A DESCRIPTION OF THE SARKISOV PROGRAM OF
HOROSPHERICAL VARIETIES VIA MOMENT POLYTOPES
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ABsTrRACT. Let X and Y be horospherical Mori fibre spaces which are equiv-
ariantly birational with respect to the group action. Then, there is a horo-
spherical Sarkisov program from X/S to Y/T.
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1. INTRODUCTION

In this paper, we work over the field of complex numbers. Horospherical varieties
are examples of complex varieties endowed with an action of a linear algebraic
group, with finitely many orbits. They are for example rational. An important
class of horospherical varieties is given by toric varieties, on which the group G},
acts. Similarly to toric varieties, horospherical varieties admit a combinatorial
description. Indeed, to a horospherical variety Z and an ample divisor D one can
attach a polytope Qp, called the moment polytope, describing the geometry of the
variety and of the action. For instance, some specific facets of QQp are in bijection
with the divisors of the variety which are stable by the group.

In [Pas15] the second-named author described a minimal model program for horo-
spherical varieties, or horospherical MMP, completely in terms of moment polytopes
by considering a one-parameter family of polytopes of the form {Qpyex, }ecq. For
small values of € the polytope Qptex, still defines the same variety Z, but, since
K7 is not pseudoeffective, as € grows, facets of the polytope start collapsing. Even-
tually, the dimension of the polytope drops, defining a fibration to a variety of
smaller dimension.
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2 E. FLORIS AND B. PASQUIER

This process, for a suitable choice of D, is a minimal model program and ends
with a Mori fibre space X — S.

The natural question arises then of the relation between different horospherical
Mori fibre spaces which are outcome of two MMP on the same variety for two
different ample divisors.

Two birational Mori fibre spaces, without any further structure, are connected
by a Sarkisov program by the cornerstone results of [Cor95] and [HM13]. A Sarkisov
program is a sequence of diagrams, called links, of one of the following forms

PR
1 |

S NG

where W/ — W are extremal divisorial contractions, horizontal dashed arrows
are isomorphisms in codimension 1 and all the other arrows are extremal contrac-
tions. In type IV, we have two cases depending on wether S — R and T' — R are
fibrations (type IVy,) or small birational maps (type IVy).

If X/S and Y/T are two Mori fibre spaces carrying the action of a complex
connected group and which are birational equivariantly with respect to the group,
then by [Flo20] there is an equivariant Sarkisov program, that is one in which all
the arrows in the links are equivariant with respect to the group.

In this work, we aim to produce a Sarkisov program in the spirit of [Pasl5] and
prove the following.

Theorem 1. Let G be a complex connected reductive algebraic group. Let X and
Y be horospherical G-varieties which are G-equivariantly birational. Assume more-
over that there are Mori fibre space structures X/S and Y/T. Then, there is a
horospherical Sarkisov program from X/S to Y/T.

Given two Mori fibre spaces that are horospherical varieties, a horospherical
Sarkisov program is a Sarkisov program that can be realized by deforming moment
polytopes. More precisely, if X/S and Y/T are Mori fibre spaces that are horo-
spherical varieties, Z a horospherical G-variety, D and D’ ample divisors on Z such
that X/S (resp. Y/T) is the outcome of a horospherical Kz-MMP with scaling of
D (resp. of D’) as in [Pasl5], we construct a 2-parameter family of pseudo-moment
polytopes

{P°}5.0)c02

with the following properties: there are €9 and £ such that {PO’E}ee[O,m] gives the
Kz-MMP with scaling of D and {P"“}.c(, gives the Kz-MMP with scaling of
D'. Moreover, for every ¢ € [0, 1] the divisor §D+(1—4)D’ is ample on Z and P*? is
a pseudo-moment polytope for Z. The Sarkisov program X/S --+ Y/T is obtained
by considering the polytopes P%¢ for (6, ¢) moving along a certain piecewise-linear
curve, which we call the Mori Polygonal Chain.
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More precisely, we set
P> .:={zcQ" | Az > (1 —6)B+ B +€C},

where the matrix A corresponds to primitive elements of edges (in a lattice iso-
morphic to Z™) of the colored fan of the horospherical G-variety Z, the column
matrices B and B’ correspond to the divisors D and D’, and the column matrix C
correspond to Kz. See also Definition 7.1 and Theorem 30.

We illustrate the intuitive idea behind the theorem with an example. Let X/S be
the toric variety P! x P! with the first projection to P'. We consider the polytopes
P, defined by Agx > By + €Cy where

10 0 1
0 1 0 1
AO = 1 0 ; BO = 9 , and CO = 1
0 -1 -1 1

For any € € [0, %[, the polytopes P. are rectangles and are moment polytopes of
X =P! x P!, and Py is a (horizontal) segment which is a moment polytope of P!
(see Figure 1).

Now let Y/T be the projective bundle Fy = P(O@® O(2)). It is a two-dimensional
toric Mori fibre space. Consider the polytopes P!, defined by Ajz > By +eCy where

1 0 0 1
0 1 0 1
Al = _1 0 5 Bl = _1 5 and Cl = 1
2 -1 -1 1

For any € € [0, %[, the polytopes P. are moment polytopes of Y, and P% is a (ver-
tical) segment which is a moment polytope of P! (see Figure 1).

FIGURE 1. The families (P.) and (P))
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Thus we may add inequalities to the systems defining P. and P/, or, equivalently,
add lines to the matrices in order to get Ag = Ay = A and Cy = C; = C (then By
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becomes B and B; becomes B’). For example, we can consider

1 0 0 0 1
0 1 0 0 1
A= -1 0 , B=| -2 |, B=| -1 |,and C_| 1
0 -1 —1 -3 1
2 -1 -1 —1 1
Then the two-parameter family (Péve)((;’e)e(@z defined by
P> :={zcQ" | Az > (1 —6)B + 6B +€C},
is such that, for any € > 0, P. = P%¢ and P/ = P
FIGURE 2. The families (P2¢) and (P3)
pz0 — I pio —
pi --- P13 ---
Pz - E pPE3) -
phe _ P3.2) e

Note that the lines of A correspond to the primitive elements of the edges of the
fan of a two-dimensional toric variety W resolving the indeterminacies of X --» Y.
Since we added only one line to Ag (resp A1) to get A, we have p(W/X) =1 (resp.
p(W/Y) =1). We get therefore a type II link

W _—— W
P! x P! F?
]P>1 IP)I

The variety W obtained here does not have terminal singularities, hence this is
not a standard Sarkisov link, but terminality can be achieved by considering higher
resolutions. We do this in Example 6.1.

Structure of the paper. We recall in section 2 basic definitions and properties of
horospherical varieties. In section 3 and 4 we describe the results in [Pasl5] and
prove that the ample divisors D such that the Kz-MMP scaled by D ends with X/S
form an euclidian open set. Section 5 contains the main technical results allowing
to translate the MMP and Sarkisov program into simple operation on polytopes.
Those results rely on the study of certain two-dimensional polytopes. All the details
of this study are reported in the Appendix. In section 6 we present two examples
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illustrating the horospherical Sarkisov program, and in section 7 we give the proof
of Theorem 1.

Acknowledgements: We would like to thank M. Brion for his comments on
an earlier draft of this paper and R. Terpereau for useful conversations. We are
grateful to the anonymous referee for all the suggestions and remarks, which greatly
improved the quality of the paper. Both authors acknowledge support by the ANR
Project FIBALGA ANR-18-CE40-0003-01.

2. HOROSPHERICAL VARIETIES

We begin by recalling very briefly the Luna-Vust theory of horospherical embed-
dings and by setting the notation used in the rest of the paper. For more details
on horospherical varieties, we refer the reader to [Pas08], and for basic results on
Luna-Vust theory of spherical embeddings, we refer to [Kno91].

Let G be connected reductive algebraic group. A closed subgroup H of G is said
to be horospherical if it contains the unipotent radical U of a Borel subgroup B of
G. This is equivalent to say that ([Pas08, Prop. and Rem. 2.2]), there exists a
parabolic subgroup P containing H such that the map G/H — G/P is a torus
fibration; or to say that there exists a parabolic subgroup P containing H such that
H is the kernel of finitely many characters of P.

Note that B C P = Ng(H). We also fix a maximal torus T of B. Then we
denote by S the set of simple roots of (G, B,T). Also denote by R the subset
of S of simple roots of P. In particular, if P is a minimal parabolic subgroup,
then R consists of only one element. Let X(T') (resp. X(T)") be the lattice of
characters of T' (resp. the set of dominant characters). Similarly, we define X(P)
and X(P)T = X(P)NX(T)*. Note that the lattice X¥(P) and the dominant chamber
X(P)* are generated by the fundamental weights @, with a € S\ R and the weights
of the center of G.

We denote by M the sublattice of X(P) consisting of characters of P vanishing
on H. The rank of M is called the rank of G/H and denoted by n. Let N :=
Homy(M,Z).

For any free lattice L, we denote by Lg the Q-vector space L ®z Q.

For any simple root a € S\ R, the restriction of the coroot a" to M is a point of
N, which we denote by ay;.

Moreover, we define the walls of the dominant chamber X(P)T in the following
way. For any o € S\ R we set

Wa.p = X(P)* 0 {a¥ = 0}.

Definition 1. A G/H-embedding is a couple (X, x), where X is a normal algebraic
G-variety and x a point of X such that G -z is open in X and isomorphic to G/H.
The variety X is called a horospherical variety.

By abuse of notation, we often forget the point z, so that we call X a G/H-
embedding. But there are several non-isomorphic G/ H-embeddings (X, x) for the
same horospherical variety X. Two points 1 and x5 differ by an element of the torus
P/H, which acts on the right on G/H. Similarly to toric varieties (which are (C*)"-
embeddings with the above defintion), G/H-embeddings are classified by colored
fans in Ng. For example, for the toric variety P? we have different non-isomorphic
(C*)%-embeddings, whose fans are the same up to the action of SLy(Z). In this
paper, since we define horospherical varieties by their colored fans, or equivalently
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by some of their moment polytopes, we are implicitly fixing a G/H-embedding up
to isomorphism.

Definition 2. (1) A colored cone of Ny is an couple (C, F) where C is a convex
cone of Ng and F is a set of colors (called the set of colors of the colored cone),
such that
(i) Cis generated by finitely many elements of N and contains {a}, | a € F},
(i) C does not contain any line and F does not contain any « such that ay,
is zero.

(2) A colored face of a colored cone (C,F) is a couple (C’, F’) such that C’ is a
face of C and F’ is the set of a € F satisfying o, € C’. A colored fan is a finite
set IF of colored cones such that

(i) any colored face of a colored cone of F is in F,
(ii) and any element of Ng is in the interior of at most one colored cone of F.

The main result of Luna-Vust Theory of spherical embeddings is the one-to-one
correspondence between colored fans and isomorphic classes of G/H-embeddings
(see for example [Kno91]). It generalizes the classification of toric varieties in
terms of fans, case where G = (C*)™ and H = {1}. We will rewrite this result in
Section 2.1 for projective horospherical varieties in terms of polytopes and describe
explicitly the correspondence.

If X is a G/H-embedding, we denote by Fx the colored fan of X in Ng and we
denote by Fx the subset Uic r)ery F of S\R, which we call the set of colors of X.

We now recall the description of divisors of horospherical varieties.

We denote by Xi,..., X, the G-stable irreducible divisors of a G/H-embedding X.
For any i € {1,...,r}, we denote by z; the primitive element in N of the colored
edge associated to X;. The B-stable and not G-stable irreducible divisors of a
G/H-embedding X are the closures in X of B-stable irreducible divisors of G/H,
which are the inverse images by the torus fibration G/H — G/P of the Schubert
divisors of the flag variety G/P. The B-stable irreducible divisors of G/H are
indexed by simple roots of S\ R, we write them D, with « € S\R.

We can now recall the characterization of Cartier, Q-Cartier and ample divisors
of horospherical varieties due to M. Brion in the more general case of spherical
varieties ([Bri89]). This will permit to define a polytope associated to a divisor of
a horospherical variety.

Theorem 2. (Section 3.3, [Bri89]) Let G/H be a horospherical homogeneous space.
Let X be a G/H-embbeding. Then every divisor of X is equivalent to a linear
combination of X1,...,X, and D, with « € S\R. Now, let D = >\ _ a;X; +
ZQGS\R aq Dy be a Q-divisor of X.

(1) D is Q-Cartier if and only if there exists a piecewise linear function hp,
linear on each colored cone of Fx, such that for any i € {1,...,r}, hp(x;) = a;
and for any o € Fx, hp(a);) = aq.

(2) Suppose that D is a divisor (i.e. ai,...,a, and the a, with o € S\R are in
Z). Then D is Cartier if moreover, for any colored cone (C,F) of Fx, the linear
function (hp)|c, can be defined as an element of M (instead of Mg for Q-Cartier
divisors).

(3) Suppose that D is Q-Cartier. Then D is ample, resp. nef if and only if
the piecewise linear function hp is strictly convex, resp. conver, and for any a €
(S\R)\Fx, we have hp(a),) < aq, resp. < aq.
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(4) Suppose that D is Cartier. Let Qp be the polytope in Mg defined by the
following inequalities, where x € Mg: for any colored cone (C,F) of Fx, (hp)+x >
0 on C, and for any o € (S\R)\Fx, x(a);)+ aa > 0. Note that here the weight of
the canonical section of D is v? := > acs\r @a@a- Then the G-module H°(X,D) is
the direct sum, with multiplicity one, of the irreducible G-modules of highest weights
x +v° with x in Qp N M.

In all the paper, a divisor of a horospherical variety is always supposed to be
B-stable, i.e. of the form }7/_, a;X; + 3, c e\ g @aDa-

Corollary 3. A G/H-embbeding X is Q-factorial if and only if all the cones in
Fx are simplicial and for any o € Fx, oY, generates a ray of Fx.

Moreover, in that case, the Picard number of X is the number of their B-stable
prime divisors minus the rank n (Equality (4.1.1) [Pas08§]).

In what follows we denote by W Div(X)g (resp. WDivg(X)g) the vector space
of B-stable (linearly equivalent to zero) Q-Weil divisors on a horospherical variety
X and by Amp(X) (resp. Nef(X)) the cones in WDiv(X)g of ample (resp. nef)
divisors. Both cones are polyhedral and, if X is Q-factorial, full-dimensional.

