V(r))
(Wi2) — (—ﬁQ% +V(s))]z(r,s,t) =0
z(r,s,t =0) = z1(r, s)

In order to rewrite this problem in an abstract form we denote by I, and I, the
identities of L2(B"and L%(R?) respectively. Now, if we use the operations ® and @,
defined in the following way: For two linear operators R, and R, defined on L2(B"

and L?(R?)

o (R, ® Rs)(f1 ® f2)(r,8) = Ry f1(r) Rs f2(s)

eR.®R;, =R, ®I;+ 1, ® R;.
These operations unable us to define

Q=-H,®H, (3.1)
where H, and H; are the copies of H on L?("and L?(R"), we can rewrites the
problem (Wil) under the form

)
(Wi3) ih 5771 8,1) = Qz(r,5,1)

z(r,s,t =0) = z1(r, s).

The equivalence between the problems (Wil) and (Wi3) comes from the following
lemma.

Lemma 3.2. (See [10].) If w is solution of (Wil), then z = CFw is solution of (Wi3).
Conversely if z is the solution of (Wi3), then w = F~1C~1z is the solution of (Wil).

Thanks to the above lemma, the similarity between the quantum Liouville operator
Ly and @ appears from the relation

Lp= %]—"16*16267-". (3.2)

We still denote by @Q the closure of @ in L?(R% R?) and if we impose sufficient
conditions on V' in order H to be selfadjoint, then from (3.1), @ is also selfadjoint
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and by (3.2), Ly is skew-adjoint. Hence, the operators iH and i) generate unitary
Co-groups {e*f };cr on L?(R") and {e®?};cg on L?(R% R?), linked by the relation
et = ¢ 1tHr g itHs (t € R).
Similarly, the group generated by the quantum evolution operator is given by

exp(tLy) = F '€ lexp ( ! ﬁtHT> ® exp (—%th@) CF.

There are various conditions on the potential V' which ensure the existence and
completeness of the wave operators in the case of the Schrodinger problem. We have
chosen a reference condition, so we worked with Agmon’s potentials to illustrate our
purpose. Our goal, in fact, is not to establish a supplementary condition on V', but to
justify the transmission of the completeness from a problem to the other.

Theorem 3.3. Suppose that for an € > 0 and a p such that 0 < pu < 4, the potentiel
V wverifies

(Ag) sup |(1+ (a2 [ [VI)Ply -2 dy| < o
e ly—z|<1
Then the wave operators

Wi(H,Hy) = s — lim et e™1tHo
t—=£o0

exist, and are complete. (see [1]).
For proving the completeness of the wave operators for Wigner equation, we need

some preliminary lemmas.
Let A and B be the generators of two Cy-groups.

Lemma 3.4. (see [13, p. 19]) Suppose that Wi (A, B) exzist. The following conditions
are equivalent

(a) Wi(A,B) are complete
(b) Wi(B,A) ezist.
Lemma 3.5. (see [5, p. 476]). Suppose that W1 (A, B) ezist and are complete. Then :
0(B) = 04c(B) = 04c(A).

Consequently, if the wave operators W (A, B) exist and are complete, then W (B, A)

are too, and we have
0(B) = 04c(B) = 04c(A4) = 0(4A).
Now, let us define Qg as in (3.1):
Qo = —(Ho)r ® (Ho)s

where (Hp), and (Hy)s are the copies of Hy on L?(f"and L?(R?).

Proposition 3.6. The operators Qo and Lo satisfy :
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(a) Hac(Qo) = L*(R?*")
(b) Hac(Lo) = L?(R*")

For proving this proposition we will use the following result which is proved by T.
Umeda.

Lemma 3.7. (see [16].) Let A be a (pseudo)-differential operator on L2(R?™), of symbol
p, and let
E = {(r,s) € B*"; Vp(r,s) = 0}. (3:3)
If p € C1(R®™) and if Mes(E) = 0, then
Hae(A) = L*(R°™).

