RATIONAL APPROXIMATION IN THE SENSE OF KATO FOR
TRANSPORT SEMIGROUPS

MOHAMED AMINE CHERIF, HASSAN EMAMIRAD AND MAHER MNIF

ABSTRACT. In this paper we mix the rational approximation pro-
cedure, which is a time approximation with approximation in the
sense of Kato, which is a space approximation for linear transport
equation. In 1970, H. J. Hejtmanek [Hej| gave such a procedure for
approximation of the linear transport equation and he proved the
convergence only for explicit Euler scheme. We extend this proce-
dure to explicit and implicit Euler, Crank-Nicolson and Predictor-
Corrector schemes which have the rate 1,2 and 3 in the sense of
rational approximation. Finally, we construct the numerical illus-
tration for justifying the above rate of convergence.

1. INTRODUCTION.

Let A be a closed densely defined linear operator in a Banach space X which gen-
erates a strongly continuous semigroup etd By a rational approximation we mean the
existence of a rational function R(2),z € C such that [R(£A)]" tends in some sense to
et4 Tt is clair that any rational function cannot have a such property, so we define

Definition 1.1. A rational complex function R, is acceptable, if

(i) |R(z)| <1, forall Re(z)<O0;
(ii) R(iz) # 0 for all z € R;
(iii) There ezists a real constant p > 1 such that R(z) = e + O(|z[P*1) as |z| — 0.

In this definition the condition (iii) implies that R(0) = R/(0) = 1 and p is called
the convergence rate of this approximation. If we want to emphasis on the rate of
convergence we say that R, is p-acceptable.

Concerning the approximation in time (semi-discrete approximation), there is wealth
of literature concerning the convergence and stability of the rational approximations
of an abstract Cauchy problem (see [Bak, B-T1, B-T2, CLPT, H-K, LeR, Pall, Pal2,
Sai, Yan|) In [H-K]|, Hersh and Kato have shown that if R is p-acceptable, then for any
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f e D(Art?),
T [[R(A)"f — e f]| =0 (1.1)

and the rate of the convergence is O((1)P).
In |B-T1] the assertion (1.1) is improved by Brenner and Thomée in the following
manner:

Theorem 1.2. Let R be a p-acceptable rational function, then for any f € D(APHL),

IRCEAY'f — 7] = O+ (12

In other words, the rate of convergence is p.

In [CLPT| and [Pall] a large improvement is given in the case of the generator of
an analytic strongly continuous semigroup, by proving that in this case one has (1.1)
for any f € X. In |Pal2] and more recently in |Sai] and [Yan|, the same problem is
investigated, when A is the generator of an analytic semigroup and the time step size
is not uniform. In [E-R]| this problem is generalized in the case where the time step
size is not uniform and A generates a Cy-semigroup which is not analytic and we have
proved that for any a > 1/2 and for every s € (0, —1/2) , there exists some constant
Cy depending on « and s such that in the case of uniform time partition we have

IRG A = e )1 = 42 < Cale + 13, (13)

n

where 3 = p+”,ss+l.

In the next section we will give the different expressions of the rational approximation
function in an abstract setting and we define few well known algorithm such as Euler
explicit and implicit methods, Crank-Nicolson method and predictor corrector with
their corresponding rate of convergence in time which is deduce from Theorem 1.2.

Concerning the approximation in space, when A is the generator of a C- semigroup,

we define the convergence in the sense of Kato (see |Kat]).

Definition 1.3. We say that a sequence of Banach spaces {( Xy, |.||n) : n=1,2,---}
converges to a Banach space (X, ||.||) in the sense of Kato and we write

X, 5 X
if for any n there is a linear operator P, € L(X, X,,) (called an approzimating operator)
satisfying the following two conditions:

(K1) limy oo [P flln = If]|  for any f € X;
(K2) for any f, € X,, there exists f" € X such that f, = P, f™ with ||f]| <
C\lfnlln (C is independent of n).

Let X, = X, B, € L(X,) and B € L(X). We say that B, converges to B in the

. K .
sense of Kato and we write B,, — B if

lim ||B,P.f — P.Bf|ln=0 (1.4)
for any f € X.
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This notion is investigated by T. Ushijima [Ush]|, in which he recovered the Lax equiv-
alence Theorem in this context. Another investigation in this direction is accomplished
in [CE]| by the two first authors of this paper in which it is constructed an approximation
family for the transport semigroup which converges in the sense of Kato to transport
semigroup.

We assume that R is is a p-admissible rational function, with

_P2)  Yiga
R(z) == eI (1.5)

Definition 1.4. We say that R, is p-acceptable in the sense of Kato, if for anyn €

N there exists a finite sequence of operators A,(f), j=12- m=(k(k+1)0(l+1))/2,
such that each of them is some finite difference approximation of A the generator of the
Co-semigroup U(t) and

[Ua )P f = PaUO)fln = O, (1.6

where
aopl + oo T A,(f)
Un(t) 0 Z]_l J Hp_l

= : . (1.7)
Bol + X5 8 Ty ATHY

We think that is difficult to establishes the existence of the sequence Ag), ] =
1,2,--- ,m in a systematic manner, but we do believe that is possible to construct this
sequence in case by case. For an illustration we look to the linear transport equation. In
other word, we consider a matter of particles, constituted of neutrons, electrons, ions and
photons. Each particle moves on a straight line with constant velocity until it collides
with another particle of the supporting medium resulting in absorption, scattering or
multiplication. The unknown of the transport equation is the particle density function
u(x,v,t). This is a function in the phase space (x,v) €  x V C R?" at the time
t > 0, which belongs to its natural space X = L'(Q,V). Actually, foV u(x,v,t)dxdv
designates the total number of particles in the whole space € x V' at the time ¢t. The
general form of the transport problem is the following

% =—v-Vu—o(z,/v)+ fV p(x,v/,v)u(a:,v/,t)dvl in QxV,
(TP) u(x,v,t) =0 if x-v<0, forall xedN
u(x,v,0) = f(x,v) € X,

In this equation which is known as linear Boltzmann equation the first term of the
right hand side —v - Vu(x, v,t) illustrates the movement of the classical group of the
particles in the absence of the absorption and production interactions. The second
term represents the lost of the particles caused by the diffusion or absorption at the
point (x,v) in the phase space. Finally the integral of the last term represents the
production of the particles at the point (x,v) in the phase space. The kernel p(x,v’,v)
in this integral generates the transition of the states of particles at the position x and
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having the velocity v’ to the particles at the same position having the velocity v. The
velocity space V' is in general a spherical shell in R", namely

V={veR":0 < vpin < V] < vpax < +00}.