2.1. Projective horospherical varieties and polytopes. In this section we
recall how many properties of G/H-embeddings can be formulated in terms of
moment polytopes. Theorem 2 gives the following

Proposition 4. (Corollary 2.8, [Pasl5]) Let X be a projective G/ H-embedding and
D= 22:1 a; X; + ZaeS\R aa Dy be a Q-divisor of X. Suppose that D is Q-Cartier
and ample.

(1) The polytope QD defined in Theorem 2 is of mazimal dimension in Mg and
we have

Qp = {m € Mg | (m,yz;) > —a;, Vi€ {1,...,7} and (m,ay;) > —aq,, Yo € Fx }.

(2) Let v° = ZaES\R aa@a. The polytope Qp = v° + Qp is contained in
the dominant chamber X(P)" of X(P) and it is not contained in any wall of the
dominant chamber.

(3) Let (C,F) be a mazximal colored cone of Fx, then the element v° — (hp)c of
Mg is a vertex of Qp. In particular, if D is Cartier, then Qp is a lattice polytope
(i.e. has its vertices in v° + M ).

(4) Conversely, let v be a vertex of Qp. We define C, to be the cone of Ng
generated by inward-pointing normal vectors of the facets of Qp containing v. We
set F, = {a € S\R | vthe corresp. wall of the dominant chamber}. Then (Cy, F,)
is a mazimal colored cone of Fx.

The polytope Qp is called the moment polytope of (X, D) (or of D), and the
polytope Qp the pseudo-moment polytope of (X, D) (or of D).
The projective G/H-embeddings are classifed in terms of G/H-polytopes (defined
below in Definition 2.3), and we can give an explicit construction of a G/H-
embedding from a G/H-polytope.

Definition 3. Let @ be a polytope in %(P)a (not necessarily a lattice polytope).
We say that Q is a G/H-polytope, if its direction is Mg and if it is contained in no
wall W, p with a € S\R.
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Let @ and Q' be two G/H-polytopes in %(P)@ Consider any polytopes Q and
Q' in Mg obtained by translations from @ and Q' respectively. We say that @ and
Q' are equivalent G/H-polytopes if the following conditions are satisfied.

(1) There exist an integer j and 2; affine half-spaces H , ... ,7—[}" and H'f, e ’H';r
of My (respectively delimited by the affine hyperplanes Hy, ..., Hjand H'q,..., H';)
such that Q is the intersection of the ’H;r, C}’ is the intersection of the H’ j_ , and for
alli € {1,...,5}, H; is the image of H'; by a translation.

(2) With the notation of (1), for all subset J of {1,...,5}, the intersections
NicsH; N Q and N;cyH'; N Q' have the same dimension.

(3) @Q and Q' intersect exactly the same walls of the dominant chamber.

Remark that this definition does not depend on the choice of (:2 and Q’ . We now
give a classification of projective horospherical varieties in terms of polytopes.

Proposition 5. (Proposition 2.10, [Pasl5]) The correspondence between moment
polytopes and colored fans gives a bijection between the set of equivalence classes of
G/ H -polytopes and (isomorphism classes of ) projective G/ H -embeddings.

Proposition 6. (Proposition 2.11 and Remark 2.12, [Paslb|) Let Q be a G/H-
polytope. Up to multiplying Q@ by an integer, there exists a very ample Cartier
divisor D of the corresponding G/H-embedding X such that Q = Qp. More
precisely, X is isomorphic to the closure of the G-orbit G - [er(vo—i-M)ﬁQ vy] in

P(Dyewo+annoV (X))

Lemma 7. Let X be a G/H-embedding and let D be a nef divisor on X. Then
there is a horospherical subgroup H C H' C G such that Qp is the polytope of a
G/H'-embedding X' and a suitable multiple of D defines a morphism X — X'.

Proof. If D is nef, the polytope @p can be defined as in Proposition 4. The
colored fan that we can then construct is not necessarily Fy, but the colored fan
of a horospherical G-variety Y (not necessarily a G/H-embedding), where the G-
equivariant map ¢p associated to the nef divisor goes from X to Y.

Indeed, up to multiplying D or @ by an integer, the proof of [Pas15, Proposi-
tion 2.11] and [Pas15, Remark 2.12| gives the projective G-equivariant map

ép: X — PHX,D)Y)

whose image is the closure of the G-orbit G-[3_ ¢ (0.4 1r)ng Ux] It P(@yewo+angV (X))
This closure is the variety Y by applying Proposition 6 to @ = Qp. Thus Q is
a G/H'-polytope with H C H’, and Y is the G/H'-embedding corresponding to
Q. O

By the duality between colored fans and moment polytopes we easily get that
if X is a Q-factorial G/H-embedding then for every ample B-stable divisor D the
polytope Qp is simple. We can go further and give the following result, which is
a translation of Corollary 3 in terms of polytopes, by using Proposition 4 (3) and
(4). The matrix inequality Az > B comes from Proposition 4 (1).

Lemma 8. Let X be a G/H-embedding and let D be an ample B-stable divisor.
The polytope Qp can be defined by a matriz inequality Az > B, where the lines of

A are given by the z;’s and the o, ’s, and the column matriz B is given by minus
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the coefficients of D. For any vertex v of Qp, denote I,, the set of lines of A such
that A]U{ZZ = B[U,
Then X is Q-factorial if and only if Az, is surjective for any vertex v of Qp.

Similarly, we have the following result.

Lemma 9. Let X be a G/H-embedding and let D be an ample B-invariant divisor.
Let D’ be a B-invariant divisor of X and denote by B’ the column matriz is given
by minus the coefficients of D’.

Then D' is Q-Cartier if and only if for any vertez v of Qp, B’ is in the image
Of A]v .

Remark 1. The existence of G-equivariant morphisms between horospherical vari-
eties can be characterized in terms of colored fans [Kno91]| or equivalently in terms
of moment polytopes [Pasl5, section 2.4]. In this text, we will rather use Lemma
7.

3. MINIMAL MODEL PROGRAM

In this section, we recall the results in [Pas15] where the second-named author
describes a minimal model program from a horospherical variety in terms of a
one-parameter family of polytopes.

We start by recalling some standard terminology for the minimal model program
for projective varieties. We refer to [KM9S§] for the basic notions on the minimal
model program.

Let X be a projective variety with terminal singularities such that Kx is not
nef. Then by the cone and contraction theorem there is a morphism ¢: X — Y
such that p(X) = p(Y) + 1 and for every curve C' in X which is contracted to a
point by ¢ we have Kx - C' < 0. Moreover

e if dimY < dim X then ¢ is called a Mori fibre space;

o if dimY = dim X and Ezc(p) has codimension 1 in X then ¢ is said to be
divisorial;

o if dimY = dim X and Ezc(p) has codimension at least 2 in X then ¢ is said
to be small.

In the last case, by [HMO07] and [HM10], there is ¢*: X* — Y such that Exzc(p™)
has codimension at least 2 in X T and for every curve C' in X contracted by ¢t
we have K x+ - C > 0. The data of ¢ and o7 is called a flip.

In the second and third case Y is birational to X. We set X; =Y and ¢1 = ¢
in the second case and X; = X+ and ¢; = (p7)7! o in the third case. If Ky,
is not nef, then by the cone and contraction theorem there is again a morphism
X7 = Y7, An MMP, or minimal model program, is a sequence of birational maps
w;: X;—1 --+ X; obtained as above. We say that it terminates if there is an integer
k such that Kx, is nef or there is a Mori fibre space X, — 1. A proper morphism
with connected fibres is called a contraction. A birational morphism ¢: X — Y such
that p(X) = p(Y) + 1 is called an extremal contraction. We say that a morphism
¢ is K-negative (resp. K -positive) if for every curve C in X which is contracted to
a point by ¢ we have Kx - C < 0 (resp. Kx - C > 0).

3.1. HMMP scaled by an ample divisor. Let (X, D) be a polarized horo-
spherical variety: X is a G/H-embedding and D is a B-stable ample Q-divisor
of X. Write D = >"I_, b;X; + ZaeS\R boD,. An anticanonical divisor of X is
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—Kx = 22:1 X + ZaeS\R aa Dy, where a, are integers greater or equal than 2,
and given by an explicit formula [Bri97, Th. 4.2].

We consider the one-parameter family of polytopes (Qe)ezo defined by (x, z;) >
—bj+eforalli € {1,...,r} and (z,a),;) > —bs+ea, for any @ € S\ R. Equivalently,
let A be the matrix associated to the linear map p(m) = ((m, z;)i=1...r, (M, a);)acF)-
Let B be the column matrix whose coordinates are minus the coefficents of D; and
C' the column matrix whose coordinates are the coefficents of —Kx.

We define (Q)e>0 by Q° = QE + ZaeS\R by — €400,

Remark 2. For small ¢ € Q, Q6 = QDJreKX and Q° = Qpyery is the moment
polytope associated to the ample divisor D + eK x.

Theorem 10. (Corollary 3.16 and Section /, [Pasl5|) For every ample divisor
D over a Q-Gorenstein horospherical variety X, there exists €mq: > 0, and, there
exist non-negative integers k, jo, . . ., ji, rational numbers o ; fori € {0,...,k} and
j€{0,....5i} and ag j,+1 € Qs U {+o0} ordered as follows with the convention
that Q5. 4+1 = QG410 fO’I‘ any 1€ {0, ey k— 1}

(1) a0 =0;

(2) for any i € {0,...,k}, and for any j < j' in {0,...,7; + 1} we have a; ; <
(7% 1
and such that the different G/ H -embedding associated to the polytopes in the family
(Q%)ccqs, are given by the following intervals:

(1) Xi.,O when € € [O[i’o, ai,l[, with 1 € {0, ceey k},

(2) X;,; when € €|a;j,04 41, withi € {0,...,k} and j € {1,...,5:};

(3) Y;,; when e =qy; withi€{0,...,k} and je{l,...,5};

(4) T such that dimT < dim X when € = ag j,+1 = €maz-

Moreover we get dominant G-equivariant morphisms:

(1) ¢ij: Xijo1 — Y forany i €{0,...,k} and j € {1,...,5:};

(2) ¢;fj X — Y, forany i €{0,...,k} and j € {1,...,J;};

(3) ¢1 : Xi.,jf, — Xi+l,0 fOT any s {0, ey k— 1},

4) and ¢ : Xy 5, — T
For every i, j the morphism ¢; ; is K-negative, the morphism qﬁ;fj 1s K -positive and
their exceptional loci have codimension at least 2. For every i the morphism ¢; is
a K -negative divisorial contraction and ¢ is a fibration.

We can illustrate this result by the diagram in Figure 3: we draw the segment
[0, €maz] Which is partitioned by points, and open or semi-open segments, so that
each set of the partition corresponds to a horospherical G-variety.

FIGURE 3.
Xo,0 X10 X1, X0 Xegn
{() ° I [ ° { P—°O € = €max
€ =
Yo Yo, Yiin Yij Yeqo Yig T

We now give an example of the implementation of Theorem 10.
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FIGURE 4. The family (Q¢).>o for ¢ = 0, %7 1, %’ 37 )

(from right to left).

Example 1. Consider a rank-one horospherical homogeneous space with two colors
D, and Dg such that o), = 1 and B8Y;, = 2, aq = ag = 3. In particular, M =
L(wy + 2wg).

Let X be the G/H-embedding without picked color, and let D = 2X; + 5X5 +

5Dy + 5Dg, which is an ample divisor of X. Then the family (Q)e>¢ is defined by
Q°:={zx € Mgy | Az > B + eC} where

1 -2 1
-1 -5 1
A= 1 , B= 5 |- and C' = 3
2 =5 3

And the family (Q€).> is defined by Q¢ := (5 — 3¢)(wq + wp) + QF, and illustrated
in Figure 4.

For any € € [0, 1], the polytopes are associated to X = Xg .
For any € € [1, %[, the polytopes are associated to the G/H-embedding X7 o with
picked color 3. For € = %, the polytope corresponds to the (non-Q-factorial) G/H-
embedding Y] ; with the two picked colors.

For any € G}%, %[, the polytopes are associated to the G/H-embedding X ; with
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picked color a.
And for € = g, the polytope corresponds to the variety T'= G/P(wg).

We first have a divisorial contraction, followed by a flip and we finish with a
Mori fibre space.

We will refer to the series of maps of Theorem 10 as HMMP, for horospherical
minimal model program.

Remark 3. We notice that the algorithm described in Theorem 10 is not necessar-
ily an MMP, as the morphisms involved are not extremal contractions. Nevertheless,
if X is Q-factorial, it is an MMP for a general choice of D, in particular ¢ is a Mori
fibre space.

Remark 4. In Theorem 10, we can also use the family (Qe)ee@zo. By replacing
the walls of the dominant chamber by the inequalities in Ax > B + eC' coming
from an o € S\R, the study of the family and associated horospherical variety is
simpler.

4. RESOLUTIONS AND HOROSPHERICAL MMP

The main goal of this section is to prove that if X/T is a Mori fibre space and
Z — X a resolution of the singularites of X, then there is a euclidian open set in
W Div(Z)g of ample divisors A such that the HMMP from Z with scaling of A
ends with X/T.

Lemma 11. Let X and Y be G/H-embeddings. Then there is a smooth G/H-
embedding Z and Z — X XY a resolution of the indeterminacy of X --+ Y.

Proof. The existence of a smooth resolution of the indeterminacy of X --» Y is a
consequence of the same result for toric varieties. Indeed, we can first unpick colors
both for X and Y to obtain toroidal varieties. Then, we can apply De Concini-
Procesi theorem to the corresponding fans, to get a commun smooth resolution of
these two toroidal varieties (see for example [Ewa96, Page 252]). O

Lemma 12. Let X and Z be terminal and Q-factorial G/H-embeddings such that
Z is a resolution of the singularities of X.

Let En, ..., Ey be the exceptional divisors of ¢: Z — X. Then, for any non-
negative rational numbers dy, . .., dy, we have Qp = Q¢*(D)+Zf: 4 E -

Proof. Since X has terminal singularites, we have Kz = ¢*Kx + Zle a; F; with
a; > 0 for every 1.

We denote by Xi,..., X, the G-stable irreducible divisors of X. For any i €
{1,...,7}, we denote by x; the primitive element in N of the colored edge associ-
ated to X;. Then the G-stable irreducible divisors of Z are X;,..., X, E1,..., Eg.
We denote by e; the primitive element in N of the colored edge associated to E;.
Let D = Y1 b;X; + ZaeS\R boD, be an ample B-stable divisor of X. Denote

by c1,...,cx the rational numbers such that ¢*(D) = Y.;_, b;Xi + Z?Zl ciEj +
ZQGS\R boDo. Then, for any non-negative rational numbers dy, ..., dy, the poly-
tope Qp coincides with
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Qo (D)+xk, diBy =
{m € Mg | (m,x;) > —b;, (m,e;) > —c; —d;, (m,a);) > —aq for all 4,7, a}.

