SEMCLASSICAL LIMIT OF HUSIMI FUNCTION

HASSAN EMAMIRAD AND PHILIPPE ROGEON

Abstract. We will show that Liouville and quantum Liouville operators \(L \) and \(L_\hbar \) generate two \(C_0 \)-groups \(e^{tL} \) and \(e^{tL_\hbar} \) of isometries in \(L^2(\mathbb{R}^{2n}) \) and \(e^{tL_\hbar} \) converges ultraweakly to \(e^{tL} \). As a consequence we show that the Gaussian mollifier of the Wigner function, called Husimi function, converges in \(L^1(\mathbb{R}^{2n}) \) to the solution of the Liouville equation.

1. Introduction.

In the Schrödinger picture \(H_0 := -\frac{\hbar^2}{2} \Delta \) and \(H := -\frac{\hbar^2}{2} \Delta + V \) are the free and perturbed hamiltonian operators in \(L^2(\mathbb{R}^n) \), where \(\hbar \) is the Planck’s constant. If \(\varphi \) is the solution of the corresponding Schrödinger equation

\[
(Sch) \quad \begin{cases}
 i\hbar \frac{\partial \varphi}{\partial t} = H \varphi \\
 \varphi(x,0) = \varphi_0(x)
\end{cases}
\]

It is well-known that for some potential \(V \) the operator \(H \) is self-adjoint. For example, when \(V \) satisfies the Kato conditions: \(V \in L^2_{\text{loc}}(\mathbb{R}^n) \), \(V = V_1 + V_2 \), \(V_1 \in L^\infty(\mathbb{R}^n) \), \(V_2 \in L^p(\mathbb{R}^n), p > \max(n/2,2) \), then \(-\frac{i}{\hbar}H \) generates a unitary group \(e^{-\frac{i}{\hbar}H} \) and

\[
\|e^{-\frac{i}{\hbar}H} \varphi_0(x)\|_{L^2(\mathbb{R}^n)} = \|\varphi_0(x)\|_{L^2(\mathbb{R}^n)},
\]

for all \(t \in \mathbb{R} \).

If we denote the Wigner transform of \(\varphi \) by

\[
w := W_\varphi(x,\xi) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{-i\xi y} \varphi \left(x + \frac{\hbar y}{2} \right) \varphi^\ast \left(x - \frac{\hbar y}{2} \right) dy
\]

Date: January 14, 2012.

1991 Mathematics Subject Classification. 47D06, 91B28.

Key words and phrases. Wigner Transform, Husimi transform, Quantum Liouville semi-group, Ultraweak convergence.

This research was in part supported by a grant from IPM for the first author.
and if the potential $V = 0$, then w will satisfy the advection equation

\begin{align*}
\frac{\partial w}{\partial t} + \xi \cdot \nabla_x w &= 0 \\
w(x, \xi, 0) &= w_0 \in L^2(\mathbb{R}^n_x \times \mathbb{R}^n_\xi).
\end{align*}

and if $V \neq 0$, then w will satisfy the quantum Liouville equation

\begin{align*}
\frac{\partial w}{\partial t} + \xi \cdot \nabla_x w - P_h(x, \nabla_x) w &= 0 = \frac{\partial w}{\partial t} - \mathcal{L}_h w \\
w(x, \xi, 0) &= w_0(x, \xi) = W_{\phi_0} \in L^2(\mathbb{R}^n_x \times \mathbb{R}^n_\xi).
\end{align*}

In this equation P_h is a pseudo-differential operator defined either in symbolic form

$$
P_h(x, \nabla_x) = \frac{i}{\hbar} \left[V(x + i \frac{\hbar}{2} \nabla_x) - V(x - i \frac{\hbar}{2} \nabla_x) \right]
$$

or by

$$
P_h(x, \nabla_x) w = k_h * w = \int_{\mathbb{R}^n} k_h(x, \xi - \eta) w(x, \eta) d\eta
$$

with

$$
k_h(x, \xi) = (2\pi)^{-n/2} \mathcal{F}_y \left[\frac{1}{i\hbar} \left[V \left(x + \frac{\hbar}{2} y \right) - V \left(x - \frac{\hbar}{2} y \right) \right] \right](\xi).
$$

