EIGENVALUE PROBLEMS WITH FULLY DISCONTINUOUS OPERATORS AND CRITICAL EXPONENTS

H. Chrayteh ${ }^{a}$, J.M. Rakotoson ${ }^{b, 1}$
${ }^{a, b}$ UMR 6086 CNRS. Laboratoire de Mathématiques - Université de Poitiers - SP2MI Boulevard Marie et Pierre Curie, Téléport 2 BP30179 - 86962 Futuroscope Chasseneuil Cedex - FRANCE.

Abstract

We construct here more examples of $\vec{\rho}$-multivoque Leray-Lions operators that are strongly monotonic and we introduce a new abstract theorem on critical points for multivalued operators available for unbounded domains.

Keywords : Nonlinear eigenvalues, Multi-voque operators, Clarke subdifferential, Mountain pass Theorem, Banach function norms.

1. Introduction

The purpose of this paper is to give additional results on eigenvalue problems related to fully discontinuous operators. The study of this issue was initiated by the second author in [20] in which the notion of $\vec{\rho}$-multivoque Leray-Lions operators were introduced

$$
-\operatorname{div}_{\vec{\rho}}\left(\partial \varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)\right),
$$

associated to $\vec{\rho}=\left(\rho_{0}, \ldots, \rho_{N}\right), \rho_{i}$ are Banach function norms, φ_{i} are Caratheodory functions on $\Omega \times \mathbb{R}$ such that for a.e. $t \rightarrow \varphi_{i}(x, t)$ is locally Lipschitz on \mathbb{R}, therefore is subdifferentiable in the sense of Clarke [7].

Here, we shall start to give an example associated to Orlicz-Sobolev spaces (see [17]). In this case, we shall consider as Banach function norm:

$$
\rho(v)=\operatorname{Inf}\left\{\lambda>0: \int_{\Omega} A\left(\frac{|v(x)|}{\lambda}\right) \mathrm{d} x \leqslant 1\right\},
$$

where A is a suitable N-function (see [1]). Or more generally, we shall consider

$$
\rho(v)=\operatorname{Inf}\left\{\lambda>0: \int_{\Omega} A\left(x ; \frac{|v(x)|}{\lambda}\right) \mathrm{d} x \leqslant 1\right\},
$$

[^0] and $L(\Omega, \rho)$ the associated Banach function space.

Moreover, we shall add an abstract result concerning the resolution of the eigenvalue problem

$$
-\operatorname{div}_{\vec{\rho}}\left(\partial \varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)\right)=\lambda f(x, u(x)), \quad f(x, u(x)) \in \partial j_{0}(x, u(x))
$$

Namely, this result shall recover the following case, containing a critical exponent. There exists a function $u \geqslant 0, u \not \equiv 0, u \in W_{0}^{1, p_{1}, \ldots, p_{N}}(\Omega)$ such that

$$
-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{i}-2} \frac{\partial u}{\partial x_{i}}\right)-a(x) u^{p^{*}-1} \in \lambda \partial j_{N+1}(u)
$$

with $\lambda^{*}>\lambda>0, w \in \partial j_{N+1}$

$$
\lambda>0, w(x)= \begin{cases}q_{1}|u(x)|^{q_{1}-2} u(x) & \text { if }|u(x)|<1, \\ q_{2}|u(x)|^{q_{2}-2} u(x) & \text { if }|u(x)|>1, \\ \in\left[q_{1}, q_{2}\right] \operatorname{sign}(u(x)) & \text { if }|u(x)|=1,\end{cases}
$$

$1<q_{1}<\min _{1 \leqslant i \leqslant N} p_{i}, p^{*}=\frac{N}{\sum_{i=1}^{N} \frac{1}{p_{i}}-1}$ provided $\sum_{i=1}^{N} \frac{1}{p_{i}}>1,1<q_{2}<p^{*}, q_{1}<q_{2}$, the function a is bounded and nonnegative.

2. Notations - Preliminary Results.

For a Banach space $(V,\|\cdot\|)$, we shall denoted by V^{\prime} its dual and duality bracket between V^{\prime} and V shall be denoted by $\langle\cdot, \cdot\rangle$. The set of all subsets of V^{\prime} is denoted by $\mathcal{P}\left(V^{\prime}\right)=2^{V^{\prime}}$. Sometimes, we shall denoted $\|\cdot\|_{V}$ or $\|\cdot\|_{V^{\prime}}$ the norms in those spaces. The weak topology on V shall be denoted as usual by $\sigma\left(V, V^{\prime}\right)$.

Definition 1. (The first statement of definition is already known (see [3]), the second one was introduced in [20].)

- A multivoque operator $A: V \rightarrow \mathcal{P}\left(V^{\prime}\right)$ is called a monotone operator if : $\forall u_{1} \in V, \forall u_{2} \in V, \forall w_{1} \in A u_{1}, \forall w_{2} \in A u_{2}$, we have

$$
<w_{1}-w_{2}, u_{1}-u_{2}>\geqslant 0 .
$$

- A multivoque monotone operator A is strongly monotonic if it satisfies : for any sequence $\left(u_{n}\right)_{n}$ in V converging weakly to a function u and verifying: $\forall w_{n} \in A u_{n}, \forall w \in A u$ if $\lim _{n \rightarrow+\infty}<w_{n}-w, u_{n}-u>=0$ then u_{n} converges to u strongly in V.

Definition 2. (see [5, 8, 12].)

- Let $j: V \rightarrow \mathbb{R}$ be a locally Lipschitz function if for all $u \in V$, there exist a ball $B(u, r), r>0$ and a constant $K_{r}(u)=K(u)$ such that

$$
|j(v)-j(w)| \leqslant K(u)\|v-w\| \quad \forall v \in B(u, r), \forall w \in B(u, r)
$$

- For each $v \in V$, the generalized-directional derivative of j (at a point u in the direction v), denoted $j^{0}(u ; v)$, is defined as follows

$$
j^{0}(u ; v)=\limsup _{\lambda \searrow 0, h \rightarrow 0} \frac{j(u+h+\lambda v)-j(u+h)}{\lambda} .
$$

Property 1. of the generalized directional derivative (see [5, 8, 12].)
For a fixed $u \in V$
(1) $v \rightarrow j^{0}(u ; v)$ is subadditive, positively homogeneous, and convex.
(2) $\left|j^{0}(u ; v)\right| \leqslant K(u)\|v\|$,
(3) the map $v \rightarrow j^{0}(u ; v)$ is Lipschitz

$$
\left|j^{0}\left(u ; v_{1}\right)-j^{0}\left(u ; v_{2}\right)\right| \leqslant K(u)\left\|v_{1}-v_{2}\right\| .
$$

Definition 3. (see [5, 8, 12].) The (Clarke) subdifferential of j at a point $u \in V$ is the subdifferential of convex map $v \rightarrow j^{0}(u ; v)$ at zero.

More precisely,

$$
w \in \partial j(u) \subset V^{\prime} \Longleftrightarrow<w, v>\leqslant j^{0}(u ; v), \quad \forall v \in V
$$

that is

$$
\partial j(u)=\left\{w \in V^{\prime}:<w, v>\leqslant j^{0}(u ; v), \forall v \in V\right\} .
$$

For these reasons, the Clarke-subdifferential possesses the same properties as for the subdifferential in the sense of convex analysis.

Property 2. of the Clarke-subdifferential (see [5, 8, 12].)
For all $u \in V$,
(1) $\partial j(u)$ is convex, weakly-* compact in V^{\prime},
(2) for each $w \in \partial j(u),\|w\|_{V^{\prime}}($ dual norm $) \leqslant K(u), K(u)$ is the Lipschitz constant at u.
(3) $\partial\left(j_{1}+j_{2}\right)(u) \subset \partial j_{1}(u)+\partial j_{2}(u)$, whenever j_{1}, j_{2} are locally Lipschitz functions,
(4) $\partial(\lambda j)(u)=\lambda \partial j(u) \forall \lambda \in \mathbb{R}$,
(5) the map $u \in V \rightarrow \lambda(u)=\operatorname{Min}\left\{\|w\|_{V^{\prime}}: w \in \partial j(u)\right\}$ is lower semi-continuous. In particular there exists

$$
w_{u} \in \partial j(u):\left\|w_{u}\right\|_{V^{\prime}}=\inf _{w \in \partial j(u)}\|w\|_{V^{\prime}}
$$

(6) if j is convex, then the two notions of subdifferentials coincide.
(7) $\forall v \in V j^{0}(u ; v)=\operatorname{Max}\{\langle w, v>: w \in \partial j(u)\}$.
(8) The set-valued mapping $u \rightarrow \partial j(u)$ is upper semi-continuous.

Definition 4. (see [5, 8, 12].)
If $j: V \rightarrow \mathbb{R}$ is locally Lipschitz we will say that u is a critical point if $0 \in \partial j(u)$.
We shall use the following notions on Banach function norms and spaces (see [4] for more details, also [21]).
Let $L^{0}(\Omega)=\{v: \Omega \rightarrow \mathbb{R}$ Lebesgue measurable $\}$, and $L_{+}^{0}(\Omega)=\left\{v \in L^{0}(\Omega), v \geqslant 0\right\}$.

Definition 5. (see [4].) A mapping $\rho: L_{+}^{0}(\Omega) \rightarrow \overline{\mathbb{R}}_{+}=[0,+\infty]$ is called a Banach function norm if for all f, g, g_{n} in $L_{+}^{0}(\Omega)$, for all measurable set $E \subset \Omega$, we have

P1./ $\rho(f)=0 \Longleftrightarrow f=0$ a.e. $\rho(\lambda f)=\lambda \rho(f) \quad \forall \lambda>0, \rho(f+g) \leqslant \rho(f)+\rho(g)$.
P2./ If $f \leqslant g$ a.e. then $\rho(f) \leqslant \rho(g)$.
P3./ If $f_{n} \leqslant f_{n+1} \nearrow f$ then $\rho\left(f_{n}\right) \rightarrow \rho(f)$.
P4./ If $|E|<+\infty$ then $\rho\left(\chi_{E}\right)<+\infty$. ($|E|$ is the Lebesgue measure of E and χ_{E} is characteristic function of E).
P5./ If $|E|<+\infty$ then $\int_{E} f(x) \mathrm{d} x \leqslant c_{E} \rho(f)$ for some c_{E} such that $0<c_{E}<+\infty$ depending only on E and ρ.

Definition 6. (see [4].) Let ρ be a Banach function norm. Then we define

$$
Y=L(\Omega, \rho)=\left\{f \in L^{0}(\Omega): \rho(|f|)<+\infty\right\}
$$

$L(\Omega, \rho)$ is called a Banach function space and is endowed with the norm $\|f\|_{Y}=\rho(|f|)$.
A Banach function space possesses many properties, we state some of them that we shall use

Definition 7. (see [4].)

- If ρ is a Banach function norm, its associate norm ρ^{\prime} is defined by

$$
\rho^{\prime}(f)=\sup \left\{\int_{\Omega} f g \mathrm{~d} x, g \in L_{+}^{0}(\Omega), \rho(g) \leqslant 1\right\} \text { for } f \in L_{+}^{0}(\Omega) \text {. }
$$

- The Banach function space associate to ρ^{\prime} is called Banach function space associate to $L(\Omega, \rho)$. That is

$$
L\left(\Omega, \rho^{\prime}\right)=\left\{v \in L^{0}(\Omega): \rho^{\prime}(|v|)<+\infty\right\} .
$$

- One has for $g \in L\left(\Omega, \rho^{\prime}\right) \doteq Z, Y=L(\Omega, \rho)$.

$$
\|g\|_{Z}=\sup \left\{\int_{\Omega}|f g| \mathrm{d} x, f \in Y,\|f\|_{Y} \leqslant 1\right\} .
$$

Definition 8. (see [4].)
A Banach function space Y is said to have absolutely continuous norm if

$$
\left\|f \chi_{E_{n}}\right\|_{Y} \rightarrow 0 \text { for every sequence }\left\{E_{n}\right\}, \quad E_{n+1} \subset E_{n}, \quad\left|E_{n}\right| \rightarrow 0
$$

Theorem 1. (see [4].) A Banach function space Y is reflexive if and only if both Y and its associate $Z=Y^{\prime}$ have absolutely continuous norm.