By [Bri&9], the divisors D and ¢*(D) are the divisors associated to the same
piecewise linear function hp defined in Theorem 2. Therefore, the coefficients d;
are the values hp(e;). In terms of polytopes, since D is ample, this means that
H;:={m e Mgy | (m,ej) = —c;} intersects Qp along a face of @p. In particular,
intersecting @) p with the halfspace {m € Mg | (m,e;) > —c; —d;} does not change
the polytope. O

Lemma 13. Let X/T be a Mori fibre space such that X is a G/H-embedding. The
set of ample B-stable Q-divisors D of X such that the HMMP from X scaled by D
gives X — T is an open cone Cy in W Div(X)g.

Proof. Let R be the extremal ray of NE(X) corresponding to the Mori fibration
X — T. Let F be the dual facet of R in Nef(X)g. By abuse of notation we denote
by F the facet F' 4+ W Divg(X)g of the inverse image of Nef(X)g in WDiv(X)g.

Then the HMMP from X scaled by D gives X — T if and only if the half
line D+ Q4 Kx intersects the boundary of Nef(X)g+ W Divg(X)g in the relative
interior F of F. Equivalently, D is in C := F— Q+Kx = Q+(F — Kx).

Note that —Kx - C' > 0 for any [C] € R, so that —Kx is not in F and then C}
is of maximal dimension. This implies that D’ — eKx is ample for any D’ € F and
e > 0 small enough and then C intersects Amp(X)g + W Divg(X)g non trivially.

Finally, the set C; = C{ N Amp(X)g+ W Divy(X)g is the sought open cone. [

Proposition 14. Let X/T be a Mori fibre space such that X is a G/H-embedding.
Let Z — X be a resolution of singularities in the category of G/H -embeddings.
Then there is an euclidian open neighborhood Ux of W Div(Z)q such that every
divisor in Ux is ample and for every A € Ux the Mori fibre space X/T is the
outcome of the HMMP from Z with scaling of A.

Proof. Let Cy be the open cone in WDiv(X)g of Lemma 13. Let D € Cy. Let n
be small enough such that D — nKx ample.
We have WDiv(Z)g = ¢*(WDiv(X)g) ® Vect(En,. .., Ey), and ¢*(Nef(X)) is

a face of Nef(Z) = Amp(Z). Set

k
A= ¢*(D —nKx) + Z b.E;.
i=1
There exists an open polyhedron Polp of Q* containing 0 in its boundary, such
that for any (b1,...,bx) € Polp the divisor A is ample and d; := b; + na; > 0 for
all j € {1,...,k}.

Since A+ nKyz = ¢*(D) + Zle d,E;, we have Qa+yk, = @p by Lemma 12.
This, together with Lemma 13, proves that the HMMP scaled by A ends with the
Mori fibre space X/T'. Indeed, the inequalities coming from the exceptional divisors
E; are necessary to define the polytope Q4 but not the polytope Q a1yx, and the
polytopes Qaytex, with e > n.

Choose Ux to be the set of divisors A = ¢*(D—nKx) +Zf:1 b;E;, with D € C4,
n > 0 such that D — nKx is ample and (b1,...,b;) € Polp,. Remark that by
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construction, since Amp(X) and Amp(Z) are polyhedral, the condition D — nKx
ample is given by an inequality depending linearly on the coefficents of D, and the
polyhedron Polp is given by inequalities depending linearly on the coefficents of D
and §. In particular, Ux is also an open polyhedron.

|

5. TWO-PARAMETERS FAMILIES OF POLYTOPES

In this section, we study some two-parameters families of polytopes. We present
in this section many auxiliary results whose proofs, mainly relying on linear algebra
tools, are in the Appendix.

5.1. A two-parameters family of polytopes: definitions and first proper-
ties. Let n and p be two positive integers. Denote by I the set {1,...,p}. Then
two matrices A € My, (Q) and d € M,«1(Q) define a polyhedron

P:={zxecQ" | Az > d}.

Remark 5. Suppose that P is non-empty. Then P is a polytope, that is a bounded
polyhedron, if and only if the following condition is satisfied.

Condition 1. There is no non-zero x € Q" satisfying Ax > 0.

Indeed, assume that there is a non-zero z € Q™ satisfying Ax > 0. Let y € P.
Then for every ¢t € Q>¢ we get A(y + tx) = Az + tAy > d, thus y + tz belongs to
P. Conversely, if P is not bounded, P contains at least an affine half-line, and x
can be taken to be a generator of the direction of this half-line.

Note that Condition 1 implies that A is injective.

To define a two-parameters family of polytopes, we fix A satisfying Condition 1
and we define divisors depending on two rational parameters J and e.
Let B, B’ and C in M,x1(Q). Set Iy :={1,...,p} and define

D: Q — Qr
(6,e) — (1—-06)B+d6B +¢C.
Note that D is an affine map.

Definition 4. Given A, B, B’ and C as above, we define for any (,¢) € Q:
P :={zcQ" | Az > D(5,€)}.

We do not exclude the case where some lines of A are zero. Notice that P%¢ can
be empty, even for all (§,¢) € Q2.

Condition 1 implies that for any (8, ¢) € Q2, the set P%€ is a polytope (possibly
empty).

Now, we want to describe some equivalence classes of polytopes in this family,
looking at their faces that correspond to lines of A. A face F®¢ of P%€ is given
by some equalities in Az > D(d,¢) and then is associated to some I C I,. We
formalize this below.

For any matrix M and any i € Iy, we denote by M, the matrix consisting of the
line ¢ of M. More generally, for any subset I of Iy we denote by M; the matrix
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consisting of the lines ¢ € I of M. For any subset I of Iy, we can identify D; with
the affine map

DI : Q2 — Qll‘
(0,¢) — (1—0)Br+dB;+eCy.
Let (6,¢) € Q2. Denote by H> the hyperplane {z € Q" | A;z = D;(d,€)}. For
any I C Iy, denote by F}S’e the face of P%¢ defined by
F}S’e = (ﬂ ’er) N Poe.
iel
Note that for any face F %e of P%¢ there exists a unique maximal I C Iy such that
Foe = Ff’e (we include the empty face and Poe itself).

Definition 5. Let I C Ij. Define Q; to be the set of (5, €) € Q? such that FI‘S’6 is not

empty. Define w; to be the subset of Q such that, if I’ C I satisfies F};’E = F};}E,
then I’ C I.

In other words,
Q; = {(0,€)| there is x € Q" such that Ajz = D;(d,¢) and Az > D(d,¢€)}
and
wr = {(0,€)| there is x € Q" such that Ajz = Dy(d,€) and Ajex > Dye(d,€)}

where I¢ denotes the complement of I in Ij.
To simplify the notation, we often write ¢ instead of {i}, for any i € Ij.

Remark 6. If (6,¢) € wy, then the polytope P%€ is of dimension n (i.e. has a
non-empty interior). And, for any ¢ € Iy, if (d,¢) € w; and A; # 0, then Fi‘s’E is a
facet of P%.

The following lemma describes the first properties of the sets ; and wy. It
follows from Lemmas 32 and 33.

Proposition 15. Let I C I.

(1) The sets Qr and w; are convex subsets of Q2.

(2) The set wr is open, for the euclidean topology, inside {(d,€)| Dr(d,€) €
ImA;} = Dy ' Im Ay

(3) There are four cases: either wy is empty, or it is a point, or it is a convex
part of an affine line (a segment, a half-line or a line), or it is a non-empty open
set in Q2.

(4) If wr is not empty, we have wy C Qy = wy.

The next result will be useful in the next sections. It follows from Lemma 35.

Lemma 16. Let I C Iy be such that wr = {(do,€0)}. Suppose that the image
of Ay is of codimension 2. There is i € I such that the image of Ap (i is of
codimension 1. For any such i, the point (o, €0) belongs to Qp riy \wr\ (i} -

If B and B’ are general, then the sets w; and Q; intersect "nicely", as proved in
the next proposition.
We denote by Aff(S) the affine space generated by a set S.
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Proposition 17. There is an open Zariski subset V' of the ample cone such that for
every (B, B’) € V XV the subsets Q; and wy of Definition 5.2 satisfy the following.

(1) If wy # 0, the dimension of wy equals 2 — codimIm A; (which is then at
least 0).

(2) There is a finite union of convex parts of affine lines

L=00u |J 9c@?
ICIp dim Q<1

such that if (6,€) € L then P%¢ is an n-dimensional simple polytope or it is empty.

(3) Forany I,J C Iy such that dimw; = dimw; = 1,we have Aff(w;) = Aff(wy)
if and only if winy is a non-empty open convex part of an affine line. Moreover in
this case, we have winy 2 Wy Uwy.

(4) For any I,J C Iy such that dimw; = dimw; = 0, we have w; = wy if and
only if wrng is a singleton, equal to w; = wy.

(5) For any I,J C Iy such that dimwy; = 0 and dimwy = 1, Aff(wy) contains
wr if and only if winy is a non-empty open convex part of Aff(wy).

The proof of Proposition 17 is given in Section A.2.

Lemma 18. Let B, B’ be as in Proposition 17. Let I C Iy, such that wy # (.
There exists J C I as above and such that dimw; = dimwy and J is minimal with
the property.

Proof. Follows from Lemma 34(3). O

Remark 7. Let I C I; be such that Im Ay and Im A, have codimension 1 and are
defined by the same equation ), ; \;X; = 0. Assume moreover that I = {i| \; #
0}. Then for every j € I the morphism induced by Aj,\¢;} is surjective.

Notation 1. Let B, B’ be as in Proposition 17.

(1) Let I C Iy be such that wy is one-dimensional. By Lemma 18 without loss
of generality we can assume that for any i € I, Ap\ ;) is surjective. Then there are
rational numbers A/ with i € I such that Y, ., A\fA; = 0. We notice that X! # 0
for every ¢ € I. Indeed, if there is j such that )\j[ = 0, then Ziel\{j} MX; is a
nontrivial equation for the lines of Ay ;3. We can assume that )
or one. We fix such numbers.

(2) Let L C I be such that wy, is a singleton. By Lemma 18 we can assume
that L is minimal with the property. As above, we get two independent relations
Y ver MeXe=0and Y, ; e X, = 0 on the lines of Ar,. Weset I = {¢ € L| A # 0}
and J = {¢ € L| p¢ # 0}. We can choose the relations such that I and J are proper
in L. Then, as the image of Ap\ ) has codimension 1 for every £ € L, the images
of Ar and A have codimension 1 and we have TU J = L.

er MCj is zero

5.2. Polyhedral decomposition and the geography of models. Let G be
a reductive group and H C G be a horospherical subgroup. We choose a basis
of Mg so that Mg = Q™. We fix a horospherical embedding Z of G/H and set
p = r + |S\R|. Recall that, by the notation given in Section 2, r is the number of
G-stable prime divisor of Z and |S\R| is the number of B-stable prime divisor of
G/H. In particular, p is the number of B-stable prime divisor of Z. Let A be the
p X n matrix associated to the linear map p(m) = ((m,zs)i=1..r, (M, Q})acs\R)-
Denote by Jy C Ij the set of indices S\R.
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Let B = (—di,...,—dr,(—da)aes\r) and B’ = (=d},...,—d,, (—=d,)aes\r) be
such that D = 30 diZi + Ypeg\pdaDa and D' = X0 diZi + Y e 5 doDa
are ample divisors on two varieties X and Y respectively, in the sense that Qp and
Q pr are pseudo-moment polytopes for X and Y respectively. Notice that it may
occur that some D;’s are not divisors of X or Y as we observe in Lemma 13. Let
C = (c1,...,¢r,(Ca)acs\r) be such that ¢; > 0 for every i and ¢, > 0 for every a.
Since X is projective, Qp = {z € Mg | Az > B} is a polytope and then Condi-
tion 1 is verified by A.

From now on, following remark 4, if a polytope @ is defined by {x € Mgy |

Ax > D}, with D = (—dy, ..., —d;,(—da)aes\r), we will say that it is the pseudo-
moment polytope associated to the moment polytope v°4+Q with v° = EQGS\R da@q,
or similarly the pseudo-moment polytope of the associated G/H-embedding as soon
as v° + @Q is a G/H-polytope (Definition 2.3).
Remark 8. Let (6, ¢) € wy, then P%€ is of maximal dimension in Mg and contains
no hyperplane defined as H%° := {Ajz = Di’ﬁ} with j € Jy associated to the simple
root a. In particular, if v¥¢ = 3 Jedo D?’Ewa, we can check that the polytope
v%€ + P%€ is a G/ H-polytope.

Consider now the case where (0,¢) € Qg\wp. Let Mg be the linear subspace
generated by P%¢ and M’ the sublattice Mg N M of M, let R be the union of R
with the set of simple roots a € S\R such that P> C H%¢, and define P’ to be
the parabolic subgroup containing B whose simple roots are R’; and H’ to be the
kernel of characters of M’ C X(P’). Then, we can also check that the polytope
v%€ + P%€ is a G/ H'-polytope.

We suppose that B and B’ belong to the open set V existing by Proposition 17.

Then we define the following locally closed subsets of Qy. Recall that by Aff(S)
we denote the affine space generated by a set S.

Definition 6. We set

Us = {(d,¢) € Q| (d,¢) € wy = dimw; = 2}

U= {(d,¢) € Q| (6,¢€) € Us, (6,¢) EwrNuwy = dimAfw; NATwy; > 1}
Uo= {(66) € Q| 37, {(5,6)} = o)

Uj= Qp\ (U2UU; UUy).

Note that Uy, U} are finite sets as B and B’ are as in Proposition 17. By con-
struction, 2y is the disjoint union of these four sets.

Moreover, we have Uy C wy. Indeed, by Proposition 15, Qy = @y, therefore
Qp\wp is a union of zero or one-dimensional w;’s. We also have Uj C wy, be-
cause points of U} are intersections of non-colinear one-dimensional w;’s by Propo-
sition 17. However, note that points of U; and Uy can be either in wy or in Qg\wy.

We can now give the following notation, using Remark 8 and Proposition 5.

