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1. INTRODUCTION

The purpose of this paper is to give additional results on eigenvalue problems related to
fully discontinuous operators. The study of this issue was initiated by the second author

in [20] in which the notion of 7—multivoque Leray-Lions operators were introduced

iy (o0 (=, 2200)).

associated to ? = (py,---,Px), p, are Banach function norms, ¢; are Caratheodory
functions on € x IR such that for a.e. ¢t — ¢;(x,t) is locally Lipschitz on IR, therefore
is subdifferentiable in the sense of Clarke [7].

Here, we shall start to give an example associated to Orlicz-Sobolev spaces (see [17]).

In this case, we shall consider as Banach function norm:

p(v) = Int {)\>0:/QA<‘U()”:C)|) do < 1},

where A is a suitable N-function (see [1]). Or more generally, we shall consider

oyt {r0: [ () ar 1),
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and L(£2, p) the associated Banach function space.
Moreover, we shall add an abstract result concerning the resolution of the eigenvalue

problem

—div (agoi (:g %(m))) =\ (z,u(@)), f(z,u(@)) € djo(z,u(z)).

Namely, this result shall recover the following case, containing a critical exponent. There

exists a function u > 0, u # 0, u € Wy?""V(Q) such that

N 2
0 ou |P""7 Ou .
_ E _ p*—1 ;
P al_z ( axz axz> (I(LU)U S )\ajN—Fl(u)
with \* >\ > 0, we 8jN+1
qiu(z)|"2u(z) if Ju(z)| < 1,
A >0, w(@) =< golu(x)|2 2u(z) if Ju(z)| > 1,

€ [q1, g2] sign (u(m)) if u(z)| =1,

N
. . N ) 1 .
1<Q1<1I£1<I}vpi’p = — ) prov1dedzgi>1,1<q2<p,q1<q2,the
~ 1 =1
pi

i=1
function a is bounded and nonnegative.

2. NOTATIONS - PRELIMINARY RESULTS.

For a Banach space (V|| - ||), we shall denoted by V' its dual and duality bracket
between V'and V shall be denoted by < -,- >. The set of all subsets of V' is denoted
by P(V') = 2. Sometimes, we shall denoted || - ||y or || - ||y the norms in those spaces.

The weak topology on V' shall be denoted as usual by o(V, V).

Definition 1. (The first statement of definition is already known (see [3]), the second

one was introduced in [20].)

o A multivoque operator A :V — P(V') is called a monotone operator if :

VYu, €V, Yuy, € V, Yw; € Auq, Ywy € Auy, we have
< wyp — Wy, Uy — Uy >= 0.

e A multivoque monotone operator A is strongly monotonic if it satisfies : for any
sequence (uy), in 'V converging weakly to a function u and verifying:
Yw, € Au,, Vw € Au if lim < w, —w,u, —u >= 0 then u, converges to u

n——+o00

strongly in V.
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Definition 2. (see [5, 8, 12].)
o Let j:V — IR be a locally Lipschitz function if for all w € V', there exist a ball
B(u,r),r >0 and a constant K,(u) = K(u) such that

17(v) — j(w)| < K(u)||v —w|| Vv e B(u,r), YVw € B(u,r).

e [or each v € V, the generalized-directional derivative of j (at a point u in the

direction v ), denoted j°(u;v), is defined as follows

] h+ ) — 9 h
jo(u;v) = limsup Juth+ ) = jlu+ )
ANO, h—0 A

Property 1. of the generalized directional derivative (see [5, 8, 12].)
For a fixed u e V

(1) v — 7%wu;v) is subadditive, positively homogeneous, and convex.
(2) 15°(wv)| < K(w)]oll,
(3) the map v — j°(u;v) is Lipschitz

7 (us v1) = 5% (w5 v2)| < K (u)||or — va]].

Definition 3. (see [5, 8, 12].) The (Clarke) subdifferential of j at a point uw € V is the
subdifferential of convexr map v — j°(u;v) at zero.

More precisely,
w € dj(u) C V' <=<w,v>< j(wv), YveV

that is

0j(u) = {w c V' i<w,v><5%ww), Vo e V}.

For these reasons, the Clarke-subdifferential possesses the same properties as for the

subdifferential in the sense of convex analysis.

Property 2. of the Clarke-subdifferential (see [5, 8, 12].)
For allu eV,
(1) 0j(u) is convex, weakly-* compact in V',
(2) for each w € 0j(u), |w|lv(dual norm) < K(u), K(u) is the Lipschitz constant
at u.
(3) 0(j1 + 72)(u) C 9j1(u) 4+ 9j2(u), whenever ji, ja are locally Lipschitz functions,
(4) O(Aj)(u) = Adj(u) VA € IR,
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(5) the map v € V. — A(u) = Min {||w||V/ Cw € aj(u)} is lower semi-continuous.

In particular there exists

wy € 0j(u) ¢ Jlwu|lv = inf Aflw|y,
wedj(u)

(6) if j is convex, then the two notions of subdifferentials coincide.
(7) Vv eV j%u;v) = Max { <w,v>iw € 6’j(u)}.
(8) The set-valued mapping u — 0j(u) is upper semi-continuous.
Definition 4. (see [5, 8, 12].)
If j -V — R is locally Lipschitz we will say that u is a critical point if 0 € Jj(u).

We shall use the following notions on Banach function norms and spaces (see [4] for
more details, also [21]).

Let LY(Q)) = {v : 2 = IR Lebesgue measurable},
and L9 (Q) = {U e L), v> O}.

Definition 5. (see [4].) A mapping p : L%(Q) — Ry = [0,+00] is called a Banach

function norm if for all f, g, g, in LY (Q), for all measurable set E C Q, we have

PL/ p(f) =0<= f=0ae p(Af)=Ip(f) YA>0,p(f+g)<p(f)+pg)
P2./ If f < g a.e. then p(f) < p(g).