Remark 1. For simplicity, we sometimes write $\rho(f)=\rho(|f|)$, and various constants depending on data shall be denoted by c or c_{i}.

The following definitions and results were introduced in [20].
We shall consider in this section two reflexive Banach spaces $(V,\|\cdot\|)$ and $(X,|\cdot|)$ we assume that V is continuously embedded in X and let us consider two locally Lipschitz functions $J: V \rightarrow \mathbb{R}$ and $j: X \rightarrow \mathbb{R}$. Furthermore, we assume that
H1./ $\begin{aligned} A: \quad V & \rightarrow \mathcal{P}\left(V^{\prime}\right) \\ u & \mapsto \partial J(u)\end{aligned}$ is strongly monotonic.
H2./ We have the following growth
(1) $\exists \beta>0, \exists c_{0} \geqslant 0$:

$$
\beta j(u) \leqslant \inf _{v \in \partial j(u)}<v, u>+c_{0} \beta \quad \forall u \in X .
$$

(2) There are constants $c_{1}>0, c_{2} \geqslant 0$

$$
\frac{1}{\beta} \sup _{w^{*} \in \partial J(u)}<w^{*}, u>-c_{2}+c_{1}\|u\| \leqslant J(u), \quad \forall u \in V
$$

Let us notice that

$$
J^{0}(u ; u)=\sup _{w^{*} \in \partial J(u)}<w^{*}, u>, \quad-j^{0}(u ;-u)=\inf _{v \in \partial j(u)}<v, u>
$$

Lemma 1. (see [20].) Under the above conditions H1./, H2./ if the injection of V into X is compact then the function

$$
\Phi(u)=J(u)-j(u), u \in V
$$ satisfies the (P.S.) conditions.

H3. $/ \Phi(0)=0$ and there exist $r_{0}>0, R_{0}>0$ such that

$$
\inf _{\|u\|=r} J(u)>0 \text { if } 0<r<r_{0} \text { and } J(u)>0 \text { if }\|u\|>R_{0} .
$$

H4./ $\lim _{\|u\| \rightarrow 0} \frac{j(u)}{J(u)}=0$, and for some $u_{0} \neq 0, \quad \limsup _{t \rightarrow+\infty} \frac{j\left(t u_{0}\right)}{J\left(t u_{0}\right)}>1$.
Definition 9. (see [20].) Let Ω be an open set of \mathbb{R}^{N} and $\rho_{0}, \ldots, \rho_{N}$ be $(N+1)$ Banach function norms and $L\left(\Omega, \rho_{i}\right), i=0, \ldots, N$ corresponding Banach function space. We define the following Banach-Sobolev functions spaces

$$
\begin{aligned}
\mathbf{W} & =W^{1, \rho_{0}, \ldots, \rho_{N}}(\Omega) \\
& =\left\{v \in L\left(\Omega, \rho_{0}\right), \frac{\partial v}{\partial x_{i}} \in L\left(\Omega, \rho_{i}\right), i=1, \ldots, N\right\} .
\end{aligned}
$$

The norm on \mathbf{W} is then

$$
\|v\|_{\mathbf{w}}=\sum_{i=1}^{N} \rho_{i}\left(\frac{\partial v}{\partial x_{i}}\right)+\rho_{0}(v) .
$$

Proposition 1. (see [20].) Let $\rho_{0}, \ldots, \rho_{N}$ be $(N+1)$ Banach function norms, ρ_{i}^{\prime} is the associate norm of ρ_{i}. We assume that ρ_{i} and ρ_{i}^{\prime} are absolutely continuous norms. Then, the dual space

$$
\begin{aligned}
\mathbf{V}^{\prime}= & \left(W_{0}^{1, \rho_{0}, \ldots, \rho_{N}}(\Omega)\right)^{\prime} \\
= & \left\{T: \text { there exist } f_{0}, \ldots, f_{N}, f_{i} \in L\left(\Omega, \rho_{i}^{\prime}\right),\right. \\
& \left.<T, v>=\int_{\Omega}\left(v f_{0}\right)(x) \mathrm{d} x+\sum_{i=1}^{N} \int_{\Omega} f_{i}(x) \frac{\partial v}{\partial x_{i}}(x) \mathrm{d} x \forall v \in \mathbf{V}\right\} .
\end{aligned}
$$

Lemma 2. Computation of a subdifferential (see [20].)
Let $\mathbf{V}=W_{0}^{1, \rho_{0}, \ldots, \rho_{N}}(\Omega)$ where ρ_{i} and their associate ρ_{i}^{\prime} are Banach function norms which are absolutely continuous. Let $\varphi_{i}(i=0, \ldots, N)$ be $(N+1)$ Caratheodory functions on $\Omega \times \mathbb{R}$ such that
(1) For a.e. $x \in \Omega$, the mapping $\sigma \rightarrow \varphi_{i}(x, \sigma)$ is locally Lipschitz on \mathbb{R}.
(2) The mappings $v \in L\left(\Omega, \rho_{i}\right) \rightarrow \Phi_{i}(v)=\int_{\Omega} \varphi_{i}(x, v(x)) \mathrm{d} x$ satisfy for $i=0, \ldots, N$: for any bounded set $B \subset L\left(\Omega, \rho_{i}\right)$, there is a constant $k_{B}>0$ such that $\forall u \in B, \forall v \in B$

$$
\begin{aligned}
\int_{\Omega}\left|\varphi_{i}(x, u(x))-\varphi_{i}(x, v(x))\right| \mathrm{d} x & \leqslant k_{B} \rho_{i}(u-v), \\
\int_{\Omega}\left|\varphi_{i}(x, 0)\right| \mathrm{d} x & <+\infty
\end{aligned}
$$

Then the functional defined by

$$
J_{0}(v)=\int_{\Omega} \varphi_{0}(x, v(x)) \mathrm{d} x+\sum_{i=1}^{N} \int_{\Omega} \varphi_{i}\left(x, \frac{\partial v}{\partial x_{i}}(x)\right) \mathrm{d} x
$$

is locally Lipschitz on \mathbf{V}.
Moreover for all $u \in \mathbf{V}$, all $T \in \partial J_{0}(u)$ there exist $(N+1)$ functions

$$
\left(w_{0}, \ldots, w_{N}\right) \in L\left(\Omega, \rho_{0}^{\prime}\right) \times \ldots \times L\left(\Omega, \rho_{N}^{\prime}\right)
$$

such that

$$
<T, v>=\int_{\Omega} w_{0}(x) v(x) \mathrm{d} x+\sum_{i=1}^{N} \int_{\Omega} w_{i}(x) \frac{\partial v}{\partial x_{i}}(x) \mathrm{d} x \quad \forall v \in \mathbf{V}
$$

for $i=1, \ldots, N$,

$$
w_{i}(x) \in \partial \varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right) \text { a.e. in } \Omega
$$

and

$$
w_{0}(x) \in \partial \varphi_{0}(x, u(x)) \text { a.e. in } \Omega .
$$

Definition 10. (see [20].) Under the notations of Lemma 2 we define the $\vec{\rho}$-multivoque Leray-Lions operator by setting

$$
-\operatorname{div}_{\vec{\rho}}\left(\partial \varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)\right)=-\sum_{i=1}^{N} \frac{\partial w_{i}}{\partial x_{i}}(x)+\omega_{0} \text { in } \mathcal{D}^{\prime}(\Omega) .
$$

Here $\vec{\rho}$ stands for $\left(\rho_{0}, \ldots, \rho_{N}\right)$.

Lemma 3. (see [20].) We assume the same conditions as for Lemma 2. Furthermore, we suppose
(1) for each $j=0, \ldots, N$, for a.e. $x \in \Omega$, the mappings $\sigma \rightarrow \partial \varphi_{j}(x, \sigma)$ are monotone;
(2) for any sequence $\left(u_{n}\right)_{n \geqslant 0}$ converging weakly to a function u in \mathbf{V} with

$$
\lim _{n \rightarrow+\infty}<T_{n}^{*}-T, u_{n}-u>=0, \quad \text { for some } \quad T_{n}^{*} \in \partial J_{0}\left(u_{n}\right), T \in \partial J_{0}(u)
$$

and

$$
\lim _{n} \rho_{0}\left(\left|u_{n}-u\right|\right)=0
$$

satisfies:
There exists a subsequence still denoted $\left(u_{n}\right)$ such that :
(a) $\frac{\partial u_{n}}{\partial x_{i}}(x) \rightarrow \frac{\partial u}{\partial x_{i}}(x)$ a.e. $x \in \Omega$, for $i=1, \ldots, N$,
(b) there exists a constant $M>1$ such that

$$
\lim _{n} \rho_{j}\left(\left|\frac{\partial u_{n}}{\partial x_{j}}(x)-\frac{\partial u}{\partial x_{j}}(x)\right| \chi_{E_{n j}}\right)=0 \text { for } j=1, \ldots, N,
$$

where

$$
E_{n j}=\left\{x \in \Omega:\left|\frac{\partial u_{n}}{\partial x_{j}}(x)\right|>M,\left|\frac{\partial u}{\partial x_{j}}(x)\right|>M-1\right\} .
$$

(c) If

$$
\lim _{n} \int_{F_{n j}} w_{n j}^{*} \frac{\partial u_{n}}{\partial x_{j}}(x) \mathrm{d} x=0 \text { then } \lim _{n} \rho_{j}\left(\left|\frac{\partial u_{n}}{\partial x_{j}}(x)\right| \chi_{F_{n j}}\right)=0
$$

with

$$
\begin{gathered}
F_{n j}=\left\{x \in \Omega:\left|\frac{\partial u_{n}}{\partial x_{j}}(x)\right|>M, \quad\left|\frac{\partial u}{\partial x_{j}}(x)\right| \leqslant M-1\right\}, \\
w_{n j}^{*}(x) \in \partial \varphi_{j}\left(x, \frac{\partial u_{n}}{\partial x_{j}}(x)\right), j=1, \ldots, N \text { for a.e. } x \in \Omega . \text { Then }
\end{gathered}
$$

$$
\text { (i) } u \rightarrow \partial J_{0}(u) \text { is monotone. }
$$

(ii) $u_{n} \rightarrow u$ strongly in \mathbf{V} (for all the sequence).

Theorem 2. (see [20].) Under the assumptions of Lemma 1, and H3./ to H4./, there exists a function $u \in V, u \neq 0$ a critical point of Φ i.e.

$$
0 \in \partial \Phi(u), \quad \Phi(u)=\gamma>0
$$

3. Construction of a $\vec{\rho}$-multivoque Leray-Lions strongly monotonic OPERATOR

Let Ω be a bounded Lipschitz open set of \mathbb{R}^{N} and consider N borelian functions ϕ_{i} : $\Omega \times \mathbb{R} \rightarrow \mathbb{R}$, such that
A.1/ For a.e. $x \in \Omega$, the map $t \xrightarrow{\phi_{i}(x,)} \phi_{i}(x, t)$ is strictly increasing, odd, $\phi_{i}(x, 0)=0$.

Moreover, $\phi_{i}(x, \cdot)$ is right continuous on $\left[0,+\infty\left[\right.\right.$ and $\lim _{t \rightarrow+\infty} \operatorname{essinf}_{\Omega} \phi_{i}(x, t)=+\infty$.
A2./ There exist $2 m$-numbers, $a_{1}<\ldots<a_{2 m}$ such that for a.e. $x \in \Omega, t \in \mathbb{R} \backslash\left\{a_{1}, \ldots, a_{2 m}\right\} \rightarrow \phi_{i}(x, t)$ is continuous.

We define on $\Omega \times \mathbb{R}$ the following function

$$
\varphi_{i}(x, t)=\int_{0}^{|t|} \phi_{i}(x, \sigma) \mathrm{d} \sigma .
$$

Proposition 2. For a.e. $x \in \Omega$, the function $\varphi_{i}(x, \cdot)$ is a N-function (see [1] for a definition) on $[0,+\infty[$.