Notation 2. Let (6, €) be such that P%€ is not empty.

(1) If (6,¢€) € Uy, the polytope P%€ is the pseudo-moment polytope of a G/H-
embedding which we denote by X%¢.

(2) If (6,€) € Uy, there is H' D H such that P> is the pseudo-moment polytope
of a G/H'-embedding which we denote by Y.

(3) If (8,¢€) € Uy, there is H' O H such that P%€ is the pseudo-moment polytope
of a G/ H'-embedding which we denote by Z%¢.
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Remark 9. By Proposition 17(2), the generality assumption on B and B’ and
Lemma 8 for every (6,¢) € U, the variety X%¢ is Q-factorial. In particular, by
Corollary 3, its Picard number is

(1) p(XP) = 13U Jo| = n

where [f)e ={i € Ip\Jo | (4,€) € w;}. Since (d,¢) € Uy, we can replace If’e by
I5°={i € I\Jo | (6,€) € Q;} in the formula.

Let (8o, €0) € Us. Let £: Q — Q? be the parametrisation of a rational affine line
such that £(0) = (Jo, €9). Let ¢ > 0 be the minimum such that £(f) € Qg \ Us. There
is a G-equivariant morphism from X% to the variety corresponding to P!®).
Indeed, for every t € [0,%), the polytope P“®") is the pseudo-moment polytope of a
polarized variety (X¢® D*®)) and all the P‘® for ¢ € [0,%) are equivalent. Thus
the corresponding varieties are isomorphic to X%, The divisor D(¢(f)) is nef,
but not ample, on X% Hence, by Lemma 7 there is a G equivariant morphism
from X%:€ to the variety corresponding to P,

5.2.1. If {(t) € U;. We assume in this paragraph that £(f) = (1,€1) € Uy. The
main result of this paragraph is Proposition 23, which describes the different sorts
of G-equivariant morphisms we can get from X% to Y€1, We start with some
preparatory lemmas.

Lemma 19. Let (6,¢) € Uy. Let I be such that (§,¢) € wy and dimw; = 1.
Assume moreover that I is minimal with the property. Let {\I} be the coefficients
defined in Notation/Construction 1. Denote by I, = {i € T | A > 0} and
I_:={iel| X <0}. Notethat I =1, 1.

Then (0,€) € wy if and only if both I, and I_ are not empty.

Proof. Follows from Lemma 46 in the Appendix. O

Lemma 20. Let (6,¢) € Uy Nwy. Let I be such that (0,€) € wr and dimwr = 1.
Assume moreover that I is minimal with the property. Let i € Ig\Jy. Then (d,€) €
Q\w; if and only if I+ or I_ equals {i}.

In particular, there is at most one i € Io\Jo, such that (d,€) is in ;\w;.

Proof. Follows from Lemma 47 in the Appendix. g

Lemma 21. Let (d,¢) € Uy NQp\wy. Let I be such that (,¢€) € wy and dimwy = 1.
Assume moreover that I is minimal with the property. Let i € Ig\I. Then either

(57 6) ¢ QILJ{i} or (67 6) € Wru{i}-
Proof. Follows from Lemma 48 in the Appendix. U

Corollary 22. Let (d,¢) € U;.

(1) Assume that (0,€) € wy. If there is i € Io\Jo such that Iy or I_ equals
{i}, then the G-stable prime divisors of Y€ are in bijection with If’e = Ig’é\{i},
Otherwise the G-stable prime divisors of Y %< are in bijection with If’e = Ig’e.

(2) Assume that (0,¢) € Qp\wg. Then the G-stable prime divisors of Y€ are in
bijection with

(i€ I\I | (5,€) €wrupn} = {i € I\I | (3,€) € Qugn} = I0\IY N I).
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Proof. The set of B-stable prime divisors of Y%¢ is the union of G-stable divisors
and colors of the horospherical homogeneous space. The G-stable prime divisors
correspond bijectively to the facets Fi‘s’E with ¢ € Iy\Jp that are not equal to some
FY with j € Jo.

Assume that (6,¢) € wy. Thus Y€ is a G/H-embedding, colors are indexed
by S\I or equivalently by Jy. If there are ¢ and j € Iy with ¢ # j and such that
Ffl’el = Ffl’el is a facet, then A; and A; are colinear, one of ¢ or j is in Jy, and
I =1i,j. Lemma 20 implies the claim.

Assume that (6,¢) € Qp\wp. Then Y€ is a G/H’-embedding with H' C H as
explained in Remark 8. In the proof of Lemma 46, we prove that P%¢ generates the
affine subspace {z € Mgy | Az = Dy(d,¢€)}, so that M’ = ker(A;) N M. Moreover,
the colors of G/H' are indexed by Jo\(Jo N1I). If for some 4, j € Iy, F{** = F)“ is a
facet, then 4,5 € I, A; and A; are colinear modulo the vector space Néf generated
by the lines of A;. If ¢ £ j, it would give another relation to the one given by I and
then (d,¢€) is in a zero dimensional wy with K D I U {3, j}, that is a contradiction
with (d,€) € Uy. Then ¢ = j. Note also that for any i € Ip\I, Ff’e = FI‘SS{Z.}, and if
it is not empty then A; & N(éf. Indeed, if A; € N& , we have another relation to the
one given by I.

Hence Lemma 21 implies the claim. U

Proposition 23. Let (§g,¢0) € Us. Let £: Q — Q2 be the parametrisation of a
rational affine line such that €(0) = (8o, €0). Let t > 0 be the minimum such that
£(t) € Qg \ Us. Assume that £(t) = (61,€1) € Uy.

Set I minimal such that (61,€1) € wy.

The morphism from X% to Y011 js an extremal contraction and one of the
following occurs.

(1) If I = Iy or I_ then dim Y% < dim X% Yov€ s Q-factorial and
p(X) =p(Y)+1.

(2) If |I| > 2 and I; or I_ is {i} with i € I\ Jy then Y11 is Q-factorial and
X00:€0 5 YOuer s an extremal divisorial contraction or an isomorphism.

(3) In the other cases X% — YOu€1 js q small extremal contraction.

Proof. Assume that [ = I, or I_. By Lemma 19, we have (d1,¢€1) € £y \ wy and by
Remark 8 we have dim Y11 < dim X%,

By Lemma 21, the B-stable prime divisors of Y21 are in bijection with (1251’61 L
Jo)\I. Let Fﬁ““ be a face of P91, choose .J such that (41, €;) € wy. Then Im(A;)
and Im(A ) have both codimension 2 in Q! and Q! respectively. We can see Q!
and Q"I as supplementary subsapces of Q/I, so that Im(A;) C Im(A;) @ QI/\I.
Since both subspaces are two-codimensional subspaces of Q’!, they are equal. We
then deduce that the restriction of A y\; to ker(Ay) is surjective. This implies, with
Lemma 8 applied to the matrix of lines of Ay \; restricted to ker(Ay), that yone
is Q-factorial. Now, the dimension of ker(Aj) is n — |I| + 1 and by Corollary 3, the
Picard number of Y911 is |(I3V U Jo)\I| — (n — [I| + 1) = [I5" U Jo| —n — 1.
But, since the €;’s are closed, 13“1 = 130760, so that the relative Picard number of
XO0€0o —5 oL g 1,

Assume that I or I_ is {i} with i € Iy\Jy and |I| > 2. By Lemma 19 we have
(61,€1) € wy. By Remark 8 we have dim Y€t = dim X%,
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By Corollary 22, the B-stable prime divisors of Y11 are in bijection with
(I3 \{i}) U Jo = (I5\{i}) U Jo. For the sake of shortness we denote by K\ {i}
the set K N (I \ {i}).

Let F};l’“ be a face of P21, choose J such that (01, €1) € wy.

Suppose that A is not surjective, then w; is of dimension 1 ( because (d1,¢€1) €
Uy). Then (61,€1) € Uy Nwr Nwy implies that wy and w; are in the same affine
line. We conclude by Proposition 17 (3) and the minimality of I that I C J. Then
by Remark 7, for any i € I, A\ () is surjective. This implies, with Lemma 8, that
Youe is Q-factorial. Then its Picard number is |(I§°’€°\{z’}) U Jo| — n. This is the
Picard number of X% minus one if i € Igo’eo and the Picard number of X% if
not. In that latter case, since P®¢! can be defined as well without the line i, it is
an equivalent G /H-polytope to P%-< and then X% = Y€1,

In the other cases, again by Lemma 19 and Remark 8 we have dim Y% =
dim X %00,

Corollary 22 implies that the B-stable prime divisors of Y911 are the same as
the ones of X%:< they are therefore in bijection with Igo’eo U Jo.

Let Fgl’el be a face of Pt choose J such that (§;,¢;) € wy. If Ay is not
surjective, then wjy is one-dimensional and I C J. Then a B-stable Q-divisor of

Youet is Q-Cartier if and only if its coefficients satisfy the equation Y ier M X;.
Also note that for I = J, Ay is not surjective.
Then the relative Picard number of X% — Yo1€1 ig 1, ([

Remark 10. If IT = T or I~ = I, for every i € I the polytope P%€ is contained in
'Hf’e ={zeQ" | Az = Df’e}. There are two possible cases for I. Either I = {i}
and A; = 0, so that P>¢ has dimension n, the associated horospherical variety X
has the same rank as G/H, the same lattice M but its open homogeneous space
has one color less (a;); or A; # 0 for any 4 € I (and |I| > 2), so that P%€ is of
maximal dimension an affine subspace directed by ker(Aj), then it has dimension
n — |I| + 1, and the associated horospherical variety X has rank n — |I]| 4+ 1, its
lattice is M Nker A; and the colors of its open homogeneous space are the colors
of G/H whose index of line in not in I.

If It = {i} or I~ = {i}, then the condition A;x > D;(d,¢) is superfluous in the
definition of P%.

5.2.2. If {(t) € Uy. We assume in this paragraph that £(f) = (d2,€2) € Uy. We
want to study the morphisms from X% to 7%,

Let L be such that {(d2,€2)} = wy. By Lemma 16, there is I such that w; has
dimension one and (dz,€2) € Q7. Then all but a finite set of points of w; are in
wr NU;. Choose (d1,€1) € wy NU; close to (02, €3).

By Lemma 7 there are G-equivariant morphisms from X% to Y01:€1 and Z%:€2,
and from Y% to Z%: . Moreover the morphism from X% to Z%2:€2 factorizes
through Y€1,

We suppose from now on that {(d2,€2)} = wr, C Qp\wp.

Notation 3. Let L be such that wy, = {(0,6)} C Qp\wp and € > 0. Then, by
Propostion 17, the image of Ay has codimension two. By Lemma 18, we can
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suppose up to taking a subset of L that for every ¢ € L the image of A\ has
codimension 1 in QI%I.

We have two possible cases.

(1) If wy, is a vertex of Qy\wy, by Notation/Construction 1(2) there exist I and
J subsets of L such that, for any ¢ € I and any j € J, Ap ;) and Ay g, are
surjective, wr, wy have dimension 1 and are contained in g\wy. By Lemma 19 we
can fix two linearly independent equations for the lines of Ay,

(Rr) YierMX, =0, M>o0Viel
(Ry) Yes M X;=0, X >0vVjeJ

We suppose that wy C {§ < §} and that wy C {6 > §}.
We can moreover assume that Y, ; A/C; = 1 and djed A Cj=1.

(2) If wg, is not a vertex of Qp\wy, then there is I C L such that, for any i € I
the matrix Ap ;) is surjective, and wy is a segment of Qy\wy containing wr. By
Lemma 19, we can fix two linearly independent equations for the lines of Ap,

(Rr) Y MXi=0, XM >o0viel
(Re) YepAjX;=0, )\L#OVjeL\I

We verify that )\f # 0 Vj € L\ I. Indeed if the second equation has one
zero coefficient AJL for some j € L\I, then Ap\(;; would also have an image of
codimension 2, contradicting the minimality of L. Moreover, the coefficients with
indexes in L\ in the relation (Ry) do not have all the same sign.

Indeed, if not, we can suppose that that they are positive, and by adding to (R )
a positive multiple of (R1), we would obtain a second equation, linearly independent
with (R), with positive coefficients, associated to some J C I. By Lemma 19 the
set wy; would be contained in Qg \ wp, contradicting the hypothesis on wy,, as it
would be the vertex between the segments wy and w .

With the same argument we can also suppose that )\f > 0 for any j € I but
some are zero.

We set (L\ )y ={j € L\IT|X>0}and (L\ 1) ={jeL\I|\ <0}

We can moreover assume that >, ., AM/C; = 1 and either Y., AF C’ =1, or

JEL 7y

> jer MGy =0and djer A (Bj — Bj) > 0. Indeed if djer MGy < 0 we take the
opposite and add a positive multiple of the first equation and we obtaln the wanted
equation with > 7. A; AECj > 0. And if djer ACj =0 and djer A (B) —b;) > 0,
we take the opposrce and add a positive multiple of the first equation and we obtain

Zie[ )\ZICZ > 0.

Lemma 24. Let (0,¢) € UgNQy\wy and assume that (6, ¢€) is a vertex. Let L C Iy be
a minimal subset such that wy, = {(d,€)}. Leti € Io\L. Then either (0,€) & Qg
or (6,€) € wrugsy-

Proof. Follows from Lemma 49 in the Appendix. (]

Lemma 25. Let (6,€) € UgNQp\wy and assume that (0, €) is not a vertex of Qp\wp.
Let L C Iy be a minimal subset such that wy, = {(d,€)}. Let I be a minimal subset
such that wy, C wr and dimwy; = 1. Let i € Iop\I. If (0,€) € Qrugiy\wrugay then
i € L\I and either L\ I, = {i} or L\ I_ = {i}. In particular, there are at
most 2 indices i such that (6,€) € Qrupy\wrugiy- If there are 2 such indices, then
|L| = |I| 4 2 and the restriction of Ar\r to ker(Ay) consists of twice the same line
if L\I C I\ Jo.
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Proof. Follows from Lemma 50 in the Appendix. O

Corollary 26. Let (§,¢) € Uy NIQy. Let L be minimal such that wy, = {(d,€)}.

(1) If wr is a vertex, the set of G-stable prime divisors of Z%¢ is in bijection
with I3\(I3° N L);

(2) if wr is not a vertex and there is i € Iy \ Jo such that either L\I, or L\I_
is {i}, the set of G-stable prime divisors of Z%€ is in bijection with I3\ {i};

(3) otherwise, the set of G-stable prime divisors of Z%¢ is in bijection with Ig’e.

