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1. Introduction

The purpose of this paper is to give additional results on eigenvalue problems related to

fully discontinuous operators. The study of this issue was initiated by the second author

in [20] in which the notion of −→ρ -multivoque Leray-Lions operators were introduced

−div −→ρ

(
∂ϕi

(
x,
∂u

∂xi
(x)

))
,

associated to −→ρ = (ρ0 , . . . , ρN ), ρ
i

are Banach function norms, ϕi are Caratheodory

functions on Ω × IR such that for a.e. t → ϕi(x, t) is locally Lipschitz on IR, therefore

is subdifferentiable in the sense of Clarke [7].

Here, we shall start to give an example associated to Orlicz-Sobolev spaces (see [17]).

In this case, we shall consider as Banach function norm:

ρ(v) = Inf

{
λ > 0 :

∫
Ω

A

(
|v(x)|
λ

)
dx 6 1

}
,

where A is a suitable N -function (see [1]). Or more generally, we shall consider

ρ(v) = Inf

{
λ > 0 :

∫
Ω

A

(
x;
|v(x)|
λ

)
dx 6 1

}
,
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and L(Ω, ρ) the associated Banach function space.

Moreover, we shall add an abstract result concerning the resolution of the eigenvalue

problem

−div −→ρ

(
∂ϕi

(
x,
∂u

∂xi
(x)

))
= λf

(
x, u(x)

)
, f

(
x, u(x)

)
∈ ∂j0

(
x, u(x)

)
.

Namely, this result shall recover the following case, containing a critical exponent. There

exists a function u > 0, u 6≡ 0, u ∈ W 1,p1,...,pN
0 (Ω) such that

−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

)
− a(x)up

∗−1 ∈ λ∂jN+1(u)

with λ∗ > λ > 0, w ∈ ∂jN+1

λ > 0, w(x) =


q1|u(x)|q1−2u(x) if |u(x)| < 1,

q2|u(x)|q2−2u(x) if |u(x)| > 1,

∈ [q1, q2] sign
(
u(x)

)
if |u(x)| = 1,

1 < q1 < min
16i6N

pi, p
∗ =

N
N∑
i=1

1

pi
− 1

provided
N∑
i=1

1

pi
> 1 , 1 < q2 < p∗, q1 < q2, the

function a is bounded and nonnegative.

2. Notations - Preliminary results.

For a Banach space (V, ‖ · ‖), we shall denoted by V ′ its dual and duality bracket

between V ′and V shall be denoted by < ·, · >. The set of all subsets of V ′ is denoted

by P(V ′) = 2V
′
. Sometimes, we shall denoted ‖ · ‖V or ‖ · ‖V ′ the norms in those spaces.

The weak topology on V shall be denoted as usual by σ(V, V ′).

Definition 1. (The first statement of definition is already known (see [3]), the second

one was introduced in [20].)

• A multivoque operator A : V → P(V ′) is called a monotone operator if :

∀u1 ∈ V, ∀u2 ∈ V, ∀w1 ∈ Au1, ∀w2 ∈ Au2, we have

< w1 − w2, u1 − u2 >> 0.

• A multivoque monotone operator A is strongly monotonic if it satisfies : for any

sequence (un)n in V converging weakly to a function u and verifying:

∀wn ∈ Aun, ∀w ∈ Au if lim
n→+∞

< wn − w, un − u >= 0 then un converges to u

strongly in V .
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Definition 2. (see [5, 8, 12].)

• Let j : V → IR be a locally Lipschitz function if for all u ∈ V , there exist a ball

B(u, r), r > 0 and a constant Kr(u) = K(u) such that

|j(v)− j(w)| 6 K(u)‖v − w‖ ∀ v ∈ B(u, r), ∀w ∈ B(u, r).

• For each v ∈ V , the generalized-directional derivative of j (at a point u in the

direction v), denoted j0(u; v), is defined as follows

j0(u; v) = lim sup
λ↘0, h→0

j(u+ h+ λv)− j(u+ h)

λ
.

Property 1. of the generalized directional derivative (see [5, 8, 12].)

For a fixed u ∈ V

(1) v → j0(u; v) is subadditive, positively homogeneous, and convex.

(2) |j0(u; v)| 6 K(u)‖v‖,

(3) the map v → j0(u; v) is Lipschitz

|j0(u; v1)− j0(u; v2)| 6 K(u)‖v1 − v2‖.

Definition 3. (see [5, 8, 12].) The (Clarke) subdifferential of j at a point u ∈ V is the

subdifferential of convex map v → j0(u; v) at zero.

More precisely,

w ∈ ∂j(u) ⊂ V ′ ⇐⇒< w, v >6 j0(u; v), ∀ v ∈ V

that is

∂j(u) =
{
w ∈ V ′ :< w, v >6 j0(u; v), ∀ v ∈ V

}
.

For these reasons, the Clarke-subdifferential possesses the same properties as for the

subdifferential in the sense of convex analysis.

Property 2. of the Clarke-subdifferential (see [5, 8, 12].)

For all u ∈ V ,

(1) ∂j(u) is convex, weakly-* compact in V ′,

(2) for each w ∈ ∂j(u), ‖w‖V ′(dual norm) 6 K(u), K(u) is the Lipschitz constant

at u.

(3) ∂(j1 + j2)(u) ⊂ ∂j1(u) + ∂j2(u), whenever j1, j2 are locally Lipschitz functions,

(4) ∂(λj)(u) = λ∂j(u) ∀λ ∈ IR,
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(5) the map u ∈ V → λ(u) = Min
{
‖w‖V ′ : w ∈ ∂j(u)

}
is lower semi-continuous.

In particular there exists

wu ∈ ∂j(u) : ‖wu‖V ′ = inf
w∈∂j(u)

‖w‖V ′ ,

(6) if j is convex, then the two notions of subdifferentials coincide.

(7) ∀ v ∈ V j0(u; v) = Max
{
< w, v >: w ∈ ∂j(u)

}
.

(8) The set-valued mapping u→ ∂j(u) is upper semi-continuous.

Definition 4. (see [5, 8, 12].)

If j : V → IR is locally Lipschitz we will say that u is a critical point if 0 ∈ ∂j(u).

We shall use the following notions on Banach function norms and spaces (see [4] for

more details, also [21]).

Let L0(Ω) =
{
v : Ω→ IR Lebesgue measurable

}
,

and L0
+(Ω) =

{
v ∈ L0(Ω), v > 0

}
.

Definition 5. (see [4].) A mapping ρ : L0
+(Ω) → IR+ = [0,+∞] is called a Banach

function norm if for all f, g, gn in L0
+(Ω), for all measurable set E ⊂ Ω, we have

P1./ ρ(f) = 0⇐⇒ f = 0 a.e. ρ(λf) = λρ(f) ∀λ > 0, ρ(f + g) 6 ρ(f) + ρ(g).

P2./ If f 6 g a.e. then ρ(f) 6 ρ(g).

P3./ If fn 6 fn+1 ↗ f then ρ(fn)→ ρ(f).

P4./ If |E| < +∞ then ρ(χE) < +∞. (|E| is the Lebesgue measure of E and χE is

characteristic function of E).

P5./ If |E| < +∞ then

∫
E

f(x)dx 6 c
E
ρ(f) for some c

E
such that 0 < c

E
< +∞

depending only on E and ρ.

Definition 6. (see [4].) Let ρ be a Banach function norm. Then we define

Y = L(Ω, ρ) =
{
f ∈ L0(Ω) : ρ(|f |) < +∞

}
L(Ω, ρ) is called a Banach function space and is endowed with the norm ||f ||Y = ρ(|f |).

A Banach function space possesses many properties, we state some of them that we

shall use

Definition 7. (see [4].)