In particular, $\varphi_{i}(x, \cdot)$ is a convex function and
a) $\partial \varphi_{i}(x, t)=\left[\liminf _{\sigma \rightarrow t} \phi_{i}(x, \sigma), \limsup _{\sigma \rightarrow t} \phi_{i}(x, \sigma)\right], \forall t \in \mathbb{R}$.
b) Moreover, one has for all $t \in \mathbb{R}$

$$
\int_{0}^{|t|} \partial \varphi_{i}(x, \sigma) \mathrm{d} \sigma=\varphi_{i}(x, t)
$$

(That is $\forall w(x, \sigma) \in \partial \varphi_{i}(x, \sigma), \quad \int_{0}^{|t|} w(x, \sigma) \mathrm{d} \sigma=\varphi_{i}(x, t)$.)

Proof :

- The condition A.1/ implies $\varphi_{i}(x, \cdot)$ is a N function according to the usual definition (see $[1,14]$). The computation of the subdifferential is straightforward.
- We recall that for almost all $t \in \mathbb{R}$

$$
\phi_{i}(x, t)=\liminf _{\sigma \rightarrow t} \phi_{i}(x, \sigma)=\underset{\sigma \rightarrow t}{\limsup } \phi_{i}(x, \sigma),
$$

and since φ_{i} is locally Lipschitz, we deduce easily the statement b).

Proposition 3. Let $i \in\{1, \ldots, N\}$ and $\left(t, t_{1}\right)$ be in \mathbb{R}. Assume that

$$
\left(t-t_{1}\right)\left(w-w_{1}\right)=0 \quad \text { for some } w \in \partial \varphi_{i}(x, t) \text {, and } w_{1} \in \partial \varphi_{i}\left(x, t_{1}\right)
$$

Then

$$
t=t_{1} .
$$

Proof :

If $t \neq t_{1}$ then $w=w_{1}$. We may assume that $t<t_{1}$, since $\phi_{i}(x, \cdot)$ is strictly increasing, we have

$$
w \leqslant \limsup _{\sigma \rightarrow t} \phi_{i}(x, \sigma)<\liminf _{\sigma \rightarrow t_{1}} \phi_{i}(x, \sigma) \leqslant w_{1}
$$

which implies $w<w_{1}$. This is a contradiction so

$$
t=t_{1} .
$$

Remark 2. Let us notice that

$$
\liminf _{\sigma \rightarrow t} \phi_{i}(x, \sigma)=\lim _{\varepsilon \rightarrow 0, \varepsilon>0} \phi_{i}(x, t-\varepsilon)
$$

and

$$
\limsup _{\sigma \rightarrow t} \phi_{i}(x, \sigma)=\lim _{\varepsilon \rightarrow 0, \varepsilon>0} \phi_{i}(x, t+\varepsilon) .
$$

We need that $\varphi_{i}(x, \cdot)$ satisfies the so-called global Δ_{2}-condition (or near infinity). Following the necessary and sufficient condition given in [1, 14], we shall assume

A3./ There are two numbers $\underline{\alpha}>1, \bar{\alpha}>1$ such that : for a.e. $x, \forall t \in \mathbb{R}$

$$
\underline{\alpha} \varphi_{i}(x, t) \leqslant t w_{i}(x, t) \leqslant \bar{\alpha} \varphi_{i}(x, t), \text { and } \forall w_{i}(x, t) \in \partial \varphi_{i}(x, t) .
$$

Remark 3. i) According to the remark 2, this last condition is equivalent to

$$
\underline{\alpha} \varphi_{i}(x, t) \leqslant t \lim _{\varepsilon \rightarrow 0} \phi_{i}(x, t-\varepsilon) \leqslant t \lim _{\varepsilon \rightarrow 0} \phi_{i}(x, t+\varepsilon) \leqslant \bar{\alpha} \varphi_{i}(x, t) .
$$

ii) Therefore there exists $K>0$

$$
\varphi_{i}(x, 2 t) \leqslant K \varphi_{i}(x, t) \text { for a.e. } x \in \Omega, \forall t \in \mathbb{R} .
$$

As usual, we define the associate Orlicz space by considering

$$
L^{\varphi_{i}}(\Omega)=\left\{v: \Omega \rightarrow \mathbb{R} \text { measurable }: \int_{\Omega} \varphi_{i}(x, v(x)) \mathrm{d} x<+\infty\right\},
$$

we endowed this space with Banach function norm

$$
\begin{equation*}
\rho_{i}(v)=\operatorname{Inf}\left\{\lambda>0: \int_{\Omega} \varphi_{i}\left(x, \frac{v(x)}{\lambda}\right) \mathrm{d} x \leqslant 1\right\} . \tag{1}
\end{equation*}
$$

Thus

$$
\begin{equation*}
L^{\varphi_{i}}(\Omega)=L\left(\Omega, \rho_{i}\right) . \tag{2}
\end{equation*}
$$

Introducing the conjugate function of $\varphi_{i}(x, \cdot)$

$$
\widetilde{\varphi}_{i}(x, t)=\sup _{s \geqslant 0}\left\{t s-\varphi_{i}(x, s)\right\}, \text { for } t \geqslant 0 .
$$

Then the associate norm of ρ_{i} is

$$
\begin{equation*}
\rho_{i}^{\prime}(v)=\operatorname{Inf}\left\{\lambda>0: \int_{\Omega} \widetilde{\varphi}_{i}\left(x, \frac{|v(x)|}{\lambda}\right) \mathrm{d} x \leqslant 1\right\}, \tag{3}
\end{equation*}
$$

and we shall assume that $\widetilde{\varphi}_{i}(x, \cdot)$ satisfies the Δ_{2}-condition globally (or near infinity) say that there exists a constant $k>0$

$$
\widetilde{\varphi}_{i}(x, 2 t) \leqslant k \widetilde{\varphi}_{i}(x, t) \text { for a.e. } x \text { and } \forall t \geqslant 0,\left(\text { or } t \geqslant t_{0}\right),
$$

then the dual and associate space of $L\left(\Omega, \rho_{i}\right)$ is $L\left(\Omega, \rho_{i}^{\prime}\right)$:

$$
\begin{equation*}
\left(L^{\varphi_{i}}(\Omega)\right)^{\prime}=L\left(\Omega, \rho_{i}\right)^{\prime}=L\left(\Omega, \rho_{i}^{\prime}\right)=L^{\widetilde{\varphi_{i}}}(\Omega) \tag{4}
\end{equation*}
$$ The Orlicz-Sobolev space associated to $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{N}\right)$ is

$$
W_{0}^{1, \rho_{1}, \ldots, \rho_{N}}(\Omega)=\left\{v \in L^{1}(\Omega): \frac{\partial v}{\partial x_{i}}(x) \in L\left(\Omega, \rho_{i}\right), i=1, \ldots, N, \gamma_{0} v=0\right\} .
$$

We define the function

$$
J(v)=\sum_{i=1}^{N} \int_{\Omega} \varphi_{i}\left(x, \frac{\partial v}{\partial x_{i}}(x)\right) \mathrm{d} x .
$$

The main result in this section is :
Theorem 3. Assume A1./, A2./, A3./. Then the $\vec{\rho}$-multivoque Leray-Lions operator defined by

$$
A u=-\operatorname{div}_{\vec{\rho}}\left(\partial \varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)\right)
$$

is strongly monotonic on the Orlicz-Sobolev space $W_{0}^{1, \rho_{1}, \ldots, \rho_{N}}(\Omega) \doteq \mathbf{V}_{0}$.
Remark 4. (1) Since $\underset{\Omega}{\operatorname{essinf}} \phi_{i}(x, t) \geqslant 1$ for $t \geqslant t_{0}>0$, then, we have

$$
\int\left\{\left|\frac{\partial v}{\partial x_{i}}(x)\right| \geqslant t_{0}\right\}\left|\frac{\partial v}{\partial x_{i}}(x)\right|\left|\phi_{i}\left(x, \frac{\partial v}{\partial x_{i}}(x)\right)\right| \mathrm{d} x \geqslant \int\left\{\left|\frac{\partial v}{\partial x_{i}}(x)\right| \geqslant t_{0}\right\}\left|\frac{\partial v}{\partial x_{i}}(x)\right| \mathrm{d} x,
$$

and we deduce from assumption A3./ that

$$
\int_{\Omega}\left|\frac{\partial v}{\partial x_{i}}(x)\right| \mathrm{d} x \leqslant c_{1} \int_{\Omega} \varphi_{i}\left(x, \frac{\partial v}{\partial x_{i}}(x)\right) \mathrm{d} x+c_{2},
$$

(c_{j} denote various constants independent of v).
Thus

$$
W_{0}^{1, \rho_{1}, \ldots, \rho_{N}}(\Omega) \subset W_{0}^{1,1}(\Omega) .
$$

(2) One has for all $t>0$, all $\sigma>1$

$$
\sigma^{\underline{\alpha}} \varphi_{i}(x, t) \leqslant \varphi_{i}(x, \sigma t) \leqslant \sigma^{\bar{\alpha}} \varphi_{i}(x, t) \text { for a.e. } x \in \Omega .
$$

This relation is a consequence of the assumption A3./, noticing that $t \rightarrow \varphi_{i}(x, t)$ is a locally Lipschitz function.

Proof :

Let $\left(u_{n}\right)_{n \geqslant 0}$ be a bounded sequence of \mathbf{V}_{0} converging weakly to a function $u \in \mathbf{V}_{0}$. Assume that $T_{n} \in \partial J\left(u_{n}\right)$ and $T \in \partial J(u)$ satisfies

$$
\lim _{n \rightarrow+\infty}<T-T_{n}, u-u_{n}>=0
$$

we have to show that $u_{n} \rightarrow u$ in \mathbf{V}_{0}. For this, we shall apply Lemma 5 of [20] (see Lemma 2 of the above section 2). We first need to show :

Lemma 4. Up to a subsequence, one has

$$
\frac{\partial u_{n}}{\partial x_{i}}(x) \xrightarrow[n \rightarrow+\infty]{ } \frac{\partial u}{\partial x_{i}}(x) \text { a.e. } x \text { and for all } i=1, \ldots, N .
$$

Proof :

The fact that $\lim _{n \rightarrow \infty}<T-T_{n}, u-u_{n}>=0$ implies that
$\forall w_{n i}^{*} \in \partial \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right), \forall w_{i}^{*} \in \partial \varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)$

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{N} \int_{\Omega}\left(w_{n i}^{*}(x)-w_{i}^{*}(x)\right)\left(\frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x=0 .
$$

Since $\varphi_{i}(x, \cdot)$ is convex, we deduce that

$$
\Delta_{n i}(x)=\left(w_{n i}^{*}(x)-w_{i}^{*}(x)\right)\left(\frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right) \geqslant 0 \text { a.e. } x,
$$

thus,

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left(w_{n i}^{*}(x)-w_{i}^{*}(x)\right)\left(\frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x=0 .
$$

Then at least for a subsequence, we deduce

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left(w_{n i}^{*}(x)-w_{i}^{*}(x)\right)\left(\frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right)=0 \text { for a.e. } x \tag{5}
\end{equation*}
$$

From assumption A3./ and the above remark we have

$$
\begin{equation*}
\underline{\alpha} \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right) \leqslant w_{n i}^{*}(x) \frac{\partial u_{n}}{\partial x_{i}}(x) \leqslant \bar{\alpha} \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right) . \tag{6}
\end{equation*}
$$

We have

$$
\begin{equation*}
\frac{\partial u_{n}}{\partial x_{i}}(x) w_{n i}^{*}(x) \leqslant w_{i}^{*}(x) \frac{\partial u_{n}}{\partial x_{i}}(x)-w_{i}^{*}(x) \frac{\partial u}{\partial x_{i}}(x)+w_{n i}^{*}(x) \frac{\partial u}{\partial x_{i}}(x)+\Delta_{n i}(x) . \tag{7}
\end{equation*}
$$

By the definition of subdifferential for φ_{i} convex

$$
\begin{equation*}
w_{n i}^{*}(x)\left(\frac{\partial u}{\partial x_{i}}(x)-\frac{\partial u_{n}}{\partial x_{i}}(x)\right) \leqslant \varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)-\varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right) . \tag{8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
w_{n i}^{*}(x) \frac{\partial u}{\partial x_{i}}(x) \leqslant w_{n i}^{*}(x) \frac{\partial u_{n}}{\partial x_{i}}(x)-\varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right)+\varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right) . \tag{9}
\end{equation*}
$$

