
APPROXIMATION IN THE SENSE OF KATO FOR TRANSPORTPROBLEMMOHAMED AMINE CHERIF AND HASSAN EMAMIRADAbstra
t. By using Cherno�'s Theorem, we prove that an ap-proximation of the family {S(t) : t ≥ 0} given by (3.5) 
onvergesin the sense of Kato to transport semigroup.1. Introdu
tion.Let us re
all the Cherno�'s Theorem as it is given in [Che℄.Theorem 1.1. Let X be a Bana
h spa
e and {V (t)}t≥0 be a family of 
ontra
tions on
X with V (0) = I. Suppose that the derivative V ′(0)f exists for all f in a set D and the
losure Λ of V ′(0) |D generates a C0�semigroup S(t) of 
ontra
tions. Then, for ea
h
f ∈ X,

lim
n→∞

‖V (
t

n
)nf − S(t)f‖ = 0, (1.1)uniformly for t in 
ompa
t subsets of R+.In the next se
tion we will use the Cherno�'s theorem to prove the following result.Theorem 1.2. Let A be the generator of a C0-semigroup S0(t) su
h that ‖S0(t)‖ ≤

e−ωt (ω ≥ 0), and B a bounded perturbation operator su
h that ‖B‖ < ω, and A + Bde�ned in the D(A) generates a C0-semigroup S(t) of 
ontra
tions. Then, the 
on
lusionof (1.1) holds for V (t) := S0(t) +
∫ t

0 S0(s)Bds.Proof. We remark that V (0) = I, V ′(0)f = (A + B)f for all f ∈ D(A) and �nally
V (t) is of 
ontra
tion. In fa
t,

‖V (t)‖ ≤ ‖S0(t)‖ + ‖

∫ t

0
S0(s)Bds‖

≤ e−ωt + b

∫ t

0
e−ωsds =

(
1 −

b

ω

)
e−ωt +

b

ω
≤ 1,where b = ‖B‖. Sin
e all the assumptions of Theorem 1.1 are ful�lled, the 
on
lusioninfers from this Theorem. �In the next se
tion, we de�ne the 
onvergen
e in the sense of Kato. Finally in thelast se
tion we 
onstru
t the approximation spa
es 
onvergen
e in the sense of Kato1991 Mathemati
s Subje
t Classi�
ation. 65M12, 65J10.Key words and phrases. Convergen
e in the sense of Kato, Transport semigroup.1



2 MOHAMED AMINE CHERIF AND HASSAN EMAMIRADand we prove that an approximating family of operators 
onstru
ted by mean of V (t)in transport problem 
onverges in the sense of Kato to the solution of this problem.This gives a new look to the transport pro
esses given by J. Hejtmanek in [Hej℄. Infa
t, Hejtmanek used this pro
esses only to Euler approximation of transport equation,but we will show in our forth
oming paper that this pro
esses 
an be applied not onlyto Euler s
hemes but also to Crank-Ni
olson and Predi
tor-Corre
tor algorithms.2. Convergen
e in the sense of KatoIn this paper we give an approximation pro
essus for transport equation not only intime but also in spa
e. For approximation in spa
e we have to re
all the 
onvergen
e inthe sense of Kato (see [Kat℄). We say that a sequen
e of Bana
h spa
es {(Xn, ‖.‖n) :
n = 1, 2, · · · } 
onverges to a Bana
h spa
e (X, ‖.‖) in the sense of Kato and we write

Xn
K
−→ Xif for any n there is a linear operator Pn ∈ L(X,Xn) (
alled an approximating operator)satisfying the following two 
onditions:(K1) limn→∞ ‖Pnf‖n = ‖f‖ for any f ∈ X;(K2) for any fn ∈ Xn, there exists f (n) ∈ X su
h that fn = Pnf (n) with ‖f (n)‖ ≤

C‖fn‖n (C is independent of n).Let Xn
K
−→ X, Bn ∈ L(Xn) and B ∈ L(X). We say that Bn 
onverges to B inthe sense of Kato and we write Bn

K
−→ B if limn→∞ ‖BnPnf − PnBf‖n = 0 for any

f ∈ X. Let An and A be the generators of the C0�semigroups {Tn(t)}t≥0 ⊆ L(Xn) and
{T (t)}t≥0 ⊆ L(X), respe
tively. Consider the following three 
onditions:(A) ( Consisten
y). There is a 
omplex number λ 
ontained in the resolvent sets⋂

n∈N
ρ(An) and ρ(A), respe
tively, su
h that

(λ − An)−1 K
−→ (λ − A)−1.(B) (Stability). There exists a positive 
onstant M and a real number ω su
h that

‖Tn(t)‖ ≤ Meωt, for any t ≥ 0 and for any n ∈ N.(C) (Convergen
e). For any �nite T > 0

Tn(t)
K
−→ T (t)uniformly on [0, T ], i.e.

lim
n→∞

sup
t∈[0,T ]

‖Tn(t)Pnf − PnT (t)f‖n = 0 for any f ∈ X. (2.1)In [Ush℄ one 
an retrieve the standard version of the Lax equivalen
e theorem whi
hsays that the 
onditions (A) and (B) hold if and only if (C) holds.