Proof. By Remark 8, the variety Z%¢ is a G//H’-embedding with H' C H. We let
M’ be the lattice of characters vanishing on H and N’ its dual. Note that Ng, is

the quotient No/Ng where N is the subspace generated by the lines of Az.

The G-stable prime divisors of Z%¢ correspond bijectively to the facets Ff’e with
i € I\ Jo that are not equal to some Ff’s with j € Jp.

Assume that wy, is a vertex. The polytope P%€ generates the affine subspace
{r € Mg | Az = Dy (6,¢€)}, so that M’ = ker(Ar) N M. Moreover, the colors
of G/H' are indexed by Jo\(Jo N L). If for some 4,5 € Iy, Ff’ﬁ = Fj’e is a facet,
then, 4,5 ¢ L, A; and A; are colinear modulo N@f. If 7 # j we would have another
relation other than the two given by L. Thus we have i = j.

Note also that for any ¢ € Iy\L, we have Ff’e = ng{i}.
empty and if A; € Néf we would have another relation other than the two given by
L so that A; ¢ Nj. Hence by Lemma 24 the G-stable prime divisors of the variety

Z%¢ are in bijection with

{i € I\\L | (8,€) €wrugy} =i € I\L | (6,€) € Qigiy} = I \(I5 N L).

If the latter is non

Assume that wy, is not a vertex. The polytope P%¢ generates the affine subspace
{z € My | Az = Dy(d,€)}, so that M’ = ker(Ay) N M. Moreover, the colors of
G/H' are indexed by Jo\(Jo N I). If for some i # j € I, Ff’e = Ff’s is a facet,
then A; and A; are colinear modulo the vector space N@ generated by the lines of
Ay, and then L = T U {4, j}. Hence, by Lemma 25, the G-stable prime divisors of

the variety Z%¢ are in bijection with

{i € I\ | (8,6) € wiogy} = 1\ {i}
if L\I1 or L\I_ is {i} with i € Iy\Jo, and else with

{ie I\ | (8,€) €wrugy} = 1o
0

Proposition 27. Let (§o,¢0) € Us. Let £: Q — Q2 be the parametrisation of a
rational affine line such that £(0) = (0, €0). Let t > 0 be the minimum such that
0(t) € Qp \ Ua. Assume that £(t) = (02, €2) € Up N Qp\wy.

Let L be a minimal set such that {(62,€2)} = wr. The morphism from X% to
7922 has relative Picard number at most 2.

Proof. Suppose first that wy, is a vertex.

By Corollary 26, the B-stable prime divisors of Z%2:2 are in bijection with
(I3 UJo)\L. Let Fjg’ez be a face of P%2¢2 choose J such that (2, €2) € wy. Then
L C J and wy = wr, so that the restriction of Ay to ker(Ayr) is surjective. This
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implies, by Lemma 8 applied to the matrix of lines of A\, restricted to ker(Ayz),
that Z%2° is Q-factorial. Then its Picard number is

(I WI\L| = (n = |L| +2) = | I U Jo| —n — 2.

Since I3 D I3, the relative Picard number of X% —; 702 is at most 2.

Suppose now that wy is not a vertex. By Corollary 26, the B-stable prime
divisors of Z%2:¢2 are in bijection with a subset of (1’32’62 U Jo)\I of cocardinality
at most 1. Let F§2’€2 be a face of P%2, choose J such that (2, €3) € wy. Then
I C J. Assume that w; is one-dimensional. Then the restriction of A y\; to ker(Apr)
is surjective.

Assume that w; has dimension zero. Then w; = wr, so that the restriction of

Az to ker(Ar) implies the same equation for every such J.

If the cocardinality of a subset of (132’62 U Jo)\[ is one, then this equation does
not occur for B-stable divisors and then Z%2¢ is Q-factorial. In any case,the Pi-
card number of Z%< is |(I322 U Jo\I| — (n — [I| + 1) = 1 = |12 U Jo| — n — 2.
But 132’62 is either Igo’eo or the union of 130’60 with ¢ as in Lemma 25, so that the
relative Picard number of X% — Z%2:¢ i5 1 or 2.

O

Remark 11. If wy, = {(d2,€2)} is a vertex and the relative Picard number of
X% — 702:€ js not 2, then there exists i € 15\, In particular, wy, is a
vertex of €; that does not contain (dp, €p). Hence, there exists K C I, such that
wg C wy is one dimensional with one extremity equals to wr,.

If wy, is not a vertex, such wg exists by definition.

5.3. Mori polygonal chain. We start with the following definition.
Definition 7. The Mori polygonal chain of the family P%€ is

MPC = (Qp\wp) N {(5,¢) € Q%] 0< <1}

Throughout this section we suppose that (0,0) and (1,0) are in wy, that for every
i € Ip\Jp there exist negative €y and €; such that (0,¢y) and (1,€;) are in w; and
that C' > 0. Then {(d,¢) € Q?| ¢ <0 and 0 < < 1} is a contained in wp.

Note that, with the above hypothesis, the Mori polygonal chain is contained
in the half plane defined by € > 0. It is polygonal because Qp\wp is a union of
one-dimensional €.

We say that w; is a segment of the Mori polygonal chain if dimw; = 1 and the
intersection of wy with M PC' is not empty. If (6,¢) € M PC, then either P%€ is not
of maximal dimension or there exists 7 such that A; = 0 and D;(4,¢) = 0.

By Lemma 19, if wy is a segment of MPC such that Ap (5} is surjective for every
j € I, then there is an equation }_._; A X; = 0 for the lines of A; such that Al >0
for every i € I.

Definition 8. Let K C Iy be such that dimwg = 1 and the codimension of the
image Ak is 1. Let >, MY X, = 0 be an equation for the lines of Ax. The slope
of wg is

icl

1€EK M1

Siex M (Bi=Bi) .
slg = =S oore i Diex AECi # 0,
00 if Y, AEC =0.
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Remark 12. The segment wg is included in the line defined by

€ <Z Af@) +9 (Z M\E(B] —Bi)> +> MBi=0

icK icK icK
and sl is the slope of this line.

The next result is the key technical step for the proof of the main theorem. It
describes the configuration of sets w; around a vertex of the Mori polygonal chain.
We show in the main theorem that these configurations correspond to Sarkisov link.

Proposition 28. Let (d2,¢2) € Uy N MPC and let L be minimal such that wy, =
{(62,€2)}. We refer to the notation of Construction 3. Then there is a partition
L=KU..  .UK"™7%, withr >0, such that

I
(1) for every s € {0,...,r + 1}, for every h,k € K* we have —% Y,
Vs € [—00,0]; for every s < s’ € {0,...,r 4+ 1}, we have vs > vy . " ;
(2) The set Kg = L\ K* is such that the codimension of the image of Ak, is
1 and for every k € K, the map Ak \(y is surjective. If K C L is such that
the codimension of the image of Ak is 1 and for every k € K the map A\ (1)
is surjective, then K = K for some s € {0,...,r + 1}. Moreover, if (d2,€2) is a
vertex then Ko = I and K,.1 = J and if it is not then Ko = I and K° = L\I.
Note that, by Lemma 16, wi, is not empty and with an extremity equals to wr,.
(3) The slope of wi, is

Zie[ )‘{(le' — Bi) +vs ZjeJ )‘3](3;' - Bj)
1+ dug

SZKS =

with d =1 if (82, €2) is a vertex and d =3, | AJLCj otherwise.

(4) Up to a rotation, the slopes decrease when s increases (see picture below).

WK,

6. TWO EXAMPLES

In this section we present two examples illustrating the horosperical Sarkisov
program.

6.1. A toric example. Set X := P! x P!, § = P!, Y the projective bundle
P(O @ O(2)) and T =P!. Fans of X and Y are the following:
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]FX IF‘Y

0 0 \

Here G = (C*)? and coincides with the Borel subgroup.
A resolution of X and Y is the toric variety Z given by the following fan, where
we index the edges as in the picture:

2
Fz
3 1
0
6
4 5

Welet p: Z — X and q: Z — Y be the two morphisms resolving the indetermi-
nacy of X --» Y.

1 0

0 1

. . . . -1 0

We will consider the following matrix A := 0 1
1 -1

2 -1

A G-stable divisor of Z is of the form D = Z?:1 d;D;. Note that Dy, Dy, D3
and Dy are also prime G-stable divisor of X and Dy, Ds, D3 and Dg are also prime
G-stable divisor of Y.

Let D = Z?Zl d;D; be a divisor on Z and B = (—dy,...,—dg). The divisor D is
ample if and only if for any I C {{1,2},{2,3},{3,4},{4,5},{5,6},{1,6}} we have
Are(A7'Br) > By.

This inequality system reduces to the following system, thus defining the ample

cone of Z:

(2) dy +ds > dg, do +dg > 2dy, ds +ds > dy, dg+ dg > 2ds.

The polytope @p is the pseudo-moment polytope of (X, p, D) if and only if for
every I C {{1,2},{2,3},{3,4},{1,4}} we have AIC(Al_lBI) > Bj. Equivalently, if
and only if the following inequalities are satisfied

(3) di+d3s >0, do+dy >0, ds >dy +dy, dg > 2d1 + dy.

Note that the first two inequalities correspond to the condition for p, D to be ample
and the last two other correspond to the fact that the lines 5 and 6 are not necessary
to define Qp.
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Similarly, @ p is the pseudo-moment polytope of (Y, ¢. D) if and only if for every
IC {{1,2},{2,3},{3,6},{1,6}} we have A;-(A;'B;) > B;. Equivalently, if and
only if the following inequalities are satisfied

(4) di +ds >0, dy+dg > 2dy, dy > 2d3 + dg, ds > d3 + dg.

Note that the first two inequalities correspond to the condition for ¢,D to be ample
and the last two other correspond to the fact that the lines 4 and 5 are not necessary
to define Qp.

To run the horospherical Sarkisov program, we have to choose D, D’ such that

(1) @p and Qp: are pseudo-moment polytopes of (X, p.D) and (Y, q.D’) re-
spectively;

(2) there exist € < 0 and € < 0 such that D + eKz and D’ + €Kz are ample
over Z.

(3) the HMMP with scaling of D (resp. D’) ends with X/S (resp. Y/T).

Condition (1) is given by (3) and (4).

For condition (2), note that —Kz = 2?21 D; and thus C = (1,...,1). Then
D + €Kz is ample over Z if and only if

di+ds >dg+e, do+dg>2dy, dz+ds>ds+e and dg+ dg > 2ds.

Hence, there exists € < 0 such that D + eKy is ample over Z if and only if
do +dg > 2dy and dy + dg > 2ds. Similarly, there exists € < 0 such that D' + ¢ Kz
is ample over Z if and only if d, + dg > 2d; and d) + d > 2d5.

As for condition (3), note first that the HMMP from any ample divisor of Y ends
with Y — S, because only one extremal ray of NE(Y) is K-negative. If dy + d3 <
do + dy (resp. dy +ds > do + dg) the HMMP from D gives the first (resp. the
second) projection Pt x P! — P?

Since D and D’ are given up to linearly equivalence, we can choose them such
that dy = do = d} = d}, = 0. In particular, @p and @ p- have a "south-west" vertex
at 0 (but the same is not true for Q< for € # 0). The conditions on D and D’ are
then

1
d3 >0, dg>dys>0 and dy <ds < §(d4 + de), with either d3 < d4 or d3 > dy;

1
dy >0, dg>0, djy>2ds+d; and dg+dg<dg<§(dﬁl+dg).

0 0

0 0

-1 , -1

For example we can have B := _9 and B’ := 6
—5/2 —7/2

—4 -2

Here is a scheme of Qy for this choice of B, B’.
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Here X' is the blow-up of X at a point and Y’ is the blow-up of F; at a point in
the (—1)-section. Note that L; = {1,3,4,5} and Ly = {1,3,5,6}. Also note that
(1/2,0) is in Uj.

0

0

—6

-1
—3/2

-3
ds > d4. Thus we obtain the following scheme. Note that the first Sarkisov link is
the type IV link from the first to the second projection P! x P! —s P,

In the above example, we have d3 < d4. If we choose B := , then
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(0,0)

X =P! x P!

(0,3/2)

]P)l

Wi,

{pt}

The fifth line of A does not correspond to a divisor of X or Y, but is added in
order to get Z to be smooth. The strategy given in the paper also works by chosing a
(not necessarily smooth) resolution of indeterminacies Z’, but non-terminal varieties

can appear. In this example, if we forget the fifth line of A, we can obtain a unique
Sarkisov link of type IT with X' =Y’ = Z'.

6.2. A rank one horospherical example. Choose a connected algebraic group
G with simple roots. Set

S\R = {a1, a2, a3, a4, 5}

with the notation of section 2. Let x = wy + wy — w3 — w4 and H C P be the
kernel in P of the character x. In particular, M = Zy. We identify x with 1 in
M ~7. Then N ~Z, oYy, = a3y, =1, a3y, = oy, = —1 and oy, = 0.

Since G/H is of rank one, projective G/H-embedding are uniquely determined
by their colors, that is, by subsets of {1, as, ag, as}. Denote by X the projective
G/H-embedding such that Fx, = {ax | & € K}. In particular, Z := Xy is a
common resolution of all Xg.

Denote by PX the parabolic subgroup of G containing B whose the set of simple
roots is {ay, | k € K} UR.

Let H' C Ps be the kernel in Ps of the character x. It is a horospherical subgroup
associated to the same lattice M. Denote by Yx the projective G/H’-embedding
Y such that Fy, = {ay | k € K}.

Suppose that the coefficients a,,’s are respectively 2, 3, 2, 3 and 2 for any
1=1,...,5. We consider A to be the column matrix associated to

(a\llMa O‘;M’ai\i/Mv az\l/Ma O‘;’)/Mv 17 *1) = (17 1a 71, *17 0, 1’ 71)'
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Then C is the column matrix associated to (2,3,2,3,2,1,1).

Let B and B’ be the column matrices associated to —(0,1,7,6,5,2,2) and
—(2,0,6,7,1,3,7) respectively. Then the associated horospherical Sarkisov pro-
gram gives a link of type IVy,, followed by a link of type III, a link of type IV, and
a last one of type IVy.

We then obtain the following scheme (only with ¢ > 0 and 0 < ¢ < 1). In black
we draw the one dimensional w;’s giving fibrations and in grey the ones giving
birational contractions. We dash the ones corresponding to flips.

