APPROXIMATION IN THE SENSE OF KATO FOR TRANSPORT
PROBLEM

MOHAMED AMINE CHERIF AND HASSAN EMAMIRAD

ABSTRACT. By using Chernoff’s Theorem, we prove that an ap-
proximation of the family {S(t) : t > 0} given by (3.5) converges
in the sense of Kato to transport semigroup.

1. INTRODUCTION.

Let us recall the Chernoff’s Theorem as it is given in |[Che].

Theorem 1.1. Let X be a Banach space and {V (t)}1>0 be a family of contractions on
X with V(0) = I. Suppose that the derivative V'(0)f exists for all f in a set D and the
closure A of V'(0) |p generates a Co—semigroup S(t) of contractions. Then, for each
feX,

. t
lim [[V(=)"f = S@)f|l =0, (1.1)
n—oo n
uniformly for t in compact subsets of R..

In the next section we will use the Chernoff’s theorem to prove the following result.

Theorem 1.2. Let A be the generator of a Cy-semigroup So(t) such that ||So(t)]| <
e ! (w>0), and B a bounded perturbation operator such that ||B|| < w, and A+ B
defined in the D(A) generates a Cy-semigroup S(t) of contractions. Then, the conclusion

of (1.1) holds for V(t) := So(t) + [y So(s)Bds.
Proof. We remark that V(0) = I, V/(0)f = (A+ B)f for all f € D(A) and finally

V(t) is of contraction. In fact,

V@I < [1So@I + H/O So(s)Bds|

t b b
<e w4 b/ e “ds = (1 — —> e W4 — <1,
0 w w

where b = ||B||. Since all the assumptions of Theorem 1.1 are fulfilled, the conclusion
infers from this Theorem. O

In the next section, we define the convergence in the sense of Kato. Finally in the
last section we construct the approximation spaces convergence in the sense of Kato
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and we prove that an approximating family of operators constructed by mean of V()
in transport problem converges in the sense of Kato to the solution of this problem.
This gives a new look to the transport processes given by J. Hejtmanek in [Hej|. In
fact, Hejtmanek used this processes only to Fuler approximation of transport equation,
but we will show in our forthcoming paper that this processes can be applied not only
to Euler schemes but also to Crank-Nicolson and Predictor-Corrector algorithms.

2. CONVERGENCE IN THE SENSE OF KATO

In this paper we give an approximation processus for transport equation not only in
time but also in space. For approximation in space we have to recall the convergence in
the sense of Kato (see |[Kat|). We say that a sequence of Banach spaces {(X,,|.|[») :
n=1,2,---} converges to a Banach space (X, ||.||) in the sense of Kato and we write

X, X x

if for any n there is a linear operator P, € L(X, X,,) (called an approximating operator)
satisfying the following two conditions:

(K1) limp—oo | Poflln = |1 fl|  for any f € X;
(K2) for any f, € X, there exists f(") € X such that f, = P,f(™ with Hf(”)H <
C|| fnlln (C is independent of n).

Let X, — X, B, € L(X,) and B € L(X). We say that B,, converges to B in

the sense of Kato and we write By, Ko Bif limy, oo || BnPrnf — PuBflln = 0 for any
f € X. Let A, and A be the generators of the Cy—semigroups {1}, (t) }+>0 C L£(X,,) and
{T(t) }+>0 C L(X), respectively. Consider the following three conditions:

(A) ( Consistency). There is a complex number A contained in the resolvent sets
Mhen P(An) and p(A), respectively, such that

A—A) 5 - AL
(B) (Stability). There exists a positive constant M and a real number w such that
IT.(t)|| < Me*t, forany t>0 and for any n € N,

(C) (Convergence). For any finite 7' > 0

T, (t) 25 T(t)

uniformly on [0, 77, i.e.

lim sup | T,(¢t)Pnf — P T(t)f|ln =0 forany f € X. (2.1)
= ¢e0,T)

In |Ush| one can retrieve the standard version of the Lax equivalence theorem which
says that the conditions (A) and (B) hold if and only if (C) holds.
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3. APPROXIMATION OF TRANSPORT EQUATION

Here, we consider a matter of particles, constituted of neutrons, electrons, ions and
photons. Each particle moves on a straight line with constant velocity until it collides
with other particle of the supporting medium resulting in absorption, scattering or
multiplication. The unknown of the transport equation is the particle density function
u(x,v,t). This is a function in the phase space (x,v) €  x V C R?" at the time
¢ > 0, which belongs to its natural space X = L'(Q,V). Actually, [ u(x,v,t)dzdv
designates the total number of particles in the whole space £ x V' at the time t. The
general form of the transport problem is the following

% =—v-Vu —o(x,V)u

+ [y p(x, vV, V)u(x, v/, t)dv'  in QxV,
u(x,v,t) =0 if x-v <0, forall xe€ 0N
u(x,v,0) = f(x,v) e X,

