AN APPROXIMATING FAMILY FOR THE
DIRICHLET-TO-NEUMANN SEMIGROUP

HASSAN EMAMIRAD AND IDRISS LAADNANI

ABSTRACT. In this paper we prove that the Dirichlet-to-Neumann
semigroup S(t) is an analytic compact Markov irreducible semi-
group in C(09) in any bounded smooth domain . By a gen-
eralization of the Lax semigroup, we construct an approximating
family for S(t). We prove some regularizing characters and com-
pactness of this family. By using the ergodic properties of S(t), we
deduce its asymptotic behavior. At the end we conjecture some
open problems.

1. INTRODUCTION.

Let €2 be a smooth bounded domain in R". Let v be a €' matrix- valued function
on €2 which represents the electrical conductivity of Q. We suppose that y(z) = [7; j(z)]
satisfies the following hypotheses:

(H1) The coefficients are symmetric and 7; ;(z) = 7v;,:(x) € C*(£2); and there exist two
constants 0 < ¢; < ¢o < oo such that for all £ € R", we have

cllél® < D7 &iki(a) < eallé)®.

ij=1
The Dirichlet-to-Neumann operator A, is defined by
Ayf = =80/dvy = —v -7V |aq, (1.1)

where v is the outer normal vector at T € 92 and v is a solution to the electrical
conductivity equation

(P1) {A,yfu :=div(yVv) =0 in €,

v=/f on 0.
Such a function is called y-harmonic lifting of f.

Let X be the Banach space C(Q) and H the Hilbert space L2(Q). On X or H, the
operator A, is defined on its maximal domain

D(A,):={ueXorH|AuecXorH}.
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We introduce the boundary spaces 0X = C(09Q) and 0H := L?(0Q). On 0X we define
A, as un unbounded operator with domain

D(A,) :={f € 0X | A,f € OX}.

In [Esc], J. Escher defines the Dirichlet-to-Neumann semigroup in a more general con-
text. He proves that, for any bounded smooth domain €2 in R", the following elliptic
system with dynamical boundary condition

—div(yVu(t,.)) + a - Vu(t,.) + apu(t,.) =0 in (0,00) x €,
(P2) Sult,) + g2-ult,.) + bou(t,.) =0 on (0,00) x 89,
u(0,.)=f on 0.

where (a,ag,bp)€ [C®()]"2, has a unique solution u(t, f), for any f in the Besov
space B, ,(09) for s € R, p € (0,00). Since C(99Q) — B, ,(09) for s < 0, Escher de-
fines the Dirichlet-to-Neumann semigroup on C(952) by taking the trace of this solution
on C(09), i.e.,

S@t)f :==u(t, f) |go for any f € C(09). (1.2)

In [Esc], we can find the following Theorem.

Theorem 1.1. The family {S(t)};>0 defined by (1.2) forms an analytic, compact and
positive Cy-semigroup on 0X.

Before going into the heart of matter, let us recapitulate some known results in
the Hilbertian framework. On 0H, the definition of D(A,) is more subtle. In order
for problem (P1) to admit a unique solution in H*(Q), we have to assume that f €
HY2(89). So, we define

D(A,) == {f € HY?(69Q) | A,f € 8H}.

As in [Tay, sections 11 and 12 of Chapter 7], one can prove that A, is a nonpositive
selfadjoint operator on 0H. So, by using [Kat, page 491], A, generates an analytic
Co-semigroup of contractions in 0H. The compactness of the imbedding D(A) —
OH implies that this semigroup is also compact. Consequently, the corresponding
Cauchy problem which is problem (P2) with (a,ag,by)=0 has a unique solution u €
C([0,00); 0H) N C((0,00); D(A,)) N C*((0,00); 0H) for any f € OH. This procedure
is exploited in [Vra, Theorem 6.4.1] for the harmonic lifting of f € 0H and can be
transcribed for the y—harmonic lifting of f.

Finally, it is worthwhile to mention that recently various authors have studied in a di-
rect manner the properties of the semigroup generated by Wentzel dynamical boundary
condition which generalizes our Cy—semigroup (see [AMPR],[FGGR1] and [FGGR2]).

