
THE SATURATION PROPERTY FOR BRANCHING RULES

� EXAMPLES

B. PASQUIER AND N. RESSAYRE

Abstract. For a few pairs (G, Ĝ) of reductive groups, we study the
decomposition of irreducible Ĝ-modules into G-modules. In particular,
we observe the saturation property for all of these pairs.

1. Introduction

Let G be a complex connected reductive group. Studying the tensor
product decomposition of irreducible representations of G is a very clas-
sical and important problem in representation theory. More recently, Kly-
achko's contribution [Kly98] of the Horn problem of characterizing the pos-
sible eigenvalues of three Hermitian matrices whose sum is zero, motivated
the so-called saturation conjecture for the group G = GLn. This conjec-
ture was solved by Knutson and Tao [KT99] and studied for other groups
[DW00, KM08, BK10, Sam12].

The tensor product of two irreducible representations of G is an irreducible
representation of Ĝ = G × G. In particular, tensor product decomposition
is a particular case of the following branching problem. Assume that G is
embedded in a bigger connected reductive group Ĝ. Then we are interested
in decomposing irreducible representations of Ĝ as a sum of irreducible G-
modules. The aim of this note is to state a saturation property in this more
general setting and to study some explicit examples using some computer
calculation with [Hem] and [S+12].

1.1. Overview of saturation property for tensor product decompo-

sition. We �x a Borel subgroup B and a maximal torus T ⊂ B in G. If ν is
a dominant weight, VG(ν) denotes the irreducible representation of highest
weight ν. For any G-module V , the set of �xed points is denoted by V G.
The saturation property for GLn can be stated as follows.

Theorem 1 (Knutson-Tao). Let ν1, ν2, and ν3 be three dominant weights
of G = GLn(C).

BP - Université Montpellier II - CC 51-Place Eugène Bataillon - 34095 Montpellier
Cedex 5 - France - boris.pasquier@math.univ-montp2.fr .

NR - Université Claude Bernard Lyon 1 - 43 Bd du 11 novembre 1918- 69622 Villeur-
banne Cedex - France - ressayre@math.univ-lyon1.fr. The author was partially sup-
ported by the French National Research Agency (ANR-09-JCJC-0102-01) and the Institut
Universitaire de France (IUF).

1



2 B. PASQUIER AND N. RESSAYRE

If (VG(Nν1) ⊗ VG(Nν2) ⊗ VG(Nν3))G 6= {0} for some positive integer N
then (VG(ν1)⊗ VG(ν2)⊗ VG(ν3))G 6= {0}.

The �rst proof [KT99] of Theorem 1 due to Knutson and Tao uses a com-
binatorial model for Littlewood-Richardson coe�cients called honeycombs.
Derksen and Weyman reproved [DW00] this result using representations of
quivers and Kapovich and Millson obtained a proof [KM08] using the geom-
etry of Bruhat-Tits buildings.

Assume now that G is semisimple and let ΛR denote its root lattice.
Theorem 1 can be restated as follows.

Theorem 2 (Knutson-Tao). Let ν1, ν2, and ν3 be three dominant weights
of G = SLn(C).

If (VG(Nν1) ⊗ VG(Nν2) ⊗ VG(Nν3))G 6= {0} for some positive integer N
and ν1 + ν2 + ν3 ∈ ΛR, then (VG(ν1)⊗ VG(ν2)⊗ VG(ν3))G 6= {0}.

We say that the tensor product decomposition for SLn satis�es the sat-
uration property. The best known uniform generalization of Theorem 2 to
any simple group G is

Theorem 3 (Kapovich-Millson [KM08]). Let ν1, ν2, and ν3 be three domi-
nant weights of the simple group G. Let k be the least common multiple of
the coe�cients of the highest root of G written in terms of simple roots.

If (VG(Nν1) ⊗ VG(Nν2) ⊗ VG(Nν3))G 6= {0} for some positive integer N
and ν1 + ν2 + ν3 ∈ ΛR, then (VG(k2ν1)⊗ VG(k2ν2)⊗ VG(k2ν3))G 6= {0}.

Observe that for G = SLn, k = 1. Belkale and Kumar [BK10] and Sam
[Sam12] obtained better constants than k2 for classical groups.

Two important conjectures in the topic are still open. The �rst one as-
serts that tensor product decompositions for simply-laced groups satisfy the
saturation property. The second one asserts that Theorem 2 is satis�ed for
any G if the weights are regular.

1.2. Saturation property for branching problem. We �x maximal tori
T and T̂ and Borel subgroups B and B̂ of G and Ĝ such that B̂ ⊃ T̂ ⊃ T ⊂
B ⊂ B̂. We consider the set LR(G, Ĝ) of pairs (ν, ν̂) of dominant weights
such that (VG(ν) ⊗ VĜ(ν̂))G 6= {0}, that is, such that VG(ν)∗ is a sub-G-
module of VĜ(ν̂). By de�nition LR(G, Ĝ) is a subset of the character group
X(T × T̂ ) of T × T̂ . By a result of Brion and Knop (see [É92]), LR(G, Ĝ) is a
�nitely generated subsemigroup of the lattice X(T × T̂ ). We say that the pair
(G, Ĝ) has the saturation property if LR(G, Ĝ) is the intersection of some
convex cone with some lattice. To make this more precise we consider the
subgroup ZLR(G, Ĝ) of X(T × T̂ ) generated by LR(G, Ĝ). The following
statement describes the group ZLR(G, Ĝ).

Theorem 4. Let Ẑ denote the center of Ĝ. Suppose that every connected,
closed and normal subgroup of Ĝ contained in G is trivial. Then the group
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ZLR(G, Ĝ) is the set of pairs (ν, ν̂) ∈ X(T )×X(T̂ ) such that

ν(t).ν̂(t) = 1

for any t ∈ Ẑ ∩G.

Theorem 4 is due to the second author, its proof can be found in [Bri12]
(in french). We decided to repeat the proof in Section 2 to make the paper
more self-contained.

Remark 1. The hypothesis done in Theorem 4 is not very restrictive. In-
deed, for any pair (G, Ĝ), let H be the maximal connected, closed and normal

subgroup of Ĝ contained in G. Then, by taking a �nite cover of Ĝ and the
neutral component of the inverse image of this cover in G, we can suppose
that Ĝ = H × Ĝ0 and G = H × G0. Then LR(G, Ĝ) = LR(G0, Ĝ0) and

(G0, Ĝ0) satis�es the hypothesis of Theorem 4.

De�nition. The semigroup LR(G, Ĝ) (or the pair (G, Ĝ)) is said to have
the saturation property if for any pair of dominant weights (ν, ν̂) such that

(1) ∀t ∈ Ẑ ∩G, ν(t).ν̂(t) = 1 and
(2) ∃N > 0, (VG(Nν)⊗ VĜ(Nν̂))G 6= {0},

we have
(VG(ν)⊗ VĜ(ν̂))G 6= {0}.