In [11, 10] it is proved that if $V \in H^1_{\text{loc}}(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n)$ then (QL) admits a solution in $L^2(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)$ and the solution is unique if $V \in H^1_{\text{loc}}(\mathbb{R}^n) \cap C^2(\mathbb{R}^n)$. Furthermore the mild solution of (QL) converges weakly in $L^2(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)$ to the weak solution of (LE). In [4] the authors proved the well-posedness of (QLE) in $L^1(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)$ and it is proved that if $V \in H^s(\mathbb{R}^n)$ for $s > \max\{2, n/2\}$ then the operator L_h is a bounded perturbation of $L_0 := -\xi \cdot \nabla_x$ and generates a quasi-contractive C_0-group, which satisfies

$$
\|e^{tL_h}f\|_{L^1(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)} \leq e^{\delta_h t}\|f\|_{L^1(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)}
$$

where $\delta_h = 2(2\pi)^{-n/2} C_h \|V\|_{H^s}$.

In the sequel we suppose that the potential V is such that the C_0-group acts on $L^p(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)$, for $p = 1$ and $p = 2$. With respect to such a potential we consider the Liouville equation

\begin{align*}
\frac{d}{dt} w &= -\xi \cdot \nabla_x w + \nabla_x V \cdot \nabla_x w = L w \\
w(x, \xi, 0) &= w_0(x, \xi) \in L^p(\mathbb{R}^n_x \times \mathbb{R}^n_\xi),
\end{align*}

which generates also a C_0-group e^{tL} in $L^p(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)$ (see [1, Proposition 2.2]). In $L^2(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)$ this group is unitary, since the operator L is skew-adjoint operator (see [11]). This group has also an explicit representation via Koopman formalism which asserts that

$$
e^{tL}f(x_0, \xi_0) = f(x(-t), \xi(-t)),
$$

(1.3)
where \((x(t), \xi(t))\) is the solution of the Hamiltonian system
\[
\begin{cases}
 \dot{x} = \xi, & x(0) = x_0 \\
 \dot{\xi} = -\nabla_x V(x), & \xi(0) = \xi_0.
\end{cases}
\]

In [11] it is also shown that \(e^{tL_h}\) converges weakly to \(e^{tL}\). In other words if \(w\) is the solution of Liouville equation (LE), then \(w\) converges to \(w\) weakly in \(L^2(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)\) as \(\hbar \to 0\).

In this paper we will prove that this convergence is not only in weak sense but also in ultra-weakly in \(L^2(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)\). Our proof is based on the theory of the algebras of operators on the Hilbert spaces ([3]).

In the first section we develop in an abstract manner some results which come to make use in the second section.

It is well-known that the Wigner distribution function is not positive and therefore one cannot regard that as a density distribution in statistical mechanics. For alleviating this difficulty K. Husimi proposed in [6] to take a mollifier of Wigner function which is called Husimi function and defined by
\[
H(\hbar)(x, \xi) = \left[G(\hbar)*W(\hbar)\right](x, \xi),
\]
where the Gaussian \(G(\hbar)\) is
\[
G(\hbar)(x, \xi) = \frac{1}{\pi \hbar^n}e^{-\frac{|x|^2 + |\xi|^2}{\hbar}}.
\]

Let us denote by
\[
C(\hbar): f \in L^1(\mathbb{R}^n_x \times \mathbb{R}^n_\xi) \mapsto G(\hbar)*f \in \mathcal{S}(\mathbb{R}^n_x \times \mathbb{R}^n_\xi),
\]
then \(H(\hbar)(x, \xi) = C(\hbar)W(\hbar)\). The action of \(C(\hbar)\) on (QLE), gives a new perturbated system of (LE) called Husimi equation. The ill-posedness of the Husimi equation is already studied in [4]. In the section 3 we prove that the Husimi function \(H(\hbar)\) converges strongly to \(w\) solution of (LE), in \(L^1(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)\). This proof is based on the result of P. Markowich and C. Ringhofer [11, Lemma 8], who prove that if the potential \(V \in H^1_{loc}(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n)\) then \(w\) the mild solution of (QLE) converges weakly in \(L^2(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)\) to the weak solution of (LE), the ultraweak convergence (see definition 2.1) of \(e^{tL_h}\) to \(e^{tL}\), as \(\hbar \to 0\), together with some results of the Gaussian upper bound.

