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Abstract

The subresultant algorithm is the most universal and used tool to

compute the resultant or the greatest common divisor of two polynomials

with coefficients in an integral ring (see [1], [3], [4]). Nevertheless, there

exists several notable ameliorations of this algorithm (see [5], [10]).

I propose in this article two improvements in the parts of the subre-

sultant algorithm where the calculations are most costly. The computing-

time decreases in a spectacular way (see page 10).
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1 Introduction

In theory, computing the resultant of two polynomials in an integral ring R with
a chain of pseudo-divisions is quite possible. Unfortunately, in practice if the
multiplication computing-time in R increases with the size of the elements, then
obtaining a result becomes hopeless because the growth of pseudo-remainder
coefficients is exponential.

The subresultant algorithm solves this problem because the size of the coef-
ficients of the subresultant polynomials is small. In particular, it is in general
smaller than the size of the resultant (see [7] or [11]). For the reader’s conve-
nience, I recall briefly this algorithm:
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Convention if p = deg(P ) ≥ deg(Q) = q, then Sq = lc(Q)p−q−1Q where lc
is the leading coefficient. Of course, if p = q, the coefficients of Sq belong
to Frac(R), but the leading coefficient sq = lc(Q)p−q always belongs to R.

Subresultant algorithm. (see [2], [3], [8] or [12])
Inputs : P, Q ∈ R[X] deg(P ) ≥ deg(Q) ≥ 1
Output : List of non-zero subresultants of P and Q

S ← empty list
s← lc(Q)deg(P )−deg(Q)

A← Q ; B ← prem(P,−Q)
loop

d← deg(A) ; e← deg(B)
— here, A ∼ Sd if d = deg(Q) —

— here, A = Sd if d < deg(Q) —

— here, B = Sd−1, s = lc(Sd) for d ≤ deg(Q) —

if B = 0 then return S
S ← [B] ∪ S

— here, S = [Sd−1, Sd, . . .] —

δ ← d− e

if δ > 1 then C ←
lc(B)δ−1B

sδ−1
; S ← [C] ∪ S

else C ← B

— here, C = Se, S = [Se, . . .] —

if e = 0 then return S

B ←
prem(A,−B)

sδ lc(A)
— here, B = Se−1 —

A← C

s← lc(A)
end loop

where prem denotes the pseudo-remainder, ∪ the concatenation of two lists and
∼ means proportional.

In this version of the algorithm, all non-zero subresultant polynomials of P

and Q are computed. Observe that a loop mainly constitutes this program and
two main calculations are carried out in this loop. They are derived from these
following relations:

Theorem 1 Let R be an integral ring, Sd be a regular (i.e. of degree d) subre-
sultant polynomial of P, Q ∈ R[X] with d ≤ min(deg(P ), deg(Q)), and Sd−1 6= 0
of degree e ∈ [0, d− 1]. Then
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1. Se =
lc(Sd−1)

d−e−1Sd−1

lc(Sd)d−e−1
2. Se−1 =

prem(Sd,−Sd−1)

lc(Sd)d−e+1

2 Lazard’s optimization

The subresultant algorithm seems to be ideal to make small coefficient calcula-
tions. But let us look into the first equality of theorem 1. Can the computa-
tion Se be optimized? Daniel Lazard has proved in [9] that it is possible to avoid
the exponentiations lc(Sd−1)

d−e−1 and lc(Sd)
d−e−1 and their division, which can

be expensive. The following calculation can be made: sd = lc(Sd),

Se =

lc(Sd−1)
2

sd

× lc(Sd−1)

sd

×... × lc(Sd−1)

sd

× Sd−1

sd

where every division is exact (see also [5]):

for all δ ∈ [0, d− e[, we have
lc(Sd−1)

δ+1

lc(Sd)δ
∈ R

Furthermore a dichotomous method may improve this calculation and then lo-
wers its total cost:

(

lc(Sd−1)
2

sd

)2

sd

· · ·
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Optimized calculation of Se. “dichotomous Lazard”
Inputs : Sd, Sd−1