1.3. Examples. Guessing that this work can help to understand better the
saturation property for branching rules (and maybe even for the tensor prod-
uct decomposition), we study this property in detail for some examples. We
make a particular attention to the case when G is spherical of minimal rank
in Ĝ (see [Res10b] for a classi�cation). The motivation to restrict to this case
is that these branching rules have common properties with the tensor prod-
uct decomposition (see for example [MPR11b, MPR11a]). We surprisingly
observed that all the computed examples have the saturation property.

Theorem 5. The pairs (Spin2n−1, Spin2n), (SL3, G2), (G2, Spin7), (Spin9, F4),
(F4, E6), (Sp4,SL4), (Sp6,SL6),(Sp8, SL8),(Sp10,SL10) have the saturation
property.

Along the way, we compute many other datum attached to the semigroup
LR(G, Ĝ): inequalities and rays for the generated cone, Hilbert basis.

Regarding Theorem 5, it is natural to extend the conjecture of saturation
of tensor product decompositions of simply laced groups. Indeed, consider
the set WtT (ĝ/g) of non trivial weights of T in the quotient ĝ/g of the Lie
algebras of Ĝ and G. Denote by W and Ŵ the Weil groups of (G,T ) and
(Ĝ, T̂ ) respectively.
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Question. Assume that Ĝ/G is spherical of minimal rank and that W acts
transitively on WtT (ĝ/g).

Does (G, Ĝ) have the saturation property?

By the classi�cation of theG/Ĝ that are spherical of minimal rank [Res10b],
this paper reduces the above question to two cases: the tensor product de-
composition for simple simply laced groups (the classical conjecture) and
Sp2n ⊂ Sl2n. This last case is checked for n ≤ 5.

Moreover, in all the computed examples, we notice that the Hilbert basis
equals the set of primitive generators of the rays of Q≥0LR(G, Ĝ). In par-
ticular, it is the case for any (G, Ĝ) = (Sp2n, Sl2n) with n = 2, 3, 4 and 5.
Is this fact true for any n?

2. Proof of Theorem 4 and a first example

Lemma 1. Let X be an algebraic variety and let G be a reductive group
acting on X with a �xed point x. Then the actions of G on X and on TxX
have the same kernel.

Proof. It is enough to prove that if an element g of G acts trivially on TxX,
then it also acts trivially on the local ring OX,x. Denote by mx the maximal
ideal of OX,x. Then g acts trivially on mx/m

2
x = (TxX)∗. It also acts

trivially on each symmetric power Sn(mx/m
2
x) and each quotient mn

x/m
n+1
x .

Now, since OX,x/mn+1
x is a rational G-module of �nite dimension, it is semi-

simple and then g acts trivially on it. We conclude by the fact that ∩n≥1m
n
x =

{0}. �

Let U (resp. Û) be the unipotent radical of B (resp. B̂) and let Û− be
the unipotent radical of the Borel B̂− opposite to B̂. And denote by g, ĝ, u,
û, t and t̂ the Lie algebras of G, Ĝ, U , Û , T and T̂ respectively.

If V is a G-module, then since T normalizes U , T acts on V U . We denote
by V U

ν the subspace of V U on which T acts with weight ν. We generalize in
a natural way this notation to G× Ĝ-modules V with the unipotent radical
U × Û− of B × B̂−.

Lemma 2. Consider the actions by right multiplications of U and Û− on G
and Ĝ. The morphism of algebras given by:

(C[G]U ⊗ C[Ĝ]Û
−

)G −→ C[Ĝ]U×Û
−∑

i φi ⊗ ψi 7−→
∑

i φi(e)ψi

where G acts diagonally on C[G]U ⊗ C[Ĝ]Û
−
and where e is the unity in G,

is an isomorphism.

In particular, ((VG(ν))∗ ⊗ VĜ(ν̂))G is isomorphic to C[Ĝ]U×Û
−

ν,−ν̂ .

Proof. Note that C[G×Ĝ] ' C[G]⊗C[Ĝ] so that the inverse of the morphism
comes from:
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C[Ĝ] −→ C[G× Ĝ] ' C[G]⊗ C[Ĝ]
f 7−→ ((g, ĝ) 7→ f(gĝ)).

For the last statement, we use the decompositions of C[G] and C[Ĝ]:

C[G] =
⊕

ν∈X(T )+

VG(ν)∗ ⊗ VG(ν) and C[Ĝ] =
⊕

ν̂∈X(T̂ )+

VĜ(ν̂)⊗ VĜ(ν̂)∗.

Remark also that VG(ν)U is a line on which T acts with weight ν and

(VĜ(ν̂)∗)Û
−
is a line on which T̂ acts with weight −ν̂. �

Proof of Theorem 4. Denote by ν∗ the highest weight of VG(ν)∗. Then we
de�ne

H := {(t, t̂) ∈ T × T̂ | ν∗(t) = ν̂(t̂) for any (ν, ν̂) ∈ LR(G, Ĝ)}.

By Lemma 2, H is the kernel of the action of T × T̂ on C[Ĝ]U×Û
−
, hence

also on C(Ĝ)U×Û
−
. The Bruhat decomposition gives an open immersion of

Û × T̂ × Û− in Ĝ. Then C(Ĝ)U×Û
−
is isomorphic to C(Û/U × T̂ ). Then H

is the kernel of the action of T × T̂ on Û/U × T̂ given by (t, t̂) · (ûU, x̂) =
(tût−1U, tx̂t̂−1). We deduce easily that H = {(t, t) ∈ T ×T | t ∈ H ′}, where
H ′ is the kernel of the action (by conjugation) of T on Û/U . Since U/U is
�xed by this action, by Lemma 1, H ′ is also the kernel of the action of T
on the quotient of Lie algebras û/u and then also the kernel of the action on
ĝ/g ' (û/u) ⊕ (̂t/t) ⊕ (û/u)∗. Still with Lemma 1, H ′ is the kernel of the
action (by conjugation) of T on Ĝ/G, and we obtain

H ′ = T ∩
⋂
ĝ∈Ĝ

ĝGĝ−1.

Now, ∩ĝ∈ĜĝGĝ
−1 is a closed and normal subgroup of Ĝ contained in G.

Hence the hypothesis implies that the intersection ∩ĝ∈ĜĝGĝ
−1 is �nite (and

normal). Then, since Ĝ is reductive, it is contained in Ẑ, and H ′ ⊂ Ẑ.
Conversely Ẑ acts trivially on Ĝ/G, so that H ′ = Ẑ ∩ T = Ẑ ∩G. Finally,

H = {(t, t) ∈ T × T | t ∈ Ẑ ∩G}.