2. ULTRAWEAK CONVERGENCE OF THE QUANTUM LIOUVILLE EQUATION AS \(\hbar \to 0\).

Let \(H\) be a complex separable Hilbert space with scalar product \((.,.)\) and norm \(\|\|\|.\) In the theory of von-Neumann algebra \(\mathcal{L}(H)\) designates the algebra of linear bounded operators equipped with the uniform norm \(\|A\| := \sup_{\|x\|\leq 1} \|Ax\|\) and \(\mathcal{S}_1(H)\) its \(*\)-ideal of the trace class operators with the norm
\[
\|A\|_1 := \sum_{i=1}^\infty |\lambda_i|,
\]
where $|\lambda_j|$ are the singular values of A, or eigenvalues of $|A| = \sqrt{AA^*}$. Let $\{e_i\}_{i \in \mathbb{N}}$ be an orthonormal basis in H. It is clear that if $A \in \mathcal{S}_1(H)$ then

$$\text{Tr}(A) := \sum_{i=1}^{\infty} \lambda_i < \infty.$$

Since $\sum_{i=1}^{\infty} |(Ae_i, e_i)|$ is independent of the choice of the orthonormal basis $\{e_i\}_{i \in \mathbb{N}}$, so, if we replace $\{e_i\}_{i \in \mathbb{N}}$ by $\{\phi_i\}_{i \in \mathbb{N}}$ the orthonormal basis constituted by the eigenfunctions of $A \in \mathcal{S}_1(H)$, we retrieve

$$\|A\|_1 := \sum_{i=1}^{\infty} |(Ae_i, e_i)|.$$

Definition and Theorem 2.1. We say that the sequence of the bounded operators $\{A_\alpha\}$ converges ultraweakly to A and we write $A_\alpha \xrightarrow{\text{uw}} A$, if and only if

$$\lim_{\alpha} \sum_{i=1}^{\infty} ((A_\alpha - A)x_i, y_i) = 0,$$

(2.1)

for any pair of sequences $(x_i), (y_i)$ in H satisfying $\sum_{i=1}^{\infty} \|x_i\|^2 + \|y_i\|^2 < \infty$, which is equivalent to say that

$$\text{Tr}(A_\alpha \rho) \to \text{Tr}(A \rho),$$

(2.2)

for any $\rho \in \mathcal{S}_1(H)$.

Proof. Any ρ can be represented in his orthonormal eigenfunctions basis (ϕ_i) as $\rho \phi_i = \lambda_i \phi_i$ and $\text{Tr}(A_\alpha \rho) = \sum_{i=1}^{\infty} (A_\alpha \lambda_i \phi_i, \phi_i)$. If $\lambda_i = |\lambda_i| e^{i \theta_i}$, by taking $x_i = \sqrt{|\lambda_i|} e^{i \theta_i/2} \phi_i$ and $y_i = \sqrt{|\lambda_i|} e^{-i \theta_i/2} \phi_i$, we get

$$\sum_{i=1}^{\infty} \|x_i\|^2 + \|y_i\|^2 \leq 2 \|\rho\|_1.$$

Since $\text{Tr}(A_\alpha \rho) = \sum_{i=1}^{\infty} (A_\alpha \lambda_i \phi_i, \phi_i)$ and $\text{Tr}(A \rho) = \sum_{i=1}^{\infty} (A \lambda_i \phi_i, \phi_i)$, so we have (2.2).

Conversely if we suppose that (2.2) is true, then given (x_i) and (y_i) satisfying $\sum_{i=1}^{\infty} \|x_i\|^2 + \|y_i\|^2 < \infty$, for ρ defined by $\rho x = \sum_{i=1}^{\infty} (x, y_i) x_i$, we have

$$\|\rho x\| \leq \sum_{i=1}^{\infty} |(x, y_i)| \|x_i\| \leq \sum_{i=1}^{\infty} \|x\| \|y_i\| \|x_i\| \leq C \|x\|$$

