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Abstract In this work, we study a class of nonlinear eigenvalue problems
related to fully discontinuous operators. In particular, we prove the existence of
a critical point for two distinct problems. Connected with this problem, we also
study a minimization problem with constraint and we investigate the existence
of solutions for a resonant case near zero. Moreover, we give some estimates
and qualitative properties of solutions by using the relative rearrangement
theory.
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1 Introduction.

Eigenvalue problems involving nonhomogeneous elliptic operators have cap-
tured special attention in the last decade. Numerous papers have been devoted
to the study of various phenomena, which occur in the spectrum of such o-
perators (see [1–7] and references therein). The purpose of the present paper is
to give additional results on eigenvalue problems related to fully discontinuous
operators, which recover the results in [1, 2]; indeed, the operator given here,

The author wishes to thank Professor Jean-Michel Rakotoson for many stimulating discus-
sions and useful comments on the subject of the paper and he wishes to thank Dr. Madalina
Petcu for the English corrections.
Communicated by Michel Théra.
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which is recently introduced by J.M. Rakotoson, becomes a natural extension
of the univalued operator studied recently in [2].

2 Presentation of the Problem.

The study of this issue was initiated by J.M. Rakotoson in [8], in which the
notion of −→ρ -multivalued Leray-Lions operators was introduced by

−div−→ρ

(
∂ϕi

(
x,
∂u

∂xi
(x)

))
, (1)

associated to −→ρ = (ρ
0
, . . . , ρ

N
), where ρ

i
are Banach function norms and ϕi

are Carathéodory functions on Ω × IR, such that, for a.e. t 7→ ϕi(x, t) is lo-
cally Lipschitz on IR; therefore the theoretical formulation of such concrete
problems basically relies on the notion of Clarke’s generalized gradient, which
replaces the subdifferential in the sense of convex analysis (see [9]).
This operator can be used in the Euler-Lagrange functionals, that appear in
the minimization problems of image restoration (see [10]).

In this paper, we shall consider the same Orlicz-Sobolev spaces used in [11]
(see also [12]), that will enable us to study with sufficient accuracy problem (2).
For this purpose, we consider as Banach function norm:

ρ(v) := inf

{
λ > 0 :

∫
Ω

ϕ

(
x,
|v(x)|
λ

)
dx 6 1

}
,

where ϕ is a suitable N -function (see [13]), and L(Ω, ρ) is the associated
Banach function space.
Moreover, we shall give additional results concerning the resolution of the
eigenvalue problem

−div−→ρ

(
∂ϕi

(
x,
∂u

∂xi
(x)

))
= λf

(
x, u(x)

)
, f

(
x, u(x)

)
∈ ∂j0

(
x, u(x)

)
, (2)

under some assumptions on the function j0, assumptions that place us in
a different context from the one studied in [11]. Let us note that existence
results are deeply influenced by the competition between the growth rates of
the anisotropic coefficients.
The results presented here extend previous works of M. Mihăilescu and al.
in [1, 2]. We define on W 1,p

0 (Ω) the functionals J and j, such that, for all
v ∈W 1,p

0 (Ω),

J(v) :=
1

p

N∑
i=1

[∫
{∣∣∣ ∂v∂xi ∣∣∣61

}
∣∣∣∣ ∂v∂xi

∣∣∣∣q dx+

∫
{∣∣∣ ∂v∂xi ∣∣∣>1

}
∣∣∣∣ ∂v∂xi

∣∣∣∣p dx

]
,

j0(v) :=
1

pM

[∫
{|v|61}

|v|qM dx+

∫
{|v|>1}

|v|pMdx

]
.
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Then, for all λ ∈ ]0, λ∗[, there exists a function u > 0, u 6≡ 0, u ∈ W 1,p
0 (Ω)

such that 0 ∈ ∂J(u)− λ∂j0(u), provided

1 < q < p < +∞, 1 < qM < pM < p∗ =
Np

N − p
and qM < q.

Moreover, for all λ > λ∗∗, there exists a non-trivial solution u ∈W 1,p
0 (Ω) such

that 0 ∈ ∂J(u)− λ∂j0(u), provided
1 < q < p < +∞, 1 < qM < pM < p∗ and pM < q.

In order to go further, we will exploit the nonsmooth version of the La-
grange multiplier theorem (see [9]) to prove the existence of solutions for a
more general problem. Moreover, this existence result will be used in the last
section, in which we are able to characterize and prove the L∞-regularity of
the eigenvectors associated to −→ρ -multivalued Leray-Lions operators by using
the relative rearrangement theory (see [14]).
To our knowledge, this is the first paper dealing with the regularity of the
eigenvectors related to −→ρ -multivalued Leray-Lions operators.

We also obtain an existence result for an eigenvalue problem in a resonant
case near zero in the sense that the potential has the same growth as the
operator in a small neighborhood of the origin.
Our result shall recover the following problem. Consider J as above and

h(x, σ) :=


c∗

p
|σ|p if |σ| < 1,

1

β
|σ|β − |σ|+ c∗

p
+
β − 1

β
otherwise,

where 0 < c∗ <
1

Np · Sp
, the positive constant S is the Sobolev embedding

constant of W 1,p
0 (Ω) into Lp(Ω) and p < β < p∗. Then, there exists a non-

trivial solution u ∈W 1,p
0 (Ω) such that 0 ∈ ∂J(u)− ∂j(u) and

j(u) =

∫
Ω

h(x, u(x))dx.

We start by recalling some basic facts about Clarke subdifferential, Banach
function norms,−→ρ -multivalued operators, Orlicz spaces and relative rearrange-
ment. For more details we refer to [8, 9, 11,13–18].

3 Notations - Preliminary Results.

For a Banach space (V, ‖ · ‖), we shall denote by V ′ its dual, and the duality
bracket between V ′and V shall be denoted by < ·, · >. The set of all subsets
of V ′ is denoted by P(V ′) := 2V

′
. In order to avoid confusion, we shall also

denote by ‖ · ‖V or ‖ · ‖V ′ the norms in those spaces.

Definition 3.1 The first statement of the definition is already known (see
[19]), the second one was introduced recently in [8].
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1. A multivalued operator A : V ⇒ P(V ′) is called a monotone operator iff:
∀u1, u2 ∈ V, ∀w1 ∈ Au1, ∀w2 ∈ Au2, we have < w1 − w2, u1 − u2 >> 0.

2. A multivalued monotone operator A is strongly monotonic iff for any se-
quence (un)n in V converging weakly to a function u and verifying:
∀wn ∈ Aun, ∀w ∈ Au if lim

n→+∞
< wn−w, un−u >= 0, then un converges

to u strongly in V .

Definition 3.2 [20–22].

1. We call j : V → IR to be a locally Lipschitz function iff for all u ∈ V , there
exist a ball B(u, r), r > 0 and a constant Kr(u) = K(u) such that

|j(v)− j(w)| 6 K(u)‖v − w‖, ∀ v, w ∈ B(u, r).

2. For each v ∈ V , the generalized directional derivative of j (at a point u in
the direction v), denoted by j0(u; v), is defined as follows:

j0(u; v) := lim sup
λ↘0, h→0

j(u+ h+ λv)− j(u+ h)

λ
.

On the basic properties of the generalized directional derivative we refer to
[9, 20–22].

Definition 3.3 [20–22]. The (Clarke) subdifferential of j at a point u ∈ V is
the subdifferential of the convex map v 7→ j0(u; v) at zero. More precisely,

∂j(u) :=
{
w ∈ V ′ : < w, v >6 j0(u; v), ∀ v ∈ V

}
.