We then deduce that the group ZLR(G, Ĝ) is the set of pairs (ν, ν̂) ∈
X(T )×X(T̂ ) such that

ν∗(t) = ν̂(t)

for any t ∈ Ẑ ∩G.
But ν∗ = −w0ν, where w0 is the longest element of the Weyl group of G,

and then for all elements of the center of G (in particular for all t ∈ Ẑ ∩G),
we have ν∗(t) = −w0ν(t) = −ν(w0tw

−1
0 ) = −ν(t) = ν(t−1). This concludes

the proof of Theorem 4. �
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Example: Here G = Spin2n−1 and Ĝ = Spin2n.
We denote by (ε1, . . . , εn) the standard (orthogonal) basis of the weight

lattice of the maximal torus of SO2n (with Bourbaki's notation). Then X(T̂ )
is the set of ν̂ = ν̂1ε1 + · · · + ν̂nεn for some rational numbers ν̂i such that
(2ν̂1, . . . , 2ν̂n) are integers of the same parity. Similarly X(T ) is the set of
ν = ν1ε1 + · · ·+νn−1εn−1 such that (2ν1, . . . , 2νn−1) are integers of the same
parity. The weights ν and ν̂ are dominant if and only if

ν1 ≥ ν2 ≥ · · · ≥ νn−1 ≥ 0 and ν̂1 ≥ ν̂2 ≥ · · · ≥ ν̂n−1 ≥ |ν̂n|.

The center of G is isomorphic to Z/2Z. By Theorem 4, (ν, ν̂) belongs to
ZLR(Spin2n−1, Spin2n) if and only if the integers 2νi and 2ν̂j have all the
same parity.

The convex cone generated by LR(Spin2n−1,Spin2n) in (X(T )×X(T̂ ))Q
is already given in [FH91] by the following irredundant 2n− 1 inequalities:

ν̂1 ≥ ν1 ≥ ν̂2 ≥ ν2 ≥ · · · ≥ νn−1 ≥ |ν̂n|,

in particular it is a simplex. Then, an Hilbert basis of this cone in ZLR(Spin2n−1, Spin2n)
is easily computable and given by all the following sequences with at least
two 0 and one 1

1 ≥ · · · ≥ 1 ≥ 0 ≥ · · · ≥ |0|,
and the two sequences

1

2
≥ · · · ≥ 1

2
≥ 1

2
and

1

2
≥ · · · ≥ 1

2
≥ −1

2
.

These 2n− 1 elements correspond to the following decompositions :

• V ($̂i) = V ($i−1)⊕ V ($i) for 1 ≤ i ≤ n− 2; (by convention V ($0)
is the trivial representation C)
• V ($̂n−1 + $̂n) contains V ($n−2);
• V ($̂n−1) = V ($n);
• V ($̂n) = V ($n).

We can conclude that the pair (Spin2n−1, Spin2n) has the saturation prop-
erty. We also remark that, any inequality coming from dominance is redun-
dant.

In all others examples we need another strategy to study the semigroup,
the cone and the saturation property. We explain this in the following sec-
tion.

3. Method to study several examples

3.1. Levi-movability. Recall that G ⊂ Ĝ are two complex connected re-
ductive groups. Let λ be a one-parameter subgroup (1-ps) of T . The set
of g ∈ G such that limt→0 λ(t)gλ(t−1) exists, is a parabolic subgroup P of
G. Since λ is also a 1-ps of Ĝ, it also de�nes a parabolic subgroup P̂ of Ĝ.
Denote by L and L̂ the Levi subgroups of P and P̂ that contain T and T̂
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respectively. Note that P is contained in P̂ , then we consider the immersion
ι : G/P −→ Ĝ/P̂ and the induced comorphism

ι∗ : H∗(Ĝ/P̂ ,R) −→ H∗(G/P,R)

in cohomology.
Let T (resp. T̂ ) denote the tangent space of G/P (resp. Ĝ/P̂ ) at the

point P/P (resp. P̂ /P̂ ). We also denote by ι the immersion of T in T̂ .
Let WP denote the Weyl group of P and let WP be the set of minimal

length representatives of the cosets of W/WP . Let w ∈ WP . Set Λw =

w−1BwP/P and Tw = TP/PΛw. For ŵ ∈ Ŵ P̂ , we de�ne as before Λŵ ⊂ Ĝ/P̂
and T̂ŵ. We assume that

codim(Λw, G/P ) + codim(Λŵ, Ĝ/P̂ ) = dim(G/P ).(1)

De�nition. The pair (w, ŵ) is said to be Levi-movable if there exists l̂ ∈ L̂
such that

ι(Tw) ∩ l̂T̂ŵ = {0}.(2)

Let σw ∈ H∗(G/P,R) (resp. σŵ ∈ H∗(Ĝ/P̂ ,R)) denote the cohomology
class of Λw (resp. Λŵ). Let [pt] denote the class of the point in H∗(G/P,R).
An important consequence of Levi-movability of (w, ŵ) is the following non-
vanishing:

ι∗(σŵ).σw = c[pt] for some positive integer c.

The action of λ induces decompositions

T =
⊕
k<0

T k, and T̂ =
⊕
k<0

T̂ k;

and
Tw =

⊕
k<0

T kw , and T̂ŵ =
⊕
k<0

T̂ kŵ .

The following result is a useful observation.

Lemma 3. The pair (w, ŵ) is Levi-movable if and only if

∀k ∈ Z<0 ∃l̂ ∈ L̂ ι(T kw ) ∩ l̂T̂ kŵ = {0}.

In particular, if (w, ŵ) is Levi-movable then

∀k ∈ Z<0 dim(T kw ) + dim(T̂ kŵ ) = dim(T̂ k).(3)

Proof. Since the actions of λ and L̂ commute, the pair (w, ŵ) is Levi-movable
if and only if

∃l̂ ∈ L̂ ∀k ∈ Z<0 ι(T kw ) ∩ l̂T̂ kŵ = {0}.
But the condition ι(T kw )∩ l̂T̂ kŵ = {0} is open in L̂. This allows us to permute
the �∃� and the �∀�. �
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Denote by Φ the set of roots of (G,T ) and consider the root space decom-
position of g = ⊕α∈Φgα⊕ t. Let Φ+ be the set of positive roots of B and set
Φ− = −Φ+. Consider the natural pairing 〈 , 〉 between 1-ps and characters
of T . Observe that T k is canonically isomorphic to⊕

α∈Φ, 〈λ,α〉=k

gα.

Denote by Φk the set of α ∈ Φ such that 〈λ, α〉 = k. The space T kw is
canonically isomorphic to ⊕

α∈Φ(w), 〈λ,α〉=−k

g−α,

where Φ(w) = Φ+∩w−1Φ−. Denote by Φ(w)k the set of α ∈ Φ(w) such that
〈λ, α〉 = −k.

3.2. Description of the cone Q≥0LR(G, Ĝ). Recall that WtT (ĝ/g) is the
set of non trivial weights of T in ĝ/g. Let X(T ) ⊗Z Q denote the rational
vector space spanned by the characters of T . We consider the set of hyper-
planes H of X(T ) ⊗Z Q that have a spanning set contained in WtT (ĝ/g).
For each such hyperplane H there exist exactly two opposite indivisible 1-ps
±λH that are orthogonal (for the pairing 〈·, ·〉) to H. The so obtained 1-ps
form a stable set under the action of W . Let {λ1, . . . , λn} be the set of
dominant such 1-ps. Denote by Pi and P̂i the parabolic subgroups of G and
Ĝ associated to λi. A 1-ps of T is said to be admissible if the hyperplane of
X(T )⊗Z Q de�ned by 〈λ, ·〉 = 0 is spanned by some elements of WtT (ĝ/g),
or equivalently if λ belongs to some Z>0Wλi.