where $C^2 = (\sum_{i=1}^{\infty} \|x_i\|^2)(\sum_{i=1}^{\infty} \|y_i\|^2)$, so we see that ρ is bounded. To show that ρ is trace class, let (ψ_j) be any orthonormal set in H, by using the Bessel’s
inequality we have
\[
\sum_{j=1}^{n} |(\rho \psi_j, \psi_j)| = \sum_{j=1}^{n} \left| \left(\sum_{i=1}^{\infty} (\psi_j, y_i) x_i, \psi_j \right) \right|
\leq \sum_{i=1}^{\infty} \sum_{j=1}^{n} |(\psi_j, y_i)| |(x_i, \psi_j)|
\leq \sum_{i=1}^{\infty} \sum_{j=1}^{n} \frac{1}{2} \left(|(\psi_j, y_i)|^2 + |(x_i, \psi_j)|^2 \right)
\leq \sum_{i=1}^{\infty} \frac{1}{2} \left(\|x_i\|^2 + \|y_i\|^2 \right)
\]
which is finite and independent of \(n\), which implies that \(\rho\) is a trace class operator on \(H\).

Now if we replace in (2.2) \(\rho \psi_j\) by \(\sum_{i=1}^{\infty} (\psi_j, y_i) x_i\), we get
\[
\lim_{\alpha} \sum_{j=1}^{\infty} \left((A_\alpha - A) \sum_{i=1}^{\infty} (\psi_j, y_i) x_i, \psi_j \right) = 0,
\]
which implies that
\[
\lim_{\alpha} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (\psi_j, y_i)((A_\alpha - A)x_i, \psi_j) = \lim_{\alpha} \sum_{i=1}^{\infty} \left((A_\alpha - A)x_i, \sum_{j=1}^{\infty} (y_j, \psi_j) \psi_j \right)
\]
\[
= \lim_{\alpha} \sum_{i=1}^{\infty} (A_\alpha - A)x_i, y_i) = 0.
\]

\[\square\]

Remark 2.1. In [2], (2.2) is taken as the definition of ultraweak convergence.

Lemma 2.2. If the family \(\{A_\alpha\}\) is uniformly bounded, then the ultraweak topology is equivalent to weak topology.

Proof. It is clear that if choose the sequences \(\{x_i\}\) and \(\{y_i\}\) such that \(x_1 = x, y_1 = y\), where \(x\) and \(y\) are arbitrary and \(x_i = y_i = 0\) for any \(i \geq 2\), then (2.1) can be written as \(\lim_{\alpha}((A_\alpha - A)x, y) = 0\) which implies the weak convergence of \(\{A_\alpha\}\). Conversely, if \(L := \sup_\alpha \|A_\alpha\|\), for any \(\varepsilon > 0\) we can find an integer \(N \gg 1\) such that
\[
\sum_{i \geq N} \|x_i\|^2 + \|y_i\|^2 < \frac{\varepsilon}{L + \|A\|}
\]
and also saying \(\lim_{\alpha}((A_\alpha - A)x, y) = 0\) is equivalent to say that for any finite set \(\Lambda\), if \(\alpha \not\in \Lambda\), then \((A_\alpha - A)x_i, y_i) < \frac{\varepsilon}{2(\Lambda - 1)}\) for all \(i = 1, \ldots, N - 1\). So we can write
for any $\alpha \not\in \Lambda$,
\[
\sum_{i=1}^{\infty} ((A_{\alpha} - A)x_i, y_i) = \sum_{i \leq N-1} ((A_{\alpha} - A)x_i, y_i) + \sum_{i \geq N} ((A_{\alpha} - A)x_i, y_i) \\
\leq \varepsilon + (L + ||A||) \sum_{i \geq N} ||x_i|| ||y_i|| \\
\leq \varepsilon + \frac{L + ||A||}{2} \sum_{i \geq N} ||x_i||^2 + ||y_i||^2 < \varepsilon.
\]

\Box

Corollary 2.3. The group e^{Lt} is unitary and converges ultraweakly in $L^2(\mathbb{R}^n \times \mathbb{R}_\xi^*)$ to e^{L_0} as $h \to 0$.