Proof of the Proposition 3.6.
2
(a) The symbol of Qo = —H, o® H,o = %Z(AT—AS) being %(|r|2— |s]?), so Vp(r, s) =
R2(r1,...,Tn, —81,.--,—5n) and from (3.3), = = {0}, so by applying the Lemma
3.7, we get Hac(Qo) = L2(R*™).
(b) By taking V = 0, the relation (3.2) becomes ALy = —F 'C 1iQoCF, which implies
that Hac(Lo) = Hac(Qo) and (a) yields (b).
[l

Theorem 3.8. Suppose that the potential V has been chosen in such a way that
Wi (H, Hy) ezist and are complete as unitary operators on L*(R"). Then the wave op-
erators W (Lp, Lo) also exist and are complete, as unitary operators on L*(R? x ]R?),
and are related by :

W (Lp, Lo) = F~'C™'Wx(H, Hy) ® W (H, Ho)CF.
Proof. By Proposition 3.6 (b) Pac(Lo) = Id. Hence

Wy(Lp, Lo) = s — lim etfre top (Ly) =s— lim ettre=tlo,
i( Ry 0) t—=+00 ac( 0) t—+oo

By hypothesis, we suppose that the operators W, (H, Hy) are complete. Then, by
Lemma 3.4, W, (Hy, H) also exist and are complete. Moreover, by Lemma 3.5,
o(Hy) = 04c(Hy) = 0gc(H) = o(H) = [0, 4+00).
This implies that Ha.(H) = L?>(R"). Thus we get
e T itHg ,—itH e T itHo —itH
Wi(Ho,H) =s t_lgtnooe e " Py (H)=s t_l)lglooe e M.

Consequently
s— lim FICT'Wi(Ho, H) ® W= (Hy, H)CF

t—=o0

are defined on L?(R") ® L?(R™), and are exactly

s— lim e'loe ttn = W, (Lo, Lp).
t—to0

As Wi (Lo, Ly) and Wy (Lp, Lg) exist on L?(R") ® L2(R"), these wave operators are
complete. O
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4. EXISTENCE OF WAVE OPERATORS IN L2P(R?") SPACES

In this section, we will fix A = 1 to simplify the notations. We prove the existence
of the wave operators for the Wigner problem in the L?P(R2") space for a potential V
suitably chosen. Let us keep the notation Lg for the advection operator, and we use P
and L for P, and L. We denote the norm on the L™P(R?") spaces by

1
r 1

lwlrp = /R . [/R nlw(w,f)lpdEI dz
¢

€T

We first give two preliminary lemmas, in order to prove some estimation for the
pseudo-differential operator P, and to establish the existence of the wave operators
Wi (L, Lg) in L2P(R?™).

Lemma 4.1. The free transport operator Ly generates :
(a) a Cy-group of isometies on L™P(R*") :

tLo

lle w”f,p = ||'w||r,p-

(b) a Cy-group on L™P(R2") satisfiyng the following punctual estimation, for all p and
r such that 1 < p <r < +o0,
p(i_1
e owllrp < [t |, (4.1)

Proof.
(a) Since elow = w(z — t£,&), this equality provides from the change of variable
y=uz —t&.
(b) This estimation is due to Castella and Perthame (see [4]), taking in account the
results of Bardos and Degond in [2].

O
Lemma 4.2. For any p > 2 and t # 0, the Schridinger evolution group e 2 satisfies
. 1_1
le 2 fll orny < @r|26)" 572wl L g
where p~t 4+ p'~!' = 1. Hence if w € L™P(R? x RY)
. 1 1
e oca]lrp < (dmf2e)™ 572 fuoll (4.2)

(see [8])
From the expression (2.5) we can obtain the following results.