• If ρ is a Banach function norm, its associate norm ρ′ is defined by

ρ′(f) = sup

{∫
Ω

fgdx, g ∈ L0
+(Ω), ρ(g) 6 1

}
for f ∈ L0

+(Ω).
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• The Banach function space associate to ρ′ is called Banach function space asso-

ciate to L(Ω, ρ). That is

L(Ω, ρ′) =
{
v ∈ L0(Ω) : ρ′(|v|) < +∞

}
.

• One has for g ∈ L(Ω, ρ′)=̇Z, Y = L(Ω, ρ).

||g||Z = sup

{∫
Ω

|fg|dx, f ∈ Y, ||f ||Y 6 1

}
.

Definition 8. (see [4].)

A Banach function space Y is said to have absolutely continuous norm if

||fχEn||Y → 0 for every sequence
{
En

}
, En+1 ⊂ En, |En| → 0.

Theorem 1. (see [4].) A Banach function space Y is reflexive if and only if both Y

and its associate Z = Y ′ have absolutely continuous norm.

Remark 1. For simplicity, we sometimes write ρ(f) = ρ(|f |), and various constants

depending on data shall be denoted by c or ci.

The following definitions and results were introduced in [20].

We shall consider in this section two reflexive Banach spaces (V, ‖ · ‖) and (X, | · |) we

assume that V is continuously embedded in X and let us consider two locally Lipschitz

functions J : V → IR and j : X → IR. Furthermore, we assume that

H1./
A : V → P(V ′)

u 7→ ∂J(u)
is strongly monotonic.

H2./ We have the following growth

(1) ∃ β>0, ∃ c0>0 :

βj(u) 6 inf
v∈∂j(u)

< v, u > +c0β ∀u ∈ X.

(2) There are constants c1 > 0, c2 > 0

1

β
sup

w∗∈∂J(u)

< w∗, u > −c2 + c1‖u‖ 6 J(u), ∀u ∈ V.

Let us notice that

J0(u;u) = sup
w∗∈∂J(u)

< w∗, u >, −j0(u;−u) = inf
v∈∂j(u)

< v, u > .

Lemma 1. (see [20].) Under the above conditions H1./, H2./ if the injection of V

into X is compact then the function

Φ(u) = J(u)− j(u), u ∈ V
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satisfies the (P.S.) conditions.

H3./ Φ(0) = 0 and there exist r0 > 0, R0 > 0 such that

inf
‖u‖=r

J(u) > 0 if 0 < r < r0 and J(u) > 0 if ‖u‖ > R0.

H4./ lim
‖u‖→0

j(u)

J(u)
= 0, and for some u0 6= 0, lim sup

t→+∞

j(tu0)

J(tu0)
> 1.

Definition 9. (see [20].) Let Ω be an open set of IRN and ρ0, . . . , ρN be (N +1) Banach

function norms and L(Ω, ρi), i = 0, . . . , N corresponding Banach function space. We

define the following Banach-Sobolev functions spaces

W = W 1,ρ0 ,...,ρN (Ω)

=
{
v ∈ L(Ω, ρ0),

∂v

∂xi
∈ L(Ω, ρi), i = 1, . . . , N

}
.

The norm on W is then

||v||W =
N∑
i=1

ρi

(
∂v

∂xi

)
+ ρ0(v).

Proposition 1. (see [20].) Let ρ0, . . . , ρN be (N + 1) Banach function norms, ρ′i is the

associate norm of ρi. We assume that ρi and ρ′i are absolutely continuous norms.

Then, the dual space

V′ =
(
W

1,ρ0 ,...,ρN
0 (Ω)

)′
=

{
T : there exist f0, . . . , fN , fi ∈ L(Ω, ρ′i),

< T, v >=

∫
Ω

(vf0)(x)dx+
N∑
i=1

∫
Ω

fi(x)
∂v

∂xi
(x)dx ∀ v ∈ V

}
.

Lemma 2. Computation of a subdifferential (see [20].)

Let V = W
1,ρ0 ,...,ρN
0 (Ω) where ρi and their associate ρ′i are Banach function norms which

are absolutely continuous. Let ϕi(i = 0, . . . , N) be (N + 1) Caratheodory functions on

Ω× IR such that

(1) For a.e. x ∈ Ω, the mapping σ → ϕi(x, σ) is locally Lipschitz on IR.

(2) The mappings v ∈ L(Ω, ρi)→ Φi(v) =

∫
Ω

ϕi(x, v(x))dx satisfy for i = 0, . . . , N :

for any bounded set B ⊂ L(Ω, ρi), there is a constant kB > 0 such that

∀u ∈ B, ∀ v ∈ B∫
Ω

∣∣∣ϕi(x, u(x))− ϕi(x, v(x))
∣∣∣dx 6 kBρi(u− v),∫

Ω

|ϕi(x, 0)|dx < +∞.
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Then the functional defined by

J0(v) =

∫
Ω

ϕ0(x, v(x))dx+
N∑
i=1

∫
Ω

ϕi

(
x,
∂v

∂xi
(x)

)
dx

is locally Lipschitz on V.

Moreover for all u ∈ V, all T ∈ ∂J0(u) there exist (N + 1) functions

(w0, . . . , wN) ∈ L(Ω, ρ′0)× . . .× L(Ω, ρ′N)

such that

< T, v >=

∫
Ω

w0(x)v(x)dx+
N∑
i=1

∫
Ω

wi(x)
∂v

∂xi
(x)dx ∀ v ∈ V,

for i = 1, . . . , N,

wi(x) ∈ ∂ϕi
(
x,
∂u

∂xi
(x)

)
a.e. in Ω,

and

w0(x) ∈ ∂ϕ0(x, u(x)) a.e. in Ω.

Definition 10. (see [20].) Under the notations of Lemma 2 we define the −→ρ -multivoque

Leray-Lions operator by setting

−div −→ρ

(
∂ϕi

(
x,
∂u

∂xi
(x)

))
= −

N∑
i=1

∂wi
∂xi

(x) + ω0 in D′(Ω).

Here −→ρ stands for (ρ0, . . . , ρN).

Lemma 3. (see [20].) We assume the same conditions as for Lemma 2. Furthermore,

we suppose

(1) for each j = 0, . . . , N , for a.e. x ∈ Ω, the mappings σ → ∂ϕj(x, σ) are mono-

tone;

(2) for any sequence (un)n>0 converging weakly to a function u in V with

lim
n→+∞

< T ∗n − T, un − u >= 0, for some T ∗n ∈ ∂J0(un), T ∈ ∂J0(u),

and

lim
n
ρ0 (|un − u|) = 0

satisfies:

There exists a subsequence still denoted (un) such that :

(a)
∂un
∂xi

(x)→ ∂u

∂xi
(x) a.e. x ∈ Ω, for i = 1, . . . , N ,
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(b) there exists a constant M > 1 such that

lim
n
ρj

(∣∣∣∣∂un∂xj
(x)− ∂u

∂xj
(x)

∣∣∣∣χEnj) = 0 for j = 1, . . . , N,

where

Enj =
{
x ∈ Ω :

∣∣∣∣∂un∂xj
(x)

∣∣∣∣ > M,

∣∣∣∣ ∂u∂xj (x)

∣∣∣∣ > M − 1
}
.

(c) If

lim
n

∫
Fnj

w∗nj
∂un
∂xj

(x)dx = 0 then lim
n
ρj

(∣∣∣∣∂un∂xj
(x)

∣∣∣∣χFnj) = 0,

with

Fnj =
{
x ∈ Ω :

∣∣∣∣∂un∂xj
(x)

∣∣∣∣ > M,

∣∣∣∣ ∂u∂xj (x)

∣∣∣∣ 6M − 1
}
,

w∗nj(x) ∈ ∂ϕj
(
x,
∂un
∂xj

(x)

)
, j = 1, . . . , N for a.e. x ∈ Ω. Then

(i) u→ ∂J0(u) is monotone.