Theorem 6. [Res10a] (see also [RR11, Proposition 2.3]) Suppose that every

connected, closed and normal subgroup of Ĝ contained in G is trivial. Then
Q≥0LR(G, Ĝ) has non empty interior in X(T × T̂ )⊗Z Q.

(i) Let i ∈ {1, . . . , n} and let (w, ŵ) ∈WPi × Ŵ P̂i be a Levi-movable pair.

Then for any (ν, ν̂) in Q≥0LR(G, Ĝ) we have

〈wλi, ν〉+ 〈ŵλi, ν̂〉 ≤ 0.(4)

(ii) A dominant weight (ν, ν̂) belongs to Q≥0LR(G, Ĝ) if and only if

〈wλi, ν〉+ 〈ŵλi, ν̂〉 ≤ 0.(5)

for any i = 1, . . . , n and for any Levi-movable pair (w, ŵ) ∈WPi×Ŵ P̂i

such that ι∗(σŵ) · σw = [pt] ∈ H∗(G/Pi,Z).
(iii) Each inequality (5) in assertion (ii) corresponds to a codimension one

face of the cone Q≥0LR(G, Ĝ).
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3.3. Finalization of the method. To decide if a given pair (G, Ĝ) has the
saturation property, we �rst compute the cone Q≥0LR(G, Ĝ) following the
steps below.

Step 1. Compute the weights of T in ĝ/g and the admissible 1-ps λ1, . . . , λn.
Step 2. For each i and each w ∈ WPi compute Φ(w)k for each k. Similarly

compute the subsets Φ(ŵ)k.

Step 3. List for each i, the set of pairs (w, ŵ) ∈ WPi × Ŵ P̂i satisfying con-
dition (3).

Step 4. For each pair (w, ŵ) in this list, we pick a random l̂ in L̂. With
probability close to 1, the pair (w, ŵ) is Levi-movable if and only if l̂
satis�es the condition (2) (because the set of l̂ satisfying condition (2)
is open in L̂). To check that all potentially not Levi-movable pairs
are really not Levi-movable, we have to go to Step 6. If we observe
a mistake at Step 6, we come back to this step and we pick new
random l̂. (Note that in all our programs, we obtain very often the
good result at the �rst time.)

For the Levi-movable pairs (w, ŵ) we found at this step, we have
a list of inequalities (4) satis�ed by the points of Q≥0LR(G, Ĝ) and
then de�ne a cone C containing Q≥0LR(G, Ĝ).

Step 5. Compute the rays of C.
Step 6. Check that each ray belongs to Q≥0LR(G, Ĝ). If it is true, then we

deduce that Q≥0LR(G, Ĝ) ⊂ C. If one of the rays does not belong
to Q≥0LR(G, Ĝ), we have to come back to Step 4 and continue to
do a random search for an Levi-movable pair more.

At this point, we can also compute the redundant inequalities, by com-
puting the rays of the dual cone of C. We proceed as follows with 4ti2. We
take the rays of C as inequalities to get C∨, and we compute the rays of C∨,
which give the minimal set of inequalities de�ning C.

Now to decide if the pair (G, Ĝ) has the saturation property it is su�cient
to

(1) Compute the Hilbert bases of the semigroupQ≥0LR(G, Ĝ)∩ZLR(G, Ĝ).
(2) Check whether or not the elements of the Hilbert bases belong to

LR(G, Ĝ).

Notation: In all examples, we take Bourbaki's notation for simple roots,
simple re�ections, fundamental weights, and εi's, adding a hat to data cor-
responding to Ĝ.

4. A first example with details: SL3 in G2

The root system of G2 is generally represented by the following picture.
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5

1 2 3 4

Figure 1. The set Φ(T̂ )

α̂1

$̂1

$̂2

α̂2

The set of long roots of G2 gives a subsystem of roots of type A2. We
follow the steps of Section 3.3.

Step 1. The weights of T on ĝ/g are the short roots packed in two opposite
triangles that are stable by the Weyl group W generated by the
re�ections associated to long roots. There is exactly one indivisible
dominant admissible 1-ps λ de�ned by:

λ(t) = diag(t, 1, t−1).

Step 2. The variety G/P (λ) is the complete �ag variety F l(C3). Moreover
P̂ (λ) is the maximal parabolic subgroup associated to the long simple
root; and Ĝ/P̂ (λ) is the �ve-dimensional quadric Q5. The weights
WtT (T̂ ) of T̂ = T on T̂ are the �ve negative roots di�erent from
−α̂1. The elements of Φ(T̂ ) are represented by �ve boxes and are
numbered from top to bottom and left to right as in Figure 1.

For any ŵ ∈ Ŵ P̂ , the opposite of the elements of Φ(ŵ) are con-
tained in Φ(T̂ ) and represented by black boxes.

The weights of T are the 3 long roots in Φ(T̂ ) represented by the
three corresponding boxes:
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s1

s2

s2

s1

s2

s1

ŝ2 ŝ1 ŝ2 ŝ1 ŝ2

Figure 2. Inversion sets for G/P and Ĝ/P̂

The 6 inversion sets Φ(w) for w ∈WP and the 6 inversion sets Φ(ŵ)
for w ∈WP are represented on Figure 2.

Step 3. Only 4 pairs (w, ŵ) satisfy condition (3):(
,

) (
,

) (
,

) (
,

)
Step 4. The two �rst pairs are clearly Levi-movable (with l̂ equals the iden-

tity) and the third pair is also Levi-movable (with l̂ = ŝ1).
Consider the last pair (w = s1s2s1, ŵ = ŝ1ŝ2). As a L̂-module,

T̂ −1 is isomorphic to the space of homogeneous polynomial functions
of degree 3 in 2 variables x and y. Then T̂ −1

ŵ identify with the set of
polynomial functions with [0 : 1] as double root. There exists l̂ ∈ L̂
such that l̂T̂ −1

ŵ identify with the set of polynomial functions with
[1 : 1] as double root. But T −1

w identi�es with the span of x3 and
y3. Then l̂T̂ −1

ŵ ∩ T −1
w = {0}. Hence the pair is Levi-movable.

We set ν = a$1 + b$2 and ν̂ = A$̂1 +B$̂2. The inequalities (4)
corresponding to the 4 Levi-movable pairs are
(a) B ≤ a+ b ≤ A+ 2B;
(b) max(a, b) ≤ A+B;

to which we add the 4 dominancy inequalities
(c) 0 ≤ min(a, b, A,B).