In this paper we begin by reciting the results which are proved by P. Lax in his
book [Lax]. Then we will continue to show its other properties such as analyticity,
irreducibility, Markovian character and asymptotic behavior.

In Section 3, we based ourself on the results of [Esc] and [Hin] for the generation of
the semigroup S(¢) and we continue to use harmonic analysis rather than functional
analysis to get more information on S(¢). For example we will use Hopf’s Lemma
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for proving the positivity of S(¢) and we will prove the irreducibility, the markovian
character and the asymptotic behavior of this semigroup.

In Section 4, we will construct an approximating family {V(¢)};>¢ for this semi-
group which satisfies the Chernoff’s product formula. Our construction follows from
a generalization of Lax semigroup [Lax, 36.2] for a ~v-lifting of a continuous func-
tion on the boundary of . As in Section 2, the regularizing characters and the
compactness of V(t) will be proved. The main result of Section 5 is that, for any
f€oX, limy,o S(t)f = cs, where ¢y is a constant which depends on f, furthermore
there exists a probability measure p such that

cr = [ 1()duto).
onN
Finally, in the last section we bring some open problems on the geometry of (2.

2. LAX SEMIGROUP.

In [Lax, 36.2], P. Lax has introduced a semigroup in 0X and 0H when Q is the unit
ball in R* and « = I is the identity. Let v be the solution of the following system

{Av:() in €,

(P3) Lv=f on 0.

where L is the trace operator on 9. We define the lifting operator Ly which associate
to any f € 0X or in 0H the harmonic function v which solves problem (P3). The Lax
semigroup is defined by

S(t) := LT(t)Lo. (2.1)
where T'(t)v(z) := v(e~'z). In other words, if f € 0X or OH, then we have for any
w € 09,

S(t)f(w) = v(e w).

The semigroup defined by (2.1) is a Dirichlet-to-Neumann semigroup. In fact

e It is clear that S(0)f(w) = v(w) = f(w) on 0.
e Since the function z +— v(e 'z) is harmonic, then we have

S(s)S(t) f(w) = LT (s)v(e tw)
= Lu(e *e"'w)
=S(s+1)f(w).
e The strong continuity in X follows from the fact that a harmonic function is

continuous in €2, hence whose values on the boundary are continuous and the
continuity in OH follows from the density of 0X in 0H.

e Finally, the generator of S(¢) in 0X is Af := —S—Z with domain

D(A) == {f € 0X | Lof € C(D)}, (22)
where CL () consists of all v € C() for which the outer normal derivative
ov ) — — lim (T — tw(T)) — v(T)

%( )= t—0 t
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exists uniformly for z € 0. In fact

lim sup | = (S(t)f (@) — f()) — Af(w)|

t—0 WEAN t

= }%féla% % (v(e™™w) —v(w)) + w - Vo(w)]|.

By the mean value theorem, there exists 7 € (0,%) such that
1 —t e_t -1 _r

7 (v(e™'w) —v(w)) = ; w- Vv (e w))

and when ¢ — 0,

e t—1

——1 and Vv (e7"w) = Vu(w)
uniformly. Hence, we have
] 1
lim sup |- (S(¢)f(w) — f(w)) — Af(w)| = 0.
t—0 ,co0

In 0H := L?(0N), as we have mention in the Introduction, there is a nice
discusion in [Vra, section 7.5.]. This discussion leads to the existence of a
semigroup S(t) generated by the following dynamical boundary problem

Au(t,.) =0 in (0,00) x £,
(P4) %u(t, )+ %u(t, ) =0 on (0,00) x 09,
u(0,.) = f, on 09Q.

By the uniqueness of the semigroup generated by A, we have
S@t)f = v(e 'w) = u(t,w), for every f € OH.

This shows that for any f € 0H, S(t)f given by (2.1) is well-defined.

P. Lax proved the consistency of this definition by considering the Fourier expansion
of f € OH and also the main properties of S(¢) which we gather together in the following
Lemma.

Lemma 2.1. In 0X the family {S(t)}i>0 forms a compact Co-semigroup of contrac-
tions and on OH it forms a compact Cy-semigroup of contractions with a self-adjoint
generator.

For the proof of the forthcoming Theorem we will use the following Lemmas.