(ii) un → u strongly in V (for all the sequence).

Theorem 2. (see [20].) Under the assumptions of Lemma 1, and H3./ to H4./, there

exists a function u ∈ V, u 6= 0 a critical point of Φ i.e.

0 ∈ ∂Φ(u), Φ(u) = γ > 0.

3. Construction of a ρ>-multivoque Leray-Lions strongly monotonic

operator

Let Ω be a bounded Lipschitz open set of IRN and consider N borelian functions φi :

Ω× IR→ IR, such that

A.1/ For a.e. x ∈ Ω, the map t
φi(x,·)−−−→ φi(x, t) is strictly increasing, odd, φi(x, 0) = 0.

Moreover, φi(x, ·) is right continuous on [0,+∞[ and lim
t→+∞

essinf
Ω

φi(x, t) = +∞.

A2./ There exist 2m-numbers, a1 < . . . < a2m such that

for a.e. x ∈ Ω, t ∈ IR\{a1, . . . , a2m} → φi(x, t) is continuous.

We define on Ω× IR the following function

ϕi(x, t) =

∫ |t|
0

φi(x, σ)dσ.

Proposition 2. For a.e. x ∈ Ω, the function ϕi(x, ·) is a N-function (see [1] for a

definition) on [0,+∞[.

In particular, ϕi(x, ·) is a convex function and
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a) ∂ϕi(x, t) =
[

lim inf
σ→t

φi(x, σ), lim sup
σ→t

φi(x, σ)
]
, ∀ t ∈ IR.

b) Moreover, one has for all t ∈ IR∫ |t|
0

∂ϕi(x, σ)dσ = ϕi(x, t).

(That is ∀w(x, σ) ∈ ∂ϕi(x, σ),

∫ |t|
0

w(x, σ)dσ = ϕi(x, t).)

Proof :

• The condition A.1/ implies ϕi(x, ·) is a N function according to the usual defi-

nition (see [1, 14]). The computation of the subdifferential is straightforward.

• We recall that for almost all t ∈ IR

φi(x, t) = lim inf
σ→t

φi(x, σ) = lim sup
σ→t

φi(x, σ),

and since ϕi is locally Lipschitz, we deduce easily the statement b).

♦

Proposition 3. Let i ∈ {1, . . . , N} and (t, t1) be in IR. Assume that

(t− t1)(w − w1) = 0 for some w ∈ ∂ϕi(x, t), and w1 ∈ ∂ϕi(x, t1).

Then

t = t1.

Proof :

If t 6= t1 then w = w1. We may assume that t < t1, since φi(x, ·) is strictly increasing,

we have

w 6 lim sup
σ→t

φi(x, σ) < lim inf
σ→t1

φi(x, σ) 6 w1,

which implies w < w1. This is a contradiction so

t = t1.

♦
Remark 2. Let us notice that

lim inf
σ→t

φi(x, σ) = lim
ε→0,ε>0

φi(x, t− ε),

and

lim sup
σ→t

φi(x, σ) = lim
ε→0,ε>0

φi(x, t+ ε).
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We need that ϕi(x, ·) satisfies the so-called global ∆2-condition (or near infinity). Fol-

lowing the necessary and sufficient condition given in [1, 14], we shall assume

A3./ There are two numbers α > 1, α > 1 such that : for a.e. x, ∀ t ∈ IR

αϕi(x, t) 6 twi(x, t) 6 αϕi(x, t), and ∀wi(x, t) ∈ ∂ϕi(x, t).

Remark 3. i) According to the remark 2, this last condition is equivalent to

αϕi(x, t) 6 t lim
ε→0

φi(x, t− ε) 6 t lim
ε→0

φi(x, t+ ε) 6 αϕi(x, t).

ii) Therefore there exists K > 0

ϕi(x, 2t) 6 Kϕi(x, t) for a.e. x ∈ Ω, ∀ t ∈ IR.

As usual, we define the associate Orlicz space by considering

Lϕi(Ω) =
{
v : Ω→ IR measurable :

∫
Ω

ϕi
(
x, v(x)

)
dx < +∞

}
,

we endowed this space with Banach function norm

(1) ρi(v) = Inf

{
λ > 0 :

∫
Ω

ϕi

(
x,
v(x)

λ

)
dx 6 1

}
.

Thus

(2) Lϕi(Ω) = L(Ω, ρi).

Introducing the conjugate function of ϕi(x, ·)

ϕ̃i(x, t) = sup
s>0

{
ts− ϕi(x, s)

}
, for t > 0.

Then the associate norm of ρi is

(3) ρ′i(v) = Inf

{
λ > 0 :

∫
Ω

ϕ̃i

(
x,
|v(x)|
λ

)
dx 6 1

}
,

and we shall assume that ϕ̃i(x, ·) satisfies the ∆2-condition globally (or near infinity)

say that there exists a constant k > 0

ϕ̃i(x, 2t) 6 kϕ̃i(x, t) for a.e. x and ∀ t > 0, (or t > t0),

then the dual and associate space of L(Ω, ρi) is L(Ω, ρ′i):

(4)
(
Lϕi(Ω)

)′
= L(Ω, ρi)

′ = L(Ω, ρ′i) = Lϕ̃i(Ω).

♦
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The Orlicz-Sobolev space associated to −→ρ = (ρ1 , . . . , ρN ) is

W
1,ρ1 ,...,ρN
0 (Ω) =

{
v ∈ L1(Ω) :

∂v

∂xi
(x) ∈ L(Ω, ρi), i = 1, . . . , N, γ0v = 0

}
.

We define the function

J(v) =
N∑
i=1

∫
Ω

ϕi

(
x,
∂v

∂xi
(x)

)
dx.

The main result in this section is :

Theorem 3. Assume A1./, A2./, A3./. Then the −→ρ -multivoque Leray-Lions operator

defined by

Au = −div −→ρ

(
∂ϕi

(
x,
∂u

∂xi
(x)

))
is strongly monotonic on the Orlicz-Sobolev space W

1,ρ1 ,...,ρN
0 (Ω)=̇V0.

Remark 4. (1) Since essinf
Ω

φi(x, t) > 1 for t > t0 > 0, then, we have∫∣∣∣∣∣∣ ∂v∂xi (x)

∣∣∣∣∣∣>t0

∣∣∣∣ ∂v∂xi (x)

∣∣∣∣ ∣∣∣∣φi(x, ∂v∂xi (x)

)∣∣∣∣ dx >
∫∣∣∣∣∣∣ ∂v∂xi (x)

∣∣∣∣∣∣>t0

∣∣∣∣ ∂v∂xi (x)

∣∣∣∣ dx,
and we deduce from assumption A3./ that∫

Ω

∣∣∣∣ ∂v∂xi (x)

∣∣∣∣ dx 6 c1

∫
Ω

ϕi

(
x,
∂v

∂xi
(x)

)
dx+ c2,

(cj denote various constants independent of v).

Thus

W
1,ρ1 ,...,ρN
0 (Ω) ⊂ W 1,1

0 (Ω).

(2) One has for all t > 0, all σ > 1

σ αϕi(x, t) 6 ϕi(x, σt) 6 σ αϕi(x, t) for a.e. x ∈ Ω.

This relation is a consequence of the assumption A3./, noticing that t→ ϕi(x, t)

is a locally Lipschitz function.

Proof :

Let (un)n>0 be a bounded sequence of V0 converging weakly to a function u ∈ V0.

Assume that Tn ∈ ∂J(un) and T ∈ ∂J(u) satisfies

lim
n→+∞

< T − Tn, u− un >= 0,

we have to show that un → u in V0. For this, we shall apply Lemma 5 of [20] (see

Lemma 2 of the above section 2). We first need to show :
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Lemma 4. Up to a subsequence, one has

∂un
∂xi

(x) −−−−→
n→+∞

∂u

∂xi
(x) a.e. x and for all i = 1, . . . , N.

