A geometrical realization of the generic representations of $PGL(2, \mathbb{F}_q)$

Paul Broussous
UMR 6086 CNRS
SP2MI - Téléport 2
Bd M. et P. Curie BP 30 179
86962 Futuroscope Chasseneuil Cedex
E-mail: broussou@mathlabo.univ-poitiers.fr

Abstract

We construct a simplicial complex, equipped with an action of $PGL(2, \mathbb{F}_q)$, whose degree 1 cohomology affords the generic representations with multiplicity one, except the Steinberg representation.

1 notation

Here q>1 is an integer of the form p^n , $n\in\mathbb{N}$, where p is a prime. We denote by \mathbb{F}_q the field with q elements and set $G=\mathrm{PGL}(2,\mathbb{F}_q)$. We shall only consider complex representations of G. Any element (resp. subset) of G will be denoted by a representative (resp. a set of representatives) in $\mathrm{GL}(2,\mathbb{F}_q)$. We denote by T the diagonal torus of G. A character of T is given by

$$\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \mapsto \chi(x)\chi^{-1}(y) ,$$

where χ is a character of \mathbb{F}_q^{\times} ; we denote this character by $\chi \otimes \chi^{-1}$.

By fixing an isomorphism of \mathbb{F}_q -vector spaces $\mathbb{F}_q^2 \simeq \mathbb{F}_{q^2}$, we may identify the group $\mathbb{F}_{q^2}^{\times}/\mathbb{F}_q^{\times}$ with a subtorus Θ of G. The Frobenius automorphism σ of $\operatorname{Gal}(\mathbb{F}_{q^2}/\mathbb{F}_q)$ acts on Θ . A character θ of Θ is said to be regular if $\theta^{\sigma} \not\simeq \theta$.

We denote by Det the determinant $G \longrightarrow \mathbb{F}_q^{\times}/(\mathbb{F}_q^{\times})^2$. When q is odd, let χ_o be the unique non trivial character of $\mathbb{F}_q^{\times}/(\mathbb{F}_q^{\times})^2$

2 The irreducible representations of $\operatorname{PGL}(2,\mathbb{F}_q)$

Let us recall the list of (isomorphy classes of) irreducible representations of G. They splits into different series.

- a) Induced representations in the principal series. We denote by $\pi(\chi,\chi^{-1})$, the representation parabolically induced from $\chi \otimes \chi^{-1}$, parametrized by the pairs $\{\chi,\chi^{-1}\}$, where χ runs over the characters of \mathbb{F}_q^{\times} such that $\chi^2 \neq 1$.
- b) Steinberg representations. The Steinberg representation $\mathbf{S}t$ and (when q is odd) $\chi_o \circ \mathrm{Det} \otimes \mathbf{S}t$ (that we abbreviate $\chi_o \otimes \mathbf{S}t$).
- c) Cuspidal representations. We have one representation $\pi(\theta)$ for each pair $\{\theta, \theta^{\sigma}\}$ of regular characters of Θ .
- d) Characters. The trivial character $\mathbf{1}_G$ and (when q is odd) $\chi_o \circ \text{Det}$.

 An irreducible representation is said to be generic if it is not a character.

3 A simplicial complex

Recall that G acts on the projective line $\mathbb{P}^1(\mathbb{F}_q)$. We first construct a (non-oriented) graph Y as follows. Its vertices are the elements of $\mathbb{P}^1(\mathbb{F}_q)$ plus an extra point o; its edges are the $\{o, x\}$, where x runs over $\mathbb{P}^1(\mathbb{F}_q)$. Let X be the simplicial complex whose vertices are the oriented edges of Y and where two vertices form an edge when their union is an oriented 2-path in Y. So:

```
the vertices of X are the [x, o], [o, y], x, y \in \mathbb{P}^1(\mathbb{F}_q); the edges of X are the [x, o, y], x, y \in \mathbb{P}^1(\mathbb{F}_q) and x \neq y.
```

We have a natural action of G on X via simplicial automorphisms.

fig. 1 The complex X for q = 2.

fig. 2 The complex X for q = 3.

Lemma 3.1: The complex X is connected.

Proof. Indeed let s and t be two distinct vertices in X. If s = [x, o], t = [o, y], then s and t are linked by the edge [x, o, y]. If s = [x, o], t = [y, o], let z be a point of $\mathbb{P}^1(\mathbb{F}_q)$ distinct from x and y (recall that $\operatorname{Card}(\mathbb{P}^1(\mathbb{F}_q)) \geqslant 3$). Then ([x, o], [o, z], [y, o]) is a path linking s and t.

Proposition 3.2: As a G-module the cohomology space $H^1(X,\mathbb{C})$ consists of the generic representations, with multiplicity 1, except the Steinberg representation.

The proof will be given in section 4. We start here with some preliminary reductions.