Lemma 2.2. ([v-C, Proposition 5.2.]). Let A be the generator of a Cy-semigroup S(t).
Then S(t) is analytic if and only if

lirgl_fglpsup{tllAS(t)fllax | fe€D(A), [Ifllax <1} < oo. (2.3)

Lemma 2.3. Let v be a harmonic function on Q with u(w) = f(w) for any w € 09,
then

21618(1 = [2)[Vo(z)] < v/n(n+2)|fllox- (2.4)



DIRICHLET-TO-NEUMANN SEMIGROUP 5

Proof. Note that if |z| is the Euclidean norme in R" and |z|; = ;" |z;|, then the
equivalence between | . | and | . |; can be retrieved from | z | < |z |; < 4/n| z |. In
order to have an explicit expression of u from its boundary values f(w), we will use the
Poisson integral

which gives
Ou(zx) _ / (@) —2z;|z — w|™ — n|z — w|["2(z; — w;)(1 — |z]?)
Ox; 00 |z — w|?"

Hence,

do(w), 1<i<nmn.

[Vu(z)| < [Vu(z))x

2y/n |z||lz — w|* + ny/nlz — w" (1 — |2[?)
< [ 11 gn do(w).
i) |z — wl
. 1|z —
Now, it follows from the facts [, |$7w‘nda(w) =1land 1 - |z| < |w— z|, that

2
- laiVaa) < (2E+nv) Iax,
which implies (2.4). O

Remark 2.4. The above Lemma was given as an exercise in [ABR, Exercise 2.10],
where it was not clear that how the constant depends on the function f.

Theorem 2.5. In 0X the semigroup S(t) is also analytic.

Proof. In order to use Lemma 2.2, we take f € D(A) with ||f]lax < 1 and we
calulate for v solution of (P3)

IAS(1)] ()] = [t 5ole )]

= |te"tw - Vo(e 'w)|

Cpte™
< . i e_t (according to Lemma 2.3),
—e
where Cy, = (2 4+ n)4/n. Finally as t — 0,
Cpte™  Cpt

1—e_t:et—1_)cn'

O

The explicit expression of this semigroup permits us to conjecture some properties
of a general Dirichlet-to-Neumann semigroup and try to prove them. This allows
us also to bring some open problems at the end of the paper. Before listing some
results which will generalize for a Dirichlet-to-Neumann semigroup, let us provide some
standard definitions. A Markov semigroup on 0X is defined to be a positive Cy—
semigroup 7T'(t) such that T'(¢)1 = 1 for all ¢ > 0. We say that an open set U of 02
is invariant under the Markov semigroup 7'(t) if T'(t)(Jy) C Jy for all ¢ > 0, where
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Jv ={f € C(09Q) | f(z) =0if T ¢ U}. Finally the semigroup T(¢) is called
irreducible if ) and 60X are the only invariant open sets.

Proposition 2.6. In 0X the semigroup S(t) is a Markov irreducible semigroup.

Proof. In fact, if f > 0 on 0, according to Maximum Principle, v(z) > 0 for all
z € Q, hence S(t)f(w) = v(e7?(w)) > 0. Furthermore if f(w) = 1 for all w € ™71,
then v(z) = 1 and consequently S(¢)(1) = 1. This proves that S(¢) is a Markov
semigroup. For the irreducibility, one takes f > 0, hence S(t)f > 0 for all ¢ € (0, 00) and
consequently (S(t)f,¢*) > 0 for all 0 < ¢* € C*(99). According to [Cle, Proposition
7.6.] this implies the irreducibility. O

Proposition 2.7. The semigroup S(t) has the following asymptotic behavior
tl_l)rgoS(t)f = v(0).
Proof. Obvious. O

Remark 2.8. We can also generalize this procedure to multiple disconnected balls in
R*. Let Q = Uy << n O, where {Q;}1<x<n are N mutually disjoint balls in R", each of
which centered at zj with radius 7. In this case f is an N—uple, fi := f |90, € C(0Q)

and
N

N
Sy : I com) — [ C(o%) (2.5)
k=1 k=1
with t
[S@) f()]k := Lug(zk + e r(rew)),
where v, is the harmonic lifting of f.