Proof :

The fact that lim
n→∞

< T − Tn, u− un >= 0 implies that

∀w∗ni ∈ ∂ϕi
(
x,
∂un
∂xi

(x)

)
, ∀w∗i ∈ ∂ϕi

(
x,
∂u

∂xi
(x)

)

lim
n→∞

N∑
i=1

∫
Ω

(w∗ni(x)− w∗i (x))

(
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
dx = 0.

Since ϕi(x, ·) is convex, we deduce that

∆ni(x) = (w∗ni(x)− w∗i (x))

(
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
> 0 a.e. x,

thus,

lim
n→∞

∫
Ω

(w∗ni(x)− w∗i (x))

(
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
dx = 0.

Then at least for a subsequence, we deduce

(5) lim
n→+∞

(w∗ni(x)− w∗i (x))

(
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
= 0 for a.e. x.

From assumption A3./ and the above remark we have

(6) αϕi

(
x,
∂un
∂xi

(x)

)
6 w∗ni(x)

∂un
∂xi

(x) 6 αϕi

(
x,
∂un
∂xi

(x)

)
.

We have

(7)
∂un
∂xi

(x)w∗ni(x) 6 w∗i (x)
∂un
∂xi

(x)− w∗i (x)
∂u

∂xi
(x) + w∗ni(x)

∂u

∂xi
(x) + ∆ni(x).

By the definition of subdifferential for ϕi convex

(8) w∗ni(x)

(
∂u

∂xi
(x)− ∂un

∂xi
(x)

)
6 ϕi

(
x,
∂u

∂xi
(x)

)
− ϕi

(
x,
∂un
∂xi

(x)

)
.

Thus

(9) w∗ni(x)
∂u

∂xi
(x) 6 w∗ni(x)

∂un
∂xi

(x)− ϕi
(
x,
∂un
∂xi

(x)

)
+ ϕi

(
x,
∂u

∂xi
(x)

)
.

Using relation(6)

(10) w∗ni(x)
∂u

∂xi
(x) 6

(
1− 1

α

)
w∗ni(x)

∂un
∂xi

(x) + ϕi

(
x,
∂u

∂xi
(x)

)
From (7) and (10), we deduce

(11)
1

α
w∗ni(x)

∂un
∂xi

(x) 6 w∗i (x)
∂un
∂xi

(x)− w∗i (x)
∂u

∂xi
(x) + ϕi

(
x,
∂u

∂xi
(x)

)
+ ∆ni(x).
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But according to Remark 4, statement 2.) one deduces from relation (6)

(12) w∗ni(x)
∂un
∂xi

(x) > αϕi(x, 1)

∣∣∣∣∂un∂xi
(x)

∣∣∣∣α − αϕi(x, 1).

From relations (11), (5) and (12), we have for some number K3(x) independent of n

(13)
α

α
ϕi(x, 1)

∣∣∣∣∂un∂xi
(x)

∣∣∣∣α − α

α
ϕi(x, 1) 6 w∗i (x)

∂un
∂xi

(x) +K3(x).

By Young’s inequality, noticing that α > 1 and ϕi(x, 1) > 0 we derive

(14)

∣∣∣∣∂un∂xi
(x)

∣∣∣∣α 6 K4(x) < +∞.

We may assume that
∂un
∂xi

(x) −−−−→
n→+∞

ξi(x) (at least for a subsequence). Since relation

(14) implies that w∗ni(x) remains in a bounded set of IR, we may also assume that

w∗ni(x) −−−−→
n→+∞

wi(x).

Therefore, one has

wi(x) ∈ ∂ϕi
(
x, ξi(x)

)
and from relation (5).

(15)
(
wi(x)− w∗i (x)

)(
ξi(x)− ∂u

∂xi
(x)

)
= 0.

According to Proposition 3, we have

ξi(x) =
∂u

∂xi
(x).

Arguing by contradiction, we deduce that all the sequence satisfying relation (5).

∂un
∂xi

(x)→ ∂u

∂xi
(x), for a.e. x.

♦

Next, we have to show that

Lemma 5. Let M > sup
{
|aj|, j = 1, . . . , 2m

}
+ 2, such that

measure

{
x ∈ Ω :

∣∣∣∣ ∂u∂xi (x)

∣∣∣∣ = M

}
= 0,

Eni =

{
x ∈ Ω :

∣∣∣∣∂un∂xi
(x)

∣∣∣∣ > M ;

∣∣∣∣ ∂u∂xi (x)

∣∣∣∣ > M − 1

}
. Then

lim
n→+∞

∫
Eni

ϕi

(
x,
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
dx = 0.
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Proof :

For ε > 0, we set

Ωn
ε =

{
x ∈ Ω :

∣∣∣∣∂un∂xi
(x)− ∂u

∂xi
(x)

∣∣∣∣ > ε

}
, Eε

ni = Eni ∩ (Ωn
ε )c

(Ωn
ε )c =

{
x ∈ Ω :

∣∣∣∣∂un∂xi
(x)− ∂u

∂xi
(x)

∣∣∣∣ 6 ε

}
⊂
{
x :

∣∣∣∣∂un∂xi
(x)

∣∣∣∣ 6 ∣∣∣∣ ∂u∂xi (x)

∣∣∣∣+ ε

}
.

Then we observe that

(16)

∫
Eni

ϕi

(
x,
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
dx =

=

∫
Eni\Eεni

ϕi

(
x,
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
dx+

∫
Eεni

ϕi

(
x,
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
dx.

By the Lebesgue dominate Theorem, we have

(17) lim
n→+∞

∫
Eεni

ϕi

(
x,
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
dx = 0.

To show that

lim
n→+∞

∫
Eni\Eεni

ϕi

(
x,
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
dx = 0,

we note by the convexity property that we have

(18) ϕi

(
x,
∂(un − u)

∂xi
(x)

)
6

1

2
ϕi

(
x, 2

∂un
∂xi

(x)

)
+

1

2
ϕi

(
x, 2

∂u

∂xi
(x)

)
,

and by the ∆2-condition

(19) ϕi(x, 2t) 6 2αϕi(x, t).

Then one has

lim sup
n→+∞

∫
Eni\Eεni

ϕi

(
x,
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
dx 6 c lim sup

n→+∞

∫
Ωnε

ϕi

(
x,
∂u

∂xi
(x)

)
dx

+c lim sup
n→+∞

∫
Eni\Eεni

ϕi

(
x,
∂un
∂xi

(x)

)
dx.(20)

But

(21) lim sup
n→+∞

∫
Ωnε

ϕi

(
x,
∂u

∂xi
(x)

)
dx = 0,

since
∂un
∂xi

(x) converges to
∂u

∂xi
(x) for almost every x. Thus it suffices to show

(22) lim sup
n→+∞

∫
Eni\Eεni

ϕi

(
x,
∂un
∂xi

(x)

)
dx = 0.
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Setting δφni(x) =

(
φi

(
x,
∂un
∂xi

(x)

)
− φi

(
x,
∂u

∂xi
(x)

))(
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
we have

(23)
∂un
∂xi

(x)φi

(
x,
∂un
∂xi

(x)

)
=

= δφni(x) + φi

(
x,
∂u

∂xi
(x)

)(
∂(un − u)

∂xi
(x)

)
+
∂u

∂xi
(x)φi

(
x,
∂un
∂xi

(x)

)
.

For each i and a.e. x ∈ Ω the map t→ φi(x, t) is continuous for t > M − 2, we deduce

that for x ∈ Eni
∂ϕi

(
x,
∂un
∂xi

(x)

)
=

{
φi

(
x,
∂un
∂xi

(x)

)}
,

and

∂ϕi

(
x,
∂u

∂xi
(x)

)
=

{
φi

(
x,
∂u

∂xi
(x)

)}
.