(TP)

In this equation which is known as linear Boltzmann equation the first term of the
right hand side —v - Vu(x, v,t) illustrates the movement of the classical group of the
particles in the absent of the absorption and production interactions. The second term
represents the lost of the particles caused by the diffusion or absorption at the point
(x,V) in the phase space. Finally the integral of the last term represents the production
of the particles at the point (x,v) in the phase space. The kernel p(x,v’,v) in this
integral generates the transition of the states of particles at the position x and having
the velocity v/ to the particles at the same position having the velocity v. The velocity
space V is in general a spherical shell in R" as

V:{VGRn | 0§”min§|v|gvmax§+oo}-

In this paper we deal with a particular feature of the transport equation in which
we replace Q, with (—a,a) and we take V := [—1,1]. We assume that o is a strictly
positive continuous function with

0 < sm < o(x) < sy for almost any z € (—a,a) (3.1)
and the kernel p(x,v,v") by %p(:p) which is a positive continuous function independent

of (v,v), such that
0< sup p(z) <kum. (3.2)

z€[—a,a]

With these assumptions the transport problem (TP) can be replaced by the following
particular one

% =—v-Vu—o(z)u+ % f_llp(x)u(x,v,t)dv in (—a,a) x [—1,1];
(TP1) u(—a,v >0,t) =0 and u(a,v < 0,t) =0 for all ¢ > 0;
u(z,v,0) = f(x,v) € L'((—a,a) x [-1,1]).
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Remark 3.1. If we denote the production term Af = %f_llp(x)f(:n,v)dv = p(x)Pf,
with

1
Pf= %/_1 f(z,v)dv, (3.3)

which is a projection on L'((—a,a) x [~1,1]). This space being generating we get
|P|| =1, and ||A|| = kar. Since ||A]| < kpr and for the constant function p(x) = kas we
get the equality.

Theorem 3.2. In the Banach space X = Li((—a, a)x[—1,1]) let us define the operators
Tof = —vof/ox, Tvf := Tof —o(x)f, Tf := Tof + Af and Tf =T f + Af (A
being defined in Remark 3.1). Any of these operators defined on D(Ty) = {f € X :
vof/0x € X, f(—a,v > 0) =0 and f(a,v < 0) = 0} generates a Cy-semigroup which
18 given respectively by:

(0) Up(t) which are of contractions;

(1) Ui(t) with ||Uy(t)]] < e™smt;

(2) V(1) with |V (t)]| < et

(3) U(t) with |U(t)| < elkm—sm)t,

Proof. (0). For t > 0 such that, |z — tv| < a, the semigroup Up(t) f(z,v) = f(x —
tv,v), satisfies ||Up(t) f|| = || f]| and if x —tv < —a or & —tv > a, then Uy(t) f(x,v) = 0.
(1). The Cp-semigroup generated by 77 is

UL(1)f](06,v) = 0= B O f(x — v, v) (3.4)

and

/ / [U1(t) f](x,v)|dzdv < e tSm/ / X — tv,v)|dzdv.

(2). For V(t) we will use the Dyson-Phillips formula:

Vo(t) = Uo(t),  V(t):= ) Valt)
n=0
where .
Vog1(t) = /0 Vo(t — ) AV, (s)ds.

Suppose that ||V, (s)|| < (kars)™/n!, then by induction we get
t
Va0 f] < / IVo(t — 5)AVia(s) fl1ds
/ | AVi () lds < / ka2 g

(kMS)"+1

(n+ 1)

[nalE
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in which we have used Remark 3.1. Consequently,

IV (t) |<Z||V

(3). We argue as in (2), but we replace the Dyson-Phillips formula by U(t) :=
> 1 Un(t) and we deduce by induction for ||Up41(t)]| < e "m (kpt)™/n! that

—ts /‘JMt s
U |<ZIIU |<Z o = elkur—sm)t,

— kat

0

Let us define the approximating spaces X, in this special case. We divide the phase
space (—a,a) X [—1,1] into a finite number of cells by chopping the z interval (—a,a)
into 2m,, equal parts and the v interval [—1, 1] into 2u,, equal parts, h,, and k,, are the
length of these parts, that is,

1
Iy =~ kp=—.
My Hn
Then each cell can be labeled by a pair of integers (i,j) € N ,where
N:: {(Za]) S My - 7_170717"' ,mn-j = —Hn, 7_170717"' Hun}
The number of the particles in cell v(i,7) = [ihy, (i + 1)hy,] X [jkn, (7 + 1)k,] is written

&ij-

We define the set of all real vectors & ; as the Banach space X,, with the norm

£€Xn, Il =D Il
At this point let us prove that the approximating space X,, converges in the sense of
Kato to X. In fact, from property of the positive cone X, of L' it follows that
Lemma 3.3. For P,f ={&; : (i,j) € N'} where

(i+1)h (j+1) kn
& j —/ / f(z,v)dzdv,
n

we have |[Pof|ln = | f]l
Proof. For every f(xz,v) > 0, we get

(i+Dhn  pG+E
1B flln = / / fla,v)dzdv = || £].