APPROXIMATION FOR TRANSPORT PROBLEM 33. Approximation of transport equationHere, we 
onsider a matter of parti
les, 
onstituted of neutrons, ele
trons, ions andphotons. Ea
h parti
le moves on a straight line with 
onstant velo
ity until it 
ollideswith other parti
le of the supporting medium resulting in absorption, s
attering ormultipli
ation. The unknown of the transport equation is the parti
le density fun
tion
u(x,v, t). This is a fun
tion in the phase spa
e (x,v) ∈ Ω × V ⊂ R

2n at the time
t ≥ 0, whi
h belongs to its natural spa
e X = L1(Ω, V ). A
tually, ∫Ω×V

u(x,v, t)dxdvdesignates the total number of parti
les in the whole spa
e Ω × V at the time t. Thegeneral form of the transport problem is the following
(TP)





∂u
∂t

= −v · ∇u −σ(x,v)u

+
∫
V

p(x,v′,v)u(x,v′ , t)dv′ in Ω × V,

u(x,v, t) = 0 if x · v < 0, for all x ∈ ∂Ω

u(x,v, 0) = f(x,v) ∈ X,In this equation whi
h is known as linear Boltzmann equation the �rst term of theright hand side −v · ∇u(x,v, t) illustrates the movement of the 
lassi
al group of theparti
les in the absent of the absorption and produ
tion intera
tions. The se
ond termrepresents the lost of the parti
les 
aused by the di�usion or absorption at the point
(x,v) in the phase spa
e. Finally the integral of the last term represents the produ
tionof the parti
les at the point (x,v) in the phase spa
e. The kernel p(x,v′,v) in thisintegral generates the transition of the states of parti
les at the position x and havingthe velo
ity v

′ to the parti
les at the same position having the velo
ity v. The velo
ityspa
e V is in general a spheri
al shell in R
n as

V = {v ∈ R
n | 0 ≤ vmin ≤ |v| ≤ vmax ≤ +∞}.In this paper we deal with a parti
ular feature of the transport equation in whi
hwe repla
e Ω, with (−a, a) and we take V := [−1, 1]. We assume that σ is a stri
tlypositive 
ontinuous fun
tion with

0 < sm ≤ σ(x) ≤ sM for almost any x ∈ (−a, a) (3.1)and the kernel p(x, v, v′) by 1
2p(x) whi
h is a positive 
ontinuous fun
tion independentof (v, v′), su
h that

0 < sup
x∈[−a,a]

p(x) ≤ kM . (3.2)With these assumptions the transport problem (TP) 
an be repla
ed by the followingparti
ular one
(TP1)





∂u
∂t

= −v · ∇u − σ(x)u + 1
2

∫ 1
−1 p(x)u(x, v, t)dv in (−a, a) × [−1, 1];

u(−a, v ≥ 0, t) = 0 and u(a, v ≤ 0, t) = 0 for all t > 0;

u(x, v, 0) = f(x, v) ∈ L1((−a, a) × [−1, 1]).



4 MOHAMED AMINE CHERIF AND HASSAN EMAMIRADRemark 3.1. If we denote the produ
tion term Af = 1
2

∫ 1
−1 p(x)f(x, v)dv = p(x)Pf ,with

Pf =
1

2

∫ 1

−1
f(x, v)dv, (3.3)whi
h is a proje
tion on L1((−a, a) × [−1, 1]). This spa
e being generating we get

‖P‖ = 1, and ‖A‖ = kM . Sin
e ‖A‖ ≤ kM and for the 
onstant fun
tion p(x) = kM weget the equality.Theorem 3.2. In the Bana
h spa
e X = L1((−a, a)×[−1, 1]) let us de�ne the operators
T0f := −v∂f/∂x, T1f := T0f − σ(x)f , T̃ f := T0f + Af and Tf := T1f + Af (Abeing de�ned in Remark 3.1). Any of these operators de�ned on D(T0) := {f ∈ X :
v∂f/∂x ∈ X, f(−a, v ≥ 0) = 0 and f(a, v ≤ 0) = 0} generates a C0-semigroup whi
his given respe
tively by:(0) U0(t) whi
h are of 
ontra
tions;(1) U1(t) with ‖U1(t)‖ ≤ e−smt;(2) V (t) with ‖V (t)‖ ≤ ekM t;(3) U(t) with ‖U(t)‖ ≤ e(kM−sm)t.Proof. (0). For t > 0 su
h that, |x − tv| < a, the semigroup U0(t)f(x, v) = f(x −
tv, v), satis�es ‖U0(t)f‖ = ‖f‖ and if x− tv < −a or x− tv > a, then U0(t)f(x, v) = 0.(1). The C0-semigroup generated by T1 is