By the convexity of ϕi, one has from the definition of subdifferential

(24)
∂u

∂xi
(x)φi

(
x,
∂un
∂xi

(x)

)
6 ϕi

(
x,
∂u

∂xi
(x)

)
− ϕi

(
x,
∂un
∂xi

(x)

)
+
∂un
∂xi

(x)φi

(
x,
∂un
∂xi

(x)

)
.

From relations (23) and (24), we have

(25) ϕi

(
x,
∂un
∂xi

(x)

)
6 δφni(x) + φi

(
x,
∂u

∂xi
(x)

)
∂(un − u)

∂xi
(x) + ϕi

(
x,
∂u

∂xi
(x)

)
.

From the above relation, we deduce

(26)∫
Eni\Eεni

ϕi

(
x,
∂un
∂xi

(x)

)
dx 6

∫
Eni

δφni(x)dx+

∫
Eni

φi

(
x,
∂u

∂xi
(x)

)
∂(un − u)

∂xi
(x)dx

−
∫
Eεni

φi

(
x,
∂u

∂xi
(x)

)
∂(un − u)

∂xi
(x)dx+

∫
Eni\Eεni

ϕi

(
x,
∂u

∂xi
(x)

)
dx.

Let us analyze each term of the right hand of the last relation (26).

As we have seen before the fact that

lim
n→+∞

< Tn − T, un − u >= 0,

implies

lim
n→+∞

∫
Ω

(w∗ni − w∗i )
(
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
dx = 0,

and since∫
Ω

(w∗ni − w∗i )
(
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
dx >

∫
Eni

(w∗ni − w∗i )
(
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
dx,

we deduce

(27) lim
n→+∞

∫
Eni

(
φi

(
x,
∂un
∂xi

(x)

)
− φi

(
x,
∂u

∂xi
(x)

))(
∂(un − u)

∂xi
(x)

)
dx =
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= lim
n→+∞

∫
Eni

δφni(x)dx = 0.

For the second term of the right hand side of relation (26) one has

φi

(
x,
∂u

∂xi
(x)

)
∈ ∂ϕi

(
x,
∂u

∂xi
(x)

)
for a.e. x ∈ Eni,

then,

(28) ϕi

(
x,
∂u

∂xi
(x)

)
+ ϕ̃i

(
x, φi

(
x,
∂u

∂xi
(x)

))
=

∂u

∂xi
(x)φi

(
x,
∂u

∂xi
(x)

)
,

where ϕ̃i(x, t) = sup
s>0

{
st− ϕi(x, s)

}
is the Legendre transform of ϕi(x, ·).

Since ϕi(x, 0) = 0 one has ϕ̃i(x, 0) = 0 (remember ϕi(x, s) > 0).

Thus

(29)

∫
Ω

ϕ̃i

(
x, χEni(x)φi

(
x,
∂u

∂xi
(x)

))
dx 6 c

∫
Ω

ϕi

(
x,
∂u

∂xi
(x)

)
dx < +∞,

for some constant c independent of u.

By the dominate convergence theorem, one deduces

(30) χEniφi

(
x,
∂u

∂xi
(x)

)
−−−−→
n→+∞

χE∞,iφi

(
x,
∂u

∂xi
(x)

)
,

(with E∞,i =

{
x ∈ Ω :

∣∣∣∣ ∂u∂xi (x)

∣∣∣∣ > M

}
), a.e. in Ω, and strongly in Lϕ̃i(Ω). By the weak

convergence of
∂un
∂xi

to
∂u

∂xi
in Lϕi(Ω), we deduce that

(31) lim
n→+∞

∫
Eni

φi

(
x,
∂u

∂xi
(x)

)(
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
dx = 0.

By the Lebesgue dominate convergence’s Theorem, on Eε
ni

(32) lim
n→+∞

∫
Eεni

φi

(
x,
∂u

∂xi
(x)

)(
∂un
∂xi

(x)− ∂u

∂xi
(x)

)
dx = 0.

We combine relations (32), (31) with (27) and we obtain from relation (26)

(33) lim sup
n→+∞

∫
Eni\Eεni

ϕi

(
x,
∂un
∂xi

(x)

)
dx 6 lim sup

n→+∞

∫
Ωnε

ϕi

(
x,
∂u

∂xi
(x)

)
dx = 0.

Relations (17) and (33) give the result.

♦

The last Lemma in order to conclude the proof of Theorem 3 is

Lemma 6. Let Tn ∈ ∂J(un), with Tn associated to (w∗n1, . . . , w
∗
nN), as before.

If lim
n

∫
Fni

w∗ni
∂un
∂xi

(x) = 0 then

lim
n

∫
Ω

ϕi

(
x,
∂un
∂xi

(x)χFni

)
dx = 0,
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whenever

Fni =

{
x ∈ Ω :

∣∣∣∣∂un∂xi
(x)

∣∣∣∣ > M,

∣∣∣∣ ∂u∂xi (x)

∣∣∣∣ 6M − 1

}
,

M is as in the preceding Lemma.

Proof :

Since w∗ni(x)
∂un
∂xi

(x) > αϕi

(
x,
∂un
∂xi

(x)

)
and ϕi(x, 0) = 0.

Then, if lim
n

∫
Fni

w∗ni(x)
∂un
∂xi

(x)dx = 0 we deduce

lim
n→∞

∫
Ω

ϕi

(
x, χFni

∂un
∂xi

(x)

)
dx = 0.

Thus

lim
n→+∞

ρi

(
χFni

∂un
∂xi

(x)

)
= 0.

♦

Applying Lemma 5 of [20] (see Lemma 3 of the above section 2), we conclude that

un → u strongly in the Orlicz-Sobolev space V0. This ends the proof of Theorem 3. ♦

Remark 5. The monotonicity comes from the convexity of ϕi.

3.1. Few examples of applications.

Let (qi, pi), i = 1, . . . , N be 2N -bounded measurable functions on Ω satisfying

1 < essinf
Ω

qi(x) 6 qi(x) < essinf
Ω

pi(x).

Consider

ϕi(x, t) =

|t|
pi(x) if |t| > 1,

|t|qi(x) if |t| 6 1,
, for x ∈ Ω, t ∈ IR.

We can choose φi(x, t) as

φi(x, t) =



pi(x)|t|pi(x)−2t if |t| > 1,

qi(x)|t|qi(x)−2t if |t| < 1,

qi(x) if t = 1,

−qi(x) if t = −1.
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One can check that all the assumption A1./ to A3./ are fulfilled. In this case, the

Orlicz space Lϕi(Ω) coincide with the variable exponent Lpi(·)(Ω). And

∂ϕi(x, t) =

φi(x, t) if |t| > 1 or |t| < 1,[
qi(x), pi(x)

]
sign (t) otherwise.

Applying Theorem 4 of [20] (see Theorem 2 of the above section 2), one has

Theorem 4. Let (pN+1, qN+1) be two bounded measurable function satisfying

1 < essinf
Ω

qN+1(x) 6 qN+1(x) < essinf
Ω

pN+1(x).

Assume that V0 is compactly embedded in LpN+1(Ω) and

|qN+1|− = essinf
Ω

qN+1(x) > p∞ = max
1<j6N

|pj|∞.

Then for all λ > 0, there exists a non trivial function u ∈ V0 such that

−div −→ρ

(
∂ϕi

(
x,
∂u

∂xi
(x)

))
= λwN+1

(
x, u(x)

)
,

with wN+1

(
x, u(x)

)
∈ ∂ϕN+1

(
x, u(x)

)
.

ϕN+1

(
x, u(x)

)
=

|u(x)|pN+1(x) if |u(x)| > 1,

|u(x)|qN+1(x) if |u(x)| 6 1.