3. DIRICHLET-TO-NEUMANN SEMIGROUP IN 0X.

In this section we assume that € is an arbitrary bounded domain in R" (not neces-
sarily a ball) with a smooth boundary 0f2. We define the lifting operator
Ly: C(09Q) — C*(Q)NC(Q). (3.1)

In [G-T, Theorem 6.25], one can find the proof of the following Lemma, with less
restrictive assumptions on 7y and 0f).

Lemma 3.1. The lifting Ly associates to any f € C(0Q) a unique y-harmonic function
v solution of the problem (P1).

In [Eng] this operator is called Dirichlet operator and is given by Lo := (L|ker Av)_l,
where L is the trace operator on 9. In other words Ly € L£(0X,X) and for any
f€oX, Lof=wv,wherev € D(A,) is the unique solution of

Aww=0 in
P5 K ’
(P5) {Lv =f on 0f).
This representation shows that

LLy=1 on 0X and LoyL=1 on KerA,. (3.2)
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Now we define the Dirichlet-to-Neumann semigroup S(t) on C(Q) by (1.2).
Lemma 3.2. The semigroup S(t) is a positive semigroup.

Proof. In spite of the fact that this result is already shown in [Esc] by using the
density of the Besov space B;_l/ P(69Q) in C(09), here we give a direct proof which
uses the Hopf’s Lemma. Let 0 < f € X and suppose tg > 0 is the first time that
x +— u(tg, z) solution of

div(yVu(t,.)) = n (0,00) x €,
(P6) Fu(t,.) + go-u ( ) =0 on (0,00) x 99,
u(0,.) = f on 09,

becomes zero at y € 0f2. Hence u(ty, ) is the minimum of wu(tg,z) over Q. The
Hopf’s Lemma implies that awu( y) < 0 (see [Eva]) and consequently %u(t,y) =
—%u(t, y) > 0. Since S(t9)f(y) = u(to,y), S(t)f(y) becomes strictly positive im-

mediately after time ty, i.e. ¢t = to + €. So S(¢)f(z) > 0 for any ¢t > 0 and any
z € 00.
O
We can also use this Lemma in order to prove the following result.

Theorem 3.3. For any t > 0 and any y € 0N there exists a level surface 'y, C Q
such that
St fly) =v(z)  forany =z €Tyy,
where v is the solution of (P1).
Proof. Take t > 0 and u(t,z) the solution of (P6). Let us denote

my := inf u(t,y) and M; = sup u(t,y).
yEE)Q yeON

For f(y) = u(0,y) we denote

m:= inf f(y) and M := sup f(y)-
yeoN yeon
The positivity of the semigroup S(¢) and the fact that w(t,z) = u(t,z) — m is the
solution of (P6) with w(0,y) = f(y) —m > 0 is nonnegative imply that w(¢,z) > 0 and
consequently m < u(t,z) for all z € Q. By changing w with w = —u + M, we get also
u(t,z) < M, hence we have m < S(t)f(y) < M and Ty, = {z € Q | v(z) = S()f(y)}
forms a level surface in Q. O
This Theorem has the following Corollary.

Corollary 3.4. The semigroup S(t) is a contraction semigroup.

Proof.  In fact, according to maximum principle the solution of (P5) satisfies
lvllax < || fllox. Since for any ¢t > 0 and any y € 09 there exists z € I';,, C Q such
that S(2)f(y) = v(z) we have [|S(t)fllax <|fllox- O

The next theorem shows the Markovian character of S(t).
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Theorem 3.5. The semigroup S(t) is a Markov irreducible semigroup.

Proof. Since, for any ¢ > 0 and any y € 09, there exists at least a point z € Q
such that if v is the y-lifting of f € X, then S(t)f(y) = v(z). For f =1, u(t,x) =1
for all x € Q, hence S(t)1 = 1. This, together with the positivity of S(¢) imply that
the semigroup S(¢) is a Markov semigroup. For the irreducibility one can use the same
argument as in Proposition 2.6. O

Remark 3.6. In [Dav, Theorem 7.22], it is shown that the markovian character of
S(t) is equivalent to the fact that if f(T) realizes the maximum of f(z) on 90, then
A, f(Z) <0. Hence we recover the Hopf’s Lemma by this result.