For these reasons, the Clarke subdifferential possesses the same properties as
the subdifferential in the sense of convex analysis. For more information on
these properties we refer to [9, 20–22].

Definition 3.4 [20–22].
If j : V → IR is a locally Lipschitz function, we say that u is a critical point
of j iff 0 ∈ ∂j(u).

We shall use the following notions on Banach function norms and spaces (see
[15] and also [14] for more details). Let

L0(Ω) :=
{
v : Ω → IR Lebesgue measurable

}
and L0

+(Ω) :=
{
v ∈ L0(Ω), v > 0

}
.

Definition 3.5 [15]. A mapping ρ : L0
+(Ω) → IR+ := [0,+∞] is called a

Banach function norm iff, for all f, g and gn in L0
+(Ω), for all measurable set

E ⊂ Ω, we have

P1./ ρ(f) = 0⇐⇒ f = 0 a.e.,
ρ(λf) = λρ(f), ∀λ > 0,
ρ(f + g) 6 ρ(f) + ρ(g).

P2./ If f 6 g a.e. then ρ(f) 6 ρ(g).
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P3./ If fn 6 fn+1 ↗ f then ρ(fn)→ ρ(f).
P4./ If |E| < +∞ then ρ(χE) < +∞. (|E| is the Lebesgue measure of E and

χE is the characteristic function of E).

P5./ If |E| < +∞ then

∫
E

f(x)dx 6 c
E
ρ(f) for some finite, positive constant

c
E

depending only on E and ρ.

Definition 3.6 [15]. Let ρ be a Banach function norm. Then, we define

Y := L(Ω, ρ) =
{
f ∈ L0(Ω) : ρ(|f |) < +∞

}
.

Y is called a Banach function space and is endowed with the norm
‖f‖Y = ρ(|f |).

In what follows we state some useful properties of L(Ω, ρ):

Definition 3.7 [15].

1. If ρ is a Banach function norm, its associate norm ρ′ is defined by

ρ′(f) := sup

{∫
Ω

fgdx, g ∈ L0
+(Ω), ρ(g) 6 1

}
, for f ∈ L0

+(Ω).

2. The Banach function space determined by ρ′ is called the associate Banach

function space of L(Ω, ρ), that is L(Ω, ρ′) :=
{
v ∈ L0(Ω) : ρ′(|v|) < +∞

}
.

Definition 3.8 [15].
A Banach function space Y is said to have absolutely continuous norm iff

‖fχEn‖Y → 0, for every
{
En
}

satisfying En+1 ⊂ En and |En| → 0.

Theorem 3.1 [15]. A Banach function space Y is reflexive if and only if both
Y and its associate Y ′ have absolutely continuous norm.

Remark 3.1 For simplicity, we sometimes write ρ(f) = ρ(|f |), and various
constants depending on data shall be denoted by c or ci.

The following definitions and results were introduced in [8, 11] (see also [23]).
Let (V, ‖ · ‖) and (X, | · |) be two reflexive Banach spaces.

Lemma 3.1 [8]. Consider two locally Lipschitz functions J : V → IR and
j : X → IR. We suppose that

H1./
A : V ⇒ P(V ′)

u 7→ ∂J(u)
be strongly monotonic.

H2./ We have the following growth:
1. ∃β>0, ∃ c0>0 : βj(u) 6 inf

v∗∈∂j(u)
< v∗, u > +c0β, ∀u ∈ X.

2. There are constants c1 > 0, c2 > 0 :

1

β
sup

w∗∈∂J(u)
< w∗, u > −c2 + c1‖u‖ 6 J(u), ∀u ∈ V.
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Under these hypotheses and assuming that the injection of V into X be com-
pact, the function Φ(u) := J(u) − j(u), u ∈ V satisfies the Palais-Smale
conditions.

Definition 3.9 [8]. Let Ω be an open set of IRN and ρ0, . . . , ρN be (N + 1)
Banach function norms and L(Ω, ρi), i = 0, . . . , N the corresponding Banach
function space. We define the following Banach-Sobolev function space

W := W 1,ρ
0
,...,ρ

N (Ω)

:=
{
v ∈ L(Ω, ρ0),

∂v

∂xi
∈ L(Ω, ρi), i = 1, . . . , N

}
.

The norm on W is then ‖v‖W =

N∑
i=1

ρi

(
∂v

∂xi

)
+ ρ0(v).

Proposition 3.1 [8]. Let ρ0, . . . , ρN be (N + 1) Banach function norms, ρ′i
is the associate norm of ρi. We assume that ρi and ρ′i be absolutely continuous

norms. Then, the dual space V′ :=
(
W

1,ρ0 ,...,ρN
0 (Ω)

)′
is

V′ =
{
T : there exist f0, . . . , fN such that fi ∈ L(Ω, ρ′i) and

< T, v >:=

∫
Ω

v(x)f0(x)dx+

N∑
i=1

∫
Ω

fi(x)
∂v

∂xi
(x)dx, ∀ v ∈ V

}
.

Definition 3.10 [8]. We define the −→ρ -multivalued Leray-Lions operator as
follows:

−div−→ρ

(
∂ϕi

(
x,
∂u

∂xi
(x)

))
:= −

N∑
i=1

∂wi
∂xi

(x) + ω0(x) in D′(Ω).

Here, −→ρ stands for (ρ0, . . . , ρN ) with w0(x) ∈ ∂ϕ0(x, u(x)) a.e. in Ω, and

wi(x) ∈ ∂ϕi
(
x,
∂u

∂xi
(x)

)
a.e. in Ω, for i = 1, . . . , N.

Lemma 3.2 (Construction of a ρ>-multivalued Leray-Lions Strongly
Monotonic Operator) [11].

Let Ω be a bounded Lipschitz open set of IRN and consider N borelian func-
tions φi : Ω × IR→ IR, i = 1, . . . , N, such that

A.1/ For a.e. x ∈ Ω, the map t
φi(x,·)−−−−→ φi(x, t) is strictly increasing, odd and

φi(x, 0) = 0. Moreover, φi(x, ·) is right continuous on [0,+∞[ and
lim

t→+∞
essinf
Ω

φi(x, t) = +∞.

A2./ There exist 2m-numbers, a1 < . . . < a2m such that
for a.e. x ∈ Ω, t ∈ IR\{a1, . . . , a2m} 7→ φi(x, t) is continuous.
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We define on Ω × IR the following N -function (see [11,13])

ϕi(x, t) :=

∫ |t|
0

φi(x, σ)dσ.

We need that ϕi(x, ·) satisfies the so-called global ∆2-condition (or near
infinity). Following the necessary and sufficient condition given in [13, 24], we
shall assume

A3./ There exist two numbers α > 1, α > 1 such that, for a.e. x, ∀ t ∈ IR

αϕi(x, t) 6 twi(x, t) 6 αϕi(x, t), ∀wi(x, t) ∈ ∂ϕi(x, t).

As usual, we define the corresponding Orlicz space by considering

Lϕi(Ω) :=
{
v : Ω → IR measurable :

∫
Ω

ϕi
(
x, v(x)

)
dx < +∞

}
,

we endowed this space with the Banach function norm

ρi(v) := inf

{
λ > 0 :

∫
Ω

ϕi

(
x,
v(x)

λ

)
dx 6 1

}
. (3)

We also assume that the conjugate function

ϕ̃i(x, ·) := sup
s>0

{
ts− ϕi(x, s)

}
, for t > 0,

satisfies the ∆2-condition globally (or near infinity), say that there exists a
constant k > 0, such that ϕ̃i(x, 2t) 6 kϕ̃i(x, t) a.e., ∀ t > 0 (or t > t0).