Proof :

Introduce

Φ(u) = J(u)− j(u), j(u) =

∫
Ω

ϕN+1(x, u(x))dx,

as in [20], one can check assumption H4./ ♦

3.2. Other examples of function ϕi.

The following example is related to Orlicz-Sobolev spaces with variable exponents


φi(x, t) = pi(x) Log

(
1 + α + |t|

)
|t|pi(x)−2t, x ∈ Ω, t ∈ IR,

essinf
Ω

pi(x) > 1, α > 0, pi(x) ∈ L∞(Ω), i = 1, . . . , N,

ϕi(x, t) = Log
(
1 + α + |t|

)
|t|pi(x) −

∫ |t|
0

spi(x)

1 + α + s
ds, i = 1, . . . , N.
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4. An abstract result for the existence of critical value near zero

To complete the abstract Theorem 4 in [20] we shall introduce here a result where we

don’t need to impose a compact embedding of V in X.

We replace H1./ by

H’1./We assume that the graph of ∂Φ satisfies the following property:

For any sequence (un, wn)n>0, wn ∈ ∂Φ(un) such that un ⇀ u weakly in V , wn → 0

strongly in V ′, one has

0 ∈ ∂Φ(u).

We replace H2./ by

H’2./ The function j can be split into two locally Lipschitz functions j0, j1 in V such

that j = j0 + j1, j0(0) = j1(0) = 0, the map V → j0(v) is weakly continuous. We have

the following growth

(1) ∃ β>0 :

βj1(u) 6 inf
v∈∂j(u)

< v, u > ∀u ∈ X.

(2)
1

β
sup

w∗∈∂J(u)

< w∗, u >6 J(u), ∀u ∈ V.

H’3./ Φ(0) = 0 and there exist u1 ∈ V and η > ||u1|| such that

Φ(v) > 0, ||v|| = η, Φ(u1) < 0, inf
v∈B(0,η)

Φ(v) > −∞.

Theorem 5. Assume H’1./, H’2./, and H’3./.

Then, there exists a function u 6≡ 0, u ∈ V a critical point of Φ = J − j, that is

0 ∈ ∂J(u)− ∂j(u).

Proof :

Let B(0, η) be the open ball of radius η. Since we have a function u1 6≡ 0, u1 ∈ V such

that Φ(u1) < 0 ( by H’3./), then u1 ∈ B(0, η) and c = Inf
v∈B(0,η)

Φ(v), verifies

−∞ < c 6 Φ(u1) < 0.

By Ekeland variational principle (see [12, 15] and Appendix A) we have a minimizing

sequence un ∈ B(0, η), and u ∈ V such that

(1) Φ(un) −−−−→
n→+∞

c,
(

thus un ∈ interior
(
B(0, η)

)
= B(0, η)

)
,

(2) −`∗n ∈ ∂Φ(un), ||`∗n||V ′ −−−−→
n→+∞

0,

(3) un converges weakly to u in V .
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But the assumption H’1./, we deduce

0 ∈ ∂Φ(u).

It remains to show that u 6≡ 0. There exist wn ∈ ∂J(un), vn ∈ ∂j(un) such that

0 = wn − vn + `∗n,

this implies

(34) 0 =
1

β
< wn, un > −

1

β
< vn, un > +

1

β
< `∗n, un > .

We shall write

(35)
1

β
< `∗n, un > +Φ(un) = J(un)− 1

β
< wn, un > +

1

β
< vn, un > −j1(un)− j0(un).

By assumption H’2./, we have

(36) J(un)− 1

β
< wn, un >> 0.

(37) −j1(un) +
1

β
< vn, un >> 0.

From relation (35) to (37), one deduces

1

β
< `∗n, un > +Φ(un) > −j0(un),

we can let n→ +∞ to derive

0 > c > −j0(u) : j0(u) > −c > 0 : u 6≡ 0.

♦

4.1. Example of applications of Theorem 5.

Theorem 6. Let Ω be an open bounded Lipschitz set and ϕi(x, t) =
1

pi
|t|pi, with pi > 1

are N-real numbers such that

N∑
i=1

1

pi
> 1 and let p∗ =

N
N∑
i=1

1

pi
− 1

, p+ = max(p1, . . . , pN).
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We assume p+ < p∗, and p− = min(p1, . . . , pN). Consider 1 < q1 < p−, 1 < q2 < p∗,

q1 < q2 two real numbers.

Then there exist λ∗ > 0,∀λ ∈]0, λ∗[, u ∈ W 1,p1,...,pN
0 (Ω), u > 0, u 6≡ 0,

−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi (x)

∣∣∣∣pi−2
∂u

∂xi
(x)

)
− up∗−1 ∈ λ∂j0(u),

with

j0(u) =

∫
Ω

g
(
u(x)

)
dx, g

(
u(x)

)
=

|u(x)|q1 if |u(x)| 6 1,

|u(x)|q2 if |u(x)| > 1.

Proof :

We set

V =

{
v ∈ Lp+(Ω),

∫
Ω

∣∣∣∣ ∂v∂xi (x)

∣∣∣∣pi dx < +∞, i = 1, . . . , N, γ0v = 0

}
.

One has V ⊂> Lp
∗
(Ω), p∗ = N

N∑
i=1

1

pi
− 1

(see [13])

J(u) =
N∑
i=1

1

pi

∫
Ω

∣∣∣∣ ∂u∂xi (x)

∣∣∣∣pi dx, j1(u) =
1

p∗

∫
Ω

|u|p∗dx,

j0(u) =

∫
Ω

g(u)dx, g(u) =

|u|
q1 if |u| 6 1,

|u|q2 if |u| > 1.

j′1(u) =
{
|u|p∗−2u

}
,

j0 is convex, vanishing at 0 and therefore ∂j0(u) is monotone, < ∂j0(u), u >> 0

(38) < ∂j(u), u >>< j′1(u), u >=

∫
Ω

|u|p∗dx > p∗j1(u),

J ′(u) =

{
−

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi (x)

∣∣∣∣pi−2
∂u

∂xi
(x)

)}
,

and then

< J ′(u), u >=
N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi (x)

∣∣∣∣pi dx 6 p+J(u).

Choosing β such that p+ < β < p∗, we have H’2./.

Since the injection of V into Lq(Ω) is compact for any q < p∗, we conclude easily that

the mappings

i) u→ j0(u) is weakly continuous,
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ii) u ∈ V → |u|p∗−2u is continuous from V endowed the weak topology into Lr(Ω)

endowed with the strong topology r <
p∗

p∗ − 1
.

Let S0 be the Sobolev constant satisfying

|v|p∗ 6 S0||v|| = S0

N∑
i=1

∣∣∣∣ ∂v∂xi
∣∣∣∣
pi

.

Since p∗ > p+ there exists 0 < η < 1 : a =
1

Np+
ηp+−q2 − Sp

∗

0 η
p∗−q2 > 0.

Then, we have, for v ∈ V : ||v|| = η

J(v)− j1(v) >
1

p∗
ηq2a.

Let λ∗ > 0 be a real number such that

λ∗ sup
||v||=η

j0(v) < a
ηq2

p∗
,

then ∀ v ∈ V such that ||v|| = η

Φ(v)=̇J(v)− j1(v)− λj0(v) > 0, ∀λ ∈]0, λ∗[.

Let u0 ∈ C1
c (Ω),

{
|u0| 6 1

}
and

{
|u0| > 1

}
are of positive measure, 0 < t < 1

Φ(tu0) 6
N∑
i=1

tpi

pi

∫
Ω

∣∣∣∣∂u0

∂xi
(x)

∣∣∣∣pi dx− tp∗
∫

Ω

|u0|p
∗

p∗
dx− λtq1

∫
{|u0|61}

|u0|q1dx

6 tp−
(
A1 − A2t

p∗−p− − A3t
q1−p−

)
< 0 for t near zero since q1 < p−, A3 > 0, t||u0|| < η.