Output : Se

n← deg(Sd)− deg(Sd−1)− 1 — here, n = n0 = d− e− 1

if n = 0 then return Sd−1

(x, y)← ( lc(Sd−1), lc(Sd))
a← 2⌊log2(n)⌋ — here, a ≤ n < 2a

c← x

n← n− a

loop — here, c = xj/yj−1, aj ≤ n0 < a(j + 1), a = 2? —

exit when a = 1

a←
a

2
; c←

c2

y

if n ≥ a then c←
cx

y
; n← n− a

end loop

return
cSd−1

y

3 A second optimization

In the same way, let us look into the second equality of theorem 1:

Se−1 =
prem(Sd,−Sd−1)

lc(Sd)d−e+1

The calculations of the pseudo-remainder, the exponentiation and the quotient
can be extremely expensive. Our aim is to compute Se−1 while limiting the size
of the intermediate coefficients as we did for Se.

In [5], I prove with an explicit algorithm that the problem is solvable: Se−1

can be obtained from intermediate coefficients of size roughly twice the size
of Se−1-coefficients.

Recently, T. Lickteig and M.-F. Roy proved in [10] the following relation of
euclidean divisibility:

secd−1Sd = ASd−1 + (−1)d−e+1s2
dSe−1 A ∈ R[X]

where sd = lc(Sd), se = lc(Se), cd−1 = lc(Sd−1).
Unfortunately, the size of the intermediate coefficients is three times as big

as the size of the Se−1-coefficients, and this last formula does not bring any
improvement if the degree of Sd−1 is d− 1 (i.e. Se = Sd−1).
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Now, I propose several new relations of euclidean divisibility between subre-
sultant polynomials and any other polynomials:

Theorem 2 Let R be an integral ring, Sd be a regular (i.e. of degree d) subre-
sultant polynomial of P, Q ∈ R[X], Sd−1 6= 0 of degree e ∈ [0, d−1], sd, cd−1

and se be respectively the leading coefficients of Sd, Sd−1 and Se. Then
1. for all G ∈ R[X] such that deg(G) < d

sdseG = ASd−1 + sdB A, B ∈ R[X], deg(B) < e

2. in particular, if G = Sd − sdX
d, we have a better relation

sdse(Sd − sdX
d) = ASd−1 + s2

dD A, D ∈ R[X], deg(D) < e

3. for all G ∈ R[X] such that deg(G) ≤ d

secd−1G = ASd−1 + B A, B ∈ R[X], deg(B) < e

and cd−1 divides B if deg(G) < d.
4. in particular, if G = Sd, we have a better relation

secd−1Sd = ASd−1 + (−1)d−e+1s2
dSe−1 A ∈ R[X]

(T. Lickteig and M.-F. Roy’s formula, see [10])

The proof of these relations can be found at the end of this paper (section 6) or
in [6].

Now, let us take an interest in a new algorithm. Suppose we know Sd (of
degree d) and Sd−1 6= 0 (of degree e). We can compute Se with Lazard’s method.
How can Se−1 be calculated?

It follows from point 4. of theorem 2 that

secd−1Sd ≡ (−1)d−e+1s2
dSe−1 mod Sd−1

Now Sd = sdX
d + (Sd − sdX

d), therefore

sdsecd−1X
d + cd−1se(Sd − sdX

d) ≡ (−1)d−e+1s2
dSe−1 mod Sd−1

The remainder rem(secd−1X
d, Sd−1) can be obtained by point 3. of theorem 2:

Hd = rem(secd−1X
d, Sd−1) ≡ secd−1X

d mod Sd−1 Hd ∈ R[X]

Moreover every remainder rem(seX
j, Sd−1) (with j < d) can be obtained by

point 1. of theorem 2:

Hj =
rem(sdseX

j , Sd−1)

sd

≡ seX
j mod Sd−1 Hj ∈ R[X]
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To compute (Hj)j≤d, I propose the following method:

Hj = seX
j for j < e

Hj = seX
e − Se for j = e

Hj = rem(XHj−1, Sd−1) for j ∈ ]e, d[

= XHj−1 −
πe(XHj−1)Sd−1

cd−1

Hj = rem(cd−1XHj−1, Sd−1) for j = d

= cd−1XHj−1 − πe(XHj−1)Sd−1

where πe(XHj−1) denotes the coefficient of Xe in XHj−1. The size of the inter-
mediate coefficients of these formulas is roughly twice the size of Se−1-coefficients
(see the three remarks in the proof of theorem 2).