Step 5. The extremal rays of the associated cone C are generated by the fol-
lowing pairs (ν, ν̂): (0, $̂1), ($2, $̂1), ($2, $̂2), ($1, $̂1), ($1, $̂2)
and ($1 +$2, $̂2).

Step 6. The decompositions of the two fundamental representations of G2

as SL3-module show the primitive generators of these 6 rays belong
to LR(SL3, G2). Then C = Q≥0LR(SL3, G2).

Since Ĝ has a trivial center, ZLR(SL3, G2) is X(T × T̂ ). Using 4ti2, we
compute the Hilbert basis of ZLR(SL3, G2)∩Q≥0LR(SL3, G2). It coincides
with the list given at Step 5. Then Step 6 shows that (SL3, G2) has the
saturation property.
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5. A second example with details: G2 in Spin7

The group G = G2 has a simple representation of dimension 7 which
induces an embedding of G2 in SO7. Since G2 is simply connected, G2 is
also embedded in Ĝ = Spin7.

Step 1. As a G2-module so7 = Lie(Spin7) is isomorphic to g2 ⊕ VG($1).
The non-zero weights of VG($1) are the 6 short roots of G2, then
there is a unique indivisible dominant admissible 1-ps λ de�ned by
〈λ, α1〉 = 0 and 〈λ, α2〉 = 1. Set P = P (λ) and P̂ = P̂ (λ).

Step 2. The homogeneous space G/P is the quadric Q5. The inversion sets
Φ(w) for w ∈WP are already represented in Figure 2.

Let ρ : X(T̂ ) −→ X(T ) denote the restriction map. It satis�es
ρ(α̂1) = ρ(α̂3) = α1 and ρ(α̂2) = α2. This allows to compute 〈λ, α̂i〉
for i = 1, 2 and 3. We deduce that in the dual basis of (ε̂i)i=1,2,3,
λ = (1, 1, 0) (as a 1-ps in T̂ ). In particular Ĝ/P̂ = GrQ(2, 7) and
the inversion sets for Ĝ/P̂ are represented by the following diagrams,
where boxes correspond from top to bottom and left to right to the
weights ε̂1 − ε̂3, ε̂2 − ε̂3, ε̂1, ε̂2, ε̂1 + ε̂3, ε̂2 + ε̂3 and ε̂1 + ε̂2. We
describe the elements of Ŵ by the permutation acting on a basis of
VĜ($̂1) consisting of Û -stable vectors on which T̂ acts with weights
(in this order) ε̂1, ε̂2, ε̂3, 0, −ε̂3, −ε̂2 and −ε̂1.

1234567 1324567 1524637 1634527 2314756 2514736

2734516 3614725 3724615 5614723 5724613 6734512

Step 3. Only 8 pairs (w, ŵ) satisfy condition (3). We give them in the table
bellow, with the data that give the corresponding inequalities. Set
ν = a$̂1 + b$̂2 and ν̂ = Aε̂1 +Bε̂2 + Cε̂3.
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w Φ(w) 〈wλ, ν〉 ŵ Φ(ŵ) 〈ŵλ, ν̂〉

e 2b+ a 6734512 −A−B

sβ a+ b 5724613 −A− C

sαsβ b
3724615 −A+ C

5614723 −B − C

sαsβsαsβ −a− b 1634527 A−B

2514736 B − C

sβsαsβsαsβ −a− 2b
1524637 A− C

2314756 B + C

Step 4. The semi-simple part of the Levi subgroup L̂ is isomorphic to SL(2)×
SL(2). With, for example,

l̂ =

((
1 3
1 4

)
,

(
2 1
3 2

))
,

we obtain that the 7 �rst pairs (w, ŵ) in the table are Levi-
movable.

Step 5. The inequalities (4) corresponding to the 7 Levi-movable pairs are
(a) a ≥ 0, b ≥ 0;
(b) A ≥ B ≥ C ≥ 0;
(c) A− C ≤ 2b+ a ≤ A+B;
(d) max(B − C, A−B) ≤ a+ b ≤ A+ C;
(e) b ≤ min(B + C, A− C);

to which we add the 5 dominancy inequalities
(f) a, b ≥ 0;
(g) A ≥ B ≥ C ≥ 0.
The 7 extremal rays of the associated cone C are generated by

the following pairs (ν, ν̂): ($1, $̂1), ($1, $̂2), ($2, $̂2), (0, $̂3),
($1, $̂3), ($2, $̂1 + $̂3) and ($2, $̂1 + $̂2).

Step 6. We can check that all these 7 pairs (ν, ν̂) are in LR(G2, Spin7) and
then C = LR(G2, Spin7). We could also remark that the inequality
corresponding to the last pair of the table is not satis�ed (because
($1, $̂1 + 2$̂3) = ($1, 2ε̂1 + ε̂2 + ε̂3) ∈ LR(G2,Spin7)), so that the
last pair of the table is not L-movable.
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Since G has a trivial center, ZLR(G2, Spin7) is X(T × T̂ ). Using 4ti2,
we compute the Hilbert basis of ZLR(G2, Spin7) ∩ Q≥0LR(G2,Spin7). It
coincides with the list given at Step 5. Then Step 6 shows that (G2, Spin7)
has the saturation property.

Remark 2. Let T̂SO be the maximal torus of SO7. Then LR(G2,SO7) =

X(T × T̂SO) ∩ LR(G2,Spin7). In particular (G2, SO7) has the saturation
property. Observe that the Hilbert basis of LR(G2,SO7) is the union of
the 7 primitive generators of the extremal rays and the following 3 pairs:
($1, 2$̂3), ($2, $̂1 + 2$̂3) and ($1 +$2, $̂1 + 2$̂3).

>From the remaining examples of this paper, we use computations with
Sage in order to get the Levi-movable pairs, 4ti2 to compute the Hilbert
basis and Sage to check the saturation. All the programs used to obtain the
results below are available in authors' web pages.

6. B4 in F4

A more detailed version of this section (using only few computations with
computer) can be found in authors' web pages.

The root system Φ̂ of F4 contains 24 short roots

±ε̂i
1

2
(±ε̂1 ± ε̂2 ± ε̂3 ± ε̂4)

and 24 long roots
±ε̂i ± ε̂j i < j.

There are 3 ways to embed Spin9 in F4, they are all equivalent up to the
action of Ŵ . We choose the one where Φ consists of the long roots of Φ̂ and
the 8 short roots ±ε̂i with i = 1, 2, 3 and 4. Note that εi = ε̂i. Then, the
simple roots of B4 are

α1 = 2α̂4 + α̂2 + 2α̂3, α2 = α̂1, α3 = α̂2, α4 = α̂3,

A 1-ps λ = aε∗1 + bε∗2 + cε∗3 + dε∗4 is dominant if a ≥ b ≥ c ≥ d ≥ 0. The
weights of T = T̂ in ĝ/g are 1

2(±ε̂1 ± ε̂2 ± ε̂3 ± ε̂4). The Weyl group W of
B4 is S4.(Z/2Z)4, acting on the weights above in a natural way. We deduce
that there are two dominant indivisible admissible 1-ps:

λ1 = ε∗1 + ε∗2 + ε∗3 + ε∗4 and λ2 = ε∗1 + ε∗2.