(Oﬂo) © L © (170)

WL, G/P214 Wrg

7. PROOF OF THE MAIN THEOREM

Let G be a reductive group and H C G be a horospherical subgroup. We
choose a basis of Mg so that Mg = Q". We fix a horospherical embedding Z of
G/H and set p = r + |S\R|. Let A be the matrix associated to the linear map
o(m) = ((m,2;)i=1..r, (m,a&)aes\R). Denote by Jy C I the set of indices S\ R.

Let B = (—dy,...,—d,,—dy) and B’ = (—=d}, ..., —d}, —d,) besuch that " d; Z;+
> doDy and > d.Z;+ > dl, D, are ample divisors. Let —Kz =5 ¢;Z;+ Y caDq.
Let C = (c1,...,CryCq).

Suppose now that for any ¢ € Iy\Jy there exist negative ey and €; such that
(0,€0) and (1,€1) are in w;. Then for any ¢, the intersection w; N {(d,€) | € > 0}
is an open segment (possibly empty) with one extremity at (§,0). Then the family
(P%)cc-, describes a HMMP.

Proposition 29. For any ¢ € [0, 1] in the complement of a finite set, the HMMP
described by the family (P‘S’E)ee@20 is an MMP.

Proof. By Theorem 10, the family (P%€).cq., describes an HMMP. Let U” be
the set of § such that there is a 1-dimensional set w; included in {6} x Q. Let
p1: Q% — Q be the projection onto the first factor and let & € [0, 1]\p1 (UoUUY)UU".
By Proposition 23, the HMMP described by the family (Q%€).cq., consists of
extremal contractions. -

O

Definition 9. Let G be a connected reductive algebraic group. Let X and Y be
horospherical G-varieties which are G-equivariantly birational. Assume moreover
that there are Mori fibre space structures X/S and Y/T.

Let Z be a horospherical resolution of the indeterminacy of X --» Y, and let
Ax and Ay be ample divisors of Z.
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We set

P :={zecQ" | Az > (1 -6)B+ B +€C}

and Q = {(6,¢) € Q* | P> # (}. We say that the two-parameter family
of polytopes {P%¢}s is associated to (Z, Ax, Ay) and describes a horospherical
Sarkisov program from X/S to Y/T, if there exist €g, €, in Q, and singletons
Wryy---,wr, € 08 such that

(1) every point (d,€) € § defines the horospherical variety of pseudo-moment
polytope P%<;

(2) X/S and Y/T are the outcomes of the horospherical Kz-MMP with scaling
of Ay and Ay respectively described by the one-parameter families (P%€).>, and
(Pl’e)ezeé respectively;

(3) every wy, defines a Sarkisov link involving horospherical varieties of pseudo-
moment polytope P%¢ with (4, €) in a neighborhood of wy, in Q, including varieties
in the sequences of flips.

(4) the Sarkisov links defined by the wr,’s give a Sarkisov program from X/S
to Y/T.

Theorem 30. Let G be a connected reductive algebraic group. Let X and Y be
horospherical G-varieties which are G-equivariantly birational. Assume moreover
that there are Mori fibre space structures X/S and Y/T.

For any horospherical resolution (smooth or with terminal singularities) of the
indeterminacy Z of X --+ Y, there exist two euclidean open sets Ux and Ux of
WDiv(Z)g, such that for any Ax € Ux and Ay € Ux, there is a two-parameter
family of polytopes associated to (Z, Ax, Ay ) that describes a horospherical Sarkisov
program from X/S to Y/T.

Recall that, since the birational map X --» Y is G-equivariant, X and Y are both
G/H-embedding with the same horospherical homogeneous space G/H; and by
Lemma 11, there exists horospherical resolutions of the indeterminacy of X --» Y.
Then the second part of Theorem 30 implies Thoerem 1.

Proof of Theorem 30. By Proposition 14 there are euclidean open sets Ux and Uy
of WDiv(Z)q such that every divisor in Ux (resp. Uy) is ample and for every
A € Ux (resp. in Uy) the Mori fibre space X/T (resp. Y/S) is the outcome of the
HMMP from Z with scaling of A.

Since the open set determined in Proposition 17 is Zariski open, we can now find
open subsets Uy C Uy and Ux C Uy, such that any (Ax, Ay) € Ux x Uy satisfies
the generality conditions of Proposition 17.

Let fix such a (Ax, Ay) € Ux x Uy .
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Let B = (—dl, sy —dr, (_da)aES\R) and B/ = (— /1, ey —d;, (_d/a)QES\R) and
C = (c1,...,¢r,(Ca)acs\r) be such that

d
Ax =) diZi+ Y daDa
=1

aeS\R
d
Ay =Y diZi+ Y d,D,
i=1 aeS\R
d
~Kz=) ciZi+ Y. caDa.
i=1 aeS\R

Let 2 and w; be the polytopes of Definition 5.2.

Thus there are two segments w; and w; of the Mori poligonal chain such that
every (d,€) in a euclidean neighborhood of wr satisfies X%€ = X and if (§1,¢€;) € wy
then Y°¢ = T. The same holds for .J.

The segments w; and w; disconnect the chain. Let C C M PC be such that
wrUCUwy is connected. Let wr,,,...,wr, be the points in Uy NC. We notice that
Uy N oQy = 0. Indeed, if (d,€) € wr Nwy and wy, wy are not aligned, then the
convex hull of w; and w; is non-empty and open (and thus of dimension 2), proving
that (d,€) € wy.

We prove that every wy, describes a link. We write wy, for simplicity.

Let L = KU --- U K™ be the partition existing by Proposition 28. We
fix a euclidean neighborhood A of wy, and for any i € {0,...,r}, let X; be the
horospherical variety corresponding to a point in the open set delimited by wg, and
Wr,,,- If wr is not a vertex, let X, ; be the horospherical variety corresponding
to a point in the open set delimited by wg,,, and wr. Let t be r if wy, is a vertex
and 7 4+ 1 if not. We denote by Ty, respectively T;11, the horospherical variety
corresponding to a point in MPC on the left, respectively on the right, of wy,.

We prove first that

Claim 31. the only possible divisorial contractions between two varieties X; and
Xiil are X1 — XO and Xt—l — Xt.

Recall that we have Mori fibrations Xog — Ty and X; — Tiyq1. Let s € {1,...,r}.
First assume that wy, is a vertex. Then K, is such that K; = KU .- K*~! and
KF = Ksttu...u K™ By Proposition 23, around wy, we have flips except if
s=1and K° = {i} with i € Ip\Jy or s =7 and K" = {i} with i € I\ Jp.

Assume now that wy, is not a vertex. Let s € {1,...,¢}, then K is such that
K;=KUK'U---UK*'and Kf = KUK - -UK"™?. Since K¢ and K°
are non-empty (by Notation 3), by Proposition 23 around wg, we have flips except
if s =1and K° = {i} with i € Iy\Jy or s = r+ 1 and K} = {i} with i € Io\Jo.
This finishes the proof of the claim.

Let R be the variety corresponding to wy,. Notice that we have fibrations from
Ty — R and T;41 — R. There are three cases:

(1) R=Ty = Tigq;
(2) R=Tyor R Ty, and we are not in case 1;
(3) R ?ﬁ TO and R % Tt+1.
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In case 1, by Remark 11, we have ¢t > 1. In particular, slx, < slk,, or slg, >
slg,,, (with the convention that K, s = I if wy, is not a vertex). A priori, slgk,
and slg, could be oo, but the next paragraph proves that it cannot happen.

If slg, < slk,, then the Mori fibration Xy --+ R factors through Xy --+ Y = R
where Y is the horospherical variety corresponding to a point of wg,. Then the
map Xy --+ Y is either an isomorphism or a K-negative contraction. It cannot be
a K-negative contraction because slx, < slk,. Then Xy =Y, which implies that
X, — Xy is a divisorial contraction. Similarly, if slx, > slk,,,, X;—1 — X; has to
be a divisorial contraction.

Thus there is ¢ = 1 or 4 = t — 1 such that p(X;) = p(R) + 2. Assume it is i = 1. By
Proposition 27 and Claim 31, for every ¢ € {1,...,t— 1} we have p(X;) = p(X1) so
that p(X¢—1) = p(X¢) + 1 and thus X;_; — X; is also a divisorial contraction. We
have a type II link.

In case 2, assume that R = Ty. Again by Proposition 23 the variety R is Q-
factorial. Thus R % Tiy; implies p(Ty+1) = p(R) + 1 and p(X:) = p(R) + 2. By
Proposition 27 and Claim 31, for every ¢ € {1,...,t} we have p(X;) = p(X;) =
p(R) + 2 = p(Tp) + 2. Since p(Xo) = p(Tp) + 1, the map X; — X is a divisorial
contraction and we have a type I link. Similarly if R = T, we get a type III link.

In case 3 we have p(Tp) = p(R) + 1 and p(Ti41) = p(R) + 1. Moreover p(Xo) =
p(To) + 1 and p(X;) = p(Ti+1) + 1. By Proposition 27 and Claim 31, for every
i€{0,...,t—1} the map X; --» X1 is an isomorphism in codimension 1 and we
get a type IV link. ([l

Remark 13. If wy, is not a vertex then we cannot have a link of type IV with
fibrations Ty — R and T;41 — R. Indeed from w; (both side) to wy, we get two
birational maps, one of the two can be divisorial (if we are in the hypotheses of
Lemma 25 occurs), but not in case 3.

APPENDIX A.

A.1. A polyhedral partition of Q2. In this section we collect the proofs of the
facts quoted in Section 5.

The following lemma describes the first properties of the sets 2; and w; defined in
Definition 5.2.

Lemma 32. Let I C I.

(1) The sets Qr and w; are convex subsets of Q2.

(2) The set wr is open, for the euclidean topology, inside {(d,€)| Dr(d,€) €
ImA;} = Dy ' Tm Ap.

(3) There are four cases: either wy is empty, or it is a point, or it is a convex
part of an affine line (a segment, a half-line or a line), or it is a non-empty open
set in Q2.

(4) If wr is not empty, we have wy C Q C wy.

Proof. (1) Assume that ; has at least two points, (d1,€1) and (d2,€2). Then
there exist x1 and x9 in Q™ such that A;x; = Dy(d;,€;) and Arex; > Dre(6;,€;) for
i =1,2. For any rational number ¢ € [0, 1], we get A;(tz1 + (1 —t)x2) = Dy(ter +
(1 —t)ég, to1 + (1 —t)ég) and Aje (txl + (1 —t)l‘g) > Dje (tel + (1 —t)GQ, to1+ (1 —t)dg),
so that t(61, 61) + (1 — t)(52, 62) is in Q].

Replacing > by >, we prove the convexity of wy.
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(2) The inclusion w; C DI_1 Im A; follows from the definition of wy.
If DI_1 Im Ay is a point or if w; is empty, there is nothing to prove.
Let (do,€0) € wy. Then there is xg such that Ajzg = Dj(dg,€0) and Ajexg >
D[c (50, 60).

Assume that D;l Im Ay is two-dimensional. Let (1, €1) and (42, €2) in D;l Im A;
such that the three (d;,€;)’s are not in the same line. Let z7 and a2 be such that
Ajxy = Dy(61,€1) and Arxs = Dy(d2,€2). Then

Ar((1=ti—to)xo+tiz1+toxs) = Dr((1—t1—t2)eo+ti1€1+tae, (1—t1—t2)do+t101+t202)
and for (t1,t2) in a neighborhood of 0 in Q?, we have
A[c((17t17t2)$0+t11’1+t2$2) > D[c((17t17t2)60+t161+t262, (17t17t2)50+t151+t262).

The proof for the case dim D;l Im A; = 1 is analogous. This concludes the proof
of the statement.

(3) It follows from the two previous statements.

(4) The first inclusion is obvious.

To prove the second one, remark that for all (d1,€1) € wy and (d2,€2) € Q, the
segment {(1 —t)(d1,€1) +t(d2,€2)| t € (0,1]} is contained in wy. Indeed, let z1 and
T2 be such that A]a?i = D[((Si,ei), AIcl‘l > ch(él,el) and AIcJ?Q Z D[c(ég,eg).
Then, for any ¢t € (0,1], we set x; := tay + (1 — t)x2 and (s, €:) := (teg + (1 —
t)eg, td1 + (1 —t)d2). Thus Ajxy = Dy(d,€) and Ajexy > Die(0y, €).

This remark implies directly that if (d2,€e2) € Qf then (d2,€2) € Wy, as soon as
wr is not empty.

(Il

Remark 14. Lemma 32 is still true if we consider polytopes in an R-vector space.
The proof is the same after replacing Q by R everywhere.

Lemma 33. Let I C Iy be such that wy is not empty. Then Q; = Wy and Qg is
polyhedral in Q2.

Proof. If wy is reduced to a point, by Lemma 32 we have nothing to prove, so we
suppose that w; contains at least two points.

For (§,¢) € R? we also set
P :={z eR" | Az > (1 - 6)B+ B +C}.
and we define as before F }5 €.
For I C Iy we set
Q(R) = {(d,¢) € R* | FP“ # 0}
and
wr(R) = {(6,€) € R? | if I' C I satisfies F"* = F5°, then I’ C I}.

Since the matrices A, B, B’ and C have rational coefficients, if (d,¢) € Q? and
if there exists © € R"™, such that Ajz = Djy(d,¢), then there is 2/ € Q", such
that Az’ = Dy(d,€); and 2’ can be chosen arbitrarily close to z. In particular,
if Ajex > Dre(d,€), then 2/ can be chosen such that Arcz’ > Dje(d,¢). Hence,
wy = wI(R) N Qz.

Moreover, Q; = Ucpcy, wr (over R and Q), then we also have Q;(Q) =
Qr(R) N Q2.
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We first prove that Q;(R) is closed. This, together with Lemma 32 will imply
that Q](R) = wI(R).

Let (k,€x)ren be a sequence of elements in Q;(R) converging to (J,€) in R2.
The elements (Jy, ;) are contained in a compact set K of R2. Then, for every
k € N, the polytope P is contained in the polytope

PE .= {z € R" | Az > Mingex D(d,€)}

where Mins e x D(d, €) is the vector whose i-th coordinate is Mins e D(0, €);.
The set P is compact by Remark 5.

By definition, for any k € N, there exists z; € R™ such that Ajzy = Dy(d, €x)
and Arexy > Dre(0k,€x). Since the 2 € PX that is compact, there is {k., fmen
such that k,, — oo as m tends to infinity, such that (x, )men converges to T € R.
Then Z satisfies A;7 = D;(5,€) and AreZ > Dyc(8,€). This implies that (,€) is
also in €.