Remark 3.2 [23, 25]. Assume that ϕi(x, ·) satisfy the ∆2-condition globally
(or near infinity) and for a.e. the function t ∈ [0,+∞[7→ ϕi

(
x,
√
t
)

be convex.
Then ϕ̃i(x, ·) satisfies the ∆2-condition globally (or near infinity).

The Orlicz-Sobolev space associated to −→ρ = (ρ1 , . . . , ρN ) is

W
1,ρ1 ,...,ρN
0 (Ω) :=

{
v ∈ L1(Ω) :

∂v

∂xi
(x) ∈ L(Ω, ρi), i = 1, . . . , N, γ0v = 0

}
.

We define the function J(v) :=

N∑
i=1

∫
Ω

ϕi

(
x,

∂v

∂xi
(x)

)
dx.

Theorem 3.2 [11]. Assume A1./, A2./, A3./. Then, the −→ρ -multivalued

Leray-Lions operator defined by Au := −div−→ρ

(
∂ϕi

(
x,
∂u

∂xi
(x)

))
is strongly

monotonic on the Orlicz-Sobolev space V0 := W
1,ρ

1
,...,ρ

N
0 (Ω).

Remark 3.3 [11, 23]. The following properties hold:

1. W
1,ρ

1
,...,ρ

N
0 (Ω) ⊂W 1,1

0 (Ω) is a continuous injection.
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2. One has for all t > 0, all σ > 1,

σ αϕi(x, t) 6 ϕi(x, σt) 6 σ
αϕi(x, t), for a.e. x ∈ Ω.

3. Moreover, we have Lα(Ω) ⊂ Lϕi(Ω) ⊂ Lα(Ω) (see [16, 23]).

The next definitions and results can be found in [14].
Let Ω be a bounded domain in IRN and u : Ω → IR be a measurable function
on Ω.

Definition 3.11 We define the function u∗ : Ω∗ :=]0, |Ω|[→ IR by setting

u∗(s) := inf
{
t ∈ IR : |u > t| 6 s

}
s ∈ Ω∗,

and u∗(0) := esssup
Ω

u, u∗(|Ω|) := essinf
Ω

u. The function u∗ is called the

decreasing rearrangement of u.

Property 3.1 [14, 26]. The decreasing rearrangement of u satisfies:

1. ‖u‖Lp(Ω) = ‖u∗‖Lp(Ω∗), for 1 6 p 6 +∞.

2.
(
|u|p

)
∗ =

(
|u|∗

)p
a.e., for 1 6 p < +∞.

Theorem 3.3 [14]. Let u, v ∈ L1(Ω) and w : Ω∗ −→ IR defined by

w(s) :=

∫
{u>u∗(s)}

v(x)dx+

∫ s−|u>u∗(s)|

0

(
v|{u=u∗(s)}

)
∗(σ)dσ,

where v|{u=u∗(s)} is the restriction of v to {u = u∗(s)}.
If v ∈ Lp(Ω), 1 6 p 6 +∞, then

1. w ∈W 1,p(Ω∗).

2.
(u+ λv)∗ − u∗

λ
⇀λ→0

dw

ds

{
in Lp(Ω∗)-weak, if 1 6 p < +∞,
in L∞(Ω∗)-weak-*, if p = +∞.

Definition 3.12 The function dw
ds ∈ L

p(Ω∗) is called the relative rearrange-

ment of v with respect to u and is denoted by v∗u := dw
ds .

Property 3.2 [14]. Let u ∈ L1(Ω) and v ∈ Lp(Ω), 1 6 p 6 +∞, the relative
rearrangement v∗u verifies:

1. ‖v∗u‖Lp(Ω∗) 6 ‖v‖Lp(Ω).

2.

∫
Ω∗

v∗u(s)ds =

∫
Ω

v(x)dx.

3. If v1 6 v2 a.e., vi ∈ Lp(Ω), then v1∗u 6 v2∗u a.e.
4. If α > 0, then (αv)∗u = αv∗u.

Theorem 3.4 Poincaré-Sobolev Inequality for the Relative Rearran-
gement, see [14], Theorem 4.1.1. Let u ∈W 1,1

0 (Ω), u > 0.
Then, u∗ ∈W 1,1

loc (Ω∗) and

−u′∗(s) 6
s

1
N−1

Nω
1
N

N

|∇u|∗u(s), a.e. in Ω∗. (4)
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Lemma 3.3 [14]. Let 1 6 p 6 +∞, v ∈ Lp(Ω) such that v∗ ∈ W 1,1
loc (Ω∗),

then ∀g ∈ Lp
′
(Ω), G(s) =

∫
Ω

g ·
(
v − v∗(s)

)
+

dx ∈ W 1,1
loc (Ω∗), and for a.e.

s ∈ Ω∗, we have:

G′(s) = −v′∗(s)
∫
{u>u∗(s)}

g(x)dx = −v′∗(s)
∫ s

0

g∗v(σ)dσ. (5)

4 An Abstract Result for the Existence of Critical Value Near
Zero.

Due to Ekeland variational principle (see [11]), we shall introduce here an
existence result for the case where we have compact embedding from V into
X. We also introduce the following hypothesis:

H3./ Φ(0) = 0, and there exist u1 ∈ V and η > ‖u1‖ such that

Φ(v) > 0, ‖v‖ = η, Φ(u1) < 0, inf
v∈B(0,η)

Φ(v) > −∞.

Theorem 4.1 Under the conditions H1./ and H3./, if the injection of V
into X is compact, then there exists a function u 6≡ 0, u ∈ V , which is a
critical point of Φ := J − j, that is

0 ∈ ∂J(u)− ∂j(u).

Proof. Let B(0, η) be the open ball of radius η. Since we have a function
u1 6≡ 0, u1 ∈ V such that Φ(u1) < 0 (by H3./), then u1 ∈ B(0, η) and
c = inf

v∈B(0,η)
Φ(v) verifies

−∞ < c 6 Φ(u1) < 0.

By Ekeland variational principle (see [22, 27] and Appendix in [11]), we have
a minimizing sequence (un) ⊂ B(0, η), and u ∈ V such that

1. Φ(un) −−−−−→
n→+∞

c,
(

thus un ∈ interior
{
B(0, η)

}
= B(0, η)

)
,

2. `∗n ∈ ∂Φ(un), ‖`∗n‖V ′ −−−−−→
n→+∞

0,

3. un converges weakly to u in V ,
4. un converges strongly to u in X.

Thus, there exist wn ∈ ∂J(un), vn ∈ ∂j(un) such that

`∗n = wn − vn,

and this implies

< `∗n, un − u >=< wn, un − u > − < vn, un − u > . (6)
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Thus, for w ∈ ∂J(u)

< `∗n, un − u > − < w, un − u > + < vn, un − u >=< wn − w, un − u > (7)

Since we have the strong convergence of the sequence (un) in X, then |un| 6 c1
and |vn|X′ 6 c2, for vn ∈ ∂j(un).
From (7), we then have

| < wn − w, un − u > | 6 c3‖`∗n‖V ′ + | < w, un − u > |+ c2|un − u|. (8)

The above convergences, together with relation (8), yield:

lim
n→+∞

< wn − w, un − u >= 0, for wn ∈ ∂J(un) and w ∈ ∂J(u). (9)

By the assumption H1./, we conclude that un converges strongly to u in V .
Therefore, Φ(un) −−−−−→

n→+∞
Φ(u) = c < 0. ut

4.1 Example of Applications of Theorem 4.1

Let δ1 > 0, . . . , δN > 0 be N real numbers and qi, pi, i = 1, . . . , N be 2N
bounded measurable functions on Ω satisfying:

1 < qi− := essinf
Ω

qi 6 qi(x) < pi− := essinf
Ω

pi 6 pi+ := esssup
Ω

pi < +∞.