To check the Levi-movability of the pairs, we need to know the following
facts.

(1) For λ1, the Levi subgroup L̂ is of type B3 and the two tangent spaces
T̂ −1 and T̂ −2 are isomorphic to the spinorial representation and the
standard representation as a Spin7-module.

(2) For λ2, the Levi subgroup L̂ is of type C3 and the two tangent spaces
T̂ −1 and T̂ −2 are isomorphic to the third fundamental representa-
tion (subrepresentation of

∧3 C6) and the trivial representation as a
Spin7-module.
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Then, the Sage programs (and also 4ti2 to compute the rays and the
Hilbert basis as in the previous sections) give the following result.

There are 36 (6 for λ1 and 30 for λ2) pairs satisfying condition (3) that
give 28 Levi-movable pairs. The cone Q≥0LR(Spin(9), F4) is de�ned by 36
non-redundant inequalities (including the 8 dominancy inequalities), it has
20 rays whose primitive elements give the Hilbert basis of the cone. In the
bases of fundamental weights, these elements are:

0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0
0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1
0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0
0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0
0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0

We check easily, using Sage, that the pair (B4, F4) has the saturation
property.

7. F4 in E6

The group E6 has dimension 78 and F4 has dimension 52. Hence ĝ/g has
dimension 26 and then it is the smallest representation VF4($4) of F4. But
$4 = ε1 is a short root. Hence WtT (V$4) is the set of 24 short roots of F4.
The hyperplanes spanned by short roots are the Levi subgroups containing
T of semisimple rank 3 in D4. Up to the Weyl group W (D4) of D4, they
correspond bijectively with the simple roots of D4. Then, up to W , there
are two dominant indivisible admissible 1-ps:

λ1 = ε∗1 and λ2 = ε∗1 + ε∗2.

To check the Levi-movability of the pairs, we need to know the following
facts:

(1) For λ1, the Levi subgroup L̂ is of type D4 and the two tangent spaces
T̂ −1 and T̂ −2 are isomorphic to the direct sum of the two spinorial
representations and the standard representation as a Spin8-module.

(2) For λ2, the Levi subgroup L̂ is of type A5 and the two tangent spaces
T̂ −1 and T̂ −2 are isomorphic to the third fundamental representation∧3 C6 and the trivial representation as a SL6-module.

Then, the Sage programs (and also 4ti2) give the following result.
The cone Q≥0LR(F4, E6) is de�ned by 61 non-redundant inequalities (in-

cluding 10 dominancy inequalities), it has 37 rays whose primitive elements
give the Hilbert basis of the cone. In the fundamental bases, these elements
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are:

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1
0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0
0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 ∗
0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 ∗
0 1 0 0 0 0 1 1 0 0 ∗ 0 1 0 0 0 1 0 0 1 0 ∗
0 1 0 0 0 1 0 1 0 0 ∗ 0 1 0 0 0 1 1 0 0 0 ∗
0 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 1 0
0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 2 0 0 ∗
0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0
1 1 0 0 1 0 0 1 0 1

Among these 37 elements, 30 are given by the PRV Theorem (see [MPR11b]).
Moreover, the remaining 7 elements (with * in the list above) can be reduced
to 5, by using the involution of E6. We now check these 5 elements, using
Sage, to get the saturation property (see authors' web pages to get details).

8. A family of examples: Sp2n in SL2n

Until n = 5, Sage programs (available in authors' web pages) and 4ti2
allow to prove the saturation property of the pair (Sp2n, SL2n). In this
section, we give the steps of Section 3.3 that we can do for any n ≥ 2. And
we give the results of computations for n = 2, 3, 4 and 5.

8.1. Notation on the groups. Let V be a 2n-dimensional vector space
with basis B = (e1, . . . , e2n). Consider the bilinear symplectic form ωn on V
with matrix

ωn =

(
0 Jn
−Jn 0

)
, where Jn =

(
1

. . .

1

)
.(6)

LetG be the associated symplectic group. Set T = {diag(t1, . . . , tn, t
−1
n , . . . , t−1

1 ) :
ti ∈ C∗}. Let B be the Borel subgroup of G consisting of upper triangular
matrices of G.

Here Ĝ = SL(V ), B̂ is the subset of upper triangular matrices and T̂ is
the subset of diagonal matrices.

For i ∈ [1, n], let εi denote the character of T that maps diag(t1, . . . , tn, t
−1
n , . . . , t−1

1 )
to ti; then X(T ) = ⊕iZεi. Moreover

∑
νiεi is dominant if and only if



THE SATURATION PROPERTY FOR BRANCHING RULES � EXAMPLES 17

ν1 ≥ · · · ≥ νn ≥ 0. For i ∈ [1, 2n], set i = 2n+ 1− i. The Weyl group W of
G is a subgroup of the Weyl group S2n of SL(V ). More precisely

W = {w ∈ S2n : w(i) = w(i) ∀i ∈ [1, 2n]}.
It is isomorphic to Sn n (Z/2Z)n. The group Y (T ) of 1-ps of T identi�es
with Zn by (a1, . . . , an) 7−→ (t 7→ diag(ta1 , . . . , tan , t−an , . . . , t−a1)). The
group W acts on Y (T ) by permuting coordinates and changing the signs of
the coordinates. The dominant 1-ps are those satisfying a1 ≥ · · · ≥ an ≥ 0.

8.2. Step 1: weights of T in ĝ/g and 1-ps. The quotient ĝ/g is isomor-
phic to

∧2 V ∗/Cωn as a G = Sp(V )-module. Then, the set of weights of T
in ĝ/g is

WtT (ĝ/g) = ±{εi ± εj : 1 ≤ i < j ≤ n}.

Lemma 4. Let n ≥ 2. The dominant indivisible admissible 1-ps of T for
the pair (Sp2n, SL2n) are the following n− 1 points of Zn:
λ1 = (1, 0, . . . , 0), λ2 = (1, 1, 0, . . . , 0), · · · , λn−2 = (1, . . . , 1, 0, 0) and λn = (1, . . . , 1).

Proof. We easily check that each λi in the statement is admissible. Let
λ = (a1, . . . , an) be a generic 1-ps. The equations 〈λ, α〉 = 0 for some
α ∈ WtT (ĝ/g) are ai = ±aj for some i < j. We represent this equation
by a graph with two vertices indexed by i and j and one edge labelled by
±. Consider a system of such equations which de�nes a line in X(T ) ⊗ Q.
We represent this system by a graph Γ with vertices i = 1, . . . , n and edges
labelled by ±.

Each connected component of Γ gives a subsystem in some variables ai.
By assumption, exactly one connected component Γ0 gives a system with a
line as solution and the other components have only the trivial solution.