We now prove that Q;(R) is polyhedral. If w;(R) is either empty, or a point, or
a convex part of an affine line, then there is nothing to prove. Suppose that w;(R)
is open in R2. Then the boundary of Q;(R) is

Q](R)\L{)[(R) = U WII(R) = U QII(R)
ICI'CI, ICI'Cl,
But for every I’ such that I C I’ C I, the set Q/(R) is either empty, or a point,
or a closed convex part of an affine line. We proved that the boundary of Q;(R) is
a finite union of closed convex parts of affine lines. Hence, Q;(R) is polyhedral in R2.

To conclude, we have to prove that the vertices of Q;(R) are rational and that
the maximal half lines in the boundary of Q;(R) are rational half-lines, that is, they
have a rational extremity and rational direction.

A vertex of Q;(R) is (d,¢€) such that there is I’ # I with {(d,¢)} = wp(R). By
Lemma 32 we have {(6,¢)} = D;,' Im A @ R. Since Dy and Aj are defined over
Q, we have {(d,¢)} € Q%

In the same way, the boundary is a union of finitely many w I for j =1...r with
I # 1. Let I' € {I,..., 1} so that wp(R) has dimension 1. By Lemma 32, we
have wy/(R) C DI_/1 Im A;r ® R open. The latter is an affine subspace defined over
Q, thus its direction is rational. The extremities are vertices of Q;(R) and are then
rational. (]

We now study inclusions between the w’s, generalizing the easy following fact:
for any J C I C Iy, we have Q; C Q.

Lemma 34. Let J C I C Iy, such that wy # 0.

(1) If wy is not empty and has the same dimension of wy, then wy C wy.

(2) If the images of A; and Ay have the same codimension k, then wy is not
empty.

(3) There exists J C I as above and such that wy C wy and for any j € J the
codimension of the image of Ay (;y is less than k.

Proof. (1) If wy is not empty, Lemma 33 implies that w; is the interior part Q.
Since wy is not empty, it is as well the interior part of Q;. As Q; C Q;, we conclude
that wy C wy.



HOROSARKISOV PROGRAM 35

(2) We prove the claim by induction on h = |I'\ J|. If h = 0 the claim is true.
We assume now that the claim is true for h and let J be such that |1\ J| = h + 1.
Let ¢ € I\J and J' = J U {i}. By inductive hypothesis wy is not empty. Let
(0,€) € wy and let € Q" such that Ay = Dy(d,€) and Agryex > D(yrye(d,€).
Since the codimensions of the image of A; and of the image of A; are equal to k,
and Ay is the product of A; with the projection matrix onto the indices J C J’,
also the codimension of the image of A is k. By the rank theorem, we have
dim Ker(A;) = dimKer(A;) + 1. Thus, there is y € Ker(As)\ Ker(A;). We can
choose y such that A,y > 0. Then for ¢ > 0 small enough, we have A;(x + ty) =
Dj(0,¢€), Ai(x 4 ty) > D;(6,¢€) and Ayye(x +ty) > Drye(d,€). This proves that
(0,€) € wy.

(3) It is enough to take J minimal such that the images of A; and A; have the
same codimension, and apply the previous statement.

O

Lemma 35. Let I C Iy be such that wr = {(do,€0)}. Suppose that the image
of Ay is of codimension 2. There is i € I such that the image of Ap (i is of
codimension 1. For any such i, the point (o, €q) belongs to Qp ri3 \wn\ (i} -

Proof. Let ¢ € I be such that there exists rational numbers \; for j € I'\{i} such
that A; = Zjel\{i} AjAj. Then the image of Ap\ ; is of codimension one. Let
(01, €1) # (do, €0) such that Dy (;1(d1,€1) is in Im(Ap g43). Let 2 and y in Q™ such
that Arz = Dr(do, €0), Arex > Dre(do,€0) and Ap\ vy = Dp\(i)(61,€1). For any
t € Q, define z; := (1 — t)z + ty and (04, €) := (1 — t)(do,€0) + ¢(d1,€1). Then
for any ¢ we have Api32¢ = Dp\(i}(0t,€:) and for any ¢ small enough we have
Ajezy > Dye(d,€t). Now if A;y > 0 we have A;z; > D;(d;,€;) for any ¢ > 0; and
if A;y <0 we have A;z; > D;(d¢,¢€;) for any t < 0. Hence, for any ¢ small enough,
either positive or negative, we have A(p\ (iyye2e > D\ (i})e(0¢, €¢) and (0, €;) is in
wn\{i}- We have proved that w; is in the closure of wp 4}

But wy = {(do, €0)} cannot be in wr\ (i}, because the relation A; =3\ 1y AjA;
implies that if AI\{Z}-T = DI\{i}(607€0) then Ajz = D[((S(),Go). Hence wy is in

Qp iy \wr {iy-
0

Remark 15. A similar result could be proved from a one-dimensional w;. Let
I C Iy such that w; is an open convex part of an affine line. Suppose that the
image of Ay is of codimension 1. Then there exists ¢ € I such that wy is a subset
of Qp iy \wn (i3 and Ap (43 is surjective.

Lemma 36. Let I and J such that w; and wy are not empty. Then winy is not
empty and contains the strict convex hull of any element of wr with any element of
wy.

Proof. Let x and y in Q™ be such that Ajx = Djy(01,€1), Arex > Dyc(d1,€1),
A.]y = DJ((SQ,EQ) and A!]cy > Dje (52,62).

For any t €]0,1[, z: := (1 — t)z + ty and (6, €:) := (1 — t)(d1, €1) + t(d2, €2) satisty
Arnsze = D1ng(0s,€1), Aingyezt > Dirnye(0t, €:). Hence, wrny contains the strict
convex hull of (d1,€1) and (2, €2). In particular, wrny is not empty. O

Remark 16. If I = {i} and A; # 0, or more generally if A; is surjective, Lemma 32
implies that wy is open (possibly empty).
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If I = {i} and A; # 0, for any (5,¢) € Qr\wy, either the polytope P> can be
defined without the line 7, in other words

P {2 Q" | Agyr > Dige(6.0),

or the polytope P%€ is not of dimension n. Indeed, if (§,¢) € Qr\wz, and P>€ has
maximal dimension, then Ff’s is not a facet of P%¢ or equals another F' f’e and in
both cases the inequality A;z > D;(6, €) is superfluous in the definition of P%¢.

If I is such that Aj is invertible, then F}s’6 is either empty or a vertex of P>¢. If
(6,€) € Qp, then P%¢ is simple at the corresponding vertex if (6,¢) € w;. But the
converse is false: it can happen that P%¢ is simple but (6,¢) € wy if an inequality

Az > Di(6,€) with i & I is superfluous in the definition of P%¢ and F?° = Ff[f{i}.

A.2. Generality of the polarization. In this section we prove Proposition 17.
Throughout the section by general we mean in a Zariski open set.

By Lemma 32 (2), wy is one-dimensional implies that the codimension of Im(A;)
is at least 1, and wy is zero-dimensional implies that the codimension of Im(Ay) is
at least 2. The lemma tells that, for general B and B’, equalities hold for any I in
both cases.

Lemma 37. We can choose B and B’ general such that for any I C Iy, we have
the following.

o If the image of A; has codimension 1 in Q, then wr is an open convex part
of an affine line (possibly empty).

o If the image of A; has codimension 2 in Q, then wy is either empty or a point.

o If the image of Ar has codimension 3 in Q!, then wy is empty.

Proof. The set {D;(6,¢) | (J,¢) € Q?} is the affine subspace passing through B
and directed by B; — By and C;. It is a plane for B and B’ general (that is, if
B’ — B is not colinear to C). Now, to have the three conditions above, it is enough
to choose B and B’ such that:

o if the image of A; has codimension 1 in Qf, then B; and By are not in the
image of Ay;

o if the image of A; has codimension 2 in Qf, then B} — By is not in the vector
subspace Im(Ay) +QC; (of codimension at least one in Q), and if C; is in Im(Aj)
then By is not in Im(Aj);

o if the image of A; has codimension 3 in Q!, B} — By is not in Im(A;) and By
is not in the vector subspace Im(A;) + QCr + Q(B} — By) (of codimension at least
one in Q7).

This, together with Lemma 32, means that it is enough to choose B and B’ outside
finitely many proper linear subspaces of QP, thus B and B’ in an open set of QP. [

From now, we assume that B and B’ general in the sense of Lemma 37.

Corollary 38. There is a finite union of convex parts of affine lines
L£=00 U U @ce
ICI, dim Q<1

such that if (5,€) & L then P%¢ is an n-dimensional simple polytope or it is
empty.
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Proof. Assume that P%€ is not empty. If P%€ has of dimension n and is not simple,
then there exists a vertex v of P%€ that is contained in at least n + 1 facets. Then
there is I C Iy of cardinality p > n + 1 such that the vertex is Flé’6 = {v}. In
particular, if we choose I maximal among the subsets I of Iy such that F}S = {v},
we have (d,¢) € wy. But Ay is a p X n matrix with p > n 4+ 1 so it cannot be
surjective. By Lemma 37, wy is either a segment or a point.

If P%€ is of dimension at most n, then (4, €) & wy, which is open and non-empty
by hypothesis. Then (4, €) is in the boundary of 2y, which is a finite union of convex
parts of affine lines.

We set then

L=09 U U Qr.
IC I, dim ;<1

O

Remark 17. Notice that the condition we impose on €y \ £ is stronger than the
polytope P%¢ being simple. Indeed, the vertices of P%¢ for (§,¢) € Qy \ L are
contained in exactly n affine hyperplanes H; := {x € Q™ | A;x = D;(J,¢)}, while
a vertex of an affine polytope is contained in exactly n facets.

Notation 4. Let I C Iy be such that the image of A; is contained in a hyperplane,
and such that for any i € I, Ap ; is surjective. For the sake of clarity we repeat
here Notation/Construction 1. Then there are rational numbers A/ with i € I such
that > ,.; AfA; = 0. We notice that A/ # 0 for every i € I. Indeed, if there is
7 such that /\§ = 0, then Ziel\{j} M X is a nontrivial equation for the lines of

Apgj3- We can assume that Y, ; A/C; is zero or one. We fix such numbers.

Let I C I such that w; is not empty, the image of A; has codimension at least
two and such that for any ¢ € I, the image of Ap 3 has codimension one. In
particular, the image of A; has codimension exactly two. Then there are rational
numbers A/ and X with i € I such that >, ; Al A; = 0 and Y, ; M/ A; = 0 are
two independent relations. For B and B’ general as in Lemma 37, the point in wy
is the only solution of the linear system

(Cier M Ci)e+ (e M(Bi = Bi))d + X, M B = 0
(Cier M Ci)e+ (Cier NH(Bj = Bi))d + 3  N'Bi = 0
therefore >, ; A C; and 3, ; MY C; cannot be simultancously zero. After perhaps

replacing A}/ with \{ — A, we can assume that }_,.; A\/C; =1and Y, ; X!C; = 0.
Moreover, for any i € I, either A! or A is not zero. Indeed, if there is j such
that A} = 0 and ;' = 0, then Dien (i} MX; and dienyj) NI X; are nontrivial
linearly independent equations for the lines of Ap\ ;3.
We fix such numbers.

Remark 18. Let I # J be such that the images of A; and A; have codimension
d and for any i € I and j € J, the images of Ap\ ;3 and Ay ;3 have codimension
d—1. Then I € J and J ¢ I. Indeed if we had I C J, there would be j € J\ I
and Im (A7) would have codimension at most the codimension of Im(A ;1)

Now we prove that if B and B’ are general, two sets wy and w; of dimension 0
or 1 intersect or are aligned only in specific cases.
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Lemma 39. Let I # J be such that w; and wy are non-empty open convex parts
of the same affine line, and such that for any i € I and j € J, Ap iy and Ap (5
are surjective. Then B and B’ satisfy a quadratic or linear condition.

Proof. Set B” := B’ — B. By remark 18 we have I € J and J ¢ I. Since wy
and wy are non-empty open convex parts of affine lines, the images of A; and Ay
have codimension at least one. Since Ay (;; and Ay ;; are surjective, they have
codimension exactly one.

The affine line containing wy (resp. wy) has as equation )

(resp. Y_;er A/ Dj(6,€) = 0), i.e.

QoM+ MBI+ M B =0, resp. (> A/ C)e+(D_ N/ B/)o+> A\ B; =0.

iel iel iel jed jed jeJ

icl )\ZIDZ(57 6) = 0

Those two equations by hypothesis define the same line. It follows from Construc-
tion 4 that the coefficients of € are either both zero or both one.

If Y ier Mo, = ZjEJ )\ij = 0, since the two equations define the same line,

we have
QMBI N By = QA B)HOQ A B,
i€l = jed i€l
This condition is nontrivial: let ¢ € I and j € J such that ¢ ¢ J and j ¢ I, then
the coefficient in the quadratic condition in BYB; is A )\JJ and this is non zero by
Construction 4.

IfZieI /\iICi = ZjeJ )\;IC]- =1, then Zie] )\{BZ{/ = ZjeJ )\.;-]Bél and Zie] A{Bi =
Y ies N By O

Corollary 40. Assume that B and B’ are general. Then for any I and J subsets
of Iy such that wy and wy are nonempty open convex parts of affine lines, wy and
wy are contained in the same affine line if and only if winy is a non-empty open
convez part of an affine line. Moreover in this case, we have winy 2 wy Uwy.

Proof. Let I and J be subsets of Iy such that w; and w; are non-empty open convex
parts of the same affine line L. By Lemma 34, there exist I’ C I and J' C J such
that wyr and wy are non-empty open segments contained in L, and such that for
every i € I' and j € J', Ap\giy and Ajn gy are surjective. By Lemma 39, for B
and B’ general, we must have I’ = J’. In particular INJ D I’ and w; C wrny C wy
so that w;ns is a non-empty open convex part of an affine line.

Conversely, if wy, wy and wyny are non-empty open convex part of an affine line,
then they are contained in the same affine line because w; C wyn; D wy. O

Lemma 41. Let I # J be such that w; = wy is reduced to a point, and such that
for any i € I and j € J, the images of Ap iy and Ay ;) have codimension one.
Then B and B’ satisfy quadratic conditions.