Then, by point 2. of the same theorem, we have

s2
dD = rem(sdse(Sd − sdX

d), Sd−1) =
∑

j<d

sdπj(Sd)Hj D ∈ R[X]

where πj(Sd) denotes the coefficient of Xj in Sd. Note that

D =

∑

j<d

πj(Sd)Hj

sd

and sdD ≡ se(Sd − sdX
d) mod Sd−1

Finally, (−1)d−e+1s2
dSe−1 ≡ sdHd + cd−1sdD mod Sd−1

Since the degrees of Se−1, Hd and D are lower than deg(Sd−1), it is an equality:

Se−1 = (−1)d−e+1Hd + cd−1D

sd

= (−1)d−e+1 cd−1(XHd−1 + D)− πe(XHd−1)Sd−1

sd
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Optimized calculation of Se−1.
Inputs : A ∼ Sd, Sd−1, Se, sd

Output : Se−1

(d, e)← ( deg(A), deg(Sd−1))
(cd−1, se)← ( lc(Sd−1), lc(Se))
for j in 0 . . . e− 1 loop

Hj ← seX
j

end loop
He ← seX

e − Se

for j in e + 1 . . . d− 1 loop

Hj ← XHj−1 −
πe(XHj−1)Sd−1

cd−1

end loop

D ←

∑

j<d

πj(A)Hj

lc(A)
— here, D =

∑

j<d
πj(Sd)Hj

lc(Sd) —

return (−1)d−e+1 cd−1(XHd−1 + D)− πe(XHd−1)Sd−1

sd
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Optimized subresultant algorithm.
Inputs : P, Q ∈ R[X] deg(P ) ≥ deg(Q) ≥ 1
Output : List of non-zero subresultants of P and Q

S ← empty list
s← lc(Q)deg(P )−deg(Q)

A← Q ; B ← prem(P,−Q)
loop

d← deg(A) ; e← deg(B)
— here, A ∼ Sd if d = deg(Q) —

— here, A = Sd if d < deg(Q) —

— here, B = Sd−1, s = lc(Sd) for d ≤ deg(Q) —

if B = 0 then return S
S ← [B] ∪ S

— here, S = [Sd−1, Sd, . . .] —

δ ← d− e

if δ > 1 then C ← optimized calculation of Se ; S ← [C] ∪ S

else C ← B

— here, C = Se, S = [Se, . . .] —

if e = 0 then return S

B ← optimized calculation of Se−1

A← C

s← lc(A)
end loop

4 Computing-time analysis

The complexity of this algorithm is calculated in the most unfavorable case, i.e.
when deg(Si(P, Q)) = i for all i ∈ [0, n] with P, Q ∈ Z[X] of degree n.

Obtaining Sd−1 from Sd+1 and Sd requires about 4d multiplications and 2d
divisions (the cost of an addition is negligible). The total numbers of multipli-
cations and divisions of this algorithm are respectively equivalent to 2n2 and n2.

Let M(t, t) be the cost of a multiplication in Z of two t-sized elements,
and D(2t, t) be the cost of a division in Z of a 2t-sized element by a t-sized
one: thus M(t, t), D(2t, t) ∈ O(t2). If c is the largest coefficient of P and Q,
then Hadamard’s inequality applied to Sylvester’s matrix shows that the largest
coefficient that appears in their subresultant polynomials is smaller than (2nc2)n

(see [1], page 253). Let τ be the size of (2nc2)n, i.e. τ ∈ O(n log(nc)). So, the
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total complexity of the optimization is bounded by

2n2M(τ, τ) + n2D(2τ, τ)

Remark. The complexity of the procedure “dichotomous Lazard” is boun-
ded by (2 log2(d− e) + e)M(τ, τ) + (2 log2(d− e) + e)D(2τ, τ),

or more simply by nM(τ, τ) + nD(2τ, τ).