P3./ If fu < fusr /7 f then p(fa) = p(f).
P4./ If |[E| < 400 then p(xg) < +00. (|E| is the Lebesgue measure of E and xg is

characteristic function of E).
P5./ If |E| < 400 then / flz)dx < e p(f) for some ¢, such that 0 < ¢, < 400
E
depending only on E and p.

Definition 6. (see [4].) Let p be a Banach function norm. Then we define
Y = L) = { € LQ) : plIf]) < o0}
L(Y, p) is called a Banach function space and is endowed with the norm || f|ly = p(|f]).

A Banach function space possesses many properties, we state some of them that we

shall use
Definition 7. (see [4].)

e [f p is a Banach function norm, its associate norm p' is defined by

g0 =sup{ [ fote. g€ L@, plo) < 1} for £ € L2,
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e The Banach function space associate to p' is called Banach function space asso-

ciate to L(), p). That is
L(Q, o) = {v e L) : g(jv]) < +oo}.
e One has for g€ L, p)=Z, Y = L(Q, p).
lollz =sup{ [ Ifaldz, € Viliflly <1}

Definition 8. (see [4].)

A Banach function space Y is said to have absolutely continuous norm if

| fxE, |y = 0 for every sequence {En}, Eni1 CE,, |E,—0.

Theorem 1. (see [4].) A Banach function space Y is reflexive if and only if both Y

and its associate Z =Y have absolutely continuous norm.

Remark 1. For simplicity, we sometimes write p(f) = p(|f]), and various constants

depending on data shall be denoted by c or c;.

The following definitions and results were introduced in [20].
We shall consider in this section two reflexive Banach spaces (V.|| - ||) and (X, |- |) we
assume that V' is continuously embedded in X and let us consider two locally Lipschitz
functions J : V' — IR and j : X — IR. Furthermore, we assume that

A: VPV

Hi. is strongly monotonic.

u— 0J(u)
H2./ We have the following growth

(1) E|ﬁ>0, E|C0>OI

Bj(u) < inf <wv,u>+4cpf YuelX.
vEdj(u)

(2) There are constants ¢; > 0,¢y > 0

1
— sup <w'u>-—c+cu < J(u), VueV.
B wreo(u)
Let us notice that
J(u;u) = sup < wu >, —i%(u; —u) = inf <wvu>.
w*€dJ (u) v€EDj(u)

Lemma 1. (see [20].) Under the above conditions H1./, H2./ if the injection of V

into X is compact then the function
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satisfies the (P.S.) conditions.

H3./ ®(0) = 0 and there exist rqg > 0, Ry > 0 such that

”iIHIf J(u) >0if 0 <r <rgand J(u) > 0if |Jul]| > Ry.
H4./ lim M = 0, and for some uy # 0, limsup
Jull=0 J (u) t4o00 o (ttg)

Definition 9. (see [20].) Let Q be an open set of R™ and py, . ..

) (¢
J(Uo)>1

,pn be (N +1) Banach

function norms and L(Q, p;), i = 0,..., N corresponding Banach function space. We

define the following Banach-Sobolev functions spaces
W = Wheox(Q)
v
= e L(Q —
{U ( 7p0)a axl
The norm on W s then

lollw = §jm( )+m()

e L(Q, pi), izl,...,N}.

Proposition 1. (see [20].) Let py,...,pn be (N + 1) Banach function norms, p, is the

associate norm of p;. We assume that p; and p, are absolutely continuous norms.

Then, the dual space

!/

Vo= ()

= {T s there exist fo, ..., [, fi € L(, p)),

<T,v>= /Q(vfo)(x)dx + ﬁ:/ﬂfz(a:)g—;(x)dx Yo e V}.

Lemma 2. Computation of a subdifferential (see [20].)

,,,,,

are absolutely continuous. Let p;(i = 0,...,N) be (N + 1) Caratheodory functions on

Q x IR such that

(1) For a.e. x € Q, the mapping o — p;(x,0) is locally Lipschitz on IR.
(2) The mappings v € L(82, p;) = ®;(v) = / wi(xz,v(x))dx satisfy fori=0,...,N:
Q
for any bounded set B C L(S, p;), there is a constant kg > 0 such that

Yue B, YVveB

J

/|gpi(q:,0)]dx < +oo0.
Q

pilu(@)) = il o(@))|de < kppilu—o)
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Then the functional defined by

Jo(v) :/ngo(x,v(x))dx—i—iil/gcpi (x,g—;(x)) dz

15 locally Lipschitz on V.
Moreover for allu € V, all T € 0Jy(u) there exist (N + 1) functions

(wo, - wn) € L(, py) X ... x L(Q, ply)

such that

N
Jv
<T,v>= /Qwo(ac)v(:v)dx + ZZl/ﬂwz(x)amz (x)dx VveV,
for i=1,... N,
w;(z) € Oy, (.CE, g—mu(a:)) a.e. in §,

and

wo(x) € Opo(z,u(z)) a.e. in Q.

Definition 10. (see [20].) Under the notations of Lemma 2 we define the 7 -multivoque

Leray-Lions operator by setting

—div (a% (x,g—Z<x))) _ yow (@) + wo in D' ().

i1 al’l
Here 7 stands for (po, - .., px).

