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Hassan EMAMIRAD1, Gisèle Ruiz GOLDSTEIN2 and Jerome A. GOLDSTEIN3,⋆.
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Abstract. The one dimensional heat equation

∂u
∂t

= a
∂2u
∂x2 +b

∂u
∂x

+ cu

for x ∈R, t ≥ 0 is governed by a chaotic semigroup for certain values of the coefficients (a,b,c)∈R3

on certain weighted supremum norm spaces.

1 Introduction

In 1997, G. Herzog [1] proved the universality of the heat equation in an exponentially weighted
space. Concerning the universal families K. Grosse-Erdmann published an expository paper [2] in
which we can find the following definition.

Definition 1. Let X and Y be topological spaces and Tι : X → Y (ι ∈ I) continuous mappings. Then
an element x ∈ X is called universal (for the family {Tι}ι∈I) if the set {Tιx : ι ∈ I} is dense in Y . The
set of universal elements is denoted by U = U(Tι). The family {Tι}ι∈I is called universal if it has a
universal element.

The set U of universal elements may be expected to be huge, in fact residual in the sense of Baire
categories. In [1] G. Herzog defined for α > 0, the separable Banach space

Eα := {φ ∈C(R,R) : lim
x→±∞

e−α|x|φ(x) = 0}

2010 35K05; 47D06; 47A16
Keywords: Universality, choatic semigroup, Heat equation, Black-Scholes equation

1 This research was in part supported by a grant from IPM # 91470221



2 H. Emamirad, G. R. Goldstein and J. A. Goldstein

equipped with the norm
∥φ∥Eα = sup

x∈R
e−α|x||φ(x)|

and by taking Tt : Eα →C(R,R),

[Ttφ](x) =
1

2
√

πt

∫ ∞

−∞
exp

(
−(x− s)2

4t

)
φ(s)ds, (1.1)

he showed that the set U := {φ ∈ Eα : {Tnφ : n ∈ N} = C(R,R)} is a residual subset of Eα for
some α > 0.

In operator theory, when one studies the iterates {T n}n∈N0 of a (continuous linear) operator T ,
universal elements are usually called hypercyclic. More generally a (C0) semigroup T = {T (t)}t≥0 on
a separable Banach space X is called hypercyclic, if there exists an element x ∈ X such that its orbit
{T (t)x : t ≥ 0} is dense in X .

The idea of universality is well known in topological dynamics under the name of topological
transitivity. This definition has been translated for a (C0) semigroup in the following manner.

Definition 2. Let T = {T (t)}t≥0 be a (C0) semigroup on a separable Banach space X . T is called
chaotic if it is hypercyclic and there are vectors y ∈ X such that y has a periodic orbit, i.e., there exists
τ = τ(y)> 0 such that T (τ)y = y; and the set of such y’s is dense in X .

Recently F. Astengo and B. Di Blasio, in a nice paper [3], proved that if A(x) defined in [3, p.
50] is the density of an absolutely continuous measure µ on the half line (0,∞), if Lp = Lp((0,∞),µ)
with dµ(x) = A(x)dx, is the corresponding Lebesgue space with 2 < p < ∞, and if ∆p = d2/dx2 is
the Laplacian on Lp with maximal domain, then there is a constant B(p) such that if β > B(p), then
∆p +βI generates a (C0) chaotic semigroup on Lp. In this paper we prove a similar result in spaces of
continuous functions.

In [4, 5] we have proved that the Black-Scholes semigroup is chaotic in certain Banach spaces
which will be define later. The Black-Scholes (or Black-Merton-Scholes) equation is

∂u
∂t

=
σ2

2
y2 ∂2u

∂y2 + ry
∂u
∂y

− ru, (1.2)

where u = u(y, t),y > 0, t ≥ 0, and r,σ are positive constants representing the interest rate and the
volatility respectively. In a series of papers in the period 1973-1976, F. Black, R. Merton and
M. Scholes showed that the fair value of a stock option u satisfies this equation and developed a
significant economic model around it. Here y is the current value of the asset. It was surprising to
deduce a deterministic model for a study which started with an Ito stochastic differential equation.
This equation had a profound effect on the development of financial mathematics and it led to Merton
and Scholes receiving the 1998 Nobel prize in Economics; by that time Black had passed away.