Proof. Multiplication of (QLE) by \overline{w}, integration by parts and taking the real parts of the resulting equation gives
\[
\frac{1}{2} \frac{d}{dt} \iint_{\mathbb{R}^n \times \mathbb{R}_\xi} |w|^2 dx d\xi + \text{Re} \iint_{\mathbb{R}^n \times \mathbb{R}_\xi} [P_h(x, \nabla_\xi)w] \overline{w} dx d\xi = 0. \tag{2.3}
\]
Applying the result of [11, Lemma 2] we get
\[
\iint_{\mathbb{R}^n \times \mathbb{R}_\xi} [P_h(x, \nabla_\xi)u] \overline{w} dx d\xi = \iint_{\mathbb{R}^n \times \mathbb{R}_\xi} [P_h(x, \nabla_\xi)\overline{w}] u dx d\xi
\]
and since by definition of $P_h(x, \nabla_\xi)$ we have $P_h(x, \nabla_\xi)\overline{w} = \overline{P_h(x, \nabla_\xi)u}$, it follows that $\text{Re} \iint_{\mathbb{R}^n \times \mathbb{R}_\xi} [P_h(x, \nabla_\xi)w] \overline{w} dx d\xi = 0$.

Thus, from (2.3) it follows that $||w(.,.,t)|| = ||w_0(.,.)||$, that is the group e^{Lt} is unitary and for any $h > 0$ we have $||e^{L_0}|| = 1$ and the result infers from the above Lemma. \Box

3. **Husimi Transformation**

If we denote the solution of the Schrödinger equation (Sch) by ϕ_h and its Wigner transform (1.2) by W_{ϕ_h}, the Wigner function $W_{\phi_h}(x, \xi)$ is not positive for all values (x, ξ) of the phase space, in spite of the fact that
\[
\int_{\mathbb{R}_\xi} W_{\phi_h}(x, \xi) d\xi = \mathcal{F}^{-1} [\mathcal{F}_y [\mathcal{F}_x [\varphi_h(x + \frac{hy}{2}) \overline{\varphi_h(x - \frac{hy}{2})}]](0)] = |\varphi_h(x)|^2 > 0. \tag{3.1}
\]
So, we cannot consider the Wigner function as a density function in the context of statistical mechanics. In [6], K. Husimi proposed the following procedure which ends to define a new function which is called *Husimi function*, which can be considered in some manner as a density function.
Define
\[H_h(x, \xi, t) = [W_{\varphi_h} \ast G_h](x, \xi, t) \]
\[= \iint_{\mathbb{R}^2 \times \mathbb{R}^2} W_{\varphi_h}(y, \eta, t) G_h(x - y, \xi - \eta) dy d\eta, \]
where \(G_h(x, \xi) \) is given in (1.4).

By taking \(h = 4t \), it is well-known that \([T(t)f](x, \xi) = [G_{4t} \ast f](x, \xi) \) forms a Gaussian (or heat, or diffusion) semigroup and the strong continuity of this semigroup asserts that
\[\|G_{4t} \ast f - f\|_p \to 0 \quad \text{for any} \quad f \in L^p(\mathbb{R}^n_\epsilon \times \mathbb{R}^n_\epsilon), \quad (1 \leq p < \infty) \quad (3.2) \]
as \(t \to 0 \).

Lemma 3.1. For \((x_0, \xi_0)\) in phase space, define the Gabor function
\[\psi_{x_0,\xi_0}(x) = (\pi)^{-n/4} e^{-\frac{|x-x_0|^2}{2\hbar}} e^{i\xi \cdot x/\hbar} \]
then the Wigner transform of Gabor function \(W_{\psi_{x_0,\xi_0}} \) satisfies
\[W_{\psi_{x_0,\xi_0}}(x, \xi) = G_h(x - x_0, \xi - \xi_0) = W_{\psi_{x,\xi}}(x_0, \xi_0) \quad (3.3) \]