Since L'((—a,a) x [~1,1]) is generated by its positive cone X, that is f = f, — f_
with fL > 0. So we get also

[Paflln = [1Pa(f = F )l = 1Bafilln + [[1Paf—lln = IIfl + LF1 = I£1]
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The condition (K1) follows from 3.3 and for the condition (K2) we denote x; ; the
characteristic function of the cell (4, j) and for any {&; ;} € X,, we define f( € X as

f(n) (m) = Zz j —hgrz"]gn Xi,j and we have

@t < Y [
/(—a,a)x[—m %: v(i.7)

A dpdy = 1.
Y(4,3) hnkn

In this section we consider the system (TP1), with the notation of Remark 3.1,
Af = pPf, where P is the projection defined in (3.3).

Here, we do not have at our disposition an explicit expression of the semigroup as

Up(t)f(z,v) = f(z — tv,v) or Uy(t)f(z,v) = e_fot”'(x_sv)dsf(a; — tv,v), but we can
introduce the operator

&ij
hnkn

Xi,j

dodv =) &4,
1,

since

V(1) f](@,0) = e Jo 7@ £ (3 0 )

t 1
+ %/ e Jo ola=ro)dr sv)/ flx — sv,v)dv'ds (3.5)
0 -1
t

=Us(t)f +/0 Ui(s)pPfds = Ui (t)f —1—/0 Ui(s)Afds. (3.6)

The operator V (¢) is not himself a semigroup as Uy(t) or U;(t), but it can act as the
operator function V(¢) in Chernoft’s theorem (Theorem 1.1).
We approximate this operator by

Up (k) = Upn(t)(I + T Ap)E (3.7)

(see Remarks 3.5 (a)), where

—1
knpi g . .
[An€lij = > Ga Vi i <G <pn— L (3.8)

2
l=—pn

with p; = p(0), 0 € [ihy, (i + 1)hy).
Now, let U(t) be the transport semigroup defined in Theorem 3.2, then we have

Theorem 3.4. Under the assumption 2kp; < S, we have the convergence of Uy, (t) to
U(t) in the sense of Kato.

Proof. We have to prove that
HUn(t)Pnf - PnU(t)an — 0, (3'9)

as n — 00.
First we prove that

Un (k1) Pof = P,V (10)* f. (3.10)
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In fact,

PV (m)f = P[ = Jg" ol Svdsf(x—Tnv,fu)

1 Tn R 1
+ - / e~ Jo olemrdry o) / f(z — sv, v/)dv/ds}
0 —1

2
knTh —TnOi—j =
= exp(=Tn0i—j)i—jj + —5 Pi-je " D i
l=—pin
= U n(mn)(I + TnAn)f]m

= Ul,n('rn)(] + TnAn)Pnf - Un(Tn)Pnf
Hence, by taking g = V(7,)f, we obtain
PnV(Tn)2f = an(Tn)g = Un(Tn)Png = Un(Tn)2Pnf7

and by induction we retrieve (3.10). Once the identity (3.10) is proven, we replace
U, (t)Pyf by P,V (1,)"f in (3.9) and we use the isometric character of P, (see Lemma
3.3), then we get

[Un @) Prf = PaU@) flln = [V (/)" f = U(t) f].

Now, if w = s, — kas, thanks to Theorem 3.2 (3), U(t) satisfies |U(¢)|| < e™*¢, and
since 2kp; < Sp,, we get kyr < w. So we can replace in Theorem 1.2, So(t) by Ui (t) and
B by the production operator A, the formula (3.6) show that we can use this Theorem
to prove that (3.9) holds. O

Remark 3.5. (a) After replacing the integral fot o(ihy, — sjky)ds by 0'( ), where

oW

7.7

MN

o(thy — jkTpky). (3.11)

= Tp

—_

The approzimation of Uy given by (3.4) would be

ol
fﬁ = |

Upn(t) =exp ( ])) f(ihy — njTnkn, jkn),
where 0;_y; = o(hn(i — kj)). Replacing f(ihy, — jntnkn, jkn) by &i—njj as before
we get
[Urn(t)€lij = exp <—0§Z~)) Eimnjj- (3.12)
So

[Ul,n(Tn)g]i,j = e_TnUiijEi—jJ"
(b) We note that by taking k = n, U,(t) given in (3.7), can be written as

Un(t) = Upn(t (chm n )
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Hence
Hn—1

n kn
[Un(t)g]z;j = [Ul,n(t)g]i,j + Urn(t) ZCS(TnPi)k o Z &il-
k=1 l=—pn
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