In the same way, the total complexity of the subresultant algorithm is boun-
ded by

n2M(τ, τ) + n2M(2τ, τ) +
n2

2
D(3τ, 2τ)

5 Examples

test 1 P = aX6 + bX5 + cX4 + dX3 + eX2 + fX + g

Q = P ′

test 2 P = X5 + aX4 + bX3 + cX2 + dX + e

Q = X5 + fX4 + gX3 + hX2 + iX + j

test 3 P = X7 + aX3 + bX2 + cX + d

Q = X7 + eX3 + fX2 + gX + h

test 4 P = X20 + aX15 + b test 5 P = (X + a)15

Q = X20 + cX5 + d Q = (X + z)15

test 6 P = X30 + aX20 + 2aX10 + 3a test 7 P = (a + X)90

Q = X25 + 4bX15 + 5bX5 Q = (a−X)60

test 8 P =
75
∑

j=0

a75−jXj test 9 P =
200
∑

j=0

Xj

Q =
75
∑

j=0

jajXj Q = 1 +
100
∑

j=0

jXj

test 10 P = 1 +
900
∑

j=1

jXj test 11 P, Q ∈ Z[X] two random

Q = 1 +
900
∑

j=1

j2Xj polynomials of degree 140
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test 1 0,1,2,3,4 test 6 0,0,5,5,10,10,15,15,20,20
test 2 0,1,2,3,4 test 7 0,1,2,3,. . . ,58,59
test 3 0,1,2,3 test 8 0,1,1,73,74
test 4 0,0,5,5,10,10,15,15 test 9 0,1,2,3,3,97,98,99
test 5 0,1,2,3,. . . ,13,14 test 10 0,1,2,2,898,899

test 11 0,1,2,...,138,139
Degrees of the non-zero subresultant polynomials

subresultant optimized subresultant optimized
algorithm algorithm algorithm algorithm

test 1 71 7.8 test 6 935 27
test 2 2364 80 test 7 58 51
test 3 1162 77 test 8 2342 7.6
test 4 1091 59 test 9 39 1.3
test 5 499 245 test 10 264 14

test 11 199 166
Computing-time in seconds

6 Proof of theorem 2

Recalling

Henceforth, R is an integral ring with unity.

Definition 1 (see [5], pages 320-323) Let M and N be two R-modules.
Let g : Mn → R and f : Mm → N be two R-multilinear alternating applica-
tions. The exterior product g ∧ f is given by the formula :

Mn+m → N : (v1, . . . , vn+m) 7→
∑

σ

sgn(σ)g(vσ1
, . . . , vσn

)f(vσn+1
, . . . , vσn+m

)

Definition 2 Let g : Mn−1 → R be a (n-1)-multilinear form of M . Then g♮

denotes the n-multilinear application

g♮ = g ∧ IdM : Mn −→ M

v 7−→
n
∑

i=1

(−1)n−ig(v1, . . . , 6vi, . . . , vn)vi

Definition 3 Let g : Mn → N be a R-multilinear alternating application. We
shall call ker g the R-submodule {z ∈M | g(z, . . .) = 0}.
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Theorem 3 Let M et N two R-modules, f : Mn+1 → N a (n+1)-multilinear
application and g : Mm−1 → R a (m-1)-multilinear form. Consider x ∈ Mm

and z ∈Mn. If Vect(z) ⊂ ker g ⊂M , then

f(g♮(x), z) = (g ∧ f)(x, z).

Proof

(g ∧ f)(x, z) =
m
∑

i=1

(−1)m−ig(x1, . . . , 6xi, . . . , xm)f(xi, z) z ⊂ ker g,

= f

(

m
∑

i=1

(−1)m−i g(x1, . . . , 6xi, . . . , xm).xi, z

)

f is linear,

= f(g♮(x), z).

Theorem 4 Let M et N two R-modules, g : Mn+1 → N a (n+1)-multilinear
application, f : Mk−1 → R and h : Mm → R two multilinear forms. Consi-
der x ∈Mk, z ∈Mn, z′ ∈Mm such that Vect(z′) ⊂ Vect(z) ⊂ ker f , then

g
(

f ∧ h♮ (x, z′), z
)

= ±h(z′) (f ∧ g)(x, z).