4. AN APPROXIMATING FAMILY FOR THE DIRICHLET-TO-NEUMANN SEMIGROUP

In order to define the approximating family for a semigroup, let us recall the following
Theorem which is proved in [Che].

Theorem 4.1. Chernoff’s product formula. Let X be a Banach space and {V (t)}+>0
be a family of contractions on X with V(0) = I. Suppose that the derivative V'(0)f
exists for all f in a set D and the closure A of V'(0) |p generates a Cy—semigroup S(t)
of contractions. Then, for each f € X,

: t\"
hmV(;) f=S®f,

n—o0
uniformly for t in compact subsets of Ry .

In the sequel, we will call {V(¢)};>0 the approximating family of S(¢) and we will

construct the approximating family for the Dirichlet-to-Neumann semigroup when (2
t

is a ball of radius 7 in R". Let us denote e~ +?") (rw) the solution of the linear system

P(rw,t) + Ly(rw)p(rw,t) =0
P(rw,0) = rw.

We define V' (t) € L(0X) by
V(t) :== LT(t)Ly : 0X — 0X, (4.1)

where T'(t) always acts on the y-harmonic functions u € Ker A, as follows
T(t)v(z) = U(exp(—ffy(:z;))x), for any z € Q.
T

We can see that
e V(0)f = f for all f € 0X;
e V(t)f — f strongly as t — 0 in 0X;
e For any f € D(A,), %V(t)f li—o= —w - y(rw)Vou(rw) = A, f.
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The family V(¢) is not a semigroup, for v(exp(— t’y(x))z) is not y-harmonic and, con-
sequently, if v; is the y-harmonic lifting of v(e™ o ( w)),

V(s)V(t)f(rw) = LT (s)v ( el
= Loy(e” ") (rw))

# Lo(e™ 709 (rw)).

rw))

So we see that the fact that S(¢)f should be the trace of a y—harmonic function is
essential. But, fortunately, the three properties mentioned above show that the family
{V(t)}+>0 can be considered as the approximating family for S(¢). Indeed, the fact
that V (¢) is of contraction follows from the maximum principle and the third property
implies that V'(0) [p(a,) is closed. So we have

nlglgoV( ) f=8@)f, foreveryfedX. (4.2)
Here will show that V(t) satisfies some regularizing properties.

Lemma 4.2. For any t >0, V(t) maps 0X into D(A,).
Proof. According to Lemma, 3.1, for any f € C(99Q), v = Lof € C?(Q) N C(Q).

Since 7 is a matrix-valued C*°(€2) function,

b N0, o) =exp (—‘%v(w)) z,

belongs to C*(052). Consequently V (t)f(rw) = v(¢(rw)) belongs also to C?(09). Now
let w be the y-harmonique lifting of v(¢(rw)). This time w € C?(2) and its boundary
values w(rw) € C?(09). Hence w € C?*(Q) and Ayw |go= —w - Y(rw)Vw(rw) €
C'(092) C 0X. O

In Lemma 2.2, we saw that condition (2.3) is equivalent to the analyticity of the
semigroup S(t). Here we have some similar result.

Theorem 4.3. The operator V (t) verifies
. d
111:1581psup{t||£V(t)f||3X ; [ €0X; ||fllax <1} < 0. (4.3)
—

Proof. Take f € 0X, with ||f|lax <1, and v(z) the solution of (P1). As before
d d t
GV 070 = 5o (0 (<L) ) ro)

— —w-exp <_;fy(rw)) y(rw)Vu (exp (—;’Y(Tw)) rw) .
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Now, we can use Lemma 3.1 of [G-W], which asserts that there exists K > 0 such that,
for any z € €2, we have

|Vu(z) 1fllox-

| < L
— dist(z, 09)
For t > t, e 7 7(rw) (rw) € Q, consequently,
K
dist (e_%(“") (rw), (9Q> .