It is easy to check that

inf
{

Φ(v), v ∈ B(0, η)
}
> −∞.

Since the operator u ∈ V→ ∂j(u) is bounded, we may use the compactness result used

in [10] (see also [19]) to show that the graph of u ∈ V − σ(V,V′) → ∂Φ(u) satisfies

H’1./, with V is endowed with the weak topology. Indeed, let (un) be a sequence of V

converging to u weakly and strongly in Lr(Ω) for r < p∗ and a.e. in Ω. Then ∂j(un)

remains in a bounded set of (Lp
∗
(Ω) + Lq2(Ω))′. Let k > 0 and consider

Tk(σ) =

σ if |σ| < k,

k sign (σ) otherwise.
, uk = Tk(u).
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Then ∀wn ∈ ∂j(un), ∀ϕ ∈ C∞c (Ω),
∣∣∣ < wn, ϕTε(un − uk) >

∣∣∣ 6 |ϕ|∞K0ε for some

constant K0. If w∗n ∈ ∂Φ(un), w∗n → 0 strongly in V′ then w∗n + wn = J ′(un), wn ∈

∂j(un), therefore we have

N∑
i=1

∫
Ω

∣∣∣∣∂un∂xi
(x)

∣∣∣∣pi−2
∂un
∂xi

(x)
∂

∂xi

(
Tε(un − uk)ϕ

)
dx 6 |ϕ|∞K0ε+K1||w∗n||V′ .

We may apply Theorem 1 of [10] or Lemma 2 of [19] to conclude that

∇un(x) −−−−→
n→+∞

∇u(x) (up to subsequence).

Therefore ∀ v ∈ V,

< J ′(un), v >→< J ′(u), v >

and ∫
Ω

|un|p
∗−2unvdx→

∫
Ω

|u|p∗−2uvdx.

Since −w∗n + J ′(un)− |un|p
∗−2un ∈ λ∂j0(un), un → u in Lr(Ω), r < p∗. We deduce

(39) J ′(u)− |u|p∗−2u ∈ λ∂j0(u) : 0 ∈ ∂Φ(u).

Indeed, un → u in Lq2(Ω) strongly, there exists hn belonging to a bounded set of Lq
′
2(Ω)

such that −w∗n + J ′(un)− |un|p
∗−2un = hn ∈ λ∂j0(un).

We have a subsequence hn′ and a function h such that hn′ ⇀ h weakly in Lq
′
2(Ω). Thus

h ∈ λ∂j0(u). On the other hand, since

(40) ∀ v ∈ V, lim
n→+∞

< w∗n, v >= 0,

( w∗n → 0 strongly in V′)

(41) lim
n→+∞

< J ′(un)− |un|p
∗−2un, v >=< J ′(u)− |u|p∗−2u, v > .

We deduce in the sense of the distribution that

J ′(u)− |u|p∗−2u = h ∈ λ∂j0(u).

This show that 0 ∈ ∂Φ(u).

Since Φ(u) = Φ(|u|), we may choose u > 0. This ends the proof. ♦

Remark 6. The above Theorem 6 allows to recover many other situations, when λj0

is small, in particular we can recover Theorem 1 in [2]. We may omit the term |u|p∗−2,

the result still holds true.
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Next, we want to study eigenvalue problem on unbounded domain eventually with a

weight. To do so, we shall start with the following result due to V. Maz’ja.

5. Unbounded case with a weighted function

Theorem 7. (see [16]). For all u ∈ W 1,1(IRN) with compact support, ∀α ∈ [0, 1](∫
IRN
|u(x)|

N−α
N−1

dx

|x|α

) N−1
N−α

6 (N − α)
1−N
N−α ω

α−1
N−α
N |∇u|L1(IRN ).

Here ωN is the measure of the unit ball of IRN .

Corollary 1. (of Theorem 7)

Let p∗α =
(N − α)p

(N − α)− (1− α)p
, α ∈ [0, 1], p > 1, (N − α) > (1 − α)p. Then, ∀u ∈

W 1,p(IRN) with compact support, we have(∫
IRN
|u|p∗a dx

|x|α

) 1
p∗α

6 cN

(∫
IRN
|∇u|p|x|α(p−1)dx

) 1
p

,

with cN = t(N − α)
1−N
N−αω

α−1
N−α
N , t = N−1

N−αp
∗
α.

Proof :

Let u ∈ W 1,p(IRN) with compact support. Then, |u|t ∈ W 1,p(IRN) and has its support

compact. Therefore, using Theorem 7, we have

(42)

(∫
IRN
|u(x)|t

N−α
N−1

dx

|x|α

) N−1
N−α

6 cN

∫
IRN
|u(x)|t−1|∇u(x)|dx.

Apply the Hölder’s inequality to the right hand side of (42), we obtain (introducing the

weight |x|−α

(43)(∫
IRN
|u(x)|p∗α dx

|x|α

) t
p∗α

6 cN

(∫
IRN
|u(x)|(t−1)p′ dx

|x|α

) 1
p′
(∫

IRN
|∇u(x)|p|x|α(p−1)dx

) 1
p

.

We have (t− 1)p′ = p∗α, then, from (43), we have

(44)

(∫
IRN
|u(x)|p∗α dx

|x|α

) t
p∗α
− 1
p′

6 cN

(∫
IRN
|∇u(x)|p|x|α(p−1)dx

) 1
p

.

And one can check that
t

p∗α
− 1

p′
=

1

p∗α
, this shows the result. ♦

Let Ω be an open set of IRN, we denote for v ∈ C∞c (Ω), ||v|| =
(∫

Ω

|∇v(x)|p|x|α(p−1)dx

) 1
p

.

We shall denote by D1,p
0,α(Ω) to closure of C∞c (Ω) with respect to the above norm. As a

consequence of Corollary 1 , we have
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Lemma 7. ∀u ∈ D1,p
0,α(Ω), one has(∫

Ω

|u(x)|p∗α dx

|x|α

) 1
p∗α

6 cN

(∫
Ω

|∇u(x)|p|x|α(p−1)dx

) 1
p

.

as in Corollary 1 of Theorem 7.

Theorem 8. Let 1 < q < p and a ∈ Lm+

(
Ω, |x|

αq
p∗α−q

)
, m =

p∗α
p∗α − q

. There exists a

number λ∗ such that ∀λ ∈]0, λ∗[, there exists a function u > 0, u 6≡ 0, u ∈ D1,p
0,α(Ω)

such that

−div
(
|x|α(p−1)|∇u|p−2∇u

)
= λa(x)uq−1 +

up
∗
α−1

|x|α
in D′(Ω).

Sketch of proof

The argument is similar to the proof of Theorem 6, using Theorem 5, we set

J(u) =
1

p

∫
Ω

|∇u|p|x|α(p−1)dx,

j1(u) =
1

p∗α

∫
Ω

|u|p∗α dx

|x|α
,

j0(u) =
1

q

∫
Ω

a(x)|u(x)|qdx.

One has

∂J(u) =
{
− div

(
|x|α(p−1)|∇u|p−2∇u

)}
,

∂j1(u) =

{
|u|p∗α−2

|x|α
u

}
,

∂j0(u) =
{
a(x)|u|q−2u

}
,

j(u) = λj0(u) + j1(u) (see below for the choice of λ),

< ∂j(u), u > >
∫

Ω

|u|p∗α dx

|x|α
> p∗αj1(u),

< J ′(u), u > = pJ(u).