Theorem 4.3. (a) IfV € L®(R"), then
[Pwllop < 2[[V][collwllzp- (4.3)
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(b) Suppose 2 <r <p and s = (p—1)%(p? —2p)~L. Then, if V € L*(R?),
a(lyl_
|Pwly < 204m)" =DV ] (44)

Proof. (a) Since e and e'*o¢ are the isometric groups on L>P(R} x Rf) and on
LQ(R?), the first term of the right hand side of (2.5) gives

le~ Loe 1/ 2Hogeloy ()l 2Ho ||y, = ||V (z)el/ 2oty
< Vlloolle”* o€ wllo,p
= [V lloollwll2,p-

The same estimation can be obtained for the second term of the right hand side of
(2.5), which implies (4.3).
(b) In order to prove (4.4), we will apply the results of lemma 4.1 and lemma 4.2 on the
first term of the right hand side of (2.5). First, since e’l® are isometries on L?P(R?"),
this gives

||engefi/2H0,§ eLOV(x)ei/QHo,ngT’p < ||efi/2H0,§ eLo V(x)ei/2H°’§w||,«,p

By taking ¢ = 1, in (4.2), we obtain
. . 1 1 .
le=toe= /2 Hosehow (z)e!/2Hosuw]l,,, < (4m)"5 ™2 |lehoV (z)e! 2ok,

where p 1 +p' 1 = 1.
We now use the estimation (4.1) with ¢ =1 and we get

etoe /2 ocetoV (a)el /2 0w, < (4m)" 52|V (@) 2 0cu]y .

By taking § = -y — o (ie. s = (p — 1)?(p> — 2p) '), the Holder inequality implies that

. . 1 1 .
le=Foe1/2Hoe Loy ()6l 2Hoky||,., < (47)" 52|V ||, ||/ 2 Hot

T
Using once more (4.2) with t = —3, we finally get

. X 1 1
e~ Poe/2 o obo (z)e 20w, < (4" D[V |

The same estimation holds for the second term of the right hand side of (2.5) and
therefore (4.4) is established. O

Corollary 4.4. (a) Since {e'°}icr is a group of isometries on L*P(R? x RE), if V €
L®(R™), {e'fo}ycr is also a strongly continuous group on L>P(R? x Rg)

(b) Suppose that p > 2. Then for v =n(3 — %),K = 2(47)~7, we have

[Petrowllay < K(VI|s[t ™ |w]2s- (4.5)
Proof. Tt follows from (4.4) and (4.1) that

1,1 4
1Pet 0wl < 2(am)™ @DV letFouwl|p 0
1

< 2(4m)"GH DV 417 7w

!
™,p

In the particular case r = 2, we have also 7’ = 2 which gives the estimation (4.5). O
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Theorem 4.5. Let p > 2, such that v = n(1/2 — 1/p), K = 2(4w)~" and s = (p —
1)2(p? — 2p) 1. We suppose that the potential V € L™ N L*(R™) is chosen such that
2|[V]loo + K||V|s(y—1) ! < 1. Then the wave operators Wy (L, Lg) exist in L>P(R?").

Proof.  For the existence of the wave operator W, (L, Ly) (resp. W_(L, Ly))it
suffices to prove that the assumptions of the Cook’s Lemma are fulfilled. That is
—tL ( tL)

(i) The semigroup e is uniformly bounded on [0, c0).

(i)

resp. e

[ 0
/ | Petlo||y, dt < oo (resp. / |Petlo |y, dt < 00).
0

—0oQ0

For proving that e’ is uniformly bounded on [0, 00), the Duhamel’s formula
t
etL — etLo _l_/ e(t*S)LPeSL() dS
0

asserts that a sufficient condition is to have

/0 | Pettolly, dt < 1. (4.6)

According to Theorem 4.3 (a) and Corollary 4.4 (b),
o 1 o
| 1Pty at= [ petuay ats [Pty d
0 0 1

1 o0
swwu/n#%mma+mwm/tﬂmmma
0 1

K|V
< (2l + S0 ol

the condition (4.6) is satisfied. This gives simultaneously the assumption (ii) of the
Cook’s Lemma for the existence of W, (L, Lo). The boundedness of e * on [0, c0) and

the condition f?oo | Petto||5, dt < oo can be justified in a similar manner. O
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