Consider a connected subtree that contains any vertex of Γ0. Up to W we
may assume that the labels are + for this subtree. The system associated
to Γ0 implies ai = aj for all vertices i and j of Γ0. Since this system has
solutions by assumption, it is spanned by the line ai = 1 for any i in Γ0.

The other connected components of the graph Γ implies that ai = 0
if i 6∈ Γ0. Observe that these connected components encode at least two
equations and have at least two vertices. The lemma is proved. �

8.3. Step 2 : inversion sets. Let r ∈ {1, . . . , n − 2}. The inclusion of
G/P (λi) in Ĝ/P̂ (λi) is given by the following map

ιr : Grω(r, 2n) −→ F l(r, 2n− r; 2n)
F 7−→ (F, F⊥ωn ).

Set F = Span(e1, . . . , er), G = Span(er+1, . . . , e2n−r) and F̄ = Span(e2n−r+1, . . . , e2n).
Then V = F ⊕G⊕ F̄ is a T̂ -stable decomposition,

L̂r = {(f1, f2, f3) ∈ GL(F )×GL(G)×GL(F̄ ) | det(f1) det(f2) det(f3) = 1}
and the tangent space T(F,F⊕G)F l(r, 2n−r; 2n) identi�es with T̂r = Hom(F,G)⊕
Hom(F, F̄ ) ⊕ Hom(G, F̄ ). Moreover F⊥ωn = F ⊕ G, and ωn identi�es
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F with the dual of F . The tangent space TFGrω(r, 2n) identi�es with
Tr = Hom(F,G) ⊕ S2F ∗. The natural action of Lr, which is isomorphic
to GL(F )× Sp(G), makes this identi�cation equivariant.

Using ιr, Tr identi�es with the �xed point set in T̂r of the involution:
(a, b, c) 7−→ (tc,t b,t a). The weight spaces of λr in Tr and T̂r are T −1

r =

Hom(F,G), T −2
r = S2F ∗, T̂ −1

r = Hom(F,G) ⊕ Hom(G, F̄ ) and T̂ −2
r =

Hom(F, F̄ ). In terms of matrices (with canonical bases), the inclusion of
T −1
r ⊂ T̂ −1

r can be written as follows

Hom(F,G) −→ Hom(F,G)⊕Hom(G, F̄ )
A 7−→ (A, Jr.

tA.ωn−r).

The inclusion of T −2
r ⊂ T̂ −2

r can be written as follows

S2F ∗ −→ Hom(F, F̄ )
A 7−→ Jr.A.

(7)

For λn we �nd

ιn : Grω(n, 2n) −→ Gr(n, 2n)
F 7−→ F.

For F = Span(e1, . . . , en), Tn = T −2
n = S2F ∗ is embedded in T̂n = T̂ −2

n =
Hom(F, F̄ ) by formula (7).

We draw Φ−1
r and Φ̂−1

r as follows

1 . . . r
r + 1

...
2n− r

1 . . . r

r + 1

2n− r

r + 1
...

2n− r
2n− r + 1

...
2n

where the box at line i and column j represents respectively the root εi− εj
and ε̂i − ε̂j . We draw Φ−2

r and Φ̂−2
r as follows

1 . . . r
r

...
1

1 . . . r
2n− r + 1

...
2n

where the box at line i and column j represents respectively the root −εi−εj
and ε̂i − ε̂j .

The Schubert classes of Grω(r, 2n) correspond bijectively with the subsets
I of {1, . . . , 2n} with r elements such that j ∈ I ⇒ 2n + 1 − j 6∈ I. For
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Figure 3. Φr(I)−1 and Φr(I)−2 for r = 4, n = 6 and I = {2, 4, 5, 10}

Figure 4. Φr(I ⊂ J)−1 and Φr(I ⊂ J)−2 for r = 4, n = 6,
I = {2, 4, 5, 7} and J = I ∪ {1, 6, 9, 12}

such a class I set

I+ = I ∩ [1, n] and I− = {2n+ 1− j | j ∈ I ∩ [n+ 1, 2n]}.
The associated inversion set Φ(I)−1 is a Young diagram. The set Φ(I)−2 is
the upper part of a symmetric Young diagram. See Figure 3.

The Schubert classes of F l(r, 2n − r; 2n) correspond bijectively with the
pairs of subsets J ⊂ K of {1, . . . , 2n} with r and 2n − r elements. The
associated inversion sets Φ̂−1

r and Φ̂−2
r are pairs of Young diagrams and

Young diagrams respectively. See Figure 4.

8.4. Step 3: inequalities. The weights of G and Ĝ are expressed using the
standard bases. In particular, a pair (ν, ν̂) of dominant weights is given by
3∗n−1 integers (νi)1≤i≤n and (ν̂i)1≤i≤2∗n−1 satisfying ν1 ≥ · · · ≥ νn ≥ 0 and
ν̂1 ≥ · · · ≥ ν̂2n−1 ≥ 0. The inequality corresponding to the pair (I, J ⊂ K)
of Schubert classes such that

σI .ι
∗
i (σJ⊂K) 6= 0

is ∑
i∈I−

νi +
∑
j∈J

ν̂j ≤
∑
j∈I+

νj +
∑
j 6∈K

ν̂j ,(8)

where by convention ν̂2n = 0.
For example, the Schubert classes [Ĝ/P̂ ] and [G/P ] correspond to I =

J = {2n−r+1, . . . , 2n} and K = {r+1, . . . , 2n}. The associated inequality
is

r∑
i=1

νi +
2n−1∑

j=2n−r+1

ν̂j ≤
r∑

k=1

ν̂k,(9)

for any r = 1, . . . , n − 2 or r = n. The case r = n − 1 gives redundant
inequalities.
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8.5. Step 4: Levi-movability. In Section 8.3, we explain, for any r, how
to realize Tr as a subspace of T̂r, the action of L̂r on T̂r, and how to encode
the inversion sets. This is used in our Sage program to determine the Levi-
movable pairs (I, (J ⊂ K)).

8.6. The lattice ZLR(Sp2n,SL2n). The center of Sp2n is {±I2n}. Then
(ν, ν̂) belongs to ZLR(Sp2n,SL2n) if and only if

∑n
i=1 νi +

∑2n−1
j=1 ν̂j is even.

8.7. Some extremal rays. Recall that the fundamental weights are $i =
ε1 + · · ·+ εi.

Proposition 1. Let V be a 2n-dimensional vector space endowed with a
symplectic form. Convention: V$0 denotes the trivial representation. The
following inclusions and their dual give extremal rays (and belong to the
Hilbert basis) of Q≥0LR(Sp2n,SL2n):

(1) C ⊂ V ($̂2k) with k = 1, . . . , n;
(2) V ($i) ⊂ V ($̂j) with j ≥ i and j − i even;
(3) V ($2) ⊂ V ($̂1 + $̂2n−1).

The �rst two items give the only rays with ν̂ fundamental.