Using relation(6)

$$
\begin{equation*}
w_{n i}^{*}(x) \frac{\partial u}{\partial x_{i}}(x) \leqslant\left(1-\frac{1}{\bar{\alpha}}\right) w_{n i}^{*}(x) \frac{\partial u_{n}}{\partial x_{i}}(x)+\varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right) \tag{10}
\end{equation*}
$$

From (7) and (10), we deduce

$$
\begin{equation*}
\frac{1}{\bar{\alpha}} w_{n i}^{*}(x) \frac{\partial u_{n}}{\partial x_{i}}(x) \leqslant w_{i}^{*}(x) \frac{\partial u_{n}}{\partial x_{i}}(x)-w_{i}^{*}(x) \frac{\partial u}{\partial x_{i}}(x)+\varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)+\Delta_{n i}(x) . \tag{11}
\end{equation*}
$$

But according to Remark 4, statement 2.) one deduces from relation (6)

$$
\begin{equation*}
w_{n i}^{*}(x) \frac{\partial u_{n}}{\partial x_{i}}(x) \geqslant \underline{\alpha} \varphi_{i}(x, 1)\left|\frac{\partial u_{n}}{\partial x_{i}}(x)\right|^{\underline{\alpha}}-\underline{\alpha} \varphi_{i}(x, 1) . \tag{12}
\end{equation*}
$$

From relations (11), (5) and (12), we have for some number $K_{3}(x)$ independent of n

$$
\begin{equation*}
\frac{\underline{\alpha}}{\bar{\alpha}} \varphi_{i}(x, 1)\left|\frac{\partial u_{n}}{\partial x_{i}}(x)\right|^{\underline{\alpha}}-\frac{\underline{\alpha}}{\bar{\alpha}} \varphi_{i}(x, 1) \leqslant w_{i}^{*}(x) \frac{\partial u_{n}}{\partial x_{i}}(x)+K_{3}(x) . \tag{13}
\end{equation*}
$$

By Young's inequality, noticing that $\underline{\alpha}>1$ and $\varphi_{i}(x, 1)>0$ we derive

$$
\begin{equation*}
\left|\frac{\partial u_{n}}{\partial x_{i}}(x)\right|^{\underline{\alpha}} \leqslant K_{4}(x)<+\infty . \tag{14}
\end{equation*}
$$

We may assume that $\frac{\partial u_{n}}{\partial x_{i}}(x) \xrightarrow[n \rightarrow+\infty]{ } \xi_{i}(x)$ (at least for a subsequence). Since relation (14) implies that $w_{n i}^{*}(x)$ remains in a bounded set of \mathbb{R}, we may also assume that

$$
w_{n i}^{*}(x) \xrightarrow[n \rightarrow+\infty]{ } \bar{w}_{i}(x)
$$

Therefore, one has

$$
\bar{w}_{i}(x) \in \partial \varphi_{i}\left(x, \xi_{i}(x)\right)
$$

and from relation (5).

$$
\begin{equation*}
\left(\bar{w}_{i}(x)-w_{i}^{*}(x)\right)\left(\xi_{i}(x)-\frac{\partial u}{\partial x_{i}}(x)\right)=0 . \tag{15}
\end{equation*}
$$

According to Proposition 3, we have

$$
\xi_{i}(x)=\frac{\partial u}{\partial x_{i}}(x) .
$$

Arguing by contradiction, we deduce that all the sequence satisfying relation (5).

$$
\frac{\partial u_{n}}{\partial x_{i}}(x) \rightarrow \frac{\partial u}{\partial x_{i}}(x), \text { for a.e. } x .
$$

Next, we have to show that
Lemma 5. Let $M \geqslant \sup \left\{\left|a_{j}\right|, j=1, \ldots, 2 m\right\}+2$, such that

$$
\begin{array}{r}
\text { measure }\left\{x \in \Omega:\left|\frac{\partial u}{\partial x_{i}}(x)\right|=M\right\}=0, \\
E_{n i}=\left\{x \in \Omega:\left|\frac{\partial u_{n}}{\partial x_{i}}(x)\right|>M ;\left|\frac{\partial u}{\partial x_{i}}(x)\right|>M-1\right\} . \text { Then } \\
\lim _{n \rightarrow+\infty} \int_{E_{n i}} \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x=0 .
\end{array}
$$

Proof :

For $\varepsilon>0$, we set

$$
\begin{gathered}
\Omega_{\varepsilon}^{n}=\left\{x \in \Omega:\left|\frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right|>\varepsilon\right\}, \quad E_{n i}^{\varepsilon}=E_{n i} \cap\left(\Omega_{\varepsilon}^{n}\right)^{c} \\
\left(\Omega_{\varepsilon}^{n}\right)^{c}=\left\{x \in \Omega:\left|\frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right| \leqslant \varepsilon\right\} \subset\left\{x:\left|\frac{\partial u_{n}}{\partial x_{i}}(x)\right| \leqslant\left|\frac{\partial u}{\partial x_{i}}(x)\right|+\varepsilon\right\} .
\end{gathered}
$$

Then we observe that

$$
\begin{gather*}
\int_{E_{n i}} \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right) d x= \tag{16}\\
=\int_{E_{n i} \backslash E_{n i}^{\varepsilon}} \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x+\int_{E_{n i}^{\varepsilon}} \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x .
\end{gather*}
$$

By the Lebesgue dominate Theorem, we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{E_{n i}^{\varepsilon}} \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x=0 . \tag{17}
\end{equation*}
$$

To show that

$$
\lim _{n \rightarrow+\infty} \int_{E_{n i \backslash} \backslash E_{n i}^{\varepsilon}} \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x=0,
$$

we note by the convexity property that we have

$$
\begin{equation*}
\varphi_{i}\left(x, \frac{\partial\left(u_{n}-u\right)}{\partial x_{i}}(x)\right) \leqslant \frac{1}{2} \varphi_{i}\left(x, 2 \frac{\partial u_{n}}{\partial x_{i}}(x)\right)+\frac{1}{2} \varphi_{i}\left(x, 2 \frac{\partial u}{\partial x_{i}}(x)\right), \tag{18}
\end{equation*}
$$

and by the Δ_{2}-condition

$$
\begin{equation*}
\varphi_{i}(x, 2 t) \leqslant 2^{\bar{\alpha}} \varphi_{i}(x, t) . \tag{19}
\end{equation*}
$$

Then one has

$$
\begin{align*}
\limsup _{n \rightarrow+\infty} \int_{E_{n i} \backslash E_{n i}^{\varepsilon}} \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x \leqslant & c \limsup _{n \rightarrow+\infty} \int_{\Omega_{\varepsilon}^{n}} \varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x \\
& +c \limsup _{n \rightarrow+\infty} \int_{E_{n i} \backslash E_{n i}^{\varepsilon}} \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right) \mathrm{d} x . \tag{20}
\end{align*}
$$

But

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \int_{\Omega_{\varepsilon}^{n}} \varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x=0 \tag{21}
\end{equation*}
$$

since $\frac{\partial u_{n}}{\partial x_{i}}(x)$ converges to $\frac{\partial u}{\partial x_{i}}(x)$ for almost every x. Thus it suffices to show

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \int_{E_{n i} \backslash E_{n i}^{\varepsilon}} \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right) \mathrm{d} x=0 . \tag{22}
\end{equation*}
$$

Setting $\delta \phi_{n i}(x)=\left(\phi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right)-\phi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)\right)\left(\frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right)$ we have

$$
\begin{gather*}
\frac{\partial u_{n}}{\partial x_{i}}(x) \phi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right)= \tag{23}\\
=\delta \phi_{n i}(x)+\phi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)\left(\frac{\partial\left(u_{n}-u\right)}{\partial x_{i}}(x)\right)+\frac{\partial u}{\partial x_{i}}(x) \phi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right) .
\end{gather*}
$$

For each i and a.e. $x \in \Omega$ the map $t \rightarrow \phi_{i}(x, t)$ is continuous for $t>M-2$, we deduce that for $x \in E_{n i}$

$$
\partial \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right)=\left\{\phi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right)\right\}
$$

and

$$
\partial \varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)=\left\{\phi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)\right\} .
$$

By the convexity of φ_{i}, one has from the definition of subdifferential

$$
\begin{equation*}
\frac{\partial u}{\partial x_{i}}(x) \phi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right) \leqslant \varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)-\varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right)+\frac{\partial u_{n}}{\partial x_{i}}(x) \phi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right) . \tag{24}
\end{equation*}
$$

From relations (23) and (24), we have

$$
\begin{equation*}
\varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right) \leqslant \delta \phi_{n i}(x)+\phi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right) \frac{\partial\left(u_{n}-u\right)}{\partial x_{i}}(x)+\varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right) . \tag{25}
\end{equation*}
$$

From the above relation, we deduce

$$
\begin{align*}
\int_{E_{n i} \backslash E_{n i}^{\varepsilon}} & \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right) \mathrm{d} x \leqslant \int_{E_{n i}} \delta \phi_{n i}(x) \mathrm{d} x+\int_{E_{n i}} \phi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right) \frac{\partial\left(u_{n}-u\right)}{\partial x_{i}}(x) \mathrm{d} x \tag{26}\\
& -\int_{E_{n i}^{\varepsilon}} \phi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right) \frac{\partial\left(u_{n}-u\right)}{\partial x_{i}}(x) \mathrm{d} x+\int_{E_{n i} \backslash E_{n i}^{\varepsilon}} \varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x .
\end{align*}
$$

Let us analyze each term of the right hand of the last relation (26).
As we have seen before the fact that

$$
\lim _{n \rightarrow+\infty}<T_{n}-T, u_{n}-u>=0
$$

implies

$$
\lim _{n \rightarrow+\infty} \int_{\Omega}\left(w_{n i}^{*}-w_{i}^{*}\right)\left(\frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x=0
$$

and since

$$
\int_{\Omega}\left(w_{n i}^{*}-w_{i}^{*}\right)\left(\frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x \geqslant \int_{E_{n i}}\left(w_{n i}^{*}-w_{i}^{*}\right)\left(\frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x
$$

we deduce

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{E_{n i}}\left(\phi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right)-\phi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)\right)\left(\frac{\partial\left(u_{n}-u\right)}{\partial x_{i}}(x)\right) \mathrm{d} x= \tag{27}
\end{equation*}
$$

$$
=\lim _{n \rightarrow+\infty} \int_{E_{n i}} \delta \phi_{n i}(x) \mathrm{d} x=0
$$

For the second term of the right hand side of relation (26) one has

$$
\phi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right) \in \partial \varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right) \text { for a.e. } x \in E_{n i},
$$

then,

$$
\begin{equation*}
\varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)+\widetilde{\varphi}_{i}\left(x, \phi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)\right)=\frac{\partial u}{\partial x_{i}}(x) \phi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right), \tag{28}
\end{equation*}
$$

where $\widetilde{\varphi}_{i}(x, t)=\sup _{s \geqslant 0}\left\{s t-\varphi_{i}(x, s)\right\}$ is the Legendre transform of $\varphi_{i}(x, \cdot)$.
Since $\varphi_{i}(x, 0)=0$ one has $\widetilde{\varphi}_{i}(x, 0)=0\left(\right.$ remember $\left.\varphi_{i}(x, s) \geqslant 0\right)$.
Thus

$$
\begin{equation*}
\int_{\Omega} \widetilde{\varphi}_{i}\left(x, \chi_{E_{n i}}(x) \phi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)\right) \mathrm{d} x \leqslant c \int_{\Omega} \varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x<+\infty, \tag{29}
\end{equation*}
$$

for some constant c independent of u.
By the dominate convergence theorem, one deduces

$$
\begin{equation*}
\chi_{E_{n i}} \phi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right) \xrightarrow[n \rightarrow+\infty]{\longrightarrow} \chi_{E_{\infty, i}} \phi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right), \tag{30}
\end{equation*}
$$

(with $E_{\infty, i}=\left\{x \in \Omega:\left|\frac{\partial u}{\partial x_{i}}(x)\right|>M\right\}$), a.e. in Ω, and strongly in $L^{\widetilde{\varphi_{i}}}(\Omega)$. By the weak convergence of $\frac{\partial u_{n}}{\partial x_{i}}$ to $\frac{\partial u}{\partial x_{i}}$ in $L^{\varphi_{i}}(\Omega)$, we deduce that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{E_{n i}} \phi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)\left(\frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x=0 . \tag{31}
\end{equation*}
$$

By the Lebesgue dominate convergence's Theorem, on $E_{n i}^{\varepsilon}$

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{E_{n i}^{\varepsilon}} \phi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)\left(\frac{\partial u_{n}}{\partial x_{i}}(x)-\frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x=0 . \tag{32}
\end{equation*}
$$

We combine relations (32), (31) with (27) and we obtain from relation (26)

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \int_{E_{n i} \backslash E_{n i}^{\varepsilon}} \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right) \mathrm{d} x \leqslant \limsup _{n \rightarrow+\infty} \int_{\Omega_{\varepsilon}^{n}} \varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right) \mathrm{d} x=0 . \tag{33}
\end{equation*}
$$

Relations (17) and (33) give the result.