Consider

ϕi(x, t) :=

{
|t|pi(x), if |t| > δi,

αi(x)|t|qi(x), if |t| 6 δi,
x ∈ Ω, t ∈ IR, αi(x) = (δi)

(pi−qi)(x).

We can choose φi(x, t) as follows:

φi(x, t) :=


pi(x)|t|pi(x)−2t, if |t| > δi,

qi(x)|t|qi(x)−2t, if |t| < δi,

pi(x)δ
pi(x)−1
i , if t = δi,

−pi(x)δ
pi(x)−1
i , if t = −δi.

One can check that all the assumptions A1./ to A3./ are fulfilled for
α = q−− := min

16i6N

{
qi−
}

and α = p++ := max
16i6N

{
pi+
}

. We also have:

∂ϕi(x, t) =

{
φi(x, t), if |t| > δi or |t| < δi,

δ
pi(x)−1
i

[
qi(x), pi(x)

]
sign (t), otherwise.

We define the function J : V0 → IR as follows

J(v) :=

N∑
i=1

∫
Ω

ϕi

(
x,

∂v

∂xi
(x)

)
dx

pi(x)
.
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Theorem 4.2 Let δM > 0 be a real number and pM , qM be two bounded mea-
surable functions on Ω satisfying:

1 < qM− := essinf
Ω

qM (x) 6 qM (x) < pM− := essinf
Ω

pM (x).

Assume that V0 be compactly embedded in LϕM (Ω) and

qM− < q−− .

Then, there exists λ∗ > 0, such that ∀ λ ∈]0, λ∗[, there exists a non-trivial
function u ∈ V0 such that

N∑
i=1

∫
Ω

wi(x)
∂v

∂xi
(x)dx = λ

∫
Ω

wM (x)v(x)dx, ∀ v ∈ V0,

with pi(x)wi(x) ∈ ∂ϕi
(
x,
∂u

∂xi
(x)

)
and pM (x)wM (x) ∈ ∂ϕM

(
x, u(x)

)
a.e.,

where

ϕM
(
x, u(x)

)
=

{
|u(x)|pM (x), if |u(x)| > δM ,

αM (x)|u(x)|qM (x), if |u(x)| 6 δM ,

where αM (x) = (δM )(pM−qM )(x).

Proof. Introducing

Φλ(u) = J(u)− λj(u), j(u) =

∫
Ω

ϕM (x, u(x))
dx

pM (x)
,

one can check all assumptions of Theorem 4.1 (for more details, see [23]). ut

4.2 Other Example (with coerciveness)

Theorem 4.3 Under the same notations of Section 4.1, assume that V0 be
compactly embedded in LϕM (Ω) and

qM− < pM+ < q−− .

Then, there exist λ∗ > 0 and λ∗∗ > 0, such that ∀ λ ∈ ]0, λ∗[ ∪ ]λ∗∗,+∞[,
there exists a non-trivial function u ∈ V0 such that

N∑
i=1

∫
Ω

wi(x)
∂v

∂xi
(x)dx = λ

∫
Ω

wM (x)v(x)dx, ∀ v ∈ V0,

with pi(x)wi(x) ∈ ∂ϕi
(
x,
∂u

∂xi
(x)

)
and pM (x)wM (x) ∈ ∂ϕM

(
x, u(x)

)
a.e.

in Ω.
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Proof. The existence of λ∗ > 0 such that any λ ∈ ]0, λ∗[ is an eigenvalue is an
immediate consequence of Theorem 4.2. In order to prove the second part of
Theorem 4.3, we will show that, for λ positive and large enough, the functional
Φλ possesses a non-trivial global minimum point in V0.

First, the function Φλ is coercive on V0. Indeed, if max
16i6N

∥∥∥∥ ∂u∂xi
∥∥∥∥
Φi

> 1,

then

J(u) =

N∑
i=1

∫
Ω

ϕi

(
x,
∂u

∂xi
(x)

)
dx

pi(x)
>

1

p++
· 1

Nq−−
· ‖u‖q

−
−

V0
, (by Corollary 5.1).

Moreover, we have ∀ u ∈ V0,

∫
Ω

ϕM
(
x, u(x)

)
dx 6 (S0)qM−‖u‖qM−V0

+ (S0)pM+‖u‖pM+

V0
,

where S0 > 0 is the Sobolev constant of the injection V0 into LϕM (Ω).
Then,

Φλ(u) >
1

p++ ·Nq−−
· ‖u‖q

−
−

V0
− λ(S0)qM−

pM−
‖u‖qM−V0

+
λ(S0)pM+

pM−
‖u‖pM+

V0
,

for all u ∈ V0 such that max
16i6N

∥∥∥∥ ∂u∂xi
∥∥∥∥
ϕi

> 1.

Since we have qM− < pM+ < q−− , then Φλ(u) −−−−−−−−→
‖u‖V0

→+∞
+∞.

On the other hand, the same arguments as in the proof of Lemma 3.4 of [28]
can be used in order to show that Φλ is weakly lower semi-continuous on
V0 (see also [23]). The functional Φλ is also coercive on V0. These two facts
enable us to apply the first result of Section 2.1.1 in [22] in order to find that
there exists u0 ∈ V0, a global minimizer of Φλ.

Finally, we have to show that u0 is a non-trivial solution for λ large enough.
Indeed, letting t0 > max

{
1; δM

}
be a fixed real number and Ω1 be an open

subset of Ω with Ω1 ⊂⊂ Ω and |Ω1| > 0, we deduce that there exists
v0 ∈ C∞c (Ω) ⊂ V0 such that

{
v0(x) = t0, if x ∈ Ω1,
0 6 v0(x) 6 t0, if x ∈ Ω \Ω1.



Qualitative Properties & Eigenvalue Problems with Multivalued Operators 13

We have

Φλ(v0) =

N∑
i=1

∫
Ω

ϕi

(
x,
∂v0
∂xi

(x)

)
dx

pi(x)
− λ

∫
Ω

ϕM
(
x, v0(x)

) dx

pM (x)

6
1

p−−

N∑
i=1

∫
Ω

ϕi

(
x,
∂v0
∂xi

(x)

)
dx− λ

pM+

∫
Ω1

|v0|pM (x)dx

6
1

p−−

N∑
i=1

∫
Ω

ϕi

(
x,
∂v0
∂xi

(x)

)
dx− λ

pM+

∫
Ω1

(t0)pM−dx

6 C1 −
λ

pM+

(t0)pM− |Ω1|,

where C1 > 0 is a positive constant. Thus, there exists λ∗∗ =
C1 pM+

(t0)pM− |Ω1|
> 0

such that Φλ(v0) < 0, for any λ > λ∗∗. It follows that Φλ(u0) < 0, for any
λ > λ∗∗ and thus u0 is a non-trivial solution for λ large enough. ut

Remark 4.1 Let f ∈ V
′

0 be an element of the dual space of V0 and consider
the following problem:

−div−→ρ

(
∂ϕi

(
x,
∂u

∂xi
(x)

))
= f, (10)

where all assumptions A1./ to A3./ are satisfied. Then, there exists a global
minimizer u ∈ V0 and u is a solution of (10). Indeed, if we replace the function
j(v) of Theorem 4.3 by < f, v > and we use the same arguments as in the
proof of Theorem 4.3, we show that the functional Φ defined by

Φ(v) := J(v)− < f, v >, v ∈ V0,

is coercive and weakly lower semi-continuous.