In this article, we study the particular feature of the transport equation in which we
replace  with (—a, a) and we take V' := [—1,1]. We assume that o is a strictly positive
continuous function with

0 < sm < o(x) < sy for almost any = € (—a,a) (1.8)

and we replace the kernel p(x,v,v") by %p(:p) which is a positive continuous function
independent of (v,v’), such that

0< sup p(z)= k. (1.9)

z€|—a,a]

With these assumptions the transport problem (TP) can be replaced by the following
particular problem

3 1!
a—z; =—v-Vu—o(x)u+ 5/ p(x)u(z,v,t)dv in (—a,a) x [-1,1];
—1
u(—a,v>0,t) =0, wu(a,v<0,t)=0 forallt>0;

u(z,v,0) = f(x,v) € L*((—a,a) x [~1,1]).

(1.10)

Remark 1.5. (a) We denote the production term Af = 3 f_ll p(z)f(x,v)dv = p(z)Pf,

with
1 M
Pf= 5/ f(z,v)dv, (1.11)
-1
which is a rank one projection on L!((—a,a) x [—1,1]). This space being generating
we get ||P|| = 1, and ||A|| = ks, since ||A]| < kps and for the constant function

p(x) = kpr we get the equality.
(b) It is well-known that the problem (TP) generates a Cy-semigroup U (t)

For defining the approximating spaces X, we proceed as in [CE|. We divide the
phase space (—a,a) x [—1,1] into a finite number of cells by chopping the x interval
(—a,a) into 2m,, equal parts and the v interval [—1, 1] into 2y, equal parts; h,, and k,
are the lengths of these parts, that is,

1
ho = —, kp=—.
mn Hn
Then each cell can be labeled by a pair of integers (i,7) € N, where
N ={(4,)) :i=—mp,....,—1,0,1,... omp.j = —pin,...,—1,0,1,... pun}
The number of the particles in cell y(7,7) = [thp, (i + 1)hy,] X [jkn, (7 + 1)k,] is written

gi,j-

We define the set of all real vectors & ; as the Banach space X,, with the norm

I€ln =D 1€isl, €€ Xan.
1,J
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In [CE] for proving that the approximating space X,, converges in the sense of Kato to
X, we have proved the following Lemma.

Lemma 1.6. (See [CE|) For P,f ={&;: (i,j) € N'} where

(Z+1 (]+1 k)n
&ij= / / f(z,v)dx dv,
we have

() [Paflln = [I£]] for all 0 < f € X
(i) 1Pl x,) = 1
(i) Yy | Pa f o = | fI| for amy f € X.

The three last sections are concerned with different cases of transport equation.
The first one (section 3) we consider the collision free transport equation when the
absorption o and production p rates of transport problem (TP) are zero. We show
that the approximating problem converges in the sense of Kato and by choosing an
appropriate approximating operator for different schemes all the schemes (Explicit and
implicit Euler, Crank-Nicolson and Predictor-Corrector) give a unique algorithm which
is a discrete form of the exact solution. We have to point out that this is one the rare
partial differential equations such that by taking an adequate approximating operator
for any scheme, one can retrieve a discrete version of the exact solution.

In the section 4 we take ¢ # 0 and p = 0, the correspondent equation is called
tomography or absorbing transport equation. Since here we cannot retrieve numerically
the exact solution we prove that the rate of the explicit and implicit Euler, Crank-
Nicolson and Predictor-Corrector schemes are respectively 1,2 and 3.

The section 5 is devoted to transport equation in his whole generality. In this case
we cannot represent the explicit solution of the equation. So, we will use the Theorems
1.2 and 3.4 of [CE] for proving the convergence of the approximate solution in the sense
of Kato.

In the last section we construct the numerical illustration for justifying the above
rate of convergence.

2. FINITE-DIFFERENCE APPROXIMATION IN ABSTRACT SETTING.

Let us consider the abstract Cauchy problem:

du _ f
(CP) o = Au ort >0,
u(0)=feX

in a Banach space X and assume that A is the generator of a bounded strongly contin-
uous semigroup e in X.

There are various methods for resolving this problem by time finite-difference ap-
proximation and the most well-known of them are

(a) FEuler’s implicit and explicit schemes:

Ipnt+1 — T Ipnt+1l — T
dntl ™ <n = Azpy1 and dntl ™ <n = Az,
T T
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which are equivalent to
Tpy1 = (I — TA)_la;n and x4 = ([ + T7A)x,.

Replacing 7A by z the rational approximation function of Euler’s implicit scheme
becomes R(z) = (1 — z)~! and for explicit Euler’s scheme R(z) =1 + z.
(b) Crank-Nicolson scheme:
The Crank-Nicolson scheme can be obtained by mixing the explicit and implicit
Euler’s schemes as follows. Take the z,,/, the value of u at the point ¢, /5 in
the middle of [t,, t,+1] such that

T+l — Tpt1/2 Tny1/2 — Tn

/2 = Az, and T = Azpy1)2,
which gives
T T -1
Tp1 = (I + (g)A)(I - (§)A) L

Here the rational approximation function will be R(z) = (2 + 2)(2 — 2)~%.
(c) Predictor-Corrector scheme:
Here we add the equation

Tn+1 — In —A Tnt1 + Tp
T 2

with a predicted equation

Tn+1 — In _ A(.’L’

T n+1/2)7

where the predicted value of z, /5 can be corrected by the equation

T+l — Tp41/2
———" = A(xpi1).

This manipulation gives

T T
Tpal = Tp + 3 [Axn + A (2:1:n+1 - §Axn+1)}
and by separating x,4+; from x,, we get

T 2T 72 o1

The corresponding rational function would be R(z) = (1+ £)(1 — % + %)_1.

We will see that the above representations of rational approximation functions of dif-
ferent schemes can be matched into the following definition for different values of the
integer p.

Remark 2.1. For implicit Euler’s method
R(z)=(1-2)""=1+2+0(?). (2.1)
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Since |R(2)| = 1/[(1 — Re(2))? + Im(z)?] and Re(z) < 0, we obtain the assertion (i) of
Definition 1.1. For z = iz, R(z) = 1/(1 — iz) # 0 and the assertion (ii) follows. Finally
e* =3 >0 2k /k! and (2.1) imply that

R(z) — e = O(|z%), (2.2)

the same estimation holds for Euler’s explicit scheme and consequently we get the
assertion (iii) of Definition 1.1, and by using Theorem 1.2 the rate of convergence is
p = 1 for both implicit and explicit Euler methods.

Remark 2.2. For Crank-Nicolson method
2

R(z)=(2+2)2—2)"1= 1+z~|—% +O(22). (2.3)

Since for a < 0, /(2 —a)? + b2 > /(2 + a)? + b, we obtain the assertion (i) of Defi-
nition 1.1. For z =iz, |R(z)| = [(2+1ix)/(2 —iz)| = 1 # 0 and the assertion (ii) follows.
Finally, e* =3, 2F/k! and (2.3) imply that

R(z) —¢* = O(|z), (2.4)

consequently we get the assertion (iii) of Definition 1.1 for p = 2, and by using Theorem
1.2 the rate of convergence is p = 2.