The last Lemma in order to conclude the proof of Theorem 3 is

Lemma 6. Let $T_{n} \in \partial J\left(u_{n}\right)$, with T_{n} associated to $\left(w_{n 1}^{*}, \ldots, w_{n N}^{*}\right)$, as before.
If $\lim _{n} \int_{F_{n i}} w_{n i}^{*} \frac{\partial u_{n}}{\partial x_{i}}(x)=0$ then

$$
\lim _{n} \int_{\Omega} \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x) \chi_{F_{n i}}\right) d x=0
$$

whenever

$$
F_{n i}=\left\{x \in \Omega:\left|\frac{\partial u_{n}}{\partial x_{i}}(x)\right|>M,\left|\frac{\partial u}{\partial x_{i}}(x)\right| \leqslant M-1\right\},
$$

M is as in the preceding Lemma.

Proof :

Since $w_{n i}^{*}(x) \frac{\partial u_{n}}{\partial x_{i}}(x) \geqslant \underline{\alpha} \varphi_{i}\left(x, \frac{\partial u_{n}}{\partial x_{i}}(x)\right)$ and $\varphi_{i}(x, 0)=0$.
Then, if $\lim _{n} \int_{F_{n i}} w_{n i}^{*}(x) \frac{\partial u_{n}}{\partial x_{i}}(x) \mathrm{d} x=0$ we deduce

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \varphi_{i}\left(x, \chi_{F_{n i}} \frac{\partial u_{n}}{\partial x_{i}}(x)\right) \mathrm{d} x=0
$$

Thus

$$
\lim _{n \rightarrow+\infty} \rho_{i}\left(\chi_{F_{n i}} \frac{\partial u_{n}}{\partial x_{i}}(x)\right)=0 .
$$

Applying Lemma 5 of [20] (see Lemma 3 of the above section 2), we conclude that $u_{n} \rightarrow u$ strongly in the Orlicz-Sobolev space \mathbf{V}_{0}. This ends the proof of Theorem 3.

Remark 5. The monotonicity comes from the convexity of φ_{i}.

3.1. Few examples of applications.

Let $\left(q_{i}, p_{i}\right), i=1, \ldots, N$ be $2 N$-bounded measurable functions on Ω satisfying

$$
1<\underset{\Omega}{\operatorname{essinf}} q_{i}(x) \leqslant q_{i}(x)<\underset{\Omega}{\operatorname{essinf}} p_{i}(x) .
$$

Consider

$$
\varphi_{i}(x, t)=\left\{\begin{array}{ll}
|t|^{p_{i}(x)} & \text { if }|t|>1, \\
|t|^{q_{i}(x)} & \text { if }|t| \leqslant 1,
\end{array}, \text { for } x \in \Omega, t \in \mathbb{R} .\right.
$$

We can choose $\phi_{i}(x, t)$ as

$$
\phi_{i}(x, t)= \begin{cases}p_{i}(x)|t|^{p_{i}(x)-2} t & \text { if }|t|>1 \\ q_{i}(x)|t|^{q_{i}(x)-2} t & \text { if }|t|<1 \\ q_{i}(x) & \text { if } t=1 \\ -q_{i}(x) & \text { if } t=-1\end{cases}
$$

One can check that all the assumption A1./ to A3./ are fulfilled. In this case, the Orlicz space $L^{\varphi_{i}}(\Omega)$ coincide with the variable exponent $L^{p_{i}(\cdot)}(\Omega)$. And

$$
\partial \varphi_{i}(x, t)= \begin{cases}\phi_{i}(x, t) & \text { if }|t|>1 \text { or }|t|<1, \\ {\left[q_{i}(x), p_{i}(x)\right] \operatorname{sign}(t)} & \text { otherwise } .\end{cases}
$$

Applying Theorem 4 of [20] (see Theorem 2 of the above section 2), one has

Theorem 4. Let $\left(p_{N+1}, q_{N+1}\right)$ be two bounded measurable function satisfying

$$
1<\underset{\Omega}{\operatorname{essinf}} q_{N+1}(x) \leqslant q_{N+1}(x)<\underset{\Omega}{\operatorname{essinf}} p_{N+1}(x) .
$$

Assume that \mathbf{V}_{0} is compactly embedded in $L^{p_{N+1}}(\Omega)$ and

$$
\left|q_{N+1}\right|_{-}=\underset{\Omega}{\operatorname{essinf}} q_{N+1}(x)>p_{\infty}=\max _{1<j \leqslant N}\left|p_{j}\right|_{\infty} .
$$

Then for all $\lambda>0$, there exists a non trivial function $u \in \mathbf{V}_{0}$ such that

$$
-\operatorname{div}_{\vec{\rho}}\left(\partial \varphi_{i}\left(x, \frac{\partial u}{\partial x_{i}}(x)\right)\right)=\lambda w_{N+1}(x, u(x)),
$$

with $w_{N+1}(x, u(x)) \in \partial \varphi_{N+1}(x, u(x))$.

$$
\varphi_{N+1}(x, u(x))= \begin{cases}|u(x)|^{p_{N+1}(x)} & \text { if }|u(x)|>1 \\ \mid u(x)^{q_{N+1}(x)} & \text { if }|u(x)| \leqslant 1\end{cases}
$$

Proof :

Introduce

$$
\Phi(u)=J(u)-j(u), \quad j(u)=\int_{\Omega} \varphi_{N+1}(x, u(x)) \mathrm{d} x
$$

as in [20], one can check assumption H4./

3.2. Other examples of function φ_{i}.

The following example is related to Orlicz-Sobolev spaces with variable exponents

$$
\begin{aligned}
& \left\{\begin{array}{l}
\phi_{i}(x, t)=p_{i}(x) \log (1+\alpha+|t|)|t|^{p_{i}(x)-2} t, \quad x \in \Omega, t \in \mathbb{R}, \\
\operatorname{essinf} \\
p_{i}(x)>1, \quad \alpha>0, p_{i}(x) \in L^{\infty}(\Omega), i=1, \ldots, N,
\end{array}\right. \\
& \varphi_{i}(x, t)=\log (1+\alpha+|t|)|t|^{p_{i}(x)}-\int_{0}^{|t|} \frac{s^{p_{i}(x)}}{1+\alpha+s} \mathrm{~d} s, i=1, \ldots, N .
\end{aligned}
$$

4. An ABSTRACT RESULT FOR THE EXISTENCE OF CRITICAL VALUE NEAR ZERO

To complete the abstract Theorem 4 in [20] we shall introduce here a result where we don't need to impose a compact embedding of V in X.

We replace $\mathbf{H 1}$./ by
$\mathbf{H}^{\prime} 1$./We assume that the graph of $\partial \Phi$ satisfies the following property:
For any sequence $\left(u_{n}, w_{n}\right)_{n \geqslant 0}, w_{n} \in \partial \Phi\left(u_{n}\right)$ such that $u_{n} \rightharpoonup u$ weakly in $V, w_{n} \rightarrow 0$ strongly in V^{\prime}, one has

$$
0 \in \partial \Phi(u) .
$$

We replace $\mathbf{H 2}$./ by
H'2./ The function j can be split into two locally Lipschitz functions j_{0}, j_{1} in V such that $j=j_{0}+j_{1}, j_{0}(0)=j_{1}(0)=0$, the map $V \rightarrow j_{0}(v)$ is weakly continuous. We have the following growth
(1) $\exists \beta>0$:

$$
\beta j_{1}(u) \leqslant \inf _{v \in \partial j(u)}<v, u>\quad \forall u \in X
$$

(2) $\frac{1}{\beta} \sup _{w^{*} \in \partial J(u)}<w^{*}, u>\leqslant J(u), \quad \forall u \in V$.

H'3./ $\Phi(0)=0$ and there exist $u_{1} \in V$ and $\eta>\left\|u_{1}\right\|$ such that

$$
\Phi(v)>0,\|v\|=\eta, \Phi\left(u_{1}\right)<0, \inf _{v \in \bar{B}(0, \eta)} \Phi(v)>-\infty .
$$

Theorem 5. Assume H'1./, H'2./, and H'3./.
Then, there exists a function $u \not \equiv 0, u \in V$ a critical point of $\Phi=J-j$, that is

$$
0 \in \partial J(u)-\partial j(u) .
$$

Proof :

Let $B(0, \eta)$ be the open ball of radius η. Since we have a function $u_{1} \not \equiv 0, u_{1} \in V$ such that $\Phi\left(u_{1}\right)<0$ (by H'3./), then $u_{1} \in B(0, \eta)$ and $c=\operatorname{Inf}_{v \in \bar{B}(0, \eta)} \Phi(v)$, verifies

$$
-\infty<c \leqslant \Phi\left(u_{1}\right)<0
$$

By Ekeland variational principle (see $[12,15]$ and Appendix A) we have a minimizing sequence $u_{n} \in B(0, \eta)$, and $u \in V$ such that
(1) $\Phi\left(u_{n}\right) \xrightarrow[n \rightarrow+\infty]{ } c$, (thus $\left.u_{n} \in \operatorname{interior}(\bar{B}(0, \eta))=B(0, \eta)\right)$,
(2) $-\ell_{n}^{*} \in \partial \Phi\left(u_{n}\right),\left\|\ell_{n}^{*}\right\|_{V^{\prime}} \xrightarrow[n \rightarrow+\infty]{ } 0$,
(3) u_{n} converges weakly to u in V.

$$
0 \in \partial \Phi(u) .
$$

It remains to show that $u \not \equiv 0$. There exist $w_{n} \in \partial J\left(u_{n}\right), v_{n} \in \partial j\left(u_{n}\right)$ such that

$$
0=w_{n}-v_{n}+\ell_{n}^{*},
$$

this implies

$$
\begin{equation*}
0=\frac{1}{\beta}<w_{n}, u_{n}>-\frac{1}{\beta}<v_{n}, u_{n}>+\frac{1}{\beta}<\ell_{n}^{*}, u_{n}> \tag{34}
\end{equation*}
$$

We shall write
(35) $\frac{1}{\beta}<\ell_{n}^{*}, u_{n}>+\Phi\left(u_{n}\right)=J\left(u_{n}\right)-\frac{1}{\beta}<w_{n}, u_{n}>+\frac{1}{\beta}<v_{n}, u_{n}>-j_{1}\left(u_{n}\right)-j_{0}\left(u_{n}\right)$.