Lemma 3. (see [20].) We assume the same conditions as for Lemma 2. Furthermore,
we suppose
(1) for each j =0,...,N, for a.e. x € ), the mappings 0 — Op;(x,0) are mono-
tone;

(2) for any sequence (up)n=0 converging weakly to a function u in V with

lim <7;—T,u, —u>=0, for some Tr € 0Jo(uy), T € 0Jy(u),

n——+o0o
and
lim po ([ —ul) =0
satisfies:
There exists a subsequence still denoted (u,) such that :

ouy, ou .
(a) oz, (x) — 6,xl(alt) a.e. x €Q, fori=1,..., N,




8 EIGENVALUE PB WITH FULLY DISCONTINUOUS OPERATORS & CRITICAL EXPONENTS

(b) there exists a constant M > 1 such that

. ou,, ou
iy (5200 - 50
J J

XEnj) =0forj=1,...,N,

where
ouy, ou
E, . = Q- M, |— M—15.
" {.T < a.ij (37) - ’ 8£Cj ($) - }
(c) If
8un . . aun .
hm/ Wy, ; axj dz =0 then hinpj ( a—xj(x) Xpnj> =0,
with
ou,, ou
F, Q- M |2 < -1l
{x < (9:1:']( )' > M ‘&cj (z) }

wy ;(7) € Dp; (x, %(w)) , j=1,...,N for a.e. x € Q. Then
Lj
(i) u — 0Jo(u) is monotone.

(i) w, — u strongly in 'V (for all the sequence).

Theorem 2. (see [20].) Under the assumptions of Lemma 1, and H3./ to H4./, there

exists a function u € V, u # 0 a critical point of ® i.e.
0€0d(u), P(u)=~>0.

3. CONSTRUCTION OF A p -MULTIVOQUE LERAY-LIONS STRONGLY MONOTONIC

OPERATOR

Let © be a bounded Lipschitz open set of IR and consider N borelian functions ¢; :
2 x IR — IR, such that

A.1/ For a.e. x € 2, the map ¢ Sile), ¢i(z,t) is strictly increasing, odd, ¢;(z,0) = 0.
Moreover, ¢;(x, ) is right continuous on [0, +0o[ and tginoo essénf ¢i(x,t) = +o0.
A2./ There exist 2m-numbers, a; < ... < ag,, such that
for a.e. x € Q, t € R\{ay,...,a2m} — ¢i(x,1) is continuous.

We define on €2 x IR the following function
[¢]
pi(z,t) = ¢i(z,0)do.
0
Proposition 2. For a.e. x € Q, the function ¢;(x,-) is a N-function (see [1| for a
definition) on [0, +o0.

In particular, p;(z,-) is a convex function and
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a) Op;(x,t) = [lianﬁi?f gbi(x,a),limj?p gbi(x,a)], VtelR.

b) Moreover, one has for all t € IR
[¢]
0pi(z,0)do = p;(z,1).
0
[¢]

(That is Vw(z,0) € 0p;(z,0), / w(z,o)do = pi(z,t).)

0
Proof :

e The condition A.1/ implies ¢;(z,-) is a N function according to the usual defi-
nition (see [1, 14]). The computation of the subdifferential is straightforward.

e We recall that for almost all ¢ € IR

¢z(ajvt> = hmll{lf ¢z($7 0) = thU.p ¢2(x7 0)7
o—

o—t

and since ; is locally Lipschitz, we deduce easily the statement b).

Proposition 3. Let i € {1,...,N} and (t,t1) be in IR. Assume that
(t—t1)(w—wy) =0 for somew € dp;(x,t), and wy € Op;(x,t;).

Then

Proof :
If t # t; then w = w;. We may assume that ¢ < ¢y, since ¢;(z,-) is strictly increasing,
we have
w < limsup ¢;(z, 0) < liminf ¢;(z, o) < wy,
ot o=t

which implies w < w;. This is a contradiction so

t=1;.

Remark 2. Let us notice that

lim in oi(x,0) = lim ¢;(x,t—¢),

o—> e—0,e>0
and

limsup ¢;(z,0) = lim ¢;(z,t +¢).

ot e—0,e>0
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We need that ¢;(z, ) satisfies the so-called global As-condition (or near infinity). Fol-

lowing the necessary and sufficient condition given in [1, 14|, we shall assume

A3./ There are two numbers o« > 1, @ > 1 such that : for a.e. x, Vt € R

ap;i(z,t) < tw;(x,t) < ap;(z,t), and Vw;(z,t) € Op;(x,t).

Remark 3. i) According to the remark 2, this last condition is equivalent to
api(z,t) <tlimg;(z,t —e) <tlimgi(z,t +¢) < ap;(, ).

e—0 e—0
ii) Therefore there exists K > 0
vi(z,2t) < Kpi(z,t) for a.e. x€Q, ¥Vt € R.
As usual, we define the associate Orlicz space by considering

L¥(Q) = {v : 2 — IR measurable : / ¢i(z,v(z))dz < +oo},

Q

we endowed this space with Banach function norm

(1) pi(v):Inf{)\>0:/ngi <x,“<f>>da:<1}.

(2) L7(Q) = L2, pi).

Introducing the conjugate function of ¢;(x,-)

@i(z,t) = sup {ts — wi(w,s)}, fort > 0.

s=>0

Then the associate norm of p; is

(3) pi(v) = Inf {A>O:/Q@ <x ’”S‘””)dx@},

and we shall assume that ¢;(x,-) satisfies the Ay-condition globally (or near infinity)

say that there exists a constant £ > 0
oi(x,2t) < kg;(x,t) for a.e. x and Vit > 0, (or t > ty),
then the dual and associate space of L(€2, p;) is L(€2, p}):

() (L7 = L@ p) = LS. p)) = L7(9)
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The Orlicz-Sobolev space associated to 7/ = (p,,...,p,) is

ov

X

Wol’pl 77777 pN(Q):{UEL1<Q)Z (I’)eL(Q7pz)7 Z.:]‘)"'7N7’70U:0}'

We define the function

J(v) = é /Q o (x g—;(x)) dz.

The main result in this section is :

Theorem 3. Assume Al./, A2./, A3./. Then the [ -multivoque Leray-Lions operator

defined by
. ou
Au = —div (8% (a:, a—@(x)))

is strongly monotonic on the Orlicz-Sobolev space T/Vol"o1 """ PN (Q)=V,.

Remark 4. (1) Since essgiznf ¢i(x,t) =1 fort >ty > 0, then, we have

gzt el ey

and we deduce from assumption A3./ that

/ v dr < ¢ / ;i (:C, v (x)) dx + co,
Q Q Oz

x
EiC)
(c; denote various constants independent of v).