5 Minimization Problem with Constraint.

In order to prove the existence for a minimization problem with constraint
related to the fully discontinuous operator, we shall start by using the non-
smooth version of the Lagrange Multiplier Theorem (see [9]). Due to the
inhomogeneity, our operator is more complicated than the p-Laplacian.
Let Ω be a bounded Lipschitz open set of IRN and consider N borelian func-
tions φi : Ω × IR→ IR, such that φi satisfies A1./ and A2./.
We define the N -function ϕi on Ω × IR:

ϕi(x, t) :=

∫ |t|
0

φi(x, σ)dσ.
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We also assume that ϕi satisfies A3./. Moreover, we consider the function J
on V0, as follows

J(v) :=

N∑
i=1

∫
Ω

ϕi

(
x,

∂v

∂xi
(x)

)
dx.

Theorem 5.1 Under the above conditions, assume that V0 be continuously
embedded in X. Let j : X → IR be an even and convex function such that
j(0) = 0. If we suppose

(i) j be a continuous function and V0 be compactly embedded in X,
or

(ii) j be weakly-continuous function,

then, there exist u1 ∈ V0, u1 > 0, u1 6≡ 0 and λ1 > 0 such that

0 ∈ ∂J(u1)− λ1∂j(u1).

We start with two auxiliary results, and we recall the relation between the
modular function and the norm in the Orlicz spaces.

Lemma 5.1 [23, 25]. Let u ∈ Lϕi(Ω). We have the following properties:

(1) If ‖u‖ϕi > 1, then ‖u‖αϕi 6
∫
Ω

ϕi (x, u(x)) dx 6 ‖u‖αϕi .

(2) If ‖u‖ϕi < 1, then ‖u‖αϕi 6
∫
Ω

ϕi (x, u(x)) dx 6 ‖u‖αϕi .

As a consequence of Lemma 5.1, we have

Corollary 5.1 [23]. Let u ∈ V0. Then:

(1’) If max
16i6N

∥∥∥∥ ∂u∂xi
∥∥∥∥
ϕi

> 1, then
1

Nα
· ‖u‖αV0

6 J(u) 6 N · ‖u‖αV0
.

(2’) If max
16i6N

∥∥∥∥ ∂u∂xi
∥∥∥∥
ϕi

< 1, then
1

Nα
· ‖u‖αV0

6 J(u) 6 N · ‖u‖αV0
.

Proof of Theorem 5.1:
Let α > 0 be fixed. We are in a position now to show that there exists u1 ∈ V0,
u1 > 0 and u1 6≡ 0 such that

J(u1) = inf
{
J(v) : j(v) = α

}
> 0.

For this, we define

m := inf
{
J(v) : j(v) = α

}
and S :=

{
u ∈ V0 : j(u) = α

}
.

We consider a minimizing sequence (vn) in S such that

J(vn) −−−−−→
n→+∞

m. (11)
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By Corollary 5.1, (vn) is bounded in V0. Then, there exists a subsequence of
(vn), still denoted by (vn), that converges weakly in V0. The function J is
weakly lower semi-continuous on V0 (see [23]), so we deduce that

J(u) 6 lim inf
n→+∞

J(vn) = m. (12)

First, we suppose that (i) holds. Then, using the compact embedding and
passing to a subsequence, if necessary, we deduce that (vn) converges strongly
in X. Moreover, by the continuity of j, S is closed. This implies that u ∈ S.
Then,

J(u) = m. (13)

We also suppose that (ii) holds. By the weak-continuity of j, we deduce that
j(vn) = α −−−−−→

n→+∞
j(u) = α and we also have (13).

On the other hand, exploiting Lagrange Multiplier Theorem (see [9]), we
then get the existence of (t, s) 6= (0, 0), such that t > 0 and

0 ∈ t ∂J(u1) + s ∂j(u1), u1 = |u| > 0. (14)

We observe that t 6= 0. Indeed, if we suppose that t = 0, then

0 ∈ s ∂j(u1) and s 6= 0.

We obtain
0 ∈ ∂j(u1), (15)

which is impossible since 〈∂j(u1);u1〉 > α > 0. We then get t > 0 and

0 ∈ ∂J(u1)− λ1 ∂j(u1), where λ1 = −s
t
. (16)

Finally, we point out that there exist w∗J ∈ ∂J(u1) and w∗j ∈ ∂j(u1) such that

w∗J = λ1 w
∗
j . (17)

Using the above equality, we find λ1 =
〈w∗J ;u1〉〈
w∗j ;u1

〉 . We note that λ1 > 0. Indeed,

we have
〈
w∗j ;u1

〉
> α > 0. And there exists w∗i (x) ∈ ∂ϕi

(
x,
∂u1
∂xi

(x)

)
a.e.

x ∈ Ω, for i = 1, . . . , N (see Lemma 4.4 in [8]) such that

〈w∗J ;u1〉 =

N∑
i=1

∫
Ω

w∗i (x)
∂u1
∂xi

(x)dx

> α
N∑
i=1

∫
Ω

ϕi

(
x,
∂u1
∂xi

(x)

)
dx

> α J(u1) > 0.

If λ1 = 0, then J(u1) = 0. By Corollary 5.1, we deduce that ‖u1‖V0 = 0,
which is impossible since u1 ∈ S. This implies λ1 > 0. ut
For more examples of applications of Theorem 5.1, see [23].
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Remark 5.1 In the case of p-Laplacian, the homogeneity of the operator
allows to prove that λ1 is the first eigenvalue.

6 Resonant Case Near Zero.

In this section, we prove the existence of solutions for an eigenvalue problem,
where the potential j has a partial interaction at zero with the best Sobolev
constant (see (j4)).
Let Ω be a bounded Lipschitz open set of IRN and consider N borelian func-
tions φi : Ω × IR → IR, for i = 1, . . . , N and φM : Ω × IR → IR, such that φi
and φM satisfy A1./ and A2./. We define on Ω × IR the N -functions

ϕi(x, t) :=

∫ |t|
0

φi(x, σ)dσ, and ϕM (x, t) :=

∫ |t|
0

φM (x, σ)dσ.

And we assume that ϕi and ϕM satisfy A3./ i.e.
There exist α > 1, α > 1, β > 1 and β > 1 such that, for a.e. x ∈ Ω, ∀ t ∈ IR
and ∀ w∗i (x, t) ∈ ∂ϕi(x, t), we have

α ϕi(x, t) 6 t w
∗
i (x, t) 6 α ϕi(x, t), ∀ 1 6 i 6 N.

For every w∗M (x, t) ∈ ∂ϕM (x, t), we have

β ϕM (x, t) 6 t w∗M (x, t) 6 β ϕM (x, t).

We define the Banach-Sobolev function space V0 := W 1,ϕ1,...,ϕN
0 (Ω) as

V0 :=

{
v ∈W 1,1

0 (Ω) :

N∑
i=1

(∫
Ω

ϕi

(
x,

∂v

∂xi
(x)

)
dx

)
< +∞

}
,

which is endowed with the norm ‖v‖V0 =

N∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥
ϕi

.

Consider J : V0 → IR with J(v) =

N∑
i=1

∫
Ω

ϕi

(
x,

∂v

∂xi
(x)

)
dx.

Theorem 6.1 deals with the existence of solutions u ∈ V0 of (18) under the
next hypotheses on the nonsmooth potential j.