By assumption H'2./, we have

$$
\begin{align*}
& J\left(u_{n}\right)-\frac{1}{\beta}<w_{n}, u_{n}>\geqslant 0 \tag{36}\\
& -j_{1}\left(u_{n}\right)+\frac{1}{\beta}<v_{n}, u_{n}>\geqslant 0 \tag{37}
\end{align*}
$$

From relation (35) to (37), one deduces

$$
\frac{1}{\beta}<\ell_{n}^{*}, u_{n}>+\Phi\left(u_{n}\right) \geqslant-j_{0}\left(u_{n}\right)
$$

we can let $n \rightarrow+\infty$ to derive

$$
0>c \geqslant-j_{0}(u): j_{0}(u) \geqslant-c>0: u \not \equiv 0
$$

4.1. Example of applications of Theorem 5.

Theorem 6. Let Ω be an open bounded Lipschitz set and $\varphi_{i}(x, t)=\frac{1}{p_{i}}|t|^{p_{i}}$, with $p_{i}>1$ are N-real numbers such that

$$
\sum_{i=1}^{N} \frac{1}{p_{i}}>1 \text { and } \operatorname{let} p^{*}=\frac{N}{\sum_{i=1}^{N} \frac{1}{p_{i}}-1}, p_{+}=\max \left(p_{1}, \ldots, p_{N}\right)
$$

We assume $p_{+}<p^{*}$, and $p_{-}=\min \left(p_{1}, \ldots, p_{N}\right)$. Consider $1<q_{1}<p_{-}, 1<q_{2}<p^{*}$, $q_{1}<q_{2}$ two real numbers.
Then there exist $\left.\lambda^{*}>0, \forall \lambda \in\right] 0, \lambda^{*}\left[, u \in W_{0}^{1, p_{1}, \ldots, p_{N}}(\Omega), u \geqslant 0, u \neq 0\right.$,

$$
-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}(x)\right|^{p_{i}-2} \frac{\partial u}{\partial x_{i}}(x)\right)-u^{p^{*}-1} \in \lambda \partial j_{0}(u)
$$

with

$$
j_{0}(u)=\int_{\Omega} g(u(x)) \mathrm{d} x, \quad g(u(x))= \begin{cases}|u(x)|^{q_{1}} & \text { if }|u(x)| \leqslant 1 \\ |u(x)|^{q_{2}} & \text { if }|u(x)|>1\end{cases}
$$

Proof :
We set

$$
\mathbf{V}=\left\{v \in L^{p_{+}}(\Omega), \int_{\Omega}\left|\frac{\partial v}{\partial x_{i}}(x)\right|^{p_{i}} \mathrm{~d} x<+\infty, i=1, \ldots, N, \gamma_{0} v=0\right\}
$$

One has $\mathbf{V} \subset L^{p^{*}}(\Omega), p^{*}=\frac{N}{\sum_{i=1}^{N} \frac{1}{p_{i}}-1}($ see [13] $)$

$$
\begin{gathered}
J(u)=\sum_{i=1}^{N} \frac{1}{p_{i}} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}(x)\right|^{p_{i}} d x, \quad j_{1}(u)=\frac{1}{p^{*}} \int_{\Omega}|u|^{p^{*}} \mathrm{~d} x \\
j_{0}(u)=\int_{\Omega} g(u) \mathrm{d} x, g(u)= \begin{cases}|u|^{q_{1}} & \text { if }|u| \leqslant 1, \\
|u|^{q_{2}} & \text { if }|u|>1 .\end{cases} \\
j_{1}^{\prime}(u)=\left\{|u|^{p^{*}-2} u\right\},
\end{gathered}
$$

j_{0} is convex, vanishing at 0 and therefore $\partial j_{0}(u)$ is monotone, $\left\langle\partial j_{0}(u), u\right\rangle \geqslant 0$

$$
\begin{gather*}
<\partial j(u), u>\geqslant<j_{1}^{\prime}(u), u>=\int_{\Omega}|u|^{p^{*}} \mathrm{~d} x \geqslant p^{*} j_{1}(u), \tag{38}\\
J^{\prime}(u)=\left\{-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}(x)\right|^{p_{i}-2} \frac{\partial u}{\partial x_{i}}(x)\right)\right\},
\end{gather*}
$$

and then

$$
<J^{\prime}(u), u>=\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}(x)\right|^{p_{i}} \mathrm{~d} x \leqslant p_{+} J(u) .
$$

Choosing β such that $p_{+}<\beta<p^{*}$, we have \mathbf{H}^{\prime} '2./.
Since the injection of \mathbf{V} into $L^{q}(\Omega)$ is compact for any $q<p^{*}$, we conclude easily that the mappings
i) $u \rightarrow j_{0}(u)$ is weakly continuous,

22 EIGENVALUE PB WITH FULLY DISCONTINUOUS OPERATORS \& CRITICAL EXPONENTS
ii) $u \in \mathbf{V} \rightarrow|u|^{p^{*}-2} u$ is continuous from \mathbf{V} endowed the weak topology into $L^{r}(\Omega)$ endowed with the strong topology $r<\frac{p^{*}}{p^{*}-1}$.
Let S_{0} be the Sobolev constant satisfying

$$
|v|_{p^{*}} \leqslant S_{0}| | v| |=S_{0} \sum_{i=1}^{N}\left|\frac{\partial v}{\partial x_{i}}\right|_{p_{i}} .
$$

Since $p^{*}>p_{+}$there exists $0<\eta<1: a=\frac{1}{N^{p_{+}}} \eta^{p_{+}-q_{2}}-S_{0}^{p^{*}} \eta^{p^{*}-q_{2}}>0$.
Then, we have, for $v \in \mathbf{V}:\|v\|=\eta$

$$
J(v)-j_{1}(v) \geqslant \frac{1}{p^{*}} \eta^{q_{2}} a .
$$

Let $\lambda^{*}>0$ be a real number such that

$$
\lambda^{*} \sup _{\|v\|=\eta} j_{0}(v)<a \frac{\eta^{q_{2}}}{p^{*}},
$$

then $\forall v \in \mathbf{V}$ such that $\|v\|=\eta$

$$
\left.\Phi(v) \doteq J(v)-j_{1}(v)-\lambda j_{0}(v)>0, \quad \forall \lambda \in\right] 0, \lambda^{*}[.
$$

Let $u_{0} \in C_{c}^{1}(\Omega),\left\{\left|u_{0}\right| \leqslant 1\right\}$ and $\left\{\left|u_{0}\right|>1\right\}$ are of positive measure, $0<t<1$

$$
\begin{aligned}
\Phi\left(t u_{0}\right) & \leqslant \sum_{i=1}^{N} \frac{t^{p_{i}}}{p_{i}} \int_{\Omega}\left|\frac{\partial u_{0}}{\partial x_{i}}(x)\right|^{p_{i}} \mathrm{~d} x-t^{p^{*}} \int_{\Omega} \frac{\left|u_{0}\right|^{p^{*}}}{p^{*}} \mathrm{~d} x-\lambda t^{q_{1}} \int_{\left\{\left|u_{0}\right| \leqslant 1\right\}}\left|u_{0}\right|^{q_{1}} \mathrm{~d} x \\
& \leqslant t^{p_{-}}\left(A_{1}-A_{2} t^{p^{*}-p_{-}}-A_{3} t^{q_{1}-p_{-}}\right) \\
& <0 \text { for } t \text { near zero since } q_{1}<p_{-}, A_{3}>0, t| | u_{0} \|<\eta .
\end{aligned}
$$

It is easy to check that

$$
\inf \{\Phi(v), v \in \bar{B}(0, \eta)\}>-\infty
$$

Since the operator $u \in \mathbf{V} \rightarrow \partial j(u)$ is bounded, we may use the compactness result used in [10] (see also [19]) to show that the graph of $u \in \mathbf{V}-\sigma\left(\mathbf{V}, \mathbf{V}^{\prime}\right) \rightarrow \partial \Phi(u)$ satisfies $\mathbf{H}^{\prime} 1 . /$, with \mathbf{V} is endowed with the weak topology. Indeed, let $\left(u_{n}\right)$ be a sequence of \mathbf{V} converging to u weakly and strongly in $L^{r}(\Omega)$ for $r<p^{*}$ and a.e. in Ω. Then $\partial j\left(u_{n}\right)$ remains in a bounded set of $\left(L^{p^{*}}(\Omega)+L^{q_{2}}(\Omega)\right)^{\prime}$. Let $k>0$ and consider

$$
T_{k}(\sigma)=\left\{\begin{array}{ll}
\sigma & \text { if }|\sigma|<k, \\
k \operatorname{sign}(\sigma) & \text { otherwise. }
\end{array}, \quad u^{k}=T_{k}(u)\right.
$$ Then $\forall w_{n} \in \partial j\left(u_{n}\right), \forall \varphi \in C_{c}^{\infty}(\Omega),\left|<w_{n}, \varphi T_{\varepsilon}\left(u_{n}-u^{k}\right)>\left|\leqslant|\varphi|_{\infty} K_{0} \varepsilon\right.\right.$ for some constant K_{0}. If $w_{n}^{*} \in \partial \Phi\left(u_{n}\right), w_{n}^{*} \rightarrow 0$ strongly in \mathbf{V}^{\prime} then $w_{n}^{*}+w_{n}=J^{\prime}\left(u_{n}\right), w_{n} \in$ $\partial j\left(u_{n}\right)$, therefore we have

$$
\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u_{n}}{\partial x_{i}}(x)\right|^{p_{i}-2} \frac{\partial u_{n}}{\partial x_{i}}(x) \frac{\partial}{\partial x_{i}}\left(T_{\varepsilon}\left(u_{n}-u^{k}\right) \varphi\right) \mathrm{d} x \leqslant|\varphi|_{\infty} K_{0} \varepsilon+K_{1}\left\|w_{n}^{*}\right\|_{\mathbf{V}^{\prime}}
$$

We may apply Theorem 1 of [10] or Lemma 2 of [19] to conclude that

$$
\nabla u_{n}(x) \xrightarrow[n \rightarrow+\infty]{ } \nabla u(x) \text { (up to subsequence). }
$$

Therefore $\forall v \in \mathbf{V}$,

$$
<J^{\prime}\left(u_{n}\right), v>\rightarrow\left\langle J^{\prime}(u), v>\right.
$$

and

$$
\left.\int_{\Omega}\left|u_{n}\right|\right|^{p^{*}-2} u_{n} v \mathrm{~d} x \rightarrow \int_{\Omega}|u|^{p^{*}-2} u v \mathrm{~d} x .
$$

Since $-w_{n}^{*}+J^{\prime}\left(u_{n}\right)-\left|u_{n}\right| p^{p^{*}-2} u_{n} \in \lambda \partial j_{0}\left(u_{n}\right), u_{n} \rightarrow u$ in $L^{r}(\Omega), r<p^{*}$. We deduce

$$
\begin{equation*}
J^{\prime}(u)-|u|^{p^{*}-2} u \in \lambda \partial j_{0}(u): 0 \in \partial \Phi(u) . \tag{39}
\end{equation*}
$$

Indeed, $u_{n} \rightarrow u$ in $L^{q_{2}}(\Omega)$ strongly, there exists h_{n} belonging to a bounded set of $L^{q_{2}^{\prime}}(\Omega)$ such that $-w_{n}^{*}+J^{\prime}\left(u_{n}\right)-\left|u_{n}\right|{ }^{p^{*}-2} u_{n}=h_{n} \in \lambda \partial j_{0}\left(u_{n}\right)$.
We have a subsequence $h_{n^{\prime}}$ and a function h such that $h_{n^{\prime}} \rightharpoonup h$ weakly in $L^{q_{2}^{\prime}}(\Omega)$. Thus $h \in \lambda \partial j_{0}(u)$. On the other hand, since

$$
\begin{equation*}
\forall v \in V, \lim _{n \rightarrow+\infty}<w_{n}^{*}, v>=0 \tag{40}
\end{equation*}
$$

$\left(w_{n}^{*} \rightarrow 0\right.$ strongly in $\left.\mathbf{V}^{\prime}\right)$

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}<J^{\prime}\left(u_{n}\right)-\left|u_{n}\right|^{p^{*}-2} u_{n}, v>=<J^{\prime}(u)-|u|^{p^{*}-2} u, v>. \tag{41}
\end{equation*}
$$

We deduce in the sense of the distribution that

$$
J^{\prime}(u)-|u|^{p^{*}-2} u=h \in \lambda \partial j_{0}(u) .
$$

This show that $0 \in \partial \Phi(u)$.
Since $\Phi(u)=\Phi(|u|)$, we may choose $u \geqslant 0$. This ends the proof.

Remark 6. The above Theorem 6 allows to recover many other situations, when λj_{0} is small, in particular we can recover Theorem 1 in [2]. We may omit the term $|u|^{p^{*}-2}$, the result still holds true.

Next, we want to study eigenvalue problem on unbounded domain eventually with a weight. To do so, we shall start with the following result due to V. Maz'ja.