‘Vu (effﬂy(m) (rw), BQ) ‘ <

Since
t t
dist (efﬂ(’"w) (rw), 39) =7 — e 709 (ry)),
by the Mean Value Theorem, there exists 7 € [0,¢] such that
d

r— e rw)| = () (‘e—%“r(m) (m)D

t=71

The symmetry of y(rw) implies that

di (‘e—ﬁv(rw)(Tw)D _ (_%’Y(Tw)e_g’Y(Tw)(rw)) . (e—f'y(rw)(rw)> |
t

t=T7 ‘e—g'y(rw) (rw)

As t — 0, T goes also to zero and the fact that exp (—Zy(rw)) (rw) # 0 for all 7 € [0,7]
yields

d
e p———
Consequently, we have
K
limsup sup [|tw: Vv (e_fw‘“) (rw))‘ < ———ro
t—>0  wesn-1 Y(rw)w - w

which implies (4.3). 0
As in Lemma 2.1, we prove that:

Theorem 4.4. The operator V (t) is compact.

Proof. In 90X = C(09), in order for V(t) to be compact, it suffices that for B the
unit ball of 0X, V(t)B be relatively compact in X and this can be deduced from the
Arzela-Ascoli criterion. In fact, we have to prove that V(¢)B is an equicontinuous set
in 0X. Take wy,ws two points of S"~1. Since u € C%(Q), the uniformly bounded first

derivatives on a compact subset K C € such that e (e )(rwj) € K (forj=1,2)
guarantees the existence of M > 0 such that

[V (@)F (rwn) = VD) flrwo)| = fu (7D rwn) ) —u (77704 (run) ) |
< Mle 9 (ryyy) — e 77092 (ray)).

Hence the equicontinuity of V'(¢)B follows from the continuous differentiability of the
mapping y — efﬁ(y)y. O
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Here, we construct a new family of approximating operator for a more general ge-
ometry of €, where Q has the property of the interior ball, i.e., For any y € 92 there
exists a tangent surface 7, which is tangent to 0Q2 at y, and a ball tangent to 7 at
y which is totally included in Q. If Q has this property, then to any point y € 01,
one can correspond a unique point x, which is the center of B(zy,r,) the biggest ball
included in  which has this property and ry its radius. For any 0 < r < 1y, we can
construct V,.(t) related to the ball B(z,y,7) := {z € Q | |z —z,,| < r} of radius r
centered at zry = ;~xy + (1 = 7~)y by

V()£ (@) 1= Lv (2ry + "W (r0y) )

where v is the y-harmonic lifting of f(x), y € 0. As before,

e We see that V;.(0)f(y) = v(zry + rvy) = v(y), because vy = (zry —y) /7 ;

e The derivative of V(¢) f(y) with respect to ¢ is V;/(0) f(y) = —v(y)vy - Vu(zry +
rvy) = A, f(y) and, finally,

e as Corollary 3.4, Vi (1) lox < IIfllox-

These properties show that
Theorem 4.5. Assume that Q has the property of the interior ball and

inf {r >0 | B(zy,ry) CNQ} >0 and sup{r >0 | B(zy,ry) C N} < oo.
yeN yEedN
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_t
For each s € (0,1], we denote Vi(t) := Vi (1), i.e., Vi(t) f(y) := v(zs+e v ") (sryry),
where z3 = szy + (1 — s)y. In this case we have for any s € (0,1]

t n
lim V; (—) f=S8@t)f, for everyf € 0X. (4.4)
n—o0o n

The above Theorem shows that, for any arbitrary geometry of 2, contrary to the
case of the ball, one has to consider a family of approximating operators.

5. ASYMPTOTIC BEHAVIOR OF S(t)

Before announcing the main theorem of this section, let us give some results on the
theory of semigroup in a general Banach spaces.

In [Gol, Exercise 8.24.17], one can find the following result as an exercise. For the
sake of completeness we will give the proof of this result, since we will show, with
the same lines of proof, that we can replace the reflexivity assumption of X with the
compactness of the semigroup.

Lemma 5.1. If A is the generator of an analytic semigroup T(t) of type (o, M) on a
reflexive Banach space X and P the projection of X onto Ker(A), then T(t)f goes to
Pf, ast — oo, for any f in X.