Remark 2.3. For predictor-corrector scheme

1+ 2 22 23
R(z):ﬁ:1+z+?+€+0(|z|4). (2.5)
—3T%

We remark that for z = iz,0 # |R(z)| < 1, since 1+ % <1+ %2 + g—g. Furthermore the

conformal transformation z % + 1, maps the left hand-side plane [Rez < 0] into
the unit disc D(0,1), so according to maximum principle |R(z)| < 1 for all Re(z) <0

and the assertions (i) and (ii) of Definition 1.1 follow. Finally, (2.5) implies that
R(z) — e = O(|z["), (2.6)

consequently we get the assertion (iii) of Definition 1.1 for p = 3, and by using Theorem
1.2 the rate of convergence is p = 3.

3. APPROXIMATION OF COLLISION-FREE TRANSPORT EQUATION.

The first step in this model is when the particles move without obstacle, that is the
medium is so rarefied such that there is no other particle can change the directions of
each particle. In this case if at the time ¢ = 0 and at the point x there are f(x,v)
particles with velocity v, then at the time ¢, these particles find themselves at the point
x — tv. So that the solution of the collision-free transport problem

%:Tou::—v-Vu in QxV,
(CFTP) u(x,v,t) =0 if x-v<0, forall xe€d
u(x,v,0) = f(x,v) € X,
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is given by the family of operators {Up(t) }ter defined by

f(x—tv,v), if x—tve

0 elsewhere

u(x,v,t) = [Uog(t) fl(x,v) := { (3.1)

which is called the collision free transport semigroup.

With this consideration the discrete version of the collision free semigroup defined in
(3.1) will be

[Uon(kTn)€lij = &imkjj i (i,5) € N and k=1;--- . (3.2)
In fact, given ¢,n and pu,, we take 7, = t/n and m,, = [na(2u, + 1) — t]/(2t) such that
Tnkn/hn = 1, since ihy, — T kjk, = hp(i — %k‘j), so we get (3.2).

Remark 3.1. Here we adopt the convention that & ; = 0, whenever i < —(m,, + 1) or
i > my. This takes care of the boundary condition that no particles enter 0 through

00.

Theorem 3.2. For Uy(t) f(z,v) = f(z — tv,v), we have

(a)
UOm(t)Pnf = PnUO(t)f (3'3)

(b) |1P.Uo(t) flloo = sup{|&i—nj ;| : over all partitions N} < M, where the constant
M is independent of n.

From (3.3) we get the convergence in the sense of Kato, with zero at the right hand

side of (1.6).
Proof. The assertion (a) follows from

Uon () Prf = Uon(t){&ij} = {&i—njj}

= {/ f(a;,v)dxdv}
Y(i—nj.j)

= {/ [z — tv,v)dxdv}
V(i.4)

= P,Uy(t)f.

and the assertion (b) from

€] = / / fla,v)dadv < |f]]
]

By computation of this expression we follow the exact value of approximating solu-
tion. As we will see the collision-free transport equation is one of the seldom equations
in which by the judicious choice of discretization operators, the final value of these
methods coincide with the exact value of solution at the point of discretization.

For the sake of importance of this result, we will announce it as a Theorem
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Theorem 3.3. Let us define for Euler’s explicit, Euler’s implicit, Crank-Nicolson and
predictor-corrector schemes the following approzimated semigroup:

[UEuler eXP(Tn)g]i,j _ [5 + T&l;ler—expé-] z'j ,whe,re

T(])’::iler exp = —jk‘nTnigld ;hii_j’] = n (gz —7,J gi,j) Zf (Z’]) S N7 (3'4)

[UEuler lmP(Tn)g]i,j _ |:(I o TaE:::Ller—lmp)—lé ij7 where

w = (&g — &itsg) i (i,5) €N, (3-5)

T(]]Zl;ler 1mp — —jknTn ]hn
o [ng—Ni(Tn)g]i’j =[(I+ %Té’ln)(l — %Té?n)_lg]m, where
T(l) = — ]kfnTn
n Jjhn/2
= <u ((Z - %)hm]kn> - U(th]k”)> :
and
w (54 4) hnsdkn ) = (ibns ki)
T = — jkr :
0n * nin ]hn/2
=2 (o)~ (6 D))
and finally
o U (m)elig = [0+ 3TyD = 37500 + §T5 T ) ™€, where

Té’lrz —3 [ Euler exp£:| + [TEuler exp£:| _3 [TEuler expg]‘

i— ju] 2_%’j

= [&—2]’] 351__ + 2& -3, + 351__ g 3§Z7J:| s

T =79 = (e s Tine]

,n ;1

=635 &1a,]

),

Then we have

[UEuler exp(Tn)é.]Z [UEuler 1mp(7_n)é-]Z [UCr Nl( )é-] [Upre cor( n)é‘]i,j :fi—j,j'

Proof.  For implicit Euler’s scheme, by choosing my, and p,, such that 7,72 =1 for
any n, a simple calculation gives the expression of (3.2) for k = 1.
For implicit Euler’s scheme, since
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&g =1 — Tyl

=MNij — Tnh— (nij — 77i+j,j) = Thi+j,j
n

and once more we obtain 1; ; = &_; j, as we have expected.

For the Crank-Nicolson scheme, since

1 1
2 2
1

= I+ 5T =&iji-

U85 (r)élay = (T + 5TE = TSN el

Finally, for the predictor-corrector scheme we remark that

2 ~o 1 ~3)=¢4 2
[(1 - 210+ 1) éﬂanj =g =3 Wiy = Misg )

1~@3
+ gTé,n)(m_%‘,j —7ij)

2 1
= 3Mid T g5 T Mg T Mg

and from other hand

1~ 1
[(I + gTé,,i)n} =gt g | =30 = Mimgig) = iegg — Mie24)
Z?]

+ 3(771'_1,]' - ni_ﬁ,j)}

2 2

2 1
= 3Mi-jj + 3li=2j.j T gy~ o8

2~ 1@~
_ [(1 —3Ton + ng?;ngﬁg)n} N
=7

This proves that we obtain once more (3.2) for k = 1.

O

In the section 6 we illustrate numerically the evolution of the pure translation of an
initial solution with non entrance boundary condition. Remark that all the different

schemes end with an unique scheme (3.2).

4. ONE DIMENSIONAT, PURE ABSORBING LINEAR TRANSPORT EQUATION

In this section we will choose the same approximating space X, of the section 3 with
the same condition 7,7% = 1 on the grid. The exact solution of the pure absorbing

transport problem

% =—v-Vu—o(z)u in (—a,a)x[—1,1];
(PATP) u(—a,v >0,t) = 0 and u(a,v <0,t) =0 for all ¢t > 0;

u(z,v,0) = f(x,v) € LY((—a,a) x [-1,1]).
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is given by

u(z,v,t) = [Ul( )f](.%’ v) = (4.1)

e—fot‘f(x_sv)dsf(x—tv,v), if |z—tv]<a
0 elsewhere

where U (t) is a Cp-semigroup on X.
The one dimensional approximation of this solution would be

t
w(ihy, jkn, kTy) = exp <—/ o(ihy, — sjk;n)ds> f(ihy — jkmnkn, jkn)
0

if (i,j) e Nandk=1;---,n
After replacing the integral fot o(ihy — sjky)ds by O'Z(ZL-), where

1
Z (ihy — jkTnky). (4.2)

Then we get
Un(t) = ulilp, jkn, t) = exp (—a§3)> F (il — ik, k).