Proof
g
(

f ∧ h♮ (x, z′), z
)

= ±g
(

h(z′) f ♮(x), z
)

because z′ ⊂ Vect(z) ⊂ ker f

= ±h(z′) g
(

f ♮(x), z
)

= ±h(z′) (f ∧ g)(x, z) theorem 3 with g and f

Notations (see [5], pages 329-330) : If P ∈ R[X], the expression X [j,i]P

(j ≥ i), where j ≥ i, denotes the list

XjP, Xj−1P, . . . , X i+1P, X iP

and the empty list if j < i. Furthermore, πk(P ) will point out the coefficient of

degree k of P . We note
[

j

i

]

the list {j, j − 1, . . . , i + 1, i} if j ≥ i, or the empty

list if j < i. If K is the list {a, b, c, . . . , z}, we define these applications :

detK = πa ∧ πb ∧ πc ∧ · · · ∧ πz

det♮
K = πa ∧ πb ∧ πc ∧ · · · ∧ πz ∧ Id

and for instance, if j ≥ i :

det[ji]
(X [j,i]P ) = (πj ∧ πj−1 ∧ · · · ∧ πi)(X

jP, Xj−1P, . . . , X iP )
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Definition 4 In [11], by definition, the subresultant Sd of two polynomials
P, Q ∈ R[X] (respectively of degree p and q) is the determinant polynomial
of the matrix given by the polynomials X [q−d−1,0]P and X [p−d−1,0]Q (with
d < min(p, q)). So we have

Sd = det♮

[p+q−d−1

d+1 ]
(X [q−d−1,0]P, X [p−d−1,0]Q)

πd(Sd) = det[p+q−d−1

d ](X
[q−d−1,0]P, X [p−d−1,0]Q)

Property 1 Let k ∈ N. For d ≤ min(p, q), we have

XkSd−1 = det♮

[p+q−d+k

d+k ]
(X [q−d+k,k]P, X [p−d+k,k]Q)

Some technical lemmas

Henceforth, we suppose that q = deg(Q) is lower (or equal) than p = deg(P ).
Then, we can define Sq = lc(Q)p−q−1Q (with coefficients in Frac(R)) and
sq = lc(Sq) = lc(Q)p−q ∈ R.

Remark that sq = 1 if p = q.

Lemma 1 Let d ≤ q (≤ p) and i ≤ j < α be in N such that

deg(Sd−1) + j < p + q − d + i = α

Let g : R[X]n → R[X] be a R-multilinear alternating application. Let G be a
finite list of R[X] such that deg(z) < α for any polynomial z ∈ G. Then

g(G, X [α−p−1,i]P, X [α−q−1,i]Q, X [j,i]Sd−1) =

±s
j−i+1
d (det[α+j−i

α ] ∧ g)(G, X [q−d+j,i]P, X [p−d+j,i]Q)

or straightforwardly

g(G, X [α−p−1,i]P, X [α−q−1,i]Q, X [j,i]Sd−1) ∈ s
j−i+1
d R[X]

Proof (It is obvious if d = p = q because sd = 1.)
Step i : Let x = {Xq−d+iP, Xp−d+iQ}, z′ = X [q−d+i−1,i]P ∪X [p−d+i−1,i]Q,

z = z′ ∪G ∪X [j,i+1]Sd−1, f = πp+q−d+i, h = det[p+q−d+i−1

d+i ],

then theorem 4 directly gives

g(G, X [q−d+i−1,i]P, X [p−d+i−1,i]Q, X [j,i]Sd−1)
= ±sd (πp+q−d+i ∧ g)(G, X [q−d+i,i]P, X [p−d+i,i]Q, X [j,i+1]Sd−1)

because X iSd−1 = f ∧ h♮(x, z′) and sd = πd+i(X
iSd) = h(z′). Repeating the

steps i + 1, . . . , j, we finally obtain

g(G, X [q−d+i−1,i]P, X [p−d+i−1,i]Q, X [j,i]Sd−1)
= ±s

j−i+1
d (det[p+q−d+j

p+q−d+i]
∧ g)(G, X [q−d+j,i]P, X [p−d+j,i]Q)
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Lemma 2 Let d ≤ q (≤ p) and j be in N such that deg(Sd−1) + j ≤ d. Let
f : R[X]n → R[X] be a R-multilinear alternating application. Let G be a finite
list of R[X] such that deg(z) ≤ d for any polynomial z ∈ G. Then

f(G, Sd, X
[j,0]Sd−1) = ±s

j+1
d (det[p+q−d+j

d+1 ] ∧ f)(G, X [q−d+j,0]P, X [p−d+j,0]Q)

or straightforwardly

f(G, Sd, X
[j,0]Sd−1) ∈ s

j+1
d R[X]

Proof
f(G, Sd, X [j,0]Sd−1)