Thus

ov

ov
e (z)

oz, %)

ov dz,

X

ov

Z;

()

()

Wy 1PN (Q) € W),

(2) One has for allt >0, all o > 1
o%p;(x,t) < gi(x,0t) < o%pi(z,t) for a.e. T € Q.

This relation is a consequence of the assumption A3./, noticing that t — ;(x,t)

s a locally Lipschitz function.

Proof :
Let (un)ns0 be a bounded sequence of V converging weakly to a function u € V.

Assume that T, € 0J(u,,) and T' € 9.J(u) satisfies

lim <T—-T,,u—u, >=0,

n—+00
we have to show that u, — w in V,. For this, we shall apply Lemma 5 of [20] (see

Lemma 2 of the above section 2). We first need to show :
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Lemma 4. Up to a subsequence, one has

ou,, 2) ou
83:2- n—-+o00 (9:1:1

(x) a.e. x and for alli=1,... N.

Proof :
The fact that lim < T —T,,,u — u, >= 0 implies that
n—
ou, 0
Vw,,; € 0p; (307 %(@) , Vw; € Oy; (xu 8—;(95))

9 [ - urton (G260 - 54 s =0

Since @;(z,-) is convex, we deduce that

Buila) = (i) = (o)) ( G2200) = () > O ae.

thus,
ou ou
li * — w* n — = 0.
tin [ i) = wito) (G2 - 5@ ) do =0

Then at least for a subsequence, we deduce

_ . . ouy, Ju B
(5) nl_lgloo(wm(x) — wj}(z)) <3xi (x) — s (x)) =0 for a.e. x.
From assumption A3./ and the above remark we have
) -n < w* ()" < ) -n )
©) o (. 52(0)) < w0 5200 < v (2,520

We have

(7) gij (2)wy;(z) < wj(x) ZZ () — wj (x) g;i (x) + w;i(x)g—;i(:c) + Ai().

By the definition of subdifferential for ¢; convex

® oo (e - 52w) <o (e ) - (0 520).

© )@ @56 - o (5 520+ (0 5@

Using relation(6)

W wgt < (10 1) 52w e (o 5 w)
From (7) and (10), we deduce
(1) Fon() 5200 < i) 32 ) — ul@) 5 @) + o (5 (0) ) + Bulo),
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But according to Remark 4, statement 2.) one deduces from relation (6)

ou ou &
# 2 S g Otn ~ oz 1),
From relations (11), (5) and (12), we have for some number Kj3(z) independent of n
(13) Lo ) |20 Loe 1) < up0) 22 0) + Kot
vl 1) |5 (@ Zrile 1) Swile)g (@ 3(z).

By Young’s inequality, noticing that a > 1 and ¢;(z,1) > 0 we derive

Oup, , |*
(14) 87; (x)‘ < Ky(x) < +oo.
Ouy, : .
We may assume that 5 (x) " &(x) (at least for a subsequence). Since relation
€T; n—-+oo

(14) implies that w,(z) remains in a bounded set of IR, we may also assume that

Therefore, one has
wi(a) € 0 (v, &) )

and from relation (5).

_ . ou B
(15) () - ui() (660) - 5)) =o.
According to Proposition 3, we have

6(0) = (o)

Arguing by contradiction, we deduce that all the sequence satisfying relation (5).

@“”( ) Ou

(x), for a.e. z.

Next, we have to show that

Lemma 5. Let M > sup {|aj], j=1,.. .,Qm} + 2, such that

:]\4'}207

>M—1}. Then

ou

Li

()

measure {:1: eN:

ou,,
. (z)

> M,

’

ou
o (z)

} ou,, ou B
Jm [ ( o9 " o @)) do =
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Proof :

For € > 0, we set

n | Ouy, ou e o e
Qr = {xEQ. o (x) — 8@(@ >5}, E;, =E,N(Q)
ou ou Ju ou
e = : - — < : - < )
Q) {x €N oz, (x) o (x) 8} C {x oz, (x) o (z)| + 8}

Then we observe that

(16) /En ©; (x g%?(x) — SZ (m)) dr =

a /Eni\Ef”- . <I’ a_xz(x) Oz <x)> de +/E Pi ($= (@) ($)> d.

8[@ B 8@
By the Lebesgue dominate Theorem, we have

€.
ni

(17) lim zgi@i(x’ggﬁ($) a“(x))<tU::o

n—+00 ox; ox;

To show that
, 8un( ) ou
im ilx,— () —

we note by the convexity property that we have
I(u, —u) 1 ouy, 1 ou
1 ' B e— < S| 2,2 Spi | T, 24— ;
1 (222 00) < Go (w2500 ) + o (n25 @)

and by the As-condition

@de:a

(19) iz, 2t) < 2%p;(z,1).

Then one has

Ju ou ou
lim su i r, =2 (x) — x)|der < climsu i | v, — () ) dx
n—>+oop/Em\E’fn(p < 5%‘( ) &Ei( )) n—>+oop/ﬂg<p < aﬂﬁz‘( )>

Ouy,
(20) +c lim sup/ ©i (x, L(x)) dx.

n—+oo JE,\EZ, &cl

But
0
(21) limsup/ 0 (:c, —u(a:)> dx =0,
n—+oo JQn axz
since au" () converges to au (z) for almost every x. Thus it suffices to show
€X; €T;

Ou,
(22) lim sup/ i (x, i(96)) dz = 0.
n—+o0o JE\E:, 8-172
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ou ou ou ou
Setting d¢,;(x) = N, =L(2)) — ¢ |z, —(x "(z) — x) | we have
g 80uta) = (00 (2. 520 ) — 0 (0 550)) ) (520 - got@)

(23 2wy (. 52 0)) -

= §pilz) + 6 (g;, S—Z(x)) (8(%—;@(:60 + gz ()i <x, g—Z(x)) .