Replacing f(thy, — jntykn, jkn) by &i—nj; as before we get
Ui n(nmn)€li; = exp <—0’§Z)) Eimnjj- (4.3)

Theorem 4.1. We assume that o is a strictly positive continuous function satisfying
(1.8) and U, (t) defined in (4.1), we have the convergence of Uy (t) to Ui(t) in the sense
of Kato.

Proof. It is well known that if

o) = Tank(a), Sp(o) = TnZMk(U),
k=1

where

mg(o) = inf o(x —sv) and Mg(o) = sup o(x — sv),
s€[(k—1)Tn,kTn] s€[(k—1)7n, k7]

were the upper and lower Darboux’s sum of the function [0,¢] 2 s — o(z — sv) €
C([—a,a] x [-1,1]), then s,(0) < 0'( "< S, (0) and s, (o) and S, (o) converge both to
[y o(x — sv)ds in C([~a,a] x [~ 1,1]). So

lexp (o) =B, (e fortm®) ), — o,
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,] 2Y)

where o™ € X,, with [a(")] . And, due to this property,

||U1,n(t)Pnf - PnUl(t)an < HUl,n(t)Pnf — exXp <—0'(n)) PnUO(t)an
+H exXp (_U(n)) PnUO(t)f - PnUl(t)an

-0
< PV (0) ol P (€7 70=8) —exp (=700 ™) |,

which goes to zero as n — oo. In fact, according to Theorem 3.2 (b) can be estimated
independently of n. O
Now let us describe the different schemes for the problem (PATP).

4.1. Euler’s explicit and implicit scheme for pure absorbing linear transport
equation. For explicit Euler’s scheme we define the finite difference operator

Ton ™ P = (g — &ig) — Ta0i-jbinjy i (i,5) €N (4.4)
the approximated semigroup Uf;ller_eXp(Tn) would be

i o= [Urn ™ P (0)€lij = [E+Trm Piy = &+ (Eimjj — &ij) — Ta0i—j&imjj) -
and so,

lij = (1 = T0oi—j)&i—jj-
A comparison with respect to the pure absorption approximate group (4.3) leads the
following estimation:

(O (1) = Unn(7))€lis| = 11 = muij — exp (=Tnoij) ||&i—j5] = O(72)[€imj41,
which implies that there exists a constant C' depending only on o, such that
I+ T70 5 = Unn (1) )Elln < CTR €]

which leads to the estimation (2.2) and consequently the order of the scheme would be
p=1.
For implicit Euler’s scheme the finite difference operator would be

Tﬁiler_imp = (&j — &itjj) — Tnoilivsy i (1,5) €N (4.5)

and Uf;ler_imp (Tn) by

—i uler—i -1
[mlig = [UF2 ™ (r)eliy = (1= T ™) el
So,
&ij=[n—Trns "
=0ij — ((Mij — Mivjj) — TaOillitsjj)
= Nitj,j T TnOiNi+j,j

1]

which gives,
i = (1 +mnoi ) "G
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and consequently
—imp ! _
| [(I — Tﬁfller mp) §— Ul,n(Tn)£:| N | = [(1+ Tm0i—j) L exp (=Tnoi—j) [|&i—jj]
Z?]
which implies once more
U5 7™ (7)€ = Unn(70))élln < CTalI€ -

and consequently the order of the scheme would be p = 1.

4.2. Crank-Nicolson scheme for pure absorbing linear transport equation.
For this scheme we define two finite difference operators Tl(}) and Tl(iz € L(X,) as

n
1
[Tfﬁfﬁ]i,j = 2(£i_%‘,j —&ij) — TnO; 38 i
and
2
[T 2€)is = 285 - Sivgg) = s 8ig
We define also the following operator
[Meli; = R(=ma0i)iy where  R(2) = (242)(2 = 2)™"
We remark that
1.a
(4 5T = 6 (g, =) = Fou g6y,

27
= (1 - %Ui_%)gi_l

and B
[(1— %Tfif)MS]i—j,j = [M&i—jj — ([Mf]i—j,j = [Mé‘]i—%J) T %n”i—%[Mg]i—%J
=+ Do IME] = (0= Do gy,
= [0+ 5Tl

This proves that

1 1 _
iy = [0+ 37D = 570D €y

= [M¢&li_j; = (2= 70i-j) 2+ Tnoij) ™ &imji-
Now, if we define Uf,l;L_Ni (Tn) by

N 1. .a 1 2),-
(UF5 ™ ()i = [0+ 5TENA - 5TE) ey
a comparison with the pure absorption approximate semigroup Uy ,(t) leads the follow-
ing estimation :
1 = Ura(m)€lisl = (2 = T00i—3) (2 + Tnoi—g) ™! — exp(=Tn0i—j)[|€i-j 41

which implies

”Uﬁl;L_Ni(Tn)f - Ul,n(Tn)fun < CTEL’Han



14 MOHAMED AMINE CHERIF, HASSAN EMAMIRAD AND MAHER MNIF

where the constant C' depends only on o, and independent of 7, and we retrieve the
estimation (2.4) and consequently the order of the scheme would be p = 2.

4.3. Predictor-corrector scheme for pure absorbing linear transport equation.
Here we define four finite difference operators,
=1 Euler— Euler— Euler—
o [Tntliy = 3(Tom ™ ™ €i + [Lom ™ ¢livj — 3[Tom " %¢]

2 e o1 R . . -
3Tn0-z—j£z—],j 37—n0'z—2j£z—2j,j Tnai_%gi_%J + Tnaz_%jgz_%jd

~(2 o 1 3 3 1
o [12)¢);; = (&g =g )T 200 &g — 1Tn0i-j&i—j 5~ Tn(30i+ 90,4 )&i g

1 3 1 3
"'Ngn)(?’i - 50i+%)5i+%,j — Tn(50i-j + iai—%)gi—%,j
d [Tl,ng]i,j = (é‘i—%g‘ - €i+%,j) - %Tnaifﬂ_%,j - %Tnai—jgi_%d‘ - Tnai+%€i+j,j +
Tnai—%&}j
~(4 1
o [T10€)ij = [T1nelis.
We define also the following operator
z 2 22 -1
[le]Lj = Rl(—TnO'i)&J where Rl(z) = (1 + g)(l — gz + g) .