The initial condition this model requires is

u(y,0) = max{0,y− p}

for a fixed given p > 0. Thus a rigorous study of the semigroup governing (1.2) must take place on a
function space which includes functions which grows at least linearly at infinity. On this it is natrual
of use supremum norm spaces with weights, namely, X = { f ∈ C(0,∞) : f ρ ∈ C0(0,∞)} where ρ
is a continuous weight function on (0,∞) which grows faster than linearly at infinity. Here C0(0,∞)
consists of those continuous functions h on (0,∞) such that limx→L h(x) = 0 for L ∈ {0,∞}.
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The idea of chaos is most easily understood using the simple example of J. von Neumann in which
the iterative process xn+1 = 4xn(1− xn) generates a chaotic sequence. In his book [6], R. Devaney
defines the notion of chaos for a dynamical system by basing itself on this example. Let

F : [0,1] 7→ [0,1]

be defined by
F(x) = 4x(1− x).

The map E : x → θ, where x = sin2 θ, is a diffeomorphism from [0,1] to [0,π/2]. Since F(x) =
4sin2 θ(1− sin2 θ) = sin2(2θ), we deduce that the n-fold composition Fn satisfies

Fn(x) = sin2(2nθ)

for all n = 1,2, · · · . Then the orbits {Fn(x)}∞
n=0 are dense in [0,1] whenever θ/2π is irrational, and

they are periodic whenever θ/2π is rational. Thus F is a chaotic (nonlinear) map.

2 The chaotic Black-Scholes semigroup

Let s,τ ≥ 0 and define

Ys,τ := { f ∈C(0,∞) :
f (x)

(1+ xs)(1+ x−τ)
∈C0(0,∞)}

with the norm

∥u∥s,τ = sup
x≥0

∣∣∣∣ u(x)
(1+ xs)(1+ x−τ)

∣∣∣∣< ∞.

The above space is a complex separable Banach space.

Theorem 1. ([4, 5]) Let s ≥ 1,τ ≥ 0. Let σ,r be given positive constants. Let S = {S(t) : t ≥ 0}
be the semigroup governing the Black-Scholes equation (1.2) on Ys,τ. Then S is a (C0) semigroup.
Moreover, S is chaotic if s > 1. The same conclusions hold for the restriction of S to

YR
s,τ = { f ∈ Ys,τ : f is a real function}.

Note that (1.2) determines a chaotic semigroup on any of the spaces

{Ys,τ : τ ≥ 0,s > 1}.

3 The chaotic heat equation

The exponential function y= ex is a Lie group diffeomorphism from (R,+) to ((0,∞), .). This induces
a map

E : f 7→ g,

mapping functions on R to function on (0,∞), defined by

(E f )(y) = f (logy) = g(y)
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for y ∈ (0,∞) and x = logy ∈ R so that y = ex. Let w be a positive continuous function on R. Let Xw

be the weighted sup norm space

Xw = { f ∈C(R) :
f
w
∈C0(R)}

with ∥ f∥Xw = supx∈R | f (x)|/w(x). Then E is an isometric isomorphism from Xw to Yw̃, where

Yw̃ = {g ∈C(0,∞) :
g
w̃
∈C0(0,∞)},

equipped with ∥g∥Xw̃ = supy>0 |g(y)|/w̃(y), and w̃ = Ew.
Let Ys,τ be as in Section 2. Define

Xs,τ = Xw,

where w(x) = (1+ e−τx)(1+ esx), for x ∈ R. Then

w̃(y) = (Ew)(y) = (1+ y−τ)(1+ ys),

and Ys,τ = Yw̃.
Now we work forward the goal of interpreting the result of [4] for functions on (0,∞) in the

context of the functions on R. The translation group Ta for functions on R with parameter a [resp., Sa

for functions on (0,∞)] is given by

[Ta(t) f ](x) = f (x+at) for, x ∈ R, t ∈ R

[resp.
[Sa(t)g](y) = g(eaty) for, y > 0, t ∈ R].

Here a is a fixed positive constant. The generator is, formally,

Aa = T ′
a(0) = a

d
dx

[resp. Ba = S′a(0) = ay
d
dy

].