For each i and a.e. x € Q the map t — ¢;(x,t) is continuous for t > M — 2, we deduce

o )= o (- 20)
o e 0)~{o (-2}

By the convexity of ;, one has from the definition of subdifferential

(24)
ou

, - < 0 - — 0 -n , —n )
From relations (23) and (24), we have

(25) o (x ?;; (:z:)) < Smi(2) + 6 (az S—Z(x)) W@) +o (x g; (9;)) |

From the above relation, we deduce

(26)
/EM\E; ©i (% 8—%@)) dz < /Em Spi(z)dx + /En i (x, 8_@(1)) a—xi(x)dx

ou O(u, —u) Ju
_ [E ) & (x - (x)) S ()t /E . (x,a—%(x)) da.

Let us analyze each term of the right hand of the last relation (26).

that for x € E,,;

and

As we have seen before the fact that

lim <7T,—-T,u, —u>=0,

n—-+00
implies
ou ou

] G wl)(ami (z) axi(gj)> dz =0,
and since

ou ou ou ou

* ¥ n — > * ¥ n —
[ =) (G2 = g o> [t =) (G2 - G ) d

we deduce
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For the second term of the right hand side of relation (26) one has

ou ou
o (x, a—xl(:ﬁ)) € 0y; (x, a—xz(m)) for a.e. x € By,

then,

) o (n @)+ 6 (non (0 gm0 ) = S0 (0 e,

where ¢;(z,t) = sup {st — pi(z, s)} is the Legendre transform of ¢;(z, -).
s=0

Since ¢;(z,0) = 0 one has p;(z,0) = 0 (remember p;(x,s) = 0).
Thus

(20) /Q G (x,xEnxx)asi (x g—;@))) dr < c /Q o (:1: g—;(a:)) Ao < 400,

for some constant ¢ independent of u.

By the dominate convergence theorem, one deduces

Ou ou
(30) X Epi Pi (x, a—xi(x)) . X Eoo; Pi (% 8_:132-@)) :
(with B ; = {ZL‘ €Q: gg ()| > M}) a.e. in , and strongly in L (€2). By the weak
convergence of I to S8 L#(Q)), we deduce that
ox; ox;
ou ou,, ou

1 li — =0.

(31 Jdim [ o (a 5w (G20 - g a0

By the Lebesgue dominate convergence’s Theorem, on E; .

(32) i [ o (o)) (G20 - gt ) e =0,

We combine relations (32), (31) with (27) and we obtain from relation (26)

ouy, 0
(33) lim sup/ i (35, L(x)) dz < lim sup/ i (x, il (:B)) dz = 0.
n—+oo JEy\EE, Ox; n—+oo JQn Ox;

Relations (17) and (33) give the result.

The last Lemma in order to conclude the proof of Theorem 3 is

Lemma 6. Let T, € 3J(un) with T, associated to (wky,...,w’y), as before.
If hm/ m@ =0 then

: dun,
hin/ﬂ% (x, G_xl(I)XF’”) dxr =0,
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whenever

Ouy,

ou
o, (z)

8_xi(x)

Fm—{flfeﬂl >M,

gM_]'}J

M is as in the preceding Lemmoa.

Proof :
Ou,, Ouy,
1 * > . v . = 0.
Since w;,(z) oz, (x) = ap; (x, oz, (x)) and ¢;(z,0) =0

Then, if lim/ w (af)aun (x)dz = 0 we deduce
. ou,, B
lim. ¥ (x XFM@—%(CU)> dz = 0.

Thus

n—-+

: duy,
lim p; (XF"i(’)_a:i(w)) =0.

%
Applying Lemma 5 of [20] (see Lemma 3 of the above section 2), we conclude that

u, — u strongly in the Orlicz-Sobolev space V. This ends the proof of Theorem 3. <

Remark 5. The monotonicity comes from the convexity of ¢;.

3.1. Few examples of applications.

Let (g;,p:),t =1,..., N be 2N-bounded measurable functions on € satisfying
1< essgi)nf gi(x) < gi(x) < essgiznf pi(x).

Consider

[t @ Gf |t > 1,
i(z,t) = ,forz e, telR.
[t af |t <1

We can choose ¢;(x,t) as

(

pi() [t 72 if [t > 1,
()|t @2 if Jt] <1,
gi(x) if t=1,

_Q’L(ZE) lf t=-—1.
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One can check that all the assumption Al./ to A3./ are fulfilled. In this case, the
Orlicz space L¥i(€2) coincide with the variable exponent LP«()($). And

Dou(z. 1) ¢i(z,1) if |t >1or |t <1,
SOi x’ —
[Qz(x) s Di (ZE)] sign (t) otherwise.

Applying Theorem 4 of [20] (see Theorem 2 of the above section 2), one has
Theorem 4. Let (pyi1,qn+1) be two bounded measurable function satisfying

1< essgiznf an+1(x) < gnpi(x) < essénf pna1(T).

Assume that V is compactly embedded in LPN+1(Q) and

lan -]~ = essinf gy () > poc = max [pjloc.

Then for all X > 0, there exists a non trivial function uw € V¢ such that

~aivy (00 (2. 550 ) = Aoy (2,u(a)).

with w1 (z,u(z)) € Opnii (z, u(z)).

[u(z)[Prertif fue)] > 1,
90N+1($au($)) =
[u(z) [+ @if fu(e)| < L.

Proof :
Introduce
Bu) = J(w) ~ (). () = [ e ua)de,
Q
as in [20], one can check assumption H4./ O

3.2. Other examples of function ¢;.

The following example is related to Orlicz-Sobolev spaces with variable exponents

¢i(z,t) = pi(z) Log (1 + a + |t]) [P =2, re, telR,

essgiznf pi(z) > 1, a>0, p(z)e L*(Q),i=1,...,N,

It] pi(z)
m(w)_/ Y ds,i=1,...,N.
o l+a+s

@i(z,t) = Log (1 +a+ |t|)|t




EIGENVALUE PB WITH FULLY DISCONTINUOUS OPERATORS & CRITICAL EXPONENTS 19

4. AN ABSTRACT RESULT FOR THE EXISTENCE OF CRITICAL VALUE NEAR ZERO

To complete the abstract Theorem 4 in [20] we shall introduce here a result where we
don’t need to impose a compact embedding of V' in X.