Proof. The �rst one is a ray of the dominant chamber. The second one
is the only half-line in Q$i ⊕ Q$̂j . The last one is the only half-line in
Q$2 ⊕Q$̂1 ⊕Q$̂2n−1. �

8.8. The smallest case: Sp4 in SL4. The group Sp4 is Spin5 and SL4 is
Spin6. In particular, the semigroup is recalled in the example of Section 2.

Proposition 2. The minimal list of inequalities for Q≥LR(Sp4, SL4) is

(1) ν̂1 − ν̂2 + ν̂3 ≤ ν1 + ν2 ≤ ν̂1 + ν̂2 − ν̂3;
(2) max(−ν̂1 + ν̂2 + ν̂3, ν̂1 − ν̂2 − ν̂3) ≤ ν1 − ν2 ≤ ν̂1 − ν̂2 + ν̂3;

The indivisible generators of the 5 extremal rays form the Hilbert basis of
Q≥LR(Sp4,SL4)∩ZLR(Sp4,SL4). The 5 corresponding inclusions VG(ν) ⊂
VĜ(ν̂) are particular cases of Proposition 1.

8.9. The case Sp6 in SL6.

Proposition 3. The cone Q≥LR(Sp6,SL6) is the set of (ν, ν̂) such that

(1) max(ν̂1 − ν̂2, ν̂3 − ν̂4, ν̂5) ≤ ν1 ≤ ν̂1;
(2) ν2 ≤ min(ν̂1 − ν̂5, ν̂2);
(3) ν3 ≤ min(ν̂1 − ν̂4, ν̂2 − ν̂5, ν̂3);
(4) ν̂1 − ν̂2 + ν̂3 − ν̂4 + ν̂5 ≤ ν1 + ν2 + ν3 ≤ ν̂1 + ν̂2 + ν̂3 − ν̂4 − ν̂5;
(5) max(−ν̂1−ν̂2+ν̂3+ν̂4+ν̂5, ν̂1−ν̂2−ν̂3−ν̂4+ν̂5,−ν̂1+ν̂2−ν̂3+ν̂4−ν̂5) ≤

ν1 − ν2 − ν3 ≤ ν̂1 − ν̂2 + ν̂3 − ν̂4 + ν̂5;
(6) max(−ν̂1+ν̂2−ν̂3+ν̂4+ν̂5, ν̂1−ν̂2−ν̂3+ν̂4−ν̂5,−ν̂1+ν̂2+ν̂3−ν̂4−ν̂5) ≤

ν1 − ν2 + ν3 ≤ min(ν̂1 − ν̂2 + ν̂3 + ν̂4 − ν̂5, ν̂1 + ν̂2 − ν̂3 − ν̂4 + ν̂5);
(7) max(ν̂1−ν̂2−ν̂3+ν̂4+ν̂5,−ν̂1+ν̂2+ν̂3−ν̂4+ν̂5, ν̂1−ν̂2+ν̂3−ν̂4−ν̂5) ≤

ν1 + ν2 − ν3 ≤ ν̂1 + ν̂2 − ν̂3 + ν̂4 − ν̂5;
(8) ν1 ≥ ν2 ≥ ν3 ≥ 0 (dominance of ν);
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(9) ν̂1 ≥ ν̂2 ≥ ν̂3 ≥ ν̂4 ≥ ν̂5 ≥ 0 (dominance of ν̂).

Moreover this list of inequalities is not redundant. The 15 extremal rays of
the cone are respectively generated by the following vectors written in row.

0 0 0 1 1 1 1 0 1 1 1 3 2 2 1 1 0 1 0 2 1 1 0 0
0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1
1 1 1 1 1 1 0 0 1 1 0 2 2 2 1 1 1 0 0 1 1 1 0 0
1 1 1 2 2 1 1 1 1 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0
1 1 1 2 1 1 1 0 1 1 0 2 1 1 1 1 2 1 1 2 2 1 1 0

These vectors form the Hilbert basis of the cone Q≥LR(Sp6, SL6) in ZLR(Sp6, SL6).
They correspond to inclusions of Proposition 1 and the following ones:

(1) V ($3) in V ($̂1 + $̂4) and its dual;
(2) V ($3) in V ($̂1 + $̂3 + $̂5);
(3) V ($2) in V ($̂1 + $̂3) and its dual;
(4) V ($1) in V ($̂3 + $̂5).

8.10. The case Sp8 in SL8. For λ1, λ2 and λ4, we obtain respectively 14,
47 and 53 Levi-movable pairs. With the 11 inequalities of dominance this
gives 125 inequalities. The following one is the only one to be redundant

ν1 − ν2 + ν3 − ν4 ≥ −ν̂1 + ν̂2 − ν̂3 + ν̂4 − ν̂5 + ν̂6 − ν̂7(10)

it is associated to the following well covering pair (w, ŵ) of LG(4, 8) in
Gr(4, 8) such that

Φ(w) = and Φ(ŵ) = .

The rays of the face corresponding to the redundant inequality (10) are
the 8 following vectors.

0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 1 1 1 1 1 1 0
1 1 0 0 1 1 0 0 0 0 0
1 1 0 0 1 1 1 1 0 0 0
1 1 0 0 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 2 2 1 1 1 1 0

Using 4ti2, we check that the Hilbert basis consists of the 49 generators of
rays. The semigroup is saturated by the PRV Theorem (see [MPR11b]) and
by computer checking for the 4 following cases (remark that the last one is
the dual of the 3rd one).

1 1 1 1 2 2 2 1 1 0 0
2 2 2 0 3 3 2 2 1 1 0
2 2 1 1 3 3 2 2 2 0 0
2 2 1 1 3 3 3 1 1 1 0
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8.11. The case Sp10 in SL10. We have 534 L-movable pairs. With the 14
dominancy inequalities, they give 548 inequalities, including 29 redundant
ones. We obtain 194 rays. The Hilbert basis consist of the set of primitive
generators of the rays. Note that 4ti2 needed about 250 hours to make this
computation. The PRV Theorem [MPR11b] shows that 141 elements of this
Hilbert basis belong to LR(G, Ĝ). Using the fact that V ⊂ V̂ if and only
if V ⊂ V̂ ∗, the list of remaining cases can be reduced to 31 cases. Using
Sage, we check that these 31 points belong to LR(G, Ĝ). Some details are
available in authors' web pages.

8.12. Final remarks. For all the computed examples, the conesQ≥0LR(G, Ĝ)
have few rays compared to the number of facets. For example, Q≥0LR(Sp8, Sl8)
has 49 rays and 124 facets, and Q≥0LR(Sp10, Sl10) has 194 rays and 531
facets. This suggests that it could be interesting to study these rays from a
theoretic point of view, whereas the literature concentrates on the facets ?

In the programs used to compute the inequalities, the rays, the Hilbert
basis and to check the saturation property, the most expensive in time is the
computation of the Hilbert basis with 4ti2. That is why we do not try to
study the cases for n ≥ 6. Another limiting factor is the computation of the
inversion sets. But, here our programs are really not optimal. If someone
is interested in computing the inequalities for n ≥ 6, he could considerably
improve them to do it in a more reasonable time.
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