Theorem 6.1 Under the above conditions, let j : Ω × IR→ IR be such that:

(j1) x 7→ j(x, ξ) is measurable for all ξ ∈ IR.
ξ 7→ j(x, ξ) is locally Lipschitz for a.e. x ∈ Ω.

(j2) There exists a constant a1 > 0, such that

|j(x, ξ)| 6 a1
(
|ξ|+ ϕM (x, ξ)

)
, a.e. x ∈ Ω and for all ξ ∈ IR.

(j3) There exist some constants M > 0, β > 0 and k1 > 0, such that

k1|ξ|β 6 j(x, ξ), ∀ |ξ| >M.
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(j4) There exists a constant 0 < c∗ <
1

Nα · (S2)α
, such that

j(x, ξ) 6 c∗|ξ|α, in a neighborhood of ξ = 0,

where S2 > 0 is the Sobolev constant of the embedding V0 ⊂ Lα(Ω).
(j5) We have the following growth properties:

(1) ∃ c0 > 0 : βg(u) 6 inf
v∗∈∂g(u)

〈v∗;u〉 + c0β, ∀u ∈ LϕM (Ω), where

g(u) =

∫
Ω

j(x, u(x))dx.

(2) There exist constants c1 > 0, c2 > 0 :

1

β
sup

w∗∈∂J(u)
〈w∗;u〉 − c2 + c1‖u‖V 6 J(u), ∀u ∈ V0.

If the injection V0 ⊂ LϕM (Ω) is compact and if α < β < β, then, there exists
u ∈ V0 a non-trivial function, such that

0 ∈ ∂J(u)− ∂g(u). (18)

We start with two auxiliary results:

Lemma 6.1 Assume that (j1), (j2) and (j4) hold, then, there exist η > 0
and α > 0 such that

Φ(u) := J(u)− g(u) > α, for all u ∈ V0 with ‖u‖V0
= η.

Proof. First, by (j4), there exists 0 < δ << 1 such that

j(x, ξ) 6 c∗|ξ|α, for all |ξ| 6 δ. (19)

By (j2), we get that, for a.e. x ∈ Ω, for all ξ ∈ IR with |ξ| > δ and for all
w∗M (x, ξ) ∈ ∂ϕM (x, ξ):

|j(x, ξ)| 6 a1

(
|ξ|+ ϕM (x, ξ)

)
6 a1

( β

w∗M (x, δ)
+ 1
)
ϕM (x, ξ).

It follows that there exists a constant c(δ) > 0 independent of ξ, such that

j(x, ξ) 6 c∗|ξ|α + c(δ)ϕM (x, ξ), ∀ ξ ∈ IR. (20)

We recall that we have (see Remark 3.3)

V0 ⊂ LϕM (Ω) ⊂ Lβ(Ω) ⊂ Lα(Ω). (21)

Let 0 < η < min
{

1;
1

S0

}
be fixed (small enough). Thus, by Corollary 5.1, we

get:

J(u) >
1

Nα
· ‖u‖αV0

, for all ‖u‖V0
= η.
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where S0 > 0 is the Sobolev constant of the embedding V0 ⊂ LϕM (Ω).
On the other hand, there exists δ1 > 0 such that, for all u satisfying ‖u‖V0 = η,
we have:

Φ(u) >
1

Nα
· ‖u‖αV0

− c∗‖u‖αLα − δ1
∫
Ω

ϕM (x, u(x))dx

>
1

Nα
· ‖u‖αV0

− c∗(S2)α‖u‖αV0
− δ1‖u‖

β
ϕM

>

(
1

Nα
− c∗(S2)α

)
‖u‖αV0

− δ1(S0)β‖u‖βV0
,

Finally, since c∗ <
1

Nα · (S2)α
and α < β, then, for η > 0 small enough, the

lemma is proved. ut

Lemma 6.2 Assume that (j1), (j2) and (j3) hold, then, there exists u0 ∈ V0

such that
Φ(u0) < α and ‖u0‖V0 > η.

Proof. First, by (j3), we have

k1|ξ|β 6 j(x, ξ), ∀ |ξ| >M.

Consider u ∈ V0, then there exists k2 > 0, such that

k1

∫
Ω

|u|βdx = k1

∫
{|u|>M}

|u|βdx+ k1

∫
{|u|<M}

|u|βdx

6
∫
{|u|>M}

j(x, u(x))dx+ k2.

On the other hand, by (j2), there exists k3 > 0 such that

−g(u) 6 −
∫
{|u|>M}

j(x, u(x))dx+

∫
{|u|<M}

|j(x, u(x))|dx

6 −k1
∫
Ω

|u|βdx+ k2 + k3

= −k1‖u‖βLβ + k4.

Taking t > 1 and using Remark 3.3, we find

Φ(tu) 6 tαJ(u)− k1 · tβ‖u‖βLβ + k4.

Finally, since α < β, we deduce that

Φ(tu) −−−−→
t→+∞

−∞.

Letting t0 > 1 large enough and defining u0 := t0u ∈ V0, we get

Φ(u0) < α and ‖u0‖V0
> η.
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The proof of Lemma 6.2 is complete. ut

Proof of Theorem 6.1:
At this stage, using Lemma 6.1 and Lemma 6.2, we are able to apply SHI’s
result (see [27]) and we deduce the existence of a Palais-Smale sequence de-
noted by (un) in V0.
We end the proof of Theorem 6.1 by using (j5), which allows us to apply
Lemma 3.1. ut

7 Qualitative Properties of Eigenvectors Related to ρ>-multivalued
Leray-Lions Operators.

In this section, we are interested in showing the qualitative properties for the
solutions of the eigenvalue problems related to ρ>-multivalued Leray-Lions
operators.
Let ϕi : Ω × IR→ IR, i = 1, . . . , N and ϕM : Ω × IR→ IR be N + 1 functions
for which the assumptions A.1/ - A.3/ are verified. We consider the Orlicz-
Sobolev space W 1,ϕ1,...,ϕN

0 (Ω) and let u ∈ W 1,ϕ1,...,ϕN
0 (Ω) ⊂ LϕM (Ω), u > 0

be a solution of the following problem:

−div

(
∂ϕi

(
x,
∂u

∂xi

))
= λw∗M , (22)

where
w∗M (x) ∈ ∂ϕM (x, u(x)) a.e. x ∈ Ω.

The subject of the next theorem is to study the L∞-regularity of the solutions
of such problems.

Theorem 7.1 Let τ and α be two real numbers such that 1 < τ < α < +∞.
Consider ϕi : Ω × IR→ IR defined by

ϕi(x, t) :=

{
|t|τ , if |t| 6 1,

|t|α, if |t| > 1.

Then, there exist λ1 > 0 and u ∈ W 1,α
0 (Ω), u > 0, solution of the following

problem:

−div

(
∂ϕi

(
x,
∂u

∂xi

))
= λ1u

α−1. (23)

Furthermore, if

1. 1 6 N 6 5,
or

2. N > 6 and


1 < α < α−N , where α−N =

N + 1−
√

(N − 3)2 − 8

4
,

or

α+
N < α < N, where α+

N =
N + 1 +

√
(N − 3)2 − 8

4
,
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then u ∈ L∞(Ω).

For the reader’s convenience, the proof of Theorem 7.1 is divided into several
steps:

Lemma 7.1 Under the assumptions of Theorem 7.1, there exist λ1 > 0 and
u ∈W 1,α

0 (Ω), u > 0, solution of (23).