We replace H1./ by

H’1./We assume that the graph of 0® satisfies the following property:

For any sequence (uy,, Wy, )ns0, W, € 0®(u,) such that u, — u weakly in V, w,, — 0
strongly in V', one has

0 € 9P (u).

We replace H2./ by
H’2./ The function j can be split into two locally Lipschitz functions jo, 7; in V' such
that j = jo + Jj1, Jo(0) = 71(0) = 0, the map V' — jo(v) is weakly continuous. We have
the following growth

(1) 38>0:
Bji(u) < inf <wv,u> VueX.
vEDj(u)
1
(2) = sup <w'u>< J(u), YuelV.
B wreca(u)

H’3./ ®(0) = 0 and there exist u; € V and n > ||u;|| such that

O(v) >0, ||v]] =n, P(u1) <0, inf P(v)> —o0.
ve B(0,n)

Theorem 5. Assume H’1./, H’2./, and H’3./.
Then, there exists a function u Z 0, uw € V a critical point of ® = J — j, that s

0 € dJ(u) — dj(u).

Proof :
Let B(0,7n) be the open ball of radius 1. Since we have a function u; #Z 0, u; € V' such
that ®(uy) < 0 ( by H’3./), then uy € B(0,n) and ¢ = Inf ®(v), verifies

vEB(0,n)

—00 < ¢ < P(uy) <O0.

By Ekeland variational principle (see [12, 15] and Appendix A) we have a minimizing
sequence u, € B(0,7n), and u € V such that

(1) ®(uy) — (thus u, € interior( B(0,n)) = B(O,n)),

(2) ~€; € 9%(us), 1311 —— 0,

(3) u, converges weakly to u in V.
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But the assumption H’1./, we deduce
0 € 0P(u).
It remains to show that u # 0. There exist w,, € 0J(u,), v, € 0j(u,) such that
0=w, —v,+ 7,

this implies

1 1 1
34 0== < Wp,tup > —= < Up,Up > +— < 0 u, > .
(39 B B B
We shall write

1 . 1 1 . .
(35) E <O up > +P(u,) = J(uy) — B < Wy, Uy > +B < Uy Uy, > —J1 () — Jo(uy).
By assumption H’2./, we have
1
(36) J(un) — 3 < Wy, Uy, >2 0.
. 1

(37) _]1<un) =+ E < Up, Upn > 0.

From relation (35) to (37), one deduces
1 . ,
3 <O uy > +P(uy) = —jo(uy),

we can let n — +oo to derive

0>c>—jo(u): jo(u) = —c>0:u#0.

4.1. Example of applications of Theorem 5.

1
Theorem 6. Let Q2 be an open bounded Lipschitz set and p;(x,t) = —[t|P?, with p; > 1
Di
are N -real numbers such that

N
| . N
Z— >1andletp" = —, py = max(py,...,pN)-

im1 i Zl_l

=1 Pi
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We assume py < p*, and p— = min(py,...,pn). Consider 1 < ¢ <p_, 1< g < p*,
q1 < q2 two real numbers.

Then there exist X* > 0,Y X €]0, \*[, u € Wy PPN (Q), uw >0, u # 0,

N —2
0 ou , "7 Ou .
_ — P " e \Oj
with
u(@)|™if Ju(z)] <1,
i = [ o(u)ar, glut) =
“ lu(@)[® if |u(z)] > 1.
Proof :
We set
O pi »
V = UELer(Q),/ o ()| dz<+o0,i=1,...,N, %v=0,.
Q| 0%;
One has V G LF'(Q), p* = ——2—— (see [13])
>,
im1 i
N )
1 ou |7 1 / \
J(u) = — x)| dz, h(u) = — ul? dzx,
=3 | |5 = [

q1 y gl’
jolu) = / g(wda, gy —

|ul if |u| > 1.

ji(w) = {Jul2u ),

Jo is convex, vanishing at 0 and therefore djy(u) is monotone, < djo(u),u >= 0

39 < 0j(u).u >>< jiw)u>= [ fuPde > i)
0
N —2
, 0 ou, "7 ou

J'(u) {—Zl e ( o o (:c)> }

and then
N ou pi
< J'(u),u >:Z:/Q Ozv,(x) dz < piJ(u).

Choosing 8 such that p; < < p*, we have H’2./.
Since the injection of V into L4()) is compact for any ¢ < p*, we conclude easily that

the mappings

i) u — jo(u) is weakly continuous,
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ii) u € V — |ulP"~2u is continuous from V endowed the weak topology into L"()

*

pr—1

endowed with the strong topology r <

Let Sy be the Sobolev constant satisfying

N

o < Solloll = S0 >

i=1

ov
81’7;

lv

pi

Since p* > p, there exists 0 <n < 1l:a= NPT — Sg*np*_% > 0.

NP+
Then, we have, for v € V : |jv|]| =17

J(v) = ji(v) = —n®a.

1
p*
Let A* > 0 be a real number such that

q2
A" sup jo(v) < a—,
[[v]l=n p

then Vv € V such that |[v|| =17

O(v)=J(v) — j1(v) — Ajo(v) >0, VA €]0,\"].

Let ug € CH(Q), {\Uof < 1} and {]u0| > 1} are of positive measure, 0 < ¢t < 1

pi p*
dx —t? / |u0—*dx — At® / |up|? dx
Q D {|uo|<1}

<ﬁ{&—&ﬁﬂuﬂﬂﬂj

N

M%)é}jwé

i—1 Pi

8U0
oz, ®)

< 0 for t near zero since ¢; < p_, Az > 0, t||lugl| < n.