= ±(det[p+q−d−1

d+1 ] ∧ f)(G, X [q−d−1,0]P, X [p−d−1,0]Q, X [j,0]Sd−1)

(definition 4 and theorem 3)
= ±s

j+1
d (det[p+q−d+j

d+1 ] ∧ f)(G, X [q−d+j,0]P, X [p−d+j,0]Q)

(lemma 1 applied with g = det[p+q−d−1

d+1 ] ∧ f )

Lemma 3 Let d ≤ q (≤ p) and i ≤ j be in N such that deg(Sd−1) + j < d + i.
Let f : R[X]n → R[X] be a R-multilinear alternating application. Let G′ be a
finite list of R[X] such that deg(z) < d + i for any polynomial z ∈ G′. Then

f(G′, X [j,i]Sd−1) = ±s
j−i
d (det[p+q−d+j

d+i ] ∧ f)(G′, X [q−d+j,i]P, X [p−d+j,i]Q)

or straightforwardly

f(G′, X [j,i]Sd−1) ∈ s
j−i
d R[X]

Proof
f(G′, X [j,i]Sd−1)

= ±(det[p+q−d+i

d+i ] ∧ f)(G′, X [q−d+i,i]P, X [p−d+i,i]Q, X [j,i+1]Sd−1)

(property 1 and theorem 3)
= ±s

j−i
d (det[p+q−d+j

d+i ] ∧ f)(G′, X [q−d+j,i]P, X [p−d+j,i]Q)

(lemma 1 applied with g = det[p+q−d+i

d+i ] ∧ f and G = G′ ∪ [X iP, X iQ])

Proof of theorem 2

1. Let G ∈ R[X] be a polynomial such that deg(G) < d. We consider the
following Euclidean division:

cd−e
d−1G = USd−1 + V U, V ∈ R[X], deg(V ) < e
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where e = deg(Sd−1) and cd−1 the leading coefficient of Sd−1. We are going to
prove that U and V respectively belong to sd−e−2

d R[X] and sd−e−1
d R[X]. Deve-

loping the exterior product (det[d−1

e ] ∧ Id)(G, X [d−e−1,0]Sd−1), we find again the

expression of the previous division with

U =
d−e−1
∑

k=0

± det[d−1

e ](G, X [d−e−1,k+1]Sd−1, X
[k−1,0]Sd−1) Xk

V = ± det♮

[d−1

e ]
(G, X [d−e−1,0]Sd−1)

On one hand, lemma 3 proves that V = sd−e−1
d B where

B = ± det♮

[p+q−e−1

e ]
(G, X [q−e−1,0]P, X [p−e−1,0]Q)

with f = det♮

[d−1

e ]
, j = d− e− 1 and i = 0.

On the other hand, for k ∈ {0, . . . , d− e− 1}, the coefficient zk of Xk in U is

zk = ±ck
d−1 det[d−1

e+k]
(G, X [d−e−1,k+1]Sd−1)

= ± det[d+k−1

e+k ](G, X [d+k−e−1,k+1]Sd−1)

Lemma 3 proves that U ∈ sd−e−2
d R[X] with f = det[d+k−1

e+k ], j = d + k − e − 1

and i = k + 1.

So, we can write U = sd−e−2
d A and V = sd−e−1

d B where A, B ∈ R[X]. Finally,
the first Euclidean division becomes

sdseG =
cd−e
d−1

sd−e−2
d

G = ASd−1 + sdB A, B ∈ R[X], deg(B) < e

Remark. The degree of B =
rem(sdseG,Sd−1)

sd
is lower than e− 1, of course.

But, if e ≤ j < d and G = Xj , then any coefficient of the polynomial B
is a minor of the Sylvester’s matrix of P and Q : for all i < e, we have

πi(B) = ±(det[p+q−e−1

e ] ∧ πi)(X
j , X [q−e−1,0]P, X [p−e−1,0]Q)

= ±(det[p+q−e−1

j+1 ] ∧ det[j−1

e ] ∧ πi)(X
[q−e−1,0]P, X [p−e−1,0]Q)

2. Now, if G = Sd − sdX
d = π

♮
d(X

d, Sd), then the rest of the division
cd−e
d−1G = USd−1 + V belongs to sd−e

d R[X]. To prove this, we write:

V = ± det♮

[d−1

e ]

(

π
♮
d(X

d, Sd), X
[d−e−1,0]Sd−1

)
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= ± det♮

[de]
(Xd, Sd, X

[d−e−1,0]Sd−1) (theorem 3)

and lemma 2 shows that V = sd−e
d D where

D = ± det♮

[p+q−e−1

e ]
(Xd, X [q−e−1,0]P, X [p−e−1,0]Q)

with f = det♮

[de]
, G = Xd, j = d − e − 1, and i = 0. Then, the first Euclidean

division becomes

sdse(Sd − sdX
d) =

cd−e
d−1

sd−e−2
d

G = ASd−1 + s2
dD A, D ∈ R[X], deg(D) < e

Remark. The degree of D =
rem(sdse(Sd−sdXd),Sd−1)

s2
d

is lower than e − 1

and any coefficient of this polynomial is a minor of the Sylvester’s matrix
of P and Q : forall i < e, we have

πi(D) = ±(det[p+q−e−1

e ] ∧ πi)(X
d, X [q−e−1,0]P, X [p−e−1,0]Q)

= ±(det[p+q−e−1

d+1 ] ∧ det[d−1

e ] ∧ πi)(X
[q−e−1,0]P, X [p−e−1,0]Q)

3. Let G ∈ R[X] be a polynomial such that deg(G) ≤ d. We consider the
following Euclidean division:

cd−e+1
d−1 G = USd−1 + V U, V ∈ R[X], deg(V ) < e

We are going to prove that U and V belong in sd−e−1
d R[X]. Developing the

exterior product (det[de]
∧ Id)(G, X [d−e,0]Sd−1), we find again the expression of

the previous division where

U =
d−e
∑

k=0

± det[d−1

e ](G, X [d−e,k+1]Sd−1, X
[k−1,0]Sd−1) Xk

V = ± det♮

[de]
(G, X [d−e,0]Sd−1)

Lemma 3 immediately proves that V = sd−e−1
d B where

B = ± det♮

[p+q−e

e ]
(G, Sd−1, X [q−e,1]P, X [p−e,1]Q)

with f = det♮

[de]
, j = d− e, i = 1, and G′ = {G, Sd−1}.

Furthermore, for k ∈ {0, . . . , d− e}, the coefficient zk of Xk in U is
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zk = ±ck
d−1 det[ d

e+k]
(G, X [d−e,k+1]Sd−1)

= ± det[d+k

e+k]
(G, X [d+k−e,k+1]Sd−1)

Lemma 3 proves that U ∈ sd−e−1
d R[X] where f = det[d+k

e+k]
, j = d + k − e

and i = k + 1.

So, we can write U = sd−e−1
d A and V = sd−e−1

d B with A, B ∈ R[X]. Finally,
the first Euclidean division becomes

cd−1seG =
cd−e+1
d−1

sd−e−1
d

G = ASd−1 + B A, B ∈ R[X], deg(B) < e

Remark. The degree of B = rem(cd−1seG,Sd−1) is lower than e − 1. If
G = Xd, then any coefficient of the polynomial B is a sum of two products
of two Sylvester’s minors : forall i < e, we have

πi(B) = ±(det[p+q−e

e ] ∧ πi)(X
d, Sd−1, X [q−e,1]P, X [p−e,1]Q)

= ±(det[p+q−e

d+1 ] ∧ det[d−1

e ] ∧ πi)(Sd−1, X [q−e,1]P, X [p−e,1]Q)

= ± πi(Sd−1) . (det[p+q−e

d+1 ] ∧ det[d−1

e ])(X
[q−e,1]P, X [p−e,1]Q)

+± cd−1 . (det[p+q−e

d+1 ] ∧ det[d−1

e+1]
∧ πi)(X

[q−e,1]P, X [p−e,1]Q)

4. With G = Sd, consider the last relation, cd−1seSd = ASd−1 + B, and
the classic one (theorem 1), cd−e+1

d−1 Sd = USd−1 + (−1)d−e+1sd−e+1
d Se−1. Then

B = (−1)d−e+1 sd−e+1
d

sd−e−1
d

Se−1 and we obtain

cd−1seSd = ASd−1 + (−1)d−e+1s2
dSe−1 A ∈ R[X]
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