By a simple calculation, we obtain

1~ 2 1 2
[(1+ ng(,ra)f]z}j =58t 38i-25 &g 5~ St T gTnOi-iSi-i
Tn Tn Tn
- 5”—2]‘&—2]‘,]' - gai—%fi—%’,j + gai—gjfi—gj,j
2 Tn 1 Tn
=31 = 50iy) &gy + 3(1 = F0i-2;)8i-255
Tn Tn
+A =50, )6 55— (1= 508506 35,
and
2 ~9 1 ~3)~ 1
[(1 - ng,,i + ng(,szl(,wz)Mlg]i—jJ =Aij +£Bij
where
2 Tn
Ay = [Mi€lijj — g([le]i—gj,j - [le]i_%,j) - Eai_%[le]i,j
Tn Tn Tn
+ 502 [M1€]i—255 + ?Ui—j[Mlg]i—j,j + ?Ui—%j[Mlé-]i_jyj
27T, Tn
- Tai—j[le]i_%’J 7o, (Mgl 5 — ?0'2'—2]‘[M1€]i—%j,j

- Tnai_%j [Mlé‘]

. 3. .
i—57,J
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and
1) 4 2 ~(4
B ; <[T( Mgl a5 = | f,,lef]i_%‘,j) - ngUi—j[Tf,rlef]i_%J
1 ~ ~
- ngJi—zg[ Mlﬁ] i~ 0, '[T1(,4¢2M1§]i,j +7—n0-i_%j[T1(j2M1£]i—j,j

= {2 ([Mlé]i—2j,j - [Mlﬂi—%j,j — [Miglizj + [Mlg]i—%a‘)
— TnOi—2;[Mi&li—2j; + TnJi—j[le]i—j,j} - ngJz‘—j{ZOMﬁ]i—j,j
— Mg, j> — TnOi—j [M1£]i—j,j} - éTnJi—2j{2 <[M1£]i—2j,j - [Mli]i_gj,j)
—mmﬁﬂM@F%ﬁ—ang{QMﬁ] [Mﬂm>—%%%mﬁﬁﬁd}
+ T3, {2 ([Mli]i_%jvj - [le]i—j,j> - Tn“i—%j[le]i—%j,j}
So we get

1 2 2 2 1 2
Ai,j + EBZJ = g 1+ 37—n0-7, i + — 6 [Mlg]l -4, + - 3 (1 + ngO-i—Qj

TE 2 2 Trzz 2
+ FO'Z-_QJ-) [le]i_gj,j + 1+ ngai_% + g()’i_%

2 72
[Mlg]l—%,j - <1 + ng Z—S_] + 671 22 %]) [Mlg]z——‘y,]

and finally,

250, L@ 2 _n

[(1_§T17n + ETl,nTl,n)Mlé]i_jyj = g(l - ?Ui—j)é-i—j,j
1 Tn Tn Tn
+ 5(1 - 301'—23')&—2]'4 +(1- gai_%)fi_%d (1- 3 %i- %])51——)71
1~

= [+ 3Tl

which implies
2 3)5(4)\\ — l~a
i = 10— ST+ SFOTEN (1 + 3Ty = Ml
Tn 2 2
=(1— 30'1'_]‘)(1 + 3n0i—j + EO-Z —i)” gy

and we get

T, 2 T2 _
|[77_U1,n(7'n)£]i,j| =|(1— ;Jz J)(1+ 3Tnaz it g 12]) !

— exp(=Tn0i—j)|€i—j4-
So, if we define

_ 1~ 2 ~2 1~3~4 —
UPe ™ (r) = (14 3T = ST + ST T ™
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then we obtain
”Uil;ze_cor(m)f — U n(mn)élln < CTéHan
which implies that the order of the scheme is p = 3.

5. ONE DIMENSIONAT LINEAR TRANSPORT EQUATION WITH PRODUCTION

In this section we consider the system (TP), when o # 0 and p(z) # 0.
Here, we do not have at our disposition an explicit expression of the semigroup U(t)
as Up(t) or Uy (t). Hence for representing U(t) we will use the Dyson-Phillips formula:

Vo(t) =Uh(t),  U(t):= Y Valt),
n=0

where
t
Vog1(t) = / Vo(t — s)Vi(s)Ads,
0

1

[MUHM%w=w‘ﬁ““”Wf@—¢WV)mﬂ[Aﬂ@w%:%/ p() £ (x, V')V

-1
Let us define an approximation of U(t) by Un(t), where
N+1

Un(t)f = 1> Vi(®lf
k=0

t
=Uﬁﬁ+AUﬁ—$MﬂM&
with

B(S) :Ul(S)A + /OS Ul(S — Sl)Ul(Sl)A2d81 + e (5.1)

s SN
+/ / U1(8—81)U1(81—82)"'Ul(SN)AN+1d8N"'d81.
0 0

Remark 5.1. The operator Uy (t) is not himself a semigroup as Uy(t) or U;(t), but it
can act as the function V(¢) in the Chernoff’s theorem. This will be shown in Appendix
1.

In the discrete version we denote by Wy ,(n7,) the operator which approximates
Un(t) and is given by

N+1

[(WNn(n1)8lij = Z Vi (n70)Eli 5

k=0
where [Vj n(n1,)€)i; = [Urn(nmy)€i; is given in (4.3) and Vj, ,, by the induction relation

n

[Vk+1,n(n7—n)€]i,j = Tn Z[‘/Om(nTn - an)Vk,n(an)Andi,j (52)
k=1
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with
Hn—1

1
[Anglij = gpikn D &t
l=—pn
which is independent of j. Since Uy ,(n7,) is a bounded operator in X,,, by a simple
induction argument it follows from (5.2) that

”Vk,n(nTn)an = O(Tﬁ) (5.3)

Theorem 5.2. Under the assumption 2ky; < sp,, we have the convergence of Wi p(t)
to U(t) in the sense of Kato.

Proof. We have to prove that

[Wrn () Prf — PaU (@) flln — 0, (5.4)
as n — oo.
First we prove that
Wi (k7o) P f = PaUn ()" f. (5.5)
The fact that P, [;" Ui(Tn — $)Vi—1(s)Af (z,v)ds = 78 [U n(75,) AR)€]; ;, shows
N+1

PnUN(Tn)f = Pn[z Vk(Tn)f(x’ U)]
k=0

N+1
= [Uin(ma) Z TﬁAﬁf]i,j
k=0

N+1
= [Ulm(Tn) Z TﬁAﬁPnf = WNm(Tn)Pnf-
k=0

Hence, by taking g = Un(7,)f, we obtain
PnUN(Tn)2f = PnUN(Tn)g = WN,n(Tn)Png = WN,n(Tn)zpnfa

and by induction we retrieve (5.5). Once the identity (5.5) is proven, we replace
Wnn(t)Pof by P,Un(m,)"f in (5.4) and we use the isometric character of P, (see
Lemma 1.6), then we get

IWNn (@) Prf — PaU () flln = |Un(t/n)" f = U(#) f]].