It is easy to check that

inf {(IJ(U),U € F(O,n)} > —00.

Since the operator u € V. — 9j(u) is bounded, we may use the compactness result used
in [10] (see also [19]) to show that the graph of u € V — o(V, V') — 0®(u) satisfies
H’1./, with V is endowed with the weak topology. Indeed, let (u,) be a sequence of V
converging to u weakly and strongly in L"(Q2) for r < p* and a.e. in Q. Then 0j(u,)
remains in a bounded set of (LP" () + L%(Q2))". Let k > 0 and consider

o if lo| <k,
Ti(o) = Il . ub = Ty(u).

ksign (o) otherwise.
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Then Yw, € 9j(u,), Vi € C(Q), ‘ < Wy, pT:(u, — uk) >

< |p|ooKoe for some
constant Ky. If w} € 0®(u,), w; — 0 strongly in V' then w} + w,, = J'(u,),w, €

0j(uy), therefore we have

We may apply Theorem 1 of [10] or Lemma 2 of [19] to conclude that

P2 O, . . 0O

ouy,
oz, o

8xi

()

(Teun = )0 do < Jiploo Koz + K| v

Vu,(x) — Vu(z) (up to subsequence).
n—-+0oo

Therefore Vv € V,
< J'(up),v >—=< J'(u),v >

and

/|un|p*_2unvdx—>/|u|p*_2uvda:.
Q Q

Since —w? + J' () — |tn|? "2u, € N0jo(un), U, — u in L7(Q), r < p*. We deduce
(39) J'(u) — [ulP" "2u € Ndjo(u) : 0 € 0P (u).

Indeed, u,, — u in L% () strongly, there exists h,, belonging to a bounded set of L% (1)
such that —w? + J'(u,) — [un|? "2, = hy, € X0j0(uy).

We have a subsequence h,, and a function h such that h,, — h weakly in L%(§2). Thus
h € XA0jo(u). On the other hand, since

(40) VoeV, im <w;,v>=0,

n—-+o0o

(w! — 0 strongly in V')

(41) im < J'(un) — |unl? 2un, v >=< J'(u) — |u|" 2

n—-+oo

u,v > .
We deduce in the sense of the distribution that
J'(u) — [ulP" "2u = h € A3jo(u).

This show that 0 € 0P (u).
Since ®(u) = ®(|ul), we may choose u > 0. This ends the proof. &

Remark 6. The above Theorem 6 allows to recover many other situations, when \jo
is small, in particular we can recover Theorem 1 in [2]. We may omit the term |ulP” =2,

the result still holds true.
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Next, we want to study eigenvalue problem on unbounded domain eventually with a

weight. To do so, we shall start with the following result due to V. Maz’ja.

5. UNBOUNDED CASE WITH A WEIGHTED FUNCTION

Theorem 7. (see [16]). For all u € W' (IRN) with compact support, ¥ a € [0, 1]

N

N—a dr \ V- 1N 2=l
([ ¥ ) < v - @ 9,

[

Here wy is the measure of the unit ball of RY.

Corollary 1. (of Theorem 7)

™ _(ff)i?fp_ op €0 P21 (N=-0a)>(1-a)p. Then Vue

WP (IRN) with compact support, we have

1 1

« d e P

[ ) <o ([ wuplertvas)
RN || RY

_ a—1

with CN :t(N—a)Njiw;\\;*a’ t = N*lpz.

Let p;, =

Proof :
Let u € W'P(IRY) with compact support. Then, |ul* € W'P(IR") and has its support
compact. Therefore, using Theorem 7, we have

(42) (/mw ufa) 3 )xl <en /1RN Ju(z)|" [Vu(2)|da.

]

2

Apply the Holder’s inequality to the right hand side of (42), we obtain (introducing the
weight |z~

(13) 1

RN || RN || RN

We have (t — 1)p’ = pf, then, from (43), we have

(44) ( /}R u)p ,ifaf

1
ol

"o ([ wutaiapovas)’
IRN

t 1 1
And one can check that — — — = — this shows the result. %
Po P Pa

Let © be an open set of IRY we denote for v € C=(Q), ||v]|| = (/ |Vv(x)|p|x|a(p_1)dx> ’
Q

We shall denote by Dé:g(ﬂ) to closure of C'°(€2) with respect to the above norm. As a

consequence of Corollary 1 , we have
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Lemma 7. Vu € Dé:Z(Q), one has

([t d“‘) <er(/ \Vu(xﬂprx\“(p”dxf

as in Corollary 1 of Theorem 7.

Theorem 8. Let 1 < g < p and a € L7 <Q, |93|P§%q> , m = pj;piq There ezists a
number \* such that ¥\ €]0, \*[, there exists a function u > 0, u Z 0, u € Dé:g(Q)
such that )

—div (|x|a(p_1)]Vu|p_2Vu> = Aa(z)ut™! + ;'al in D'(9).

Sketch of proof

The argument is similar to the proof of Theorem 6, using Theorem 5, we set

Jw) = L / V2|20 D da

i) = [

Jo(u) = a/ﬂa(xﬂu(x)lqu

One has

oJ(u) = { —div <|x|a(p_1)|Vu|p_2Vu> },

< dj(u),u> > lu

< J(u),u> = pJ(u).

Thus, we can take p < f < p in conditions (1) and (2) of H’2./. Due to the integrability
of the function a , we deduce that the mapping u € V' — jp(u) is continuous from V-
weak into IR. Indeed if (u,), is a bounded sequence in Dé:ﬁ(ﬂ) then there exist a
function u € Dé:’;(Q) and a subsequence still denoted u,, such that u,(z) - u(z) a.e.
and u,, — u weakly in D(I]Z(Q) Then lirrln/ a(x)|u, —u|?dx = 0 using Vitali’s Theorem.
Thus H’2./ is satisfied. While for H’3./, vffle have ®(0) =0 = J(0) = j(0). There exists
1 > 0 such that n; =nP~9— cﬁz;*npz_q > 0, ¢y is the Sobolev constant given in the above

Lemma.
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For all v € Déf;(Q) with [|v]| =7

) 1
J(v) = ji(v) > 1?77(1771'

Let \* such that
. n?
A* sup jo(v) <m—.
[lvll=n Pa

Then Vv € V with |[v]| =n, VX €]0, \]
®(v)=J(v) = j1(v) = Ao(v) > 0.