Proof. The function j : Lα(Ω)→ IR defined by j(v) :=
1

α

∫
Ω

|v|αdx is a con-

vex, continuous, even function and j(0) = 0. W 1,α
0 (Ω) ⊂ Lα(Ω) is a compact

embedding, so we can use Theorem 5.1 to achieve the proof. ut

Lemma 7.2 Let u be a solution of (23), then u verifies the following inequa-
lity:

(
|∇u|α

)
∗u(s) 6 λ1N

(
−du∗
ds

(s)

)∫ s

0

uα−1∗ (t)dt+ c2, (24)

where λ1N and c2 are two positive constants.

Proof. Since u satisfies (23), then, there exist

w∗i (x) ∈ ∂ϕi
(
x,
∂u

∂xi
(x)

)
a.e., for i = 1, . . . , N , such that

N∑
i=1

∫
Ω

w∗i (x)
∂φ

∂xi
(x)dx = λ1

∫
Ω

uα−1(x)φ(x)dx, ∀ φ ∈W 1,α
0 (Ω). (25)

Consider φ(x) =
(
u(x)− u∗(s)

)
+
∈W 1,α

0 (Ω). From (25), we deduce:

N∑
i=1

∫
{u>u∗(s)}

w∗i (x)
∂u

∂xi
(x)dx = λ1

∫
Ω

uα−1(x)
(
u(x)− u∗(s)

)
+

dx. (26)

We set

E61 := {u > u∗(s)}∩
{∣∣∣∣ ∂u∂xi

∣∣∣∣ 6 1

}
and E>1 := {u > u∗(s)}∩

{∣∣∣∣ ∂u∂xi
∣∣∣∣ > 1

}
.
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We then have:

Ξ :=

N∑
i=1

∫
{u>u∗(s)}

w∗i (x)
∂u

∂xi
(x)dx

> τ

N∑
i=1

∫
{u>u∗(s)}

ϕi

(
x,
∂u

∂xi
(x)

)
dx

= τ

N∑
i=1

∫
E61

∣∣∣∣ ∂u∂xi
∣∣∣∣τ (x)dx+ τ

N∑
i=1

∫
E>1

∣∣∣∣ ∂u∂xi
∣∣∣∣α (x)dx

> τ

N∑
i=1

∫
{u>u∗(s)}

∣∣∣∣ ∂u∂xi
∣∣∣∣α (x)dx− τ

N∑
i=1

∫
E61

∣∣∣∣ ∂u∂xi
∣∣∣∣α (x)dx

> τ

N∑
i=1

∫
{u>u∗(s)}

∣∣∣∣ ∂u∂xi
∣∣∣∣α (x)dx− c1,

where c1 = N · τ · |Ω| is a positive constant independent of u.
We know that there exists c2 = c2(N,α), a positive constant depending on N
and α, such that:

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣α > c2

(
N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣2
)α

2

= c2|∇u|α. (27)

Hence

N∑
i=1

∫
{u>u∗(s)}

w∗i (x)
∂u

∂xi
(x)dx > τ · c2

∫
{u>u∗(s)}

|∇u|αdx− c1. (28)

Therefore, (28) and (26) imply that

τ · c2
∫
{u>u∗(s)}

|∇u|αdx 6 λ1

∫
Ω

uα−1(x)
(
u(x)− u∗(s)

)
+

dx+ c1. (29)

But u ∈ W 1,α
0 (Ω) and u > 0, thus u∗ ∈ W 1,1

loc (Ω∗). By using Lemma 3.3, we
deduce from (29) that:(

|∇u|α
)
∗u

(s) 6 λ2

(
− u′∗(s)

)∫ s

0

(
uα−1

)
∗u(σ)dσ

6 λ2

(
− u′∗(s)

)∫ s

0

(
uα−1

)
∗(σ)dσ

6 λ2

(
− u′∗(s)

)∫ s

0

(
u∗
)α−1

(σ)dσ,

where λ2 =
λ1
τ · c2

. ut
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Proposition 7.1 Let u ∈ W 1,α
0 (Ω), u > 0 verifying (24), then there exist

c6 > 0 and c7 > 0 two positive constants such that, for a.e. s ∈ Ω∗ =]0, |Ω|[,
one has

|∇u|∗u(s) 6 c6s
− N−1
N(α−1)

(∫ s

0

uα−1∗ (t)dt

) 1
α−1

+ c7. (30)

Proof. Thanks to the Hölder inequality for the relative rearrangement, we
have (see [14]) [

|∇u|∗u
]α

(s) 6
(
|∇u|α

)
∗u(s), a.e. on s. (31)

Using Theorem 3.4, it follows[
|∇u|∗u

]α
(s) 6 λ1N

(
−du∗
ds

(s)

)∫ s

0

uα−1∗ (t)dt+ c2

6
λ1N

Nω
1
N

N

s
1
N−1

∫ s

0

uα−1∗ (t)dt · |∇u|∗u(s) + c2.

Using Young inequality, we also have:[
|∇u|∗u

]α
(s) 6 c4s

α′( 1
N−1)

(∫ s

0

uα−1∗ (t)dt

)α′
+ c5, (32)

where α′ is such that 1
α + 1

α′ = 1.
This implies that

|∇u|∗u(s) 6 c6s
α′
α ( 1

N−1)
(∫ s

0

uα−1∗ (t)dt

)α′
α

+ c7. (33)

Thus, one has

|∇u|∗u(s) 6 c6s
1

α−1 ( 1
N−1)

(∫ s

0

uα−1∗ (t)dt

) 1
α−1

+ c7. (34)

ut

Proposition 7.2 Under the same conditions as for Proposition 7.1, if

u ∈ Lr(Ω) for r >
N

α′
and

1

α
+

1

α′
= 1, then u ∈ L∞(Ω).

Proof. By Hölder inequality (for β =
r

r − α+ 1
and β′ =

r

α− 1
), one has

(∫ s

0

uα−1∗ (t)dt

) 1
α−1

6

s 1
β ·

(∫ |Ω|
0

u
(α−1)β′
∗ (t)dt

) 1
β′


1
α−1

6 s
1

α−1−
1
r ·

(∫ |Ω|
0

ur∗(t)dt

) 1
r

.
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Property 3.1 shows that(∫ s

0

uα−1∗ (t)dt

) 1
α−1

6 s
1

α−1−
1
r · ‖u‖Lr(Ω). (35)

Using Theorem 3.4 and (34), one deduces

−u′∗(s) 6
s

1
N−1

Nω
1
N

N

[
c6s

1
α−1 ( 1

N−1)
(∫ s

0

uα−1∗ (t)dt

) 1
α−1

+ c7

]
. (36)

From relations (35) and (36), we obtain

−u′∗(s) 6 c8s(
1
N−1)[1+

1
α−1 ]+ 1

α−1−
1
r · ‖u‖Lr(Ω) + c9s

1
N−1.

The exponent
(

1
N − 1

) [
1 + 1

α−1

]
+ 1

α−1 −
1
r , denoted γ, should verify:

γ + 1 > 0⇐⇒
(

1

N
− 1

)[
1 +

1

α− 1

]
+

1

α− 1
− 1

r
> −1

⇐⇒ r >
N

α′
.

For all σ, t ∈ Ω∗, one has

|u∗(σ)− u∗(t)| 6 c8 · ‖u‖Lr(Ω)

∫ |Ω|
0

sγds+ c9

∫ |Ω|
0

s
1
N−1ds

6 c8
|Ω|γ+1

γ + 1
· ‖u‖Lr(Ω) + c9

|Ω| 1N
1
N

.