Now, if w = 8,, — kas, thanks to Theorem 7.3, U(t) satisfies ||U(t)]| < e™!, and since
2kp < Sm, we get kpyr < w. So we can replace in Theorem 7.2, Sy(t) by Ui (t) and B(s)
by our operator defined in (5.1), and the Chernoff’s Theorem (Theorem 7.1) proves
that (5.4) holds. m

Remark 5.3. Since the numerical computation of (W (1,)&]i; is too complicated we
restricted ourself to the standard schemes and thank to the above Theorem we make our
comparison with Wy (7).
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5.1. Euler’s explicit and implicit schemes for linear transport equation with
production. In the sequel we will use also the following operators X, defined by

(Enélijk = Tnoi&jk (5.6)
and
pn—1
[Tn&li = pzk > G (5.7)
l=—pin

for (i,7) € N and —p,, < k < p,. We remark that according to convention of Remark
3.1, in (5.7) j can take any values out of rang of .

For these scheme we define two matrix operators T;;Ller_e}{p and T;Zler P in B(X,)
by

Tk Euler— eXPE] ij= (& jj—&ij) — [Eng]i—jn'—]}j + [dng]i—jn’—j )
i i0)) € A and
pn—1

1
[T5a M) 5 = (&g — Eivgig) — TnOibivsj + SPiTnkn > G
l=—pn

if (i,7) € N. For explicit Euler’s scheme the approximated solution would be

uler —ex 1 o
U527 Re], 5 o= €+ T3l = (1 — Tuoisj)Eimjj + Pi=jln > G

l=—pn

Our aim for explicit and implicit Euler’s schemes is to get the order p = 1. So
according to (5.3) for this scheme all the terms Vj,,k > 2 can be neglected and it is
enough to take into account Vp ,, and V7, in other words, make a comparison only with
Wo,» which leads the following estimation:

[Won(mn)6 = Upn =™ *P&lijl = |(exp (=muoi—j) = 1+ Tu0i—j)6i s
1 e
+5Pi-jTnkn Z §i—ju(exp (—=mp0i—;) — 1)].
l=—pin
Consequently

IWoun(10)€ =l < ATZIE]ln

where the constant A depends only on o, but independent of 7,.

For implicit Euler’s scheme the approximated solution would be

[ Euler 1mp€]” _ [( TEuler 1mp> 1§]i’j
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or

2
&g =[n— T
pn—1

1
=ij — (Mij = Nit+jj) — TaOillitjj + §pi7-nkn Z M1l
l=—pn
1 Mn_l
= Nitjj + TnOilitjj — §pi7—nk7n Z Ni+i,0
l=—pn

= [({ + S)li+jj

where [Snli; = Tu0i—j1ij — $picjTokn Sopm, Thiejiii- S0, we get &5 = [(I + S)nli;
which gives,
lij =[(I+S)""N¢;;  where [N¢i; =&,

Therefore
i = [(I—S8)NEgi;+ O3 [N,
1 ol
= ﬁz‘—j,j - Tnffi—jﬁz‘—j,j - §pi—j7—nk7n Z [Ng]i—j—i—l,l + @(Tg)gi—jd
l=—pn
1 iy
= (1—=m0i—5)&—j;+ §pi—j7'nkn Z Gimju+O(T)Ei—);
l=—pin

Once more a comparison with respect to the our approximate solution Wy, (t) leads
the following estimation:

[(Won()€ = Upn ™ ™ Eligl = [(exp (=Tn0i—j) = L+ Tn0i—j)éirjj
1 Hn 1
+§pi—j7—nkn l Z gi—j,l(exp (_Tnai—j) - 1)
=—ln

+O(72)6i-5,41
and
[Won (7)€ = nlln = O(77)
which gives the desired result.
5.2. Crank-Nicholson scheme for linear transport equation with production.

For this scheme, we define two matrix operators Tz(’ln) and Tz(’zn) in £(X,,) as

1
Wigdaj?ZQQF%J'—&J)—7h%;g§_gj+ﬂméfh—gpg
and
(2) (£ . e S
[T2,n€]i,j = 2(&; — €i+%,j) - TnUH%fH%,j + [dng]i+%7i+%

We define also the following operator

(M€l = [(1 - %Tl)(f + %Tl)_lé]i,j where  [T1€];; = Tnoi&ij — [Fnkli
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We remark that

1 - _ ,
(I +5T20)elig = &g+ (&g, &)~ —5 &g, 5losl 1,
1
= (- 5T8, g,
and
1
(= 3TMiingy = Mlimsy — (Milimjy — M€,y )
0,_iTn P,_iTn pnl
2 . 2
+ 2 [Mlg]i—%,j - A knlz Mlg l
_—/J,n
1
= [(I+ §T1)M1€],_a
1 1 1
= [+ 5T)U = 5T+ 5Th)” '),
1
= [(I - §T1)£L’_%7j
1
= [T+ 5758k
By defining the approximate solution as
r—Ni 1 1 —
g = VS5 ey = [+ 5TED 0 = 5TE) 7 €lag = Pheliogy
1 1.
= [(I- §T1)(I+ §T1) eimjg
1 1 1
= [T = 5T — 5T+ T2+ O)elics

= [Ty + 5T+ Or)eli s

and we get therefore

L
iy = &i—jj— 0ijTn&i—jj + 2] §ivjg T [ Fn8livjij = OimjTalFnlijij
pl n
N e PR i 113 e
i—J,0—7]
o? 1 ol
= (1—0'7;_an 2] )5@ N ian pz ank Z §i— ]l Ui—an)
l=—pin
p? el
+ - J nk Z éz ]l+o( )[g]i—j,j
l=—pn

In this scheme any V},,,, when k£ > 3 cannot affect on the order of rational approxima-
tion, so we shall make the comparison only with W7 ,,(¢) which leads following estimation
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o2 2

W10 (70)€ — U2cr " lijl = [(exp(rn0i—j) — 1+ Tp0i—j + 7 n)gz —35J

1 ol
+§pi_j7'nk:n Z &i—ji(exp(—Tnoi—j) — 1+ Thoi—j)

l=—pn
P ] 2 Hedl

+ kn, Z &i—ji(2exp(—mpoi—j) — 1)
l=—pn

~O(1)&i-j.41.

and

”[Wl n(Tn)€ — Ugr leun = O(Trgz)v

consequently the order of the scheme would be p = 2.

5.3. Predictor-corrector scheme for linear transport equation with produc-

tion. Here we define four matrix operators

. [Tz(,ln)ﬁ] - 3[TEu1er epr] ,J-i—[ Euler— expg]Z i z—%,j_% [Eng]i—j,i—j,j
—3 [Znli_gji0jj—[Znél;_ didg [ n€li s %J»—Fg[«Q{ng]i—j,i—j‘F%[dng]i—2j,i—2j

[ Euler expé.]