Let ug € C2°(2) such that support (a) N {]uo\ > 1} or support (a) N {]uo\ < 1} is of

positive measure, 0 <t < 1

*

tP tPa . d At
D(tug) < —/ Vo |P|z|*P~Vdz — - /|u0 S0 AT a(x)|ug|?dz
P Ja Pa Ja z|* g Ja

< P <A1 — PP A, — Agtq—l’>

A
since ¢ < p, Az = — / a(x)|upl?dz > 0, the ®(tug) < 0 for ¢ small.
q.Ja
It is easy to check that

nf {@(v), o]l <y} > -0
since

e, Jo(v) < cllvll”.

Ji(v) < el

Thus all the conditions in H’3./ are satisfied.
The graph of the mapping v € Dé:i(Q) — J'(v) — j'(v) satisfies H’1./ , when we endow
Dé:Z(Q) with the weak topology. Indeed, its graph is

{(w,v) eV xV:w=J(v) —j’(v)}iGr(J',j’).

If (wy,v,) € Gr(J',j") is a sequence such that v, — v weakly in DéZZ(Q) and w, — 0

/
in (D}?(Q)) strongly, then we have to show that
0,
0=J'(v) = j'(v).

o if |O' | <k
Indeed, considering, Ty (o) =
ksign (o) otherwise,

we have V0 < ¢ < 1, Vp € CX(Q).

/ 2] V[V P20,V (T (v — Ti(w)) )de < Ko (= + [[wnl|. ),
Q
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for some Ky > 0, thus

lirnsup/ ]x\o‘(pfl)\an]p’QanV(wTE('Un - Tk(v))) < Koe.
Q

n—+o00
We may apply Theorem 1 of [10] to conclude that up to a constant Vv, (z) — Vou(z)
a.e.. Using the growth of the gradient, we deduce easily: Vo € Dé:g(ﬂ)

< J(vn),p > — < J'(v),p >,

/|vn|p3_20ncpdx — /|U|p3_2vgpdx.
Q Q

0= J'(v) — j'(v) m(pg;g(sz))'.

Thus

This shows H’1./.
We may appeal Theorem 5 to conclude that, there exits v > 0, u # 0 such that

0=J(u)—j'(u).

Combining the arguments of Theorem 6 and Theorem 8, we have also

Theorem 9. Let (q1,q2) be two real numbers such that

Pa
Do — Q2
such that ¥ X €]0, \*[, there exists a function u >0, uZ£0, u € Dé:ﬁ(Q) such that

agq
l<q <qg<pandaec L} (Q, |m|P3—242>, m = There exists a number \*

py—1

—di a(p=1) |x7q P2 _u 2D,
iv (m V| Vu) o €\
- 1 1
with ju(u) = —/ lu(z)|"a(z)de + — lu(z)|®a(z)dx.
q1 J{jul<1} a2 J{|u|>1}

Remark for the proof of Theorem 9

Let us notice that setting j(u) = ji(u) + Aja(u) then A < 9j,(u),u >> 0 so that
o < 0j(u),u >= pkji(u)
e the map u € V — j,(u) is continuous from V-weak into IR.

e \* is defined as before

q2

A" sup Jo(v) <m——.

l[vll=n o

For the case p < ¢ < pf, we may adapt the proof given in [11] to obtain
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Theorem 10. Let a € L*>(Q2) with compact support, a Z 0, p < q < pk. Then there
exists \*, such that YA > \* the problem

u € Dé:ﬁ(Q), u>=0, u®0,

yPa—1

—div <]x|a(p’1)|Vu|p’2Vu) = Aa(z)u? +

]

possesses at least one solution.
For details, we refer [11, 6].

Appendix A
We recall the following lemma due to Ekeland [9, §]

Lemma 8. Let B(0,p) an open ball of radius p > 0 of a Banach (V.|| -||) and ® :
B(0,p) — RU{+oo} be a lower semi-continuous function on B = B(0, p) with inf ® >
B

—00.
Lete >0, € B:®(2) <inf® +¢.
Then ’
P(y) < P(2),
Jye B d(z,y) < Ve,
Vee B: ®x) > ®y)— ed(r,y).

Corollary 2. of Lemma 8 Under the same assumptions as the above Lemma there

exist a sequence (Ty)n, Tn € B :
o O(x,) — Inf &,
B

1 —
i (I)(Z‘) > (I)<In) o ﬁHx_ana Vi e B;

e assume that x,, € B(0, p) = interior( B) then

me(z,) = inf {||wn||V/, w, € acb(:cn)} 0

n—-+o0o

Proof :

Consider ¢ = —, y = x, in Lemma 8 then
n

1
®(z,) < infd+ —,
() 11% +n2

1 —
O(x) = P(x,) ——||lr—=x,|| Vre B.
n
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1 —
Thus, if we set F(x) = ®(z) — —||z — x,]||, then F(z,) < F(x) Vz € B. This implies
n

in the case that z,, € B(0, p) = interior( B) that
(45) 0€ OF (z,) C 0B (x,) — %a Folz)  with fu(z) = o — 2]
Using the definition of subdifferential we see that

Of (1) C {m eV la*|ly < 1}.

Thus, relation (45) implies that
1

0=w; — ﬁx;, wr € 0P(xy,), [|lzx]| < 1.
Therefore,
1
me(r,) < — —— 0.
n n—+oo
&
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