5. Unbounded case with a weighted function

Theorem 7. (see [16]). For all $u \in W^{1,1}\left(\mathbb{R}^{N}\right)$ with compact support, $\forall \alpha \in[0,1]$

$$
\left(\int_{\mathbb{R}^{N}}|u(x)|^{\frac{N-\alpha}{N-1}} \frac{\mathrm{~d} x}{|x|^{\alpha}}\right)^{\frac{N-1}{N-\alpha}} \leqslant(N-\alpha)^{\frac{1-N}{N-\alpha}} \omega_{N}^{\frac{\alpha-1}{N-\alpha}}|\nabla u|_{L^{1}\left(\mathbb{R}^{N}\right)} .
$$

Here ω_{N} is the measure of the unit ball of \mathbb{R}^{N}.

Corollary 1. (of Theorem 7)

Let $p_{\alpha}^{*}=\frac{(N-\alpha) p}{(N-\alpha)-(1-\alpha) p}, \alpha \in[0,1], p \geqslant 1,(N-\alpha)>(1-\alpha) p$. Then, $\forall u \in$ $W^{1, p}\left(\mathbb{R}^{N}\right)$ with compact support, we have

$$
\left(\int_{\mathbb{R}^{N}}|u|^{p^{*} a} \left\lvert\, \frac{\left.\mathrm{d} x\right|^{\alpha}}{|x|^{\alpha}}\right.\right)^{\frac{1}{p_{\bar{\alpha}}}} \leqslant c_{N}\left(\int_{\mathbb{R}^{N}}|\nabla u|^{p}|x|^{\alpha(p-1)} \mathrm{d} x\right)^{\frac{1}{p}},
$$

with $c_{N}=t(N-\alpha)^{\frac{1-N}{N-\alpha}} \omega_{N}^{\frac{\alpha-1}{N-\alpha}}, t=\frac{N-1}{N-\alpha} p_{\alpha}^{*}$.

Proof :

Let $u \in W^{1, p}\left(\mathbb{R}^{N}\right)$ with compact support. Then, $|u|^{t} \in W^{1, p}\left(\mathbb{R}^{N}\right)$ and has its support compact. Therefore, using Theorem 7, we have

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}}|u(x)|^{t^{\frac{N-\alpha}{N-1}}} \frac{\mathrm{~d} x}{|x|^{\alpha}}\right)^{\frac{N-1}{N-\alpha}} \leqslant c_{N} \int_{\mathbb{R}^{N}}|u(x)|^{t-1}|\nabla u(x)| \mathrm{d} x . \tag{42}
\end{equation*}
$$

Apply the Hölder's inequality to the right hand side of (42), we obtain (introducing the weight $|x|^{-\alpha}$

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}}|u(x)|^{p_{\alpha}^{*}} \frac{\mathrm{~d} x}{|x|^{\alpha}}\right)^{\frac{t}{p_{\alpha}^{*}}} \leqslant c_{N}\left(\int_{\mathbb{R}^{N}}|u(x)|^{(t-1) p^{\prime}} \frac{\mathrm{d} x}{|x|^{\alpha}}\right)^{\frac{1}{p^{\prime}}}\left(\int_{\mathbb{R}^{N}}|\nabla u(x)|^{p}|x|^{\alpha(p-1)} \mathrm{d} x\right)^{\frac{1}{p}} . \tag{43}
\end{equation*}
$$

We have $(t-1) p^{\prime}=p_{\alpha}^{*}$, then, from (43), we have

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}}|u(x)|^{p_{\alpha}^{*}} \frac{\mathrm{~d} x}{|x|^{\alpha}}\right)^{\frac{t}{p_{\alpha}^{*}}-\frac{1}{p^{\prime}}} \leqslant c_{N}\left(\int_{\mathbb{R}^{N}}|\nabla u(x)|^{p}|x|^{\alpha(p-1)} \mathrm{d} x\right)^{\frac{1}{p}} . \tag{44}
\end{equation*}
$$

And one can check that $\frac{t}{p_{\alpha}^{*}}-\frac{1}{p^{\prime}}=\frac{1}{p_{\alpha}^{*}}$, this shows the result.
Let Ω be an open set of \mathbb{R}^{N}, we denote for $v \in C_{c}^{\infty}(\Omega),\|v\|=\left(\int_{\Omega}|\nabla v(x)|^{p}|x|^{\alpha(p-1)} \mathrm{d} x\right)^{\frac{1}{p}}$. We shall denote by $\mathcal{D}_{0, \alpha}^{1, p}(\Omega)$ to closure of $C_{c}^{\infty}(\Omega)$ with respect to the above norm. As a consequence of Corollary 1, we have

Lemma 7. $\forall u \in \mathcal{D}_{0, \alpha}^{1, p}(\Omega)$, one has

$$
\left(\int_{\Omega}|u(x)|^{p_{\alpha}^{*}} \frac{\mathrm{~d} x}{|x|^{\alpha}}\right)^{\frac{1}{p_{\alpha}^{*}}} \leqslant c_{N}\left(\int_{\Omega}|\nabla u(x)|^{p}|x|^{\alpha(p-1)} \mathrm{d} x\right)^{\frac{1}{p}} .
$$

as in Corollary 1 of Theorem 7.
Theorem 8. Let $1<q<p$ and $a \in L_{+}^{m}\left(\Omega,|x|^{\frac{\alpha q}{p_{\alpha}^{\alpha}-q}}\right), m=\frac{p_{\alpha}^{*}}{p_{\alpha}^{*}-q}$. There exists a number λ^{*} such that $\left.\forall \lambda \in\right] 0, \lambda^{*}\left[\right.$, there exists a function $u \geqslant 0, u \not \equiv 0, u \in \mathcal{D}_{0, \alpha}^{1, p}(\Omega)$ such that

$$
-\operatorname{div}\left(|x|^{\alpha(p-1)}|\nabla u|^{p-2} \nabla u\right)=\lambda a(x) u^{q-1}+\frac{u^{p_{\alpha}^{*}-1}}{|x|^{\alpha}} \text { in } \mathcal{D}^{\prime}(\Omega) .
$$

Sketch of proof

The argument is similar to the proof of Theorem 6, using Theorem 5, we set

$$
\begin{aligned}
J(u) & =\frac{1}{p} \int_{\Omega}|\nabla u|^{p}|x|^{\alpha(p-1)} \mathrm{d} x \\
j_{1}(u) & =\frac{1}{p_{\alpha}^{*}} \int_{\Omega}|u|^{p_{\alpha}^{*}} \frac{\mathrm{~d} x}{|x|^{\alpha}} \\
j_{0}(u) & =\frac{1}{q} \int_{\Omega} a(x)|u(x)|^{q} \mathrm{~d} x
\end{aligned}
$$

One has

$$
\begin{aligned}
\partial J(u) & =\left\{-\operatorname{div}\left(|x|^{\alpha(p-1)}|\nabla u|^{p-2} \nabla u\right)\right\}, \\
\partial j_{1}(u) & =\left\{\frac{|u|^{p_{\alpha}^{*}-2}}{|x|^{\alpha}} u\right\}, \\
\partial j_{0}(u) & =\left\{a(x)|u|^{q-2} u\right\}, \\
j(u) & \left.=\lambda j_{0}(u)+j_{1}(u) \text { (see below for the choice of } \lambda\right), \\
<\partial j(u), u> & \geqslant \int_{\Omega}|u|^{p_{\alpha}^{*}} \frac{\mathrm{~d} x}{|x|^{\alpha}} \geqslant p_{\alpha}^{*} j_{1}(u), \\
<J^{\prime}(u), u> & =p J(u) .
\end{aligned}
$$

Thus, we can take $p<\beta<p_{\alpha}^{*}$ in conditions (1) and (2) of $\mathbf{H}^{\prime} \mathbf{2 .}$./ Due to the integrability of the function a, we deduce that the mapping $u \in V \rightarrow j_{0}(u)$ is continuous from V weak into \mathbb{R}. Indeed if $\left(u_{n}\right)_{n}$ is a bounded sequence in $\mathcal{D}_{0, \alpha}^{1, p}(\Omega)$ then there exist a function $u \in \mathcal{D}_{0, \alpha}^{1, p}(\Omega)$ and a subsequence still denoted u_{n} such that $u_{n}(x) \underset{n}{\rightarrow} u(x)$ a.e. and $u_{n} \rightharpoonup u$ weakly in $\mathcal{D}_{0, \alpha}^{1, p}(\Omega)$. Then $\lim _{n} \int_{\Omega} a(x)\left|u_{n}-u\right|^{q} \mathrm{~d} x=0$ using Vitali's Theorem. Thus H'2./ is satisfied. While for $\mathbf{H}^{\prime} \mathbf{3}$./, we have $\Phi(0)=0=J(0)=j(0)$. There exists $\eta>0$ such that $\eta_{1}=\eta^{p-q}-c_{N}^{p_{\alpha}^{*}} \eta^{p_{\alpha}^{*}-q}>0, c_{N}$ is the Sobolev constant given in the above Lemma.

For all $v \in \mathcal{D}_{0, \alpha}^{1, p}(\Omega)$ with $\|v\|=\eta$

$$
J(v)-j_{1}(v) \geqslant \frac{1}{p_{\alpha}^{*}} \eta^{q} \eta_{1}
$$

Let λ^{*} such that

$$
\lambda^{*} \sup _{\|v\|=\eta} j_{0}(v)<\eta_{1} \frac{\eta^{q}}{p_{\alpha}^{*}} .
$$

Then $\forall v \in V$ with $\|v\|=\eta, \forall \lambda \in] 0, \lambda^{*}[$

$$
\Phi(v) \doteq J(v)-j_{1}(v)-\lambda j_{0}(v)>0 .
$$

Let $u_{0} \in C_{c}^{\infty}(\Omega)$ such that support $(a) \cap\left\{\left|u_{0}\right| \geqslant 1\right\}$ or support $(a) \cap\left\{\left|u_{0}\right| \leqslant 1\right\}$ is of positive measure, $0<t<1$

$$
\begin{aligned}
\Phi\left(t u_{0}\right) & \leqslant \frac{t^{p}}{p} \int_{\Omega}\left|\nabla u_{0}\right|^{p}|x|^{\alpha(p-1)} \mathrm{d} x-\frac{t^{p_{\alpha}^{*}}}{p_{\alpha}^{*}} \int_{\Omega}\left|u_{0}\right|^{p_{\alpha}^{*}} \frac{\mathrm{~d} x}{|x|^{\alpha}}-\frac{\lambda t^{q}}{q} \int_{\Omega} a(x)\left|u_{0}\right|^{q} \mathrm{~d} x \\
& \leqslant t^{p}\left(A_{1}-t^{p_{\alpha}^{*}-p} A_{2}-A_{3} t^{q-p}\right)
\end{aligned}
$$

since $q<p, A_{3}=\frac{\lambda}{q} \int_{\Omega} a(x)\left|u_{0}\right|^{q} \mathrm{~d} x>0$, the $\Phi\left(t u_{0}\right)<0$ for t small.
It is easy to check that

$$
\operatorname{Inf}\{\Phi(v),\|v\| \leqslant \eta\}>-\infty
$$

since

$$
j_{1}(v) \leqslant c\|v\|^{p_{\alpha}^{*}}, \quad j_{0}(v) \leqslant c\|v\|^{q} .
$$

Thus all the conditions in $\mathbf{H}^{\prime} \mathbf{3} . /$ are satisfied.
The graph of the mapping $v \in \mathcal{D}_{0, \alpha}^{1, p}(\Omega) \rightarrow J^{\prime}(v)-j^{\prime}(v)$ satisfies $\mathbf{H}^{\prime} 1$./, when we endow $\mathcal{D}_{0, \alpha}^{1, p}(\Omega)$ with the weak topology. Indeed, its graph is

$$
\left\{(w, v) \in V^{\prime} \times V: w=J^{\prime}(v)-j^{\prime}(v)\right\} \doteq \doteq G r\left(J^{\prime}, j^{\prime}\right)
$$