Then Ta [resp. Sa] is a (C0) isometric group on C0(R) [resp. on C0(0,∞). In [4] it was shown that
Sa is a (C0) group on Ys,τ for s > 1,τ ≥ 0. Since E is an isometric isomorphism from Xs,τ to Ys,τ, Ta is
a (C0) group on Xs,τ for the same values of s and τ.

Now suppose G generates a (C0) group {etG : t ≥ 0} on a Banach space Z. Then G2 generates a
(C0) semigroup on Z, analytic in the right half plane, given by

etG2
h =

1√
πt

∫ ∞

−∞
e−z2/4te−zGhdz,

for h ∈ Z and Re(t)> 0. This result is due to N. P. Romanoff (see [7] and [8, p. 120]). Consequently,

etA2
a f (x) =

1√
πt

∫ ∞

−∞
e−z2/4t f (x−az)dz, (3.1)

etB2
ag(y) =

1√
πt

∫ ∞

−∞
e−z2/4tg(e−azy)dz. (3.2)

Since A2
a = a2 d2

dx2 and B2
a = a2y2 d2

dy2 +a2y d
dy , the Black-Scholes equation (1.2) is
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du
dt

= B2
σ/

√
2u+(r− σ2

2
)B1u− rIu, (3.3)

=
3

∑
j=1

G ju.

The three generators G1,G2,G3 all commute, thus et ∑3
j=1 G j = ∏3

j=1 etG j , and the three factors in the
product can be written in any order. Specifically, we have

G1 = B2
σ/

√
2, G2 = (r− σ2

2
)B1, G3 =−rI.

Consequently the unique solution of (3.3) with initial condition u(0) = g is given by

u(t,y) = etG3etG1etG2g

=
e−rt
√

πt

∫ ∞

−∞
e−z2/4t [etG2g

](
e−

σ√
2

zy
)

dz

=
e−rt
√

πt

∫ ∞

−∞
e−z2/4tg

(
e−

σ√
2

ze(r−
σ2
2 )ty

)
dz.

This formula was derived in a slightly more complicated but equivalent form in [9] and [10, p. 162].
The heat equation corresponding to (3.3) is

du
dt

= A2
σ/

√
2u+(r− σ2

2
)A1u− rIu, (3.4)

=
3

∑
j=1

H ju.

Using this and (3.1), we conclude that the unique solution (in Xs,τ) of (3.4) is given by

u(t,y) =
e−rt
√

πt

∫ ∞

−∞
e−z2/4t

[
et(r− σ2

2 ) f
]
(x− z)dz

=
e−rt
√

πt

∫ ∞

−∞
e−z2/4t f (x− z− (r− σ2

2
)t)dz,

provided u(0,x) = f (x), f ∈ Xs,τ. We rewrite the initial value problem as{
∂u
∂t =

σ2

2
∂2u
∂x2 +(r− σ2

2 ) ∂u
∂x − ru, x ∈ R, t > 0,

u(0,x) = f (x), x ∈ R.
(3.5)

The following analogue of Theorem 1 now follows.

Theorem 2. Let s > 1,τ ≥ 0. Let σ,r be given positive constants. Let T = {T (t) : t ≥ 0} be the
semigroup governing (3.5) on Xs,τ. Then T is a chaotic (C0) semigroup. The same conclusions hold
for the restriction of T to

XR
s,τ = { f ∈ Xs,τ : f is a real function}.

The following Example concerning a convection-diffusion type equation can be found in [11,
Example 4.12].
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Example 1. The operator A defined in the following linear evolution problem
∂u
∂t = Au := a ∂2u

∂x2 +b ∂u
∂x + cu, x ∈ [0,∞), t ≥ 0,

u(0, t) = 0, for t ≥ 0,
u(x,0) = f (x) for x > 0,

in the Hilbert space L2(R+,C) with domain D(A) = { f ∈W 2,2(R+) : f (0) = 0} generates an analytic
chaotic semigroup, provided that (a,b,c) ∈ (0,∞)3 and 0 < c < b2/2a < 1.

As a comparison our result treats also the cases { b = 0 and c < 0 } and { c < 0 < a and a+b+
c = 0 }.
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