[U1(t)f ](x,v) := e−
R t

0
σ(x−sv)dsf(x− tv,v) (3.4)and ∫ a

−a

∫ 1

−1
|[U1(t)f ](x,v)|dxdv ≤ e−tsm

∫ a

−a

∫ 1

−1
|f(x − tv,v)|dxdv.(2). For V (t) we will use the Dyson-Phillips formula:

V0(t) = U0(t), V (t) :=

∞∑

n=0

Vn(t),where
Vn+1(t) =

∫ t

0
V0(t − s)AVn(s)ds.Suppose that ‖Vn(s)‖ ≤ (kMs)n/n!, then by indu
tion we get

‖Vn+1(t)f‖ ≤

∫ t

0
‖V0(t − s)AVn(s)f‖ds

≤

∫ t

0
‖AVn(s)f‖ds ≤

∫ t

0
kM

(kMs)n

n!
‖f‖ds

=
(kMs)n+1

(n + 1)!
‖f‖.



APPROXIMATION FOR TRANSPORT PROBLEM 5in whi
h we have used Remark 3.1. Consequently,
‖V (t)‖ ≤

∞∑

n=0

‖Vn(t)‖ ≤
∞∑

n=0

(kM t)n

n!
= ekM t.(3). We argue as in (2), but we repla
e the Dyson-Phillips formula by U(t) :=∑∞

n=1 Un(t) and we dedu
e by indu
tion for ‖Un+1(t)‖ ≤ e−tsm(kM t)n/n! that
‖U(t)‖ ≤

∞∑

n=1

‖Un(t)‖ ≤
∞∑

n=1

e−tsm
(kM t)n−1

(n − 1)!
= e(kM−sm)t.

�Let us de�ne the approximating spa
es Xn in this spe
ial 
ase. We divide the phasespa
e (−a, a) × [−1, 1] into a �nite number of 
ells by 
hopping the x interval (−a, a)into 2mn equal parts and the v interval [−1, 1] into 2µn equal parts, hn and kn are thelength of these parts, that is,
hn =

a

mn
, kn =

1

µn
.Then ea
h 
ell 
an be labeled by a pair of integers (i, j) ∈ N ,where

N := {(i, j) : i = −mn, · · · ,−1, 0, 1, · · · ,mn. j = −µn, · · · ,−1, 0, 1, · · · , µn}.The number of the parti
les in 
ell γ(i, j) = [ihn, (i + 1)hn]× [jkn, (j + 1)kn] is written
ξi,j.We de�ne the set of all real ve
tors ξi,j as the Bana
h spa
e Xn with the norm

ξ ∈ Xn, ‖ξ‖n =
∑

i,j

|ξi,j|.At this point let us prove that the approximating spa
e Xn 
onverges in the sense ofKato to X. In fa
t, from property of the positive 
one X+ of L1 it follows thatLemma 3.3. For Pnf = {ξi,j : (i, j) ∈ N} where
ξi,j =

∫ (i+1)hn

ihn

∫ (j+1)kn

jkn

f(x, v)dxdv,we have ‖Pnf‖n = ‖f‖.Proof. For every f(x, v) ≥ 0, we get
‖Pnf‖n =

∑

i,j

∫ (i+1)hn

ihn

∫ (j+1)kn

jkn

f(x, v)dxdv = ‖f‖.Sin
e L1((−a, a) × [−1, 1]) is generated by its positive 
one X+, that is f = f+ − f−with f± ≥ 0. So we get also
‖Pnf‖n = ‖Pn(f+ − f−)‖n = ‖Pnf+‖n + ‖Pnf−‖n = ‖f+‖ + ‖f−‖ = ‖f‖.