If $\left(w_{n}, v_{n}\right) \in \operatorname{Gr}\left(J^{\prime}, j^{\prime}\right)$ is a sequence such that $v_{n} \rightharpoonup v$ weakly in $\mathcal{D}_{0, \alpha}^{1, p}(\Omega)$ and $w_{n} \rightarrow 0$ in $\left(\mathcal{D}_{0, \alpha}^{1, p}(\Omega)\right)^{\prime}$ strongly, then we have to show that

$$
0=J^{\prime}(v)-j^{\prime}(v)
$$

Indeed, considering, $T_{k}(\sigma)= \begin{cases}\sigma & \text { if }|\sigma|<k \\ k \operatorname{sign}(\sigma) & \text { otherwise, }\end{cases}$ we have $\forall 0<\varepsilon<1, \forall \varphi \in C_{c}^{\infty}(\Omega)$.

$$
\int_{\Omega}|x|^{\alpha(p-1)}\left|\nabla v_{n}\right|^{p-2} \nabla v_{n} \nabla\left(\varphi T_{\varepsilon}\left(v_{n}-T_{k}(v)\right)\right) \mathrm{d} x \leqslant K_{0}\left(\varepsilon+\left\|w_{n}\right\|_{*}\right),
$$

for some $K_{0}>0$, thus

$$
\limsup _{n \rightarrow+\infty} \int_{\Omega}|x|^{\alpha(p-1)}\left|\nabla v_{n}\right|^{p-2} \nabla v_{n} \nabla\left(\varphi T_{\varepsilon}\left(v_{n}-T_{k}(v)\right)\right) \leqslant K_{0} \varepsilon .
$$

We may apply Theorem 1 of [10] to conclude that up to a constant $\nabla v_{n}(x) \rightarrow \nabla v(x)$ a.e.. Using the growth of the gradient, we deduce easily: $\forall \varphi \in \mathcal{D}_{0, \alpha}^{1, p}(\Omega)$

$$
\begin{aligned}
&<J^{\prime}\left(v_{n}\right), \varphi>\quad<J^{\prime}(v), \varphi> \\
& \int_{\Omega}\left|v_{n}\right|^{p_{\alpha}^{*}-2} v_{n} \varphi \mathrm{~d} x \rightarrow \int_{\Omega}|v|^{p_{\alpha}^{*}-2} v \varphi \mathrm{~d} x .
\end{aligned}
$$

Thus

$$
0=J^{\prime}(v)-j^{\prime}(v) \operatorname{in}\left(\mathcal{D}_{0, \alpha}^{1, p}(\Omega)\right)^{\prime}
$$

This shows H'1./.
We may appeal Theorem 5 to conclude that, there exits $u \geqslant 0, u \not \equiv 0$ such that

$$
0=J^{\prime}(u)-j^{\prime}(u)
$$

Combining the arguments of Theorem 6 and Theorem 8, we have also

Theorem 9. Let $\left(q_{1}, q_{2}\right)$ be two real numbers such that
$1<q_{1}<q_{2}<p$ and $a \in L_{+}^{m}\left(\Omega,|x|^{\frac{\alpha q_{2}}{p_{\alpha}^{*}-q_{2}}}\right), \quad m=\frac{p_{\alpha}^{*}}{p_{\alpha}^{*}-q_{2}}$. There exists a number λ^{*} such that $\forall \lambda \in] 0, \lambda^{*}\left[\right.$, there exists a function $u \geqslant 0, u \not \equiv 0, u \in \mathcal{D}_{0, \alpha}^{1, p}(\Omega)$ such that

$$
-\operatorname{div}\left(|x|^{\alpha(p-1)}|\nabla u|^{p-2} \nabla u\right)-\frac{u^{p_{\alpha}^{*}-1}}{|x|^{\alpha}} \in \lambda \partial j_{a}(u)
$$

with $j_{a}(u)=\frac{1}{q_{1}} \int_{\{|u| \leqslant 1\}}|u(x)|^{q_{1}} a(x) \mathrm{d} x+\frac{1}{q_{2}} \int_{\{|u|>1\}}|u(x)|^{q_{2}} a(x) \mathrm{d} x$.

Remark for the proof of Theorem 9

Let us notice that setting $j(u)=j_{1}(u)+\lambda j_{a}(u)$ then $\lambda<\partial j_{a}(u), u>\geqslant 0$ so that

- $\left\langle\partial j(u), u>\geqslant p_{\alpha}^{*} j_{1}(u)\right.$
- the map $u \in V \rightarrow j_{a}(u)$ is continuous from V-weak into \mathbb{R}.
- λ^{*} is defined as before

$$
\lambda^{*} \sup _{\|v\|=\eta} j_{a}(v)<\eta_{1} \frac{\eta^{q_{2}}}{p_{\alpha}^{*}} .
$$

For the case $p<q<p_{\alpha}^{*}$, we may adapt the proof given in [11] to obtain

Theorem 10. Let $a \in L^{\infty}(\Omega)$ with compact support, $a \not \equiv 0, p<q<p_{\alpha}^{*}$. Then there exists λ^{*}, such that $\forall \lambda>\lambda^{*}$ the problem

$$
\left\{\begin{array}{l}
u \in \mathcal{D}_{0, \alpha}^{1, p}(\Omega), u \geqslant 0, u \not \equiv 0, \\
-\operatorname{div}\left(|x|^{\alpha(p-1)}|\nabla u|^{p-2} \nabla u\right)=\lambda a(x) u^{q-1}+\frac{u^{p_{\alpha}^{*}-1}}{|x|^{\alpha}}
\end{array}\right.
$$

possesses at least one solution.

For details, we refer $[11,6]$.

Appendix A

We recall the following lemma due to Ekeland [9, 8]

Lemma 8. Let $B(0, \rho)$ an open ball of radius $\rho>0$ of a Banach $(V,\|\cdot\|)$ and Φ : $\bar{B}(0, \rho) \rightarrow \mathbb{R} \cup\{+\infty\}$ be a lower semi-continuous function on $\bar{B}=\bar{B}(0, \rho)$ with $\inf _{\bar{B}} \Phi>$ $-\infty$.

Let $\varepsilon>0, z \in \bar{B}: \Phi(z) \leqslant \inf _{\bar{B}} \Phi+\varepsilon$.
Then

$$
\begin{array}{rccc}
& \Phi(y) & \leqslant & \Phi(z), \\
\exists y \in \bar{B} & d(z, y) & \leqslant & \sqrt{\varepsilon}, \\
\forall x \in \bar{B}: & \Phi(x) & \geqslant & \Phi(y)-\sqrt{\varepsilon} d(x, y) .
\end{array}
$$

Corollary 2. of Lemma 8 Under the same assumptions as the above Lemma there exist a sequence $\left(x_{n}\right)_{n}, x_{n} \in \bar{B}$:

- $\Phi\left(x_{n}\right) \rightarrow \operatorname{Inf}_{\bar{B}} \Phi$,
- $\Phi(x) \geqslant \Phi\left(x_{n}\right)-\frac{1}{n}\left\|x-x_{n}\right\|, \forall x \in \bar{B}$,
- assume that $x_{n} \in B(0, \rho)=$ interior (\bar{B}) then

$$
m_{\Phi}\left(x_{n}\right)=\inf \left\{\left\|w_{n}\right\|_{V^{\prime}}, w_{n} \in \partial \Phi\left(x_{n}\right)\right\} \xrightarrow[n \rightarrow+\infty]{ } 0
$$

Proof :

Consider $\varepsilon=\frac{1}{n^{2}}, y=x_{n}$ in Lemma 8 then

$$
\begin{aligned}
\Phi\left(x_{n}\right) & \leqslant \inf _{\bar{B}} \Phi+\frac{1}{n^{2}} \\
\Phi(x) & \geqslant \Phi\left(x_{n}\right)-\frac{1}{n}\left\|x-x_{n}\right\| \quad \forall x \in \bar{B}
\end{aligned}
$$

Thus, if we set $F(x)=\Phi(x)-\frac{1}{n}\left\|x-x_{n}\right\|$, then $F\left(x_{n}\right) \leqslant F(x) \quad \forall x \in \bar{B}$. This implies in the case that $x_{n} \in B(0, \rho)=\operatorname{interior}(\bar{B})$ that

$$
\begin{equation*}
0 \in \partial F\left(x_{n}\right) \subset \partial \Phi\left(x_{n}\right)-\frac{1}{n} \partial f_{n}\left(x_{n}\right) \quad \text { with } f_{n}(x)=\left\|x-x_{n}\right\| \tag{45}
\end{equation*}
$$

Using the definition of subdifferential we see that

$$
\partial f_{n}\left(x_{n}\right) \subset\left\{x^{*} \in V^{\prime}:\left\|x^{*}\right\|_{V^{\prime}} \leqslant 1\right\} .
$$

Thus, relation (45) implies that

$$
0=w_{n}^{*}-\frac{1}{n} x_{n}^{*}, \quad w_{n}^{*} \in \partial \Phi\left(x_{n}\right), \quad\left\|x_{n}^{*}\right\| \leqslant 1
$$

Therefore,

$$
m_{\Phi}\left(x_{n}\right) \leqslant \frac{1}{n} \xrightarrow[n \rightarrow+\infty]{ } 0 .
$$

References

[1] R.A. Adams, Sobolev spaces, Academic Press : N-Y, San Francisco, London (1975).
[2] O. Alves, M. El Hamidi, Existence of solution for a anisotropic equation with critical exponent, Dif. Int. Equ., 21, (2008), 25-40.
[3] H. Brezis, Operateurs Maximaux Monotones et semi-groupes de contractions dans les espaces de Hilbert, American Elsevier, (1973).
[4] C. Benett, R. Sharpley, Interpolation of Operators Academic press, (1988).
[5] K.C. Chang, Variational Methods dor Non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80, (1981), 102-129.
[6] H. Chrayteh, Thesis, Université de Poitiers, in preparation.
[7] F.H. Clarke, Optimiation and non)smooth analysis, Wiley, (1983).
[8] I. Ekeland, Convexity methods in Hamiltonian mechanics, Springer-Verlag, (1980).
[9] I. Ekeland, R. Temam, Analyse convexe et problèmes variationnels, Dunod, (1976).
[10] A. El Hamidi, J.M. Rakotoson, Compactness and quasilinear problems with critical exponents, Diff. Int. Equ., 18 (11), (2005), 1201-1220.
[11] A. El Hamidi, J.M. Rakotoson, On a purterbed anisotropic equation with a critical exponent, Ricerce di Matematica, 55 (2006), 55-69
[12] L. Gasiński, N. Papageorgiou, Nonsmooth critical point theory and nonlinear boundary value problems, Chapman\& Hall, (2004).
[13] J. Haskovec, C. Schmeiser, A note on the anisotropic generalizations of Sobolev and Morrey embedding theorems, Monatsh. Math., online first.
[14] E. Hewitt, K. Stromberg, Real and abstract analysis, Acad. Press, (1981).
[15] Y. Jabri, The Mountain Pass Theorem, Cambridge University Press, (2004).
[16] V. G. Maz'ja, Sobolev Spaces, Springer-Verlag, (1980).
[17] J. Musielak, Orlicz sapces and modular spaces, Springer-Verlag (1983).
[18] J. Rákosník,

- Some remarks to anisotropic Sobolev spaces I, Beiträge zur Analysis, 13, (1979), 55-68.
- Some remarks to anisotropic Sobolev spaces II, Beiträge zur Analysis, 15, (1981), 127-140.
[19] J.M. Rakotoson, Quasilinear elliptic problems with measure data, Diff. Int. Equ., 4, (1991), 449-457.
[20] J.M. Rakatoson, Generalized eigenvalue problems for totally discontinuous operators, to appear in Discrete and Continuous Dynamical Systems (in honor of Prof. Roger Temam for his $70^{\text {th }}$ birthday) 28, 1, (2010), doi:10:3934/dcds.2010.28.xx .
[21] J.M. Rakotoson, Réarrangement Relatif: Un instrument d'estimations dans les problèmes aux limites, Springer-Verlag (2008).

2000 Mathematics Subject Classification :
Primary : 35P30, 47J10, 35R70;
Secondary : 46N10, 49N99, 46B50.

[^0]: ${ }^{1}$ Corresponding author : J.M. Rakotoson
 email : rako@math.univ-poitiers.fr, h.chrayteh@yahoo.fr