Proof. By using the expression
\[W_{\psi_{x_0,\xi_0}}(x, \xi) = (2\pi \hbar)^{-n} \int_{\mathbb{R}^n} e^{-i(\xi/\hbar) \cdot y} \psi_{x_0,\xi_0}(x + \frac{y}{2}) \psi_{x_0,\xi_0}(x - \frac{y}{2}) dy \]
we get by using the parallelogram identity
\[W_{\psi_{x_0,\xi_0}}(x, \xi) = (\pi \hbar)^{-n/2} (2\pi \hbar)^{-n} \int_{\mathbb{R}^n} e^{-i(\xi/\hbar) \cdot y} e^{-\frac{(x-x_0)^2}{\hbar} + \frac{|y|^2}{4}} dy \]
\[= (\pi \hbar)^{-n} e^{-\frac{(x-x_0)^2}{\hbar} + \frac{|\xi-\xi_0|^2}{\hbar}}, \quad \Box \]

Now, let us consider the operator \(C_h \) given in (1.5) and denote by \(Q_h(x, \nabla \xi) := C_h P_h(x, \nabla \xi) \).

Theorem 3.2. The Husimi function \(H_h \) is positive and belongs to \(L^1(\mathbb{R}^n_\epsilon \times \mathbb{R}^n_\epsilon) \), further more \(H_h \) converges in this space to \(w(x, \xi) \) the solution of Liouville equation (LE), as \(h \to 0 \).

For the proof of this Theorem we will use the following Lemma.

Lemma 3.3. Let us denote by \(\chi_k(x, \xi, y, \eta) \) the characteristic function of \(I_k = \{(x, \xi, y, \eta) \in \mathbb{R}^{4n} : (k - 1)^2 \hbar \leq |x - y|^2 + |\xi - \eta|^2 < k^2 \hbar \} \) and
\[g_k(y, \eta) = \int_{\mathbb{R}^n_\epsilon \times \mathbb{R}^n_\epsilon} kG_h(x - y, \xi - \eta) \chi_k(x, \xi, y, \eta) dx d\xi \]
\[
\sum_{k \geq 1} \|g_k\|_{L^2(\mathbb{R}_x^n \times \mathbb{R}_\xi^n)}^2 < \infty. \tag{3.4}
\]

Proof. For the proof of this Lemma we will use the Gaussian upper bound (see [9, Chapter 7]). We remark that \(G_\hbar(x - y, \xi - \eta) = p(\hbar, (x, \xi), (y, \eta))\) is the Gaussian kernel of \(\Delta\) in \(\mathbb{R}_x^n \times \mathbb{R}_\xi^n\) and satisfies

\[
|p(\hbar, (x, \xi), (y, \eta))| \leq C(V((y, \eta), \sqrt{\hbar}))^{-1} \exp \left\{ -c \left(\frac{|x - y|^2 + |\xi - \eta|^2}{\hbar} \right) \right\} \tag{3.5}
\]

where \(V((y, \eta), r)\) is the volume of the ball \(B(y, \eta), r\) centered at \((y, \eta)\) of radius \(r\) in \(\mathbb{R}_x^n \times \mathbb{R}_\xi^n\) (see [9, formula (7.5)])). Using the facts that

\[
\int_{\mathbb{R}_x^n \times \mathbb{R}_\xi^n} \chi_k(x, \xi, y, \eta) dxd\xi \leq V((y, \eta), k\sqrt{\hbar})
\]

and

\[
I_k \subset \bigcup_{|(y, \eta)| \leq k (x, \xi, y, \eta) \in I_k} B((y, \eta), k\sqrt{\hbar})
\]

it follows from (3.5) that

\[
\sum_{k \geq 1} \|g_k\|_{L^2(\mathbb{R}_x^n \times \mathbb{R}_\xi^n)}^2 = \sum_{k \geq 1} \int_{\mathbb{R}_x^n \times \mathbb{R}_\xi^n} \left| \int_{\mathbb{R}_x^n \times \mathbb{R}_\xi^n} kG_\hbar(x - y, \xi - \eta) \chi_k(x, \xi, y, \eta) dxd\xi \right|^2 dyd\eta \\
\leq C^2 \sum_{k \geq 1} \int_{|(y, \eta)| \leq k} \left(k^6 e^{-8c(k-1)^2} V((y, \eta), k\sqrt{\hbar}) \right)^2 dyd\eta,
\]

since in \(\mathbb{R}_x^n \times \mathbb{R}_\xi^n\), \(V((y, \eta), r)\) is proportional to \(r^{2n}\), we get \(V((y, \eta), k\sqrt{\hbar}) \leq C'(2k)^{2n}\). This shows that

\[
\sum_{k \geq 1} \|g_k\|_{L^2(\mathbb{R}_x^n \times \mathbb{R}_\xi^n)}^2 \leq C'' \sum_{k \geq 1} k^{6n+2} e^{-8c(k-1)^2} < \infty,
\]

where \(C''\) is a constant independent of \(\hbar\). \(\square\)