Let $C^i_{or}(X)$, i=0,1, be the space of complex oriented i-cochains of X. So $C^0_{or}(X)$ is the space of linear forms on $\mathbb{C}[X_o]$, the \mathbb{C} -vector space with basis the vertices of X. Write $\mathbb{C}[X_1]^{or}$ for the \mathbb{C} -vector space with basis the set of oriented edges in X; then $C^0_{or}(X)$ is the set of linear forms ω on $\mathbb{C}[X_1]$ satisfying $\omega(\bar{e})=-\omega(e)$, for any oriented edge e, and where \bar{e} denotes the opposed edge. We have a cobord operator $d:C^0_{or}(X)\longrightarrow C^1_{or}(X)$ defined by df([s,t])=f(t)-f(s), for any oriented edge [s,t]. The following sequence of \mathbb{C} -vector spaces

$$0 \longrightarrow C^0_{or}(X) \stackrel{d}{\longrightarrow} C^1_{or}(X) \longrightarrow 0$$

is a cochain complex with an obvious action of G, and it cohomology computes $H^i(X,\mathbb{C})$, i=1,2, as G-modules.

The space $C^1_{or}(X)$ is isomorphic, as a G-module, to the space of linear forms on $\mathbb{C}[X_1]$, the space with basis the (non-oriented) edges of X. This is due to the fact that X has a G-equivariant labelling. The set of edges in X is isomorphic as a G-set to the set of pairs (x,y) of distinct points in $\mathbb{P}^1(\mathbb{F}_q)$, so to G/T. So we have an isomorphism of G-sets:

$$C_{or}^1(X) \simeq [\operatorname{Ind}_T^G \mathbf{1}_T]^*,$$

where the symbol * denotes the contragredient representation.

On the other hand, the image of the cobord d is isomorphic to $C^0_{or}(X)/\mathrm{Ker}d$. One may identify $C^o_{or}(X)$ with the space of functions on the disjoint union $\mathbb{P}^1(\mathbb{F}_q) \coprod \mathbb{P}^1(\mathbb{F}_q)$; here an edge of the form [x,o] (resp. [o,x]) is identified with x in the first (resp. second) set. A function on this set is a pair of functions (f,g) on $\mathbb{P}^1(\mathbb{F}_q)$; it lies in $\mathrm{Ker} d$ when d(f,g)[x,y]=0, for all $x\neq y$ in $\mathbb{P}^1(\mathbb{F}_q)$, that is when f=g is a constant function.

It is classical that, as a G-module, the space of functions on $\mathbb{P}^1(\mathbb{F}_q)$ is isomorphic to $\mathbf{1}_G \oplus \mathbf{S}t$. So we have

$$C_{or}^0(X) \simeq \mathbf{1}_G \oplus \mathbf{S}t \oplus \mathbf{1}_G \oplus \mathbf{S}t$$
,

and

$$\operatorname{Imd} \simeq C_{or}^0(X)/\operatorname{Ker} d \simeq \mathbf{1}_G \oplus \mathbf{S} t \oplus \mathbf{S} t.$$

4 The determination of $[\operatorname{Ind}_T^G \mathbf{1}_T]^*$

To prove proposition (3.2), we are reduce to determining this induced representation. We have the following equality (due to Imin Chen, see [1] Théorème (2.1)):

$$\operatorname{Ind}_T^G \mathbf{1}_T = \operatorname{Ind}_{\Theta}^G \mathbf{1}_G \oplus \mathbf{S}t \oplus \mathbf{S}t.$$

The multiplicity of an irreducible representation π of G in $Ind_{\Theta}^{G}\mathbf{1}_{G}$ is given in [2] (section 3. $Tableau\ 1$):

- a) For $\pi = \pi(\chi, \chi^{-1})$, $m(\pi) = 1$;
- b) for $\pi = \mathbf{S}t$, $m(\pi) = 0$, and for $\pi = \chi_o \otimes \mathbf{S}t$, $m(\pi) = 1$;
- c) for $\pi = \pi(\theta), m(\pi) = 1;$
- d) for $\pi = \mathbf{1}_G$, $m(\pi) = 1$, and for $\pi = \chi_o \circ \text{Det}$, $m(\pi) = 0$.

As a consequence, $Ind_{\Theta}^{G}\mathbf{1}_{G}$ is the direct sum of the generic representation of G, with multiplicity 1, plus $\mathbf{1}_{G} - \mathbf{S}t$ (in the Grothedieck group). To sum up, $\operatorname{Ind}_{T}^{G}\mathbf{1}_{T}$ is the sum of the generic representations, with multiplicity 1, plus $\mathbf{S}t \oplus \mathbf{S}t \oplus \mathbf{1}_{G} - \mathbf{S}t = \mathbf{S}t \oplus \mathbf{1}_{G}$. This set of representations is stable under the operation of taking the contragredient, so $[\operatorname{Ind}_{T}^{G}\mathbf{1}_{T}]^{*} \simeq \operatorname{Ind}_{T}^{G}\mathbf{1}_{T}$, and $H^{1}(X) \simeq [\operatorname{Ind}_{T}^{G}\mathbf{1}_{T}]^{*}/\operatorname{Im}d$ consists of the generic representations, with multiplicity 1, plus:

$$[\mathbf{S}t \oplus \mathbf{1}_G] - [\mathbf{1}_G \oplus \mathbf{S}t \oplus \mathbf{S}t] = -\mathbf{S}t$$
,

and our result follows.

References 5

References

[1] F. Sauvageot, Représentations de Steinberg et identités de projecteurs, to appear.

[2] J. Soto-Andrade et J. Vargas, Analyse harmonique sur le demi-plan de Poincaré tordu, CRAS, Paris, t. 328, Série I, p. 375-380, 1999.