)y iy — Tkl
o [132€)i; = [TOns]mm wlisd g3 Entlisgisg—3 [Enllis =3 [Znll;_s 5,
+ 3008l a, =3 Bnling st Bl +§’[En£] gamg g T g
+ 5[«9{ £l %Z + %[9‘2{ limji-j + %[dnﬂw%ﬂy - é[dnf]“y - 5[»‘27115]2-_%,2-_%'
— sl 3 neli s s
o [10)€)s; = [TOna-,j——[ nliirs 3l i g~ Bnlliy s s Bl gy
%[«Q{nﬂ i+l T3 [«@75]@ —ji—d [ §]i+1i+j—[~‘2{n§]-_l
o [TX0elis =206 45— &)~ [Snbliyig;+ [Tl g iy

And we define also the following operator

1 2 1, 9.1
[M2€lij = [(1 — ng)(I + ng + 6T1) €lij where [Ti€];j = [Xn€];; ; — (@€l
By a long calculation which will be detailed in the Appendix 2, we prove that
1~n 2 1 1 1 1
§T2(,72)€]i,j =3 =36+ 5 = 3T)8i—2j5 + (I = 3T1)&; 4

1
- (I - —Tl)fi—gj,j (5-8)

(I +
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22
and
(= 3T+ ST M5 = 210 = 570) gy + 31T - 5TV
FI =318y, ~ [ - 5T 69
Therefore, we have
(0 + ST = [ = 3T + STOTE Mg

and consequently, by defining
2.2 | 10,04, 1 a
= 1= ST + STNT) T (L4 STEE = Mgl

[n]ivj = [U;l;Le_cordivj 37 2m 6 2n"2mn
1 2 1,
= [(I- I+ 5T+ 6T1) Eli-j;
1 1
= [(I-T1+ §T12 - 6T13 +O(1))Eli-jj
2 2 3 3 2 2
of T, 0D T, of T,
= (1 — 0i—jTn + Jr n)fi_jJ' + (1 — 0i—jTn + )
2 6 2
1 1
+5Pinj(1 = 0imjTa + 3DiyT, 3)) [ Tn&lijimj + O(T)&imj

In this scheme any V}, ,,, when k > 4 cannot affect on the order of rational approx-
imation, so we shall take W5, (t) as the approximate solution and a comparison with
respect to this approximate solution leads to following estimation :

o2 12 b
HW2,n(Tn)§ - 77]1’,]" = ’(eXP(_Tnai—j) — 1+ m0i—; — 9 + 6 )fi—m
n—1 2 2
1 " o T
+§pi—j7—nkn Z éi—j,l(exp(_Tnai—j) -1+ TnOi—j — - 2J n)
l=—pn
1 ol
+Zp22_j7—5kn Z gi—j,l(Z eXp(_TnO'i—j) -1+ Tnai—j)
l=—pin
1 ol
+Ep§_ﬂ§kn D ia(6exp(=Taoinj) — 1) = 0(7)éij
l=—pin
and

[[Wan(10)€ = US™E|n = O(ry,),
consequently the order of the scheme would be p = 3.
6. THE NUMERICAL ILLUSTRATIONS

This section is devoted to give the numerical approximation given by the different
algorithm such as Fuler explicit and implicit methods, Crank-Nicolson method and
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Predictor-Corrector. So, we use the Fortran 77 compiler to give the numerical approx-
imation in the different cases of our transport equation. The numerical simulations
which realized for a positive function and with non entrance boundary condition give
an idea on the distribution of particles in the phases space and verify also our theoretical
results in this work.

In the sequel, we will give some numerical examples for our different numerical
schemes. In those examples, we look to the evolution of the transport equation in
five times. For a = 1,m, = 200 and u, = 100n or, in order to get 7,k,/h, = 1 we
have to take 7,, = 0.5 which fix the choice of n. The five times which will be illustrated
there are: t = k7, for k = 1,2,3,10 and k& = 400. Also, for those examples we will take
the following initial data

-1
= 6.1
f(a,v) exp<1_x2> (6.1)
which is independent of the velocity v.

6.1. The numerical approach in the case of collision-free transport. To have
an idea on the evolution of particles in the case of collision-free transport problem we
have compiled the approximation of the exact solution given by (3.2), since as we have
proved in Theorem 3.3 all the different schemes ends to this discrete form of the exact
solution. In the following figures we illustrate numerically the evolution of the pure
translation of an initial solution with non entrance boundary condition. We remark
that the large time, which corresponds here to k = 400, it remains always a residual
that corresponds to f(x,0) of the initial data, since we have not excluded zero from the
velocity interval [—1,1].

6.2. Error estimates. In the case of transport with pure absorption, we find the same
feature of numerical illustration. Since in this case we have an explicit representation of
the solution given in (4.1) it is more interesting to give the error made by the schemes
of Euler, Crank-Nicolson and Predictor-Corrector.

In fact, if €, = ||U1 n (k7)) Pn f — PyUr(kTy) f |, then for the function f given in (6.1)
and k =1 we have

Euler’s implicit | Euler’s explicit | Crank-Nicolson | Predictor-Corrector
en <45x107% |6, <45x107% | 6, <4x10°° €n <3 %1078

In the case of transport problem with production term, we do not have an explicit
solution at our disposal, so we compute &, = ||[Wn n(k75)§ — 1|n, then for N =k =1
and we get the following table for correspondent 7.

Euler’s implicit | Euler’s explicit | Crank-Nicolson | Predictor-Corrector
en <45x107" e, <45 x 107" | £, <7x107° en <3x 1077

7. APPENDIX 1.

The well-known Chernoff’s Theorem asserts that
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Theorem 7.1. If X is a Banach space and {V (t)}+>0 is a family of contractions on X
with V(0) = I. Suppose that the derivative V'(0)f exists for all f in a set D and the

closure A of V'(0) |p generates a Cy semigroup S(t) of contractions. Then, for each
fex,

lim HV( )" f =S =0, (7.1)

n—oo
uniformly for t in compact subsets of R+.

In this section we will use the Chernoff’s theorem to prove the following result.

Theorem 7.2. Let A be the generator of a Cy-semigroup So(t) such that ||So(t)] <
e ! (w > 0), and B(t) be a family of bounded operators such that ||B(t)|| < w for all
t >0, and A+ B(0) defined in the D(A) generates a Cy-semigroup S(t) of contractions.
Then, the conclusion of (7.1) holds for V(t) := Sp(t) + fot So(t — s)B(s)ds.

Proof.  We remark that V(0) = I, V'(0)f = (A + B(0))f for all f € D(A) and
finally V'(¢) is of contraction. In fact,

V@I < [1So@I + H/O So(t — s)B(s)ds|

t b b
e vt 4 b/ e w(t=5)qs — <1 — —) e w4 — <1,
0 w w

where b = sup; || B(t)||. Since all the assumptions of Theorem 7.1 are fulfilled, the
conclusion infers from this Theorem. O
In [CE|, we have proved a similar version of this theorem where V(t) := Sp(t) +

fg So(s)B(0)ds and we have proved also the following theorem:

Theorem 7.3. In the Banach space X = Li((—a, a)x[—1,1]) let us define the operators
Tof = —vof/ox, Tvf := Tof —o(x)f, Tf :=Tof + Af and Tf = T f + Af (A
being defined in Remark 1.5). Any of these operators defined on D(Ty) == {f € X
vof/0x € X, f(—a,v > 0) =0 and f(a,v < 0) = 0} generates a Cy-semigroup which
18 given respectively by:
(0) Uy(t) which are contractions;
(1) Uy(t) with |Uy(t)|| < e sm;
(2) V(1) with |V ()] < ko
(3) U(t) with |U(t)|| < elbm—sm)t,

This Theorem is already used in the proof of Theorem 5.2.