Thus, we can take p < β < p∗α in conditions (1) and (2) of H’2./. Due to the integrability

of the function a , we deduce that the mapping u ∈ V → j0(u) is continuous from V -

weak into IR. Indeed if (un)n is a bounded sequence in D1,p
0,α(Ω) then there exist a

function u ∈ D1,p
0,α(Ω) and a subsequence still denoted un such that un(x) −→

n
u(x) a.e.

and un ⇀ u weakly in D1,p
0,α(Ω). Then lim

n

∫
Ω

a(x)|un−u|qdx = 0 using Vitali’s Theorem.

Thus H’2./ is satisfied. While for H’3./, we have Φ(0) = 0 = J(0) = j(0). There exists

η > 0 such that η1 = ηp−q− cp
∗
α
N η

p∗α−q > 0, cN is the Sobolev constant given in the above

Lemma.
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For all v ∈ D1,p
0,α(Ω) with ||v|| = η

J(v)− j1(v) >
1

p∗α
ηqη1.

Let λ∗ such that

λ∗ sup
||v||=η

j0(v) < η1
ηq

p∗α
.

Then ∀ v ∈ V with ||v|| = η, ∀λ ∈]0, λ∗[

Φ(v)=̇J(v)− j1(v)− λj0(v) > 0.

Let u0 ∈ C∞c (Ω) such that support (a) ∩
{
|u0| > 1

}
or support (a) ∩

{
|u0| 6 1

}
is of

positive measure, 0 < t < 1

Φ(tu0) 6
tp

p

∫
Ω

|∇u0|p|x|α(p−1)dx− tp
∗
α

p∗α

∫
Ω

|u0|p
∗
α

dx

|x|α
− λtq

q

∫
Ω

a(x)|u0|qdx

6 tp
(
A1 − tp

∗
α−pA2 − A3t

q−p
)

since q < p, A3 =
λ

q

∫
Ω

a(x)|u0|qdx > 0, the Φ(tu0) < 0 for t small.

It is easy to check that

Inf
{

Φ(v), ||v|| 6 η
}
> −∞

since

j1(v) 6 c||v||p∗α , j0(v) 6 c||v||q.

Thus all the conditions in H’3./ are satisfied.

The graph of the mapping v ∈ D1,p
0,α(Ω)→ J ′(v)− j′(v) satisfies H’1./ , when we endow

D1,p
0,α(Ω) with the weak topology. Indeed, its graph is{

(w, v) ∈ V ′ × V : w = J ′(v)− j′(v)
}

=̇Gr(J ′, j′).

If (wn, vn) ∈ Gr(J ′, j′) is a sequence such that vn ⇀ v weakly in D1,p
0,α(Ω) and wn → 0

in
(
D1,p

0,α(Ω)
)′

strongly, then we have to show that

0 = J ′(v)− j′(v).

Indeed, considering, Tk(σ) =

σ if |σ| < k

k sign (σ) otherwise,

we have ∀ 0 < ε < 1, ∀ϕ ∈ C∞c (Ω).∫
Ω

|x|α(p−1)|∇vn|p−2∇vn∇
(
ϕTε

(
vn − Tk(v)

))
dx 6 K0

(
ε+ ||wn||∗

)
,
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for some K0 > 0, thus

lim sup
n→+∞

∫
Ω

|x|α(p−1)|∇vn|p−2∇vn∇
(
ϕTε

(
vn − Tk(v)

))
6 K0ε.

We may apply Theorem 1 of [10] to conclude that up to a constant ∇vn(x) → ∇v(x)

a.e.. Using the growth of the gradient, we deduce easily: ∀ϕ ∈ D1,p
0,α(Ω)

< J ′(vn), ϕ > → < J ′(v), ϕ >,∫
Ω

|vn|p
∗
α−2vnϕdx →

∫
Ω

|v|p∗α−2vϕdx.

Thus

0 = J ′(v)− j′(v) in
(
D1,p

0,α(Ω)
)′
.

This shows H’1./.

We may appeal Theorem 5 to conclude that, there exits u > 0, u 6≡ 0 such that

0 = J ′(u)− j′(u).

♦

Combining the arguments of Theorem 6 and Theorem 8, we have also

Theorem 9. Let (q1, q2) be two real numbers such that

1 < q1 < q2 < p and a ∈ Lm+
(

Ω, |x|
αq2

p∗α−q2

)
, m =

p∗α
p∗α − q2

. There exists a number λ∗

such that ∀λ ∈]0, λ∗[, there exists a function u > 0, u 6≡ 0, u ∈ D1,p
0,α(Ω) such that

−div
(
|x|α(p−1)|∇u|p−2∇u

)
− up

∗
α−1

|x|α
∈ λ∂ja(u)

with ja(u) =
1

q1

∫
{|u|61}

|u(x)|q1a(x)dx+
1

q2

∫
{|u|>1}

|u(x)|q2a(x)dx.

Remark for the proof of Theorem 9

Let us notice that setting j(u) = j1(u) + λja(u) then λ < ∂ja(u), u >> 0 so that

• < ∂j(u), u >> p∗αj1(u)

• the map u ∈ V → ja(u) is continuous from V -weak into IR.

• λ∗ is defined as before

λ∗ sup
||v||=η

ja(v) < η1
ηq2

p∗α
.

♦

For the case p < q < p∗α, we may adapt the proof given in [11] to obtain
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Theorem 10. Let a ∈ L∞(Ω) with compact support, a 6≡ 0, p < q < p∗α. Then there

exists λ∗, such that ∀λ > λ∗ the problem
u ∈ D1,p

0,α(Ω), u > 0, u 6≡ 0,

−div
(
|x|α(p−1)|∇u|p−2∇u

)
= λa(x)uq−1 +

up
∗
α−1

|x|α

possesses at least one solution.

For details, we refer [11, 6].

Appendix A

We recall the following lemma due to Ekeland [9, 8]

Lemma 8. Let B(0, ρ) an open ball of radius ρ > 0 of a Banach (V, || · ||) and Φ :

B(0, ρ)→ IR∪{+∞} be a lower semi-continuous function on B = B(0, ρ) with inf
B

Φ >

−∞.

Let ε > 0, z ∈ B : Φ(z) 6 inf
B

Φ + ε.

Then

∃y ∈ B

Φ(y) 6 Φ(z),

d(z, y) 6
√
ε,

∀x ∈ B : Φ(x) > Φ(y)−
√
εd(x, y).

Corollary 2. of Lemma 8 Under the same assumptions as the above Lemma there

exist a sequence (xn)n, xn ∈ B :

• Φ(xn)→ Inf
B

Φ,

• Φ(x) > Φ(xn)− 1

n
||x− xn||, ∀x ∈ B,

• assume that xn ∈ B(0, ρ) = interior(B) then

mΦ(xn) = inf
{
||wn||V ′ , wn ∈ ∂Φ(xn)

}
−−−−→
n→+∞

0.

Proof :

Consider ε =
1

n2
, y = xn in Lemma 8 then

Φ(xn) 6 inf
B

Φ +
1

n2
,

Φ(x) > Φ(xn)− 1

n
||x− xn|| ∀x ∈ B.



EIGENVALUE PB WITH FULLY DISCONTINUOUS OPERATORS & CRITICAL EXPONENTS 29

Thus, if we set F (x) = Φ(x)− 1

n
||x− xn||, then F (xn) 6 F (x) ∀x ∈ B. This implies

in the case that xn ∈ B(0, ρ) = interior(B) that

(45) 0 ∈ ∂F (xn) ⊂ ∂Φ(xn)− 1

n
∂fn(xn) with fn(x) = ||x− xn||.

Using the definition of subdifferential we see that

∂fn(xn) ⊂
{
x∗ ∈ V ′ : ||x∗||V ′ 6 1

}
.

Thus, relation (45) implies that

0 = w∗n −
1

n
x∗n, w∗n ∈ ∂Φ(xn), ||x∗n|| 6 1.

Therefore,

mΦ(xn) 6
1

n
−−−−→
n→+∞

0.

♦
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