Since u ∈W 1,α
0 (Ω) and u > 0, then we have u∗(|Ω|) = 0. In particular, for all

σ ∈ Ω∗, one deduces

|u∗(σ)| 6 c10|Ω|γ+1 · ‖u‖Lr(Ω) + c11|Ω|
1
N . (37)

Hence
‖u‖L∞(Ω) 6 c12 · ‖u‖Lr(Ω) + c13. (38)

ut
We point out certain situations in which the condition u ∈ Lr(Ω), r >

N

α′
is satisfied. For this purpose, consider 1 < α < N . Thus, we have

α∗ =
Nα

N − α
>
N

α′
⇐⇒ 2α2 − (N + 1)α+N > 0. (39)

The discriminant of the last quadratic equation is given by

∆N = (N + 1)2 − 8N = (N − 3)2 − 8.

If the discriminant is positive, then there are two distinct roots

α−N =
N + 1−

√
∆N

4
and α+

N =
N + 1 +

√
∆N

4
. (40)
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Proposition 7.3 If 1 6 N 6 5, then α∗ >
N

α′
and u ∈ L∞(Ω).

Proof. Since 1 6 N 6 5, then ∆N < 0. By (39), we deduce that α∗ >
N

α′
.

This implies the existence of a constant r > 0 such that α∗ > r >
N

α′
.

By Sobolev embedding, we deduce

W 1,α
0 (Ω) ⊂ Lα

∗
(Ω) ⊂ Lr(Ω).

Proposition 7.2 gives the result. ut

Proposition 7.4 If N > 6, then there are two distinct roots α−N and α+
N such

that 1 < α−N < α+
N < N.

Proof. If N > 6, then ∆N > 0 and the roots are given by (40).
We also have

1 < α−N ⇐⇒ 4 < N + 1−
√

(N − 3)2 − 8

⇐⇒
√

(N − 3)2 − 8 < N − 3

⇐⇒ −8 < 0.

Moreover, one has

α+
N < N ⇐⇒ N + 1 +

√
(N − 3)2 − 8 < 4N

⇐⇒ (N − 3)2 − 8 < (3N − 1)2

⇐⇒ 0 < 8N2.

ut

Proposition 7.5 Assume that N > 6. If 1 < α < α−N or α+
N < α < N , then

u ∈ L∞(Ω).

Proof. By Proposition 7.4, we know that 1 < α−N < α+
N < N. In addition, if

α+
N < α < N , then α∗ >

N

α′
, we conclude that u ∈ L∞(Ω) (see the proof of

Proposition 7.3). If 1 < α < α−N , the same argument holds.

Using now Lemmas 7.1, 7.2 and Propositions 7.1 - 7.5, the proof of Theorem
7.1 is complete. ut

In the univalued case, we can refine the calculations and provide details of
the constants. The method used for the p-Laplacian is based on the Poincaré-
Sobolev and interpolation inequalities.

Theorem 7.2 Let λ1, u1 be the first eigenvalue and eigenfunction of ∆p:−∆pu1 = λ1u
p−1
1 > 0, for 1 < p < N,∫

Ω

up1dx = 1, and u1 ∈W 1,p
0 (Ω).

(41)
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Then,

max
Ω

u1 6

 B
1
p∗
p∗

Nω
1
N

N


θ
θ−1 (

λ1
p

) θ
p(θ−1)

,

where θ =
p∗

p
, λ1 = inf

{∫
Ω

|∇v|pdx :

∫
Ω

vpdx = 1

}
, p∗ =

Np

N − p
, Bp∗ is the

Bliss constant [14] and ωN is the Lebesgue measure of the unit ball in IRN .

Proof. Let J be as follows

J =

∫
Ω

|∇u1|p−2∇u1 · ∇(um+1
1 )dx = (m+ 1)

∫
Ω

|∇u1|p−2∇u1 · (∇u1 um1 )dx

= (m+ 1)

∫
Ω

|∇u1|p · um1 dx = (m+ 1)

∫
Ω

∣∣∣∇u1 · ump1 ∣∣∣p dx.

Since we have

∇u
m+p
p

1 =
m+ p

p
∇u1 · u

m
p

1 ,

we conclude

J =
p(m+ 1)

m+ p

∫
Ω

∣∣∣∣∇um+p
p

1

∣∣∣∣p dx. (42)

By (41), J can be written as

J = λ1

∫
Ω

up−11 · um+1
1 dx = λ1

∫
Ω

um+p
1 dx.

The Poincaré-Sobolev inequality (see [14]) implies:

(∫
Ω

u
p∗(m+p)

p

1 dx

) 1
p∗

6
B

1
p∗
p∗

Nω
1
N

N

(∫
Ω

∣∣∣∣∇um+p
p

1

∣∣∣∣p)
1
p

=
B

1
p∗
p∗

Nω
1
N

N

(
λ1

m+ p

p(m+ 1)

) 1
p
(∫

Ω

um+p
1 dx

) 1
p

,

from which we obtain

‖u1‖
m+p
p

Lθ(m+p)(Ω)
6

B
1
p∗
p∗

Nω
1
N

N

(
λ1

m+ p

p(m+ 1)

) 1
p

‖u1‖
m+p
p

Lm+p(Ω). (43)

Therefore,

‖u1‖Lθ(m+p)(Ω) 6

 B
1
p∗
p∗

Nω
1
N

N


p

m+p (
λ1

m+ p

p(m+ 1)

) 1
m+p

‖u1‖Lm+p(Ω). (44)
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Using an interpolation inequality (see [29]) for 0 6 η 6 1, one has

‖u1‖Lm+p(Ω) 6 ‖u1‖1−ηLp ·‖u1‖
η
Lθ(m+p) and

1

m+ p
=

1− η
p

+
η

θ(m+ p)
. (45)

The above equality leads to

η =
θm

θ(m+ p)− p
, and 1− η =

p(θ − 1)

θ(m+ p)− p
. (46)

Combining (44) and (45), we get

‖u1‖Lθ(m+p) 6

 B
1
p∗
p∗

Nω
1
N

N


p

m+p (
λ1

m+ p

p(m+ 1)

) 1
m+p

‖u1‖1−ηLp · ‖u1‖
η
Lθ(m+p) . (47)

Thus, we have:

‖u1‖Lθ(m+p) 6

 B
1
p∗
p∗

Nω
1
N

N


p

m+p ·
1

1−η (
λ1

m+ p

p(m+ 1)

) 1
m+p ·

1
1−η

‖u1‖Lp . (48)

But

1

m+ p
· 1

1− η
=

1

p(θ − 1)
· θ(m+ p)− p

m+ p
−−−−−→
m→+∞

θ

p(θ − 1)
.

This achieves the proof by letting m→ +∞ in (48). ut

Remark 7.1 The L∞-regularity of the eigenfunctions of p-Laplacian is
already known (see, for example, [30]).

8 Conclusion

In this paper, we treated eigenvalue problems related to ρ>-multivalued o-
perators. We generalized the results of [1] and [2]. We studied the existence for
a more general problem, by using the nonsmooth version of the Lagrange multi-
plier theorem. This existence result is then used to prove the L∞-regularity
of the eigenvectors associated with the ρ>-multivalued Leray-Lions operators
by using the relative rearrangement theory. We also proved an existence result
for an eigenvalue problem in a resonant case near zero.
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19. Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les
espaces de Hilbert. North-Holland Publishing Co., Amsterdam (1973)

20. Chang, K.C.: Variational methods for nondifferentiable functionals and their applica-
tions to partial differential equations. J. Math. Anal. Appl. 80, 102–129 (1981)

21. Ekeland, I.: Convexity methods in Hamiltonian mechanics. Springer-Verlag, Berlin
(1990)
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