8. APPENDIX 2.

In this section, we will detail the calculation to prove the formulas (5.8) and (5.9).

171 2 1 2 1
(1 + 3T9NE) iy = 26y + 36imajy + gy~ S35 — §0i-iTnSiji — 50i-2jTni-2j
i} “1
- 30, &gt 10, 5 Tn&i 245 + $Di—Tnkn ST Gimga =Pi- 2an/€ Zzﬂfw &i—2j1
pon—1 1 pn—1 —
szJTnk El—n—un —i1 — 8P SJTnk Zl—n—un i35 = (51 3 T TnUl i&i—3.j

- -

l
6p17‘]7-’n,k’n, l__Hn gz Jl) 1(5172],‘] - §0'172j7-n§i72j,j + 6pz 237-nk Zl—_un 51 2Jl)
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+ (51;_']' - é o,_ J'Tnf;_'j + GplflTnk Z;L—n:;n 17_ ) (51—— - % g,_ Sangif—jj
n_l

+ ép '*JTnk Zﬁf—u z——,l) = 3(1 - Tl)fz —jg T (I - 1T1)§z 25 + (I — —Tl)fl_7

—(I- 11“1)5175“7 which give (5.8).

TiMalij; = Cij + EDij,
where C; j = [Mag]i_;; — 2 (M2§ 433~ (M j) - ?UF%[MQQM oy 0;[Mali_aj;
+ 50§ [Ma&li—j i+ 07%[M2 imji— 9 2o [Ma€], Y +Tnal.7%-[Mzg]if%)j—%ai,gj[M2§]i7%)j
- Tnaz_l][M2§]l_f] - 4pz —iTnkn Zl_fﬂ [M2li—ju - 6191_11771]“ Z;L:n:i [M2€]i—j,
—qPi=2jTnkn Zfﬁ‘:ﬁn [Motlizaja—3p, 3 Tk S0 [Mo€l, g i §picyTakn Y027, [M2€], s,

+%pif%7-"k" Zfzn:plm [M2§]if%l+ﬁpzf2ﬂnkn S [MQg]i*%,l_F%pi*%T"k" Z#jiln (M€

To have the formula (5.9), we write [({ — %Té,ﬂ + %Tz(
o],
(M.

l=—pin l=—p
and
(4 (4 4
D; ;= ([T2(,72M2§]i7%j,j — [T3Y) Mye), i, )-%Tndi JTSIMag],_ s = b0y 2(,72M2§]i7%j,j
_Tnaifg[fz(ﬁzMﬁ]i,ﬂ'Tn o5 2nM2§]z JiTgPi- JTnkn 7:"__;” [T2(1472M2§]i7%,l+%pi72j7'nkn><

fin—1 [T2(74,,2M2§]1‘_32fj)l + ipi_%'rnkn Z#niln [T2(jlnM2§]7,,l - %pi_%/rnkn pn —1 [T2(74,,2M2§]i—j,l

l=—pn l=—p l=—pn

= {2([M2§]i—2j,j — [Magli_s;;) — Tnoi—2j[Mali—zj; + FFE Tk e [Mzﬁ]z‘—w,l}

- {2([M2§]i—j,j — [Meflyy )~ Teoi[Ma€lingy BTk, 02T, (M ]i—j,l}

= o {208y — Mgy ) — T ey + Pk I (Mol )

— %Tn0i72j{2([M2§]i72j,j - [M2§]i_%j)j) — TnOi—2j[Ma&li—2j,; + pl%%Tnkn Ef_":;n [M2§]i72j,l}

- Tnai,i{zaMzai,l, — [Matlig) — a0,y [Mat],_y 9 St VA

+ oy {2([Ma], [M2§]z 5~ Tnoi_g[Mzg]i_gj,j+”T‘*Tnknz;::;n[M2sL_%,l}

Rk, YT {2 Elizja—[Mag];_ 5 )= Tnoi—j[Maliju+E5 ok S [M2§]i7j,l’}

+um n l__,m{ [Ma€]i2j1—[Ma€]i_3 ;1) ~Tn0i—2j[Ma€li 2y 1+ 252 mkn 3107, [Mzﬁ]i_2j,z'}
o S {20008,y ~[Matli)—Taor,_y [Ma€];_, pTTnk Zf‘l‘_‘,in[Mzﬁ]P_ 3

— n - n_l

_TZTnkn Ef:—;in{ ([M2§]i——jl_[M2§]i =3l )_Tno [M2§]z——gl+ Tnk Ef——un[ ]if%,l'}'
So, we get ClJ+1D;] = [M2§]z ]J+ TnOi— J[M2§]l J>J+i0 [M2§]z ji T3 [M2§]l 25,5

+3 5 Tn0i—2;[Ma2g]i- 2JJ+18 i 23[M2§]z 2JJ+[M2§]17_J+ Tn 17_[M2§]17_J+ (5 U [MQg]zf%,j

- [M2§]i_%7j - %Tnai_¥[M2§]i_%7’ - %7—202 3J [M2§]1_3_1j + ﬁpi j 2k Z#jil [MQg]lfjJ

l=—pn
n_l n_l n—l
— 50 TaDi—jkn 200, [Mzﬁ]i—j,l—g%i—ﬂnkn 12 [Malijit35D7 0T kn fi,#n [Ms€]i—2j1
%Ui’Qszpi*jk”Zﬁ—_;in[M?g]i*?N — gDi—jTnkn Zz—”—_,in[sz]z—zg,z + 121?. 'T2kn X
el 1 el
‘lu:ﬁun[M2§]z__ - %O’i_%‘ﬂ%pi_%kn Z;L:f# [M2§]z__ - %pl_lTnkn ‘lu:ﬁu [MQg]z__

m n_l
_ %p y 2k, Z;;jn[Mgg]i_%l + 50,5 T si ka0, [Ma€l, s 4 gD, Takn X
l——un [Mg{] ETe Consequently we get [(I — %Tﬁz + %TQ(?;ETM))MQ{]Z- i = 2T+ 31 +
§TH)Matli—jj + 5l(I + 311 + §TT)Ma€lizjy + (I + 3T1 + §T7 )sz]l i [(I + 3T+

§TDMag];_s; 5= 31(1—3Th) &ivjg+3l(I—3T0)Eli2i +[(T—3T1)8),_ s ;—[(T—3T1)Eli_ 355
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[Bak|
[B-T1]
[B-T2]
[Che]
[CE]|
[CLPT]
[E-R|
[Hej|
[H-K]
[Kat|
LeR]
[Pall]
[Pal2]
[Sai]
[Ush]

[Yan|
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