�



6 MOHAMED AMINE CHERIF AND HASSAN EMAMIRADThe 
ondition (K1) follows from 3.3 and for the 
ondition (K2) we denote χi,j the
hara
teristi
 fun
tion of the 
ell γ(i, j) and for any {ξi,j} ∈ Xn we de�ne f (n) ∈ X as
f (n)(x) =

∑
i,j

ξi,j

hnkn
χi,j and we have

∫

(−a,a)×[−1,1]
|f (n)(x)|dxdv ≤

∑

i,j

∫

γ(i,j)

∣∣∣∣
ξi,j

hnkn
χi,j

∣∣∣∣ dxdv =
∑

i,j

|ξi,j|,sin
e ∫
γ(i,j)

χi,j

hnkn
dxdv = 1.In this se
tion we 
onsider the system (TP1), with the notation of Remark 3.1,

Af = pPf , where P is the proje
tion de�ned in (3.3).Here, we do not have at our disposition an expli
it expression of the semigroup as
U0(t)f(x, v) = f(x − tv, v) or U1(t)f(x, v) = e−

R t

0
σ(x−sv)dsf(x − tv, v), but we 
anintrodu
e the operator

[V (t)f ](x, v) := e−
R t

0
σ(x−sv)dsf(x − tv, v)

+
1

2

∫ t

0
e−

R s

0
σ(x−rv)drp(x − sv)

∫ 1

−1
f(x − sv, v′)dv′ds (3.5)

= U1(t)f +

∫ t

0
U1(s)pPfds = U1(t)f +

∫ t

0
U1(s)Afds. (3.6)The operator V (t) is not himself a semigroup as U0(t) or U1(t), but it 
an a
t as theoperator fun
tion V (t) in Cherno�'s theorem (Theorem 1.1).We approximate this operator by

Un(kτn) := U1,n(t)(I + τnAn)k (3.7)(see Remarks 3.5 (a)), where
[Anξ]i,j :=

knpi

2

µn−1∑

l=−µn

ξi,l ∀j, −µn 6 j 6 µn − 1. (3.8)with pi = p(θ), θ ∈ [ihn, (i + 1)hn).Now, let U(t) be the transport semigroup de�ned in Theorem 3.2, then we haveTheorem 3.4. Under the assumption 2kM < sm, we have the 
onvergen
e of Un(t) to
U(t) in the sense of Kato.Proof. We have to prove that

‖Un(t)Pnf − PnU(t)f‖n → 0, (3.9)as n → ∞.First we prove that
Un(kτn)Pnf = PnV (τn)kf. (3.10)



APPROXIMATION FOR TRANSPORT PROBLEM 7In fa
t,
PnV (τn)f = Pn

[
e−

R τn
0

σ(x−sv)dsf(x − τnv, v)

+
1

2

∫ τn

0
e−

R s

0
σ(x−rv)drp(x − sv)

∫ 1

−1
f(x − sv, v′)dv′ds

]

= exp(−τnσi−j)ξi−j,j +
knτn

2
pi−je

−τnσi−j

µn−1∑

l=−µn

ξi−j,l

= [U1,n(τn)(I + τnAn)ξ]
i,j

= U1,n(τn)(I + τnAn)Pnf = Un(τn)Pnf.Hen
e, by taking g = V (τn)f , we obtain
PnV (τn)2f = PnV (τn)g = Un(τn)Png = Un(τn)2Pnf,and by indu
tion we retrieve (3.10). On
e the identity (3.10) is proven, we repla
e

Un(t)Pnf by PnV (τn)nf in (3.9) and we use the isometri
 
hara
ter of Pn (see Lemma3.3), then we get
‖Un(t)Pnf − PnU(t)f‖n = ‖V (t/n)nf − U(t)f‖.Now, if ω = sm − kM , thanks to Theorem 3.2 (3), U(t) satis�es ‖U(t)‖ ≤ e−ωt, andsin
e 2kM < sm, we get kM < ω. So we 
an repla
e in Theorem 1.2, S0(t) by U1(t) and

B by the produ
tion operator A, the formula (3.6) show that we 
an use this Theoremto prove that (3.9) holds. �Remark 3.5. (a) After repla
ing the integral ∫ t

0 σ(ihn − sjkn)ds by σ
(n)
i,j , where

σ
(l)
i,j := τn

l∑

k=1

σ(ihn − jkτnkn). (3.11)The approximation of U1 given by (3.4) would be
U1,n(t) = exp

(
−σ

(n)
i,j

)
f(ihn − njτnkn, jkn),where σi−kj = σ(hn(i − kj)). Repla
ing f(ihn − jnτnkn, jkn) by ξi−nj,j as beforewe get

[U1,n(t)ξ]i,j = exp
(
−σ

(n)
i,j

)
ξi−nj,j. (3.12)So

[U1,n(τn)ξ]
i,j

= e−τnσi−jξi−j,j.(b) We note that by taking k = n, Un(t) given in (3.7), 
an be written as
Un(t) = U1,n(t)

(
n∑

k=0

Ck
n(τnAn)k

)
.



8 MOHAMED AMINE CHERIF AND HASSAN EMAMIRADHen
e
[Un(t)ξ]i,j = [U1,n(t)ξ]

i,j
+ U1,n(t)

(
n∑

k=1

Ck
n(τnpi)

k

)
kn

2

µn−1∑

l=−µn
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