Proof.  For f € X we consider the sequence {T'(n)f}. Since T'(n)f € By :=
{T'(t)f | t> 0} and this set is bounded in X, the reflexivity of X implies that there
exists a subsequence T'(ny)f which converges weakly to g. From the analyticity of T'(¢)
it follows that

M
AT (ng) f|| < — — 0,
ng

as k — o0. Since the generator A is also weakly closed, we have g € D(A) and Ag = 0.

Now, the fact that g € ker(A) implies that, for any s > 0, we have T'(s)g = g. So,
for any ¢ > 0, there exists k such that ¢t € [ng,ng4+1]. Finally, when k& — oo, we get
t — oo and

Jim T()f = lim T — m)T(0)f = g. (5.1)

O
In the following Theorem we will see if we assume that T'(¢) is compact for some
t > 0, then we can remove the assumption of the reflexivity of X.

Proposition 5.2. If A is the generator of an eventually compact analytic semigroup
T(t) of type (o, M) on a Banach space X and P the projection of X onto Ker(A), then
T(t)f goes to Pf, ast — oo, for any f in X.

Proof. As in the proof of the previous lemma, for f € X, the set By := {T'(t)f ; t >
0} is bounded in X and T'(t)B; = By implies that By is relatively compact for some
large t > 0. Hence there is a sequence t, such that T'(¢,)f — g, as t, — oo and as in
the proof of previous lemma, AT (t,)f — 0, which implies that g € D(A) and Ag = 0.
O

Now we consider 2 a bounded domain with a smooth boundary 92.
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Lemma 5.3. f € Ker A, if and only if f is constant on 0€2.

Proof. Tt is clear that if f(Z) = ¢ for any T € 09, then u(z) = ¢ for all x € Q.
Conversely, suppose that f € Ker A, then v - Vu = 0, hence u(z) is constant for any
x € Q, in particular u(Z) = f(T) = c. O

Now, we are in a position to give our main result of this section.

Theorem 5.4. The semigroup S(t) has the following asymptotic behavior
Jim S()f = ey, (5.2)

where c; is a constant which depends on f. Furthermore there exists a probability
measure y such that

s = [ fo)duto). (5.3)

Proof. Proposition 5.2 and Lemma 5.3 achieve the proof of (5.2). For proving (5.3),
we observe from Proposition 5.2 that

S(t)f — Pf, for every f € X, (5.4)

where P is the projection onto Ker A, along Ran A, hence Pf = c. Since from Lemma
3.2 the semigroup S(t) is positive, P is a positive linear functional on 9X. According to
the Riesz Representation Theorem (see [Rud]), there exists a unique positive measure
such that

Pr=[_feu). (5.5)
Since S(t) is a Markov semigroup P1 = 1, which proves that the measure p is a
probability measure. O

Remark 5.5. A similar result can be found in [Dav, Theorem 7.29].

Remark 5.6. For the Lax semigroup, property (5.2) is already given in Lemma 2.7
and property (5.3) is the well-known formula

w(0) = —— /S  ufw)do

~ meas(S"1)
6. OPEN PROBLEMS

Concerning the Lax semigroup, the first natural question which comes to mind is:

(OP1)

Is it possible to generalize the Lax explicit representation for
some other geometry S, dif and only iferent from a ball?

The Lax semigroup gives us the precise location of the semigroup. In fact, by com-
puting a harmonic lifting v of f € 80X, the value of S(t)f(w) is at u(e~*w). This
property is very valuable for the calculation of the eigenvalues of A, as we will see in
a forthcoming paper.
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So, our second open question is the following

(OP2) Can we precise the location of S(t)f(y)
on the level surface T'yy?

We think that this problem would be very hard for an arbitrary geometry of €2, since
there is no unique approximating family for which the location is known.

For an general Dirichlet-to-Neumann semigroup, even in the case of a ball, we are
not able to deduce the analyticity and the compactness of the semigroup from the
analyticity and the compactness of the approximating family. The reason is that in
the Chernoff’s product formula we do not have a norm-operator convergence for this
formula. But it seems that such type of convergence can be obtained by methods
similar to those of [C-Z]. So our next open problems would be

Can we prove

OP3 . n
(OP3) lim oo [V (£)" = S(0)]lcox) = 07

What is the angle of the sector S,

OP4
( ) where S(t) is analytic ?
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