Proof of Theorem 3.2. It follows from (3.1) and (3.3), that

\[
H_\hbar(x, \xi) = (1/4\pi\hbar)^{-n} \left| \int_{\mathbb{R}_n} \varphi_\hbar(x) \overline{\psi_{x_0, \xi_0}(x)} dx \right|^2 > 0,
\]

and the fact that \(\|G_\hbar\|_1 = 1\), implies that \(\|H_\hbar\|_1 < \infty\) (see [4, Equation (1.19)]).
Now, in order to prove the L^1-convergence of H_h toward w we will use Theorem 2.1, together with some aspects of wavelet theory. First we note that in $(L^1(\mathbb{R}^n_x \times \mathbb{R}^n_\xi), \| \cdot \|_1)$, we have

$$\|H_h - w\|_1 \leq \|(W_h - w) * G_h\|_1 + \|G_h * w - w\|_1. \quad (3.6)$$

As it is showed in [1], the Koopman formalism (1.3), implies that if $w_0 \in L^p(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)$, then w belongs also to $L^p(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)$ and (3.2) holds for $p = 1$, which yields to the convergence of the last term of (3.6) to zero as $h \to 0$. So, it remains to prove the convergence of $\|(W_h - w) * G_h\|_1$ to zero, as $h \to 0$.

Let $I_k = \{(x, \xi) \in \mathbb{R}^n_x \times \mathbb{R}^n_\xi : k - 1 \leq \sqrt{x^2 + \xi^2} < k\}$ and χ_I the characteristic function of I. We remark that $\sum_{k \geq 1} \chi_{I_k} = 1$ for any $(x, \xi) \in \mathbb{R}^n_x \times \mathbb{R}^n_\xi$. Let $s(x, \xi) := e^{-i\theta(x, \xi)}$, where $\theta(x, \xi) = \arg(W_h - w)(x, \xi)$, so $[W_h - w]s(x, \xi) \geq 0$ and $s(x, \xi)s^*(x, \xi) = 1$. Finally by writing $W_h - w = (e^{t_L} - e^{t_L})w_0$, we get

$$\|(W_h - w) * G_h\|_1 = \int_{\mathbb{R}^n_x \times \mathbb{R}^n_\xi} \left| \int_{\mathbb{R}^n_x \times \mathbb{R}^n_\xi} (e^{t_L} - e^{t_L})w_0(y, \eta)G_h(x - y, \xi - \eta) dy d\eta \right| dx d\xi$$

$$\leq \int_{\mathbb{R}^n_x \times \mathbb{R}^n_\xi} \int_{\mathbb{R}^n_x \times \mathbb{R}^n_\xi} (e^{t_L} - e^{t_L})w_0(y, \eta)s(y, \eta) |s^*(y, \eta)G_h(x - y, \xi - \eta)| dy d\eta dx d\xi$$

$$= \sum_{k \geq 1} \int_{\mathbb{R}^n_x \times \mathbb{R}^n_\xi} (e^{t_L} - e^{t_L})f_k(y, \eta)g_k(y, \eta) dy d\eta,$$

where $f_k(y, \eta) = \frac{1}{k}w_0(y, \eta)s(y, \eta)$ and g_k defined as in Lemma 3.3.

Now, since e^{t_L} converges ultraweakly (in the sense of (2.1)) to e^{t_L}, it follows that H_h converges in $L^1(\mathbb{R}^n_x \times \mathbb{R}^n_\xi)$ toward w. \hfill \Box

References

†Laboratoire de Mathématiques, Université de Poitiers. teleport 2, BP 179, 86960 Chassneuil du Poitou, Cedex, France

††School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

E-mail address: †emamirad@math.univ-poitiers.fr
E-mail address: †philippe.rogeon@univ-poitiers.fr
E-mail address: ††emamirad@ipm.ir