Proof. Set B” := B’ — B. By remark 18 we have I € J and J € I. Since wy
and w; are points, the images of A; and A; have codimension at least two. Since
Apgiy and A g5y have codimension exactly one, the images of A; and A; have
codimension exactly two.

Let (0o, €0) be such that w;y = w; = {(do, €0)}-
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By Notation/Construction 4, (dg, €9) is the unique solution of the two following
systems:

{ €+ (Qier A BJ')d + dier A/B;i = 0 and { e+ (D jes )‘5’735'/)5 + 2 jes /\'J'IBj
(ier MBI+ e M B = 0 (X es N B + 3,6, N By

Comparing the first and second equations of the two systems we get

©): (N BN By = (A BN B)).

iel jeJ jeJ iel

C): [ O_MB)Y = NB) | Y N Bi— D _ABi=>_XB; | Y N'B/ =o.
i€l jeJ i€l il jeJ i€l
To conclude, one proves, with an easy but tedious computation that the condi-
tions (C1) and (C2) cannot be both trivial. O

Corollary 42. For B and B’ general we have the following: for any I, J C Iy such
that wr and wy are singletons, we have wy = wy if and only if wrny is a singleton,
equal to wy = wy.

Proof. Let I and J be subsets of I such that wy = wy = {(dg, €9)}. By Lemma 34,
there exist I’ C I and J’ C J such that wyr = wy and for any ¢ € I’ and j € J', the
images of Ay g4 and Ay ;1 have codimension one. By Lemma 41, for general B
and B’, we must have I' = J'. In particular INJ D I' and wrny C wpr = {(d0, €0)}-
By Lemma 36 the set wrn is not empty, then it must be wrny = {(do, €0)}-
Conversely, if wy, wy and wyny are singletons then w; = wyny = wy because
wry Cwrng D Wy. [l

Lemma 43. Let I and J be such that w; = {(do, €0)}, wy is an open convex part of

an affine line, and wy is contained in this affine line. Suppose that for everyi € I,

the image of Ap (i) has codimension one and for every j € J, Ay ;) is surjective.
Then either J C I or B and B’ satisfy a quadratic condition.

Proof. Set B = B’ — B.
The affine line containing both w; and w; has equation

O - NCe+ (O NBHG+Y N B; =0,
jeJ jeJ jeJ

where > ._; A/C; is zero or one and (g, €0) is the unique solution of the system

JjeJ g
(S1) : e+ (e MBI+ MBi = 0
v (Cier MBS+ M B = 0
If 3, A/ Cj = 0 we have
(S ATBIC A By = (SNBSS ABY).
i€l jEJ icl jeJ

Jo
jeJ/\j C; =1, we have

Qo MBHO A B) = MBS N B)).

iel jeJ il jeJ

And if )
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In both cases, if there exists j € J that is not in I, then there exists ¢ € I such
that the coefficent of B; B}’ is non zero (it is )\il)\j in the first case and )\{)\JJ is the
second case) so that the condition is not trivial. O

Corollary 44. For B and B’ general we have the following: for any I and J
subsets of Iy such that wy is a singleton and wy is an open convex part of an affine
line £, the affine line £ contains wy if and only if winy s a non-empty open convex
part of £.

Proof. By Lemma 34, there exist I’ C I and J’' C J such that w; = wy, wy C wy
and for any i € I’ and j € J', the image of A\ ;3 has codimension one and A ;.\ (53
is surjective. Then, by Lemma 43, , for general B and B’, we must have J' C I'.
In particular, J' C I N J and by Lemma 34 we have wy~; C wy/, so that wyns
is either empty or an open convex part of an affine line (the same affine line as for
WJ).
By with Lemma 36, the set wrns is not empty. O

We end this subsection with the following lemma in order to avoid the case where
three affine lines intersect into a point except in only one situation.

Lemma 45. Let I, J and K be distinct subsets of Iy such that the images of Ajp,
Ay and Ak have codimension one, and such that for anyi € I, j € J and k € K,
Angiy, Anggy and Ag\xy are surjective. If the three affine lines generated by
wr, wy and wg intersect, then either B and B’ satisfy some linear or quadratic
condition or IUJ=TUK=JUK=ITUJUK.

Proof. Set B” := B’ — B.

By Lemma 39, if the three lines are not distinct, we are done. Suppose then that
the three lines are not distinct and meet at the point (do, €g).

Let L =1, J, K. The affine line containing wy, has equation Y, ; Af'Dy(d,€) = 0.

If we set
ar = 3y, A Ce
b =Y ger, M BY
cL = Yper M Be
then the equation becomes are+brd+cp = 0. By hypothesis the point (ar,, by, cr)
belongs to the plane aeg + bdy +c=0for L=1,J K.
By Construction 4 we have ar, € {0,1}.
Assume that there is L such that ay = 0. Without loss of generality we can assume
that L = I. Notice that then only I is such that a; = 0, because two affine lines
distinct and parallel do not meet.
Then br(cy — cx) = ¢r(by — b)), that is,

O MBHO N B =Y ABy) = QMBI N B = > ANEBY).
il jed kK il jed kEK

Assuming that we do not have ITUJ =TUK = JUK =1U JU K we prove
that this condition is not trivial. There are three cases, either JUK # I U J U K,
or I UJ#TUJUK,or ITUK # 1UJ UK. The last two cases are proved in the
same way.

KFJUK #TUJUK leti € I besuch that i ¢ JUK. As J # K we can assume
without loss of generality that there is j € J,j ¢ K. Then the coefficient of B}'B;
in the quadratic condition is A/ )\3] which is non zero by Construction 4.

i
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KFIUJ #TUJUK let k € K such that £ ¢ I U J. Then for every i € I
the coefficient of BBy, in the quadratic condition is A/AF which is non zero by
Construction 4.

Assume that ay, = 1 for every L. Without loss of generality we can assume that
TUJ # ITUJUK. With similar computations as above, we prove that the condition

(br —by)(cr —cx) = (br — br)(cr —cg)

verified by the coefficients of the two linear equations is not trivial.

A.3. Polyhedral decomposition and the geography of models.

Lemma 46. Let (§,¢€) € Uy. Let I be such that (6,¢) € wr and dimw; = 1. Assume
moreover that I is minimal with the property. Denote by I, = {i € I | A\l > 0}
and I_ :={iel | \l <0}. Note that =1, U1I_.

Then (0,€) € wy if and only if both Iy and I_ are not empty.

Proof. Let ), M X; = 0 be a relation satified by the lines of A; as in Construction
4. Notice that A! # 0 for any i € I by minimality of I. Indeed, if A} = 0 then the
image of A\ still have codimension 1 and w; € wp\ (53 by Lemma 34(3).

Fix x € Q" such that Ajz = D;(d,¢) and Ajex > Dje (4, €).

Assume first that I, and I_ are not empty. Let ¢ € I, then

M\ M

_ J J
Ai=— Y vAﬁZTAj.

JEL A1 jel- 7

By the minimality of I, the matrix Ap () is surjective. Therefore, there exists
y € Q" such that A;y > 0 for any j € I\{i} and A,y big enough for j € I_ so that
Ay is also positive. Then for any ¢ > 0 small enough, we have A(x +ty) > D(J,¢€).
This means that (J,€) € wy.

Conversely, suppose that /™ = I and I_ = . First, we prove that >, _; A/ D; (6, ¢) =
0. Since (d,€) € wy, there is € Q™ such that Ax > D(d,¢) and A;x = Dy(6,¢).
Thus 0 =3,c; M Az =3,.; ALD;(5,€).

Now, let y € Q" such that Ay > D(8,¢). Then0=>,., M Ajy > > ,., M Di(6,¢) =
0, so that Ary = D;(d,€). In particular, (J,¢€) & wy.

The same occurs if 1~ = 1. O

Remark 19. The proof implies in particular that, if both I, and I_ are not empty,
then there is y € Q™ such that A;y > 0.

Lemma 47. Let (6,¢) € Uy Nwy. Let I be such that (6,€) € wy and dimw; = 1.
Assume moreover that I is minimal with the property. Let i € Ig\Jy. Then (d,¢) €
Q\w; if and only if I or I_ equals {i}.

In particular, there is at most one i € Ig\Jy, such that (0,€) is in Q;\w;.

Proof. Let ), M X; = 0 be a relation satified by the lines of A; as in Construction
4. Notice that A\! # 0 for any i € I by minimality of I.

Suppose that there exists i € Ip\Jy such that (4,¢) € €;\w;. Then there exists
J C Iy containing 7 such that (4, €) € wy. Pick such J minimal. By Lemma 34(1),
since (0, €) & w;, the image of A; has codimension either one or two. By assumption
on (d,€), wy is not a point, so that w; is one-dimensional and then by Corollary 40
and the generality assumption, I C J. By minimality of J, we have J = I U {i}.



42 E. FLORIS AND B. PASQUIER

Assume by contradiction that i ¢ I. With Notation 4, we have A/ = 0, that is,
J and I give the same relation.

Since (6, ¢€) € wy, by Lemma 46 and Remark 19 and 7, there exists y € Q™ such
that Ary > 0 and such that A;y = 0. Let € Q™ such that Ayx = D;(4,¢€) and
Ajex > Dye(d,€). Then for any ¢ > 0 small enough A;(z + ty) = D;(d,€) and
Agiye(x +1ty) > Dyiye(6,€). This is a contradiction with (0, €) € w;. Then i € I and
I=J.

By assumption the matrix Ay is surjective. If I'\{i} is not contained in ei-
ther I or I_, we can find y € Q" such that A;y > 0 for any j € I\{:} and
Zje]\{i} AJIAjy = 0, which implies that A;y = 0. Let x € Q™ be such that
Ajx = Dy(d,¢) and Ajex > Dje(d,€). Then, for any ¢ > 0 small enough we have
Ai(z +ty) = D;(0,¢) and Agye(z +ty) > Dy;ye(6,€). This is a contradiction with
(0,€) & w;. We conclude with Lemma 46 and the hypothesis (d,e) € wp, that
{i}=1IyorI_.

Conversely, suppose that I, = {i}. Note that (d,¢) € €; is obvious. Since there
-\l
exists x € Q" such that Ajz = Dy(d,¢), we have D;(0,€) = >, 1y %Dj(é, €).
For any y € Q", such that Ag; ey > Dy (0, €) we have '

M -\
Ay= > —FAyz Y D0 =Di.e).
JEN{i} JEN{i} ~*

And we have equality if and only if Ap iy = Dp\(iy(d,€). Then (6, ¢€) & w;.

For the last statment, note that if |[I| = 1 then Ay is a zero line and ¢ € Jy; and
if |[I| = 2 with |I;| = 1 then the two lines of A; generate the same ray of Ng and
at most one could be the primitive element of the ray, so that the other line has
index in Jp. ([

Lemma 48. Let (d,¢) € Uy NQp\wp. Let I be such that (§,¢€) € wy and dimwy = 1.
Leti € Ip\I. Then either (6,¢) & Qrugiy or (0,€) € Wiy} -

Proof. Let i € Ig\I such that (J,¢) € Q. There exists J C Iy containing 7 and
I such that (4,€) € wy. By hypothesis on (4, €) the set w; is one-dimensional and
Lemma 34 implies that w; C wrygsy. In particular, (6,¢€) € wrug- O

Recall that by Notation/Construction 3 if L is such that wy, = {(5,€)} C Qg\wy
and € > 0 and, for B and B’ are general, then there are either I and J subsets of
L and two linearly independent equations for the lines of Ay,

(Ri) Y MX; =0, M>o0Viel

(Ry) Yje A X;=0, X >0VjelJ

or there is I C L and two linearly independent equations for the lines of Ay,

(Rr) Y MXi=0, XM>o0viel

(Rer) ZjeL)‘]LXj =0, )\]L £A0VjeL\I
Lemma 49. Let (J,¢) € UpNQg\wy and assume that (0, €) is a vertex. Let L C Iy be
a minimal subset such that wy, = {(d,€)}. Leti € Io\L. Then either (0,€) & Qrugi
or (d,€) € wrugiy-
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Proof. 1If (6,€) € Qrugiy\wrugsy, there exists J C Iy containing 7 and L such that
(0,€) € wy. By Lemma 34, we have wy ;3 = wr = wy. In particular (d,¢) € wrugy-

Lemma 50. Let (6,€) € UgNQp\wp and assume that (0, €) is not a vertex of Qp\wp.
Let L C Iy be a minimal subset such that wy, = {(d,€)}. Let I be a minimal subset
such that wy, C wr and dimwy; = 1. Let i € Iop\I. If (0,€) € Qrugiy\wrugay then
i € L\I and either L\ I, = {i} or L\ I_ = {i}. In particular, there are at
most 2 indices i such that (6,¢€) € Qrugy\wrugsy- If there are 2 such indices, then
|L| = |I| 42 and the restriction of Ar\ to ker(Ay) consists of twice the same line
if LI\I C Io\Jo.

Proof. The proof is similar to the proof of Lemma 47.

If (0,€) € Qrugiy \wrugay, then there exists J C Iy containing i and [ such that
(0,€) € wy and wy is one or zero-dimensional. The set w; cannot have dimension
one, otherwise Lemma 34 would imply that (J,¢) € wy C wyygy- Hence, wy = wr
and J = L U {i}.

We prove that i € L. Assume that it is not the case. Since the coefficients
)\JL do not have the same sign for j € L\I, there exist positive MJL such that
Y jerg Afuf = 0. By Remark 7 there exists y € ker(A;) such that Ajy = pf >0
for any j € L\I and so that A;y = 0. Since (d,€) € wrugy, there is x € Mg is such
that ALU{i}x = DLU{i}(57 €) and A(Lu{i})ca: > D(Lu{i})C (6,¢). Thus for ¢ small,
we have Ajugn (2 +ty) = Diugiy (9,€) and Apyr(x + ty) > Dpy\ (9, €) proving that
(d,€) € wrugsy, which is a contradiction. Thus 4 € L.

We prove now that all the ¥ for j € L\(I U {i}) have the same sign. Again, by
contradiction, if the AF for j € L\(I U {i}) do not have the same sign, by Remark
7 we can find y € ker(Ay) such that Ajy > 0 for any j € L\(J U {i}) and A;y = 0.
Let © € Q™ such that Apz = Dp(d,¢) and Apex > Dre(d,¢). Then for any ¢t > 0
small enough AIU{i} (:L' + ty) = DIU{i} (5, 6) and A(IU{i})C (17 + tl‘l) > D([U{i})c((s, 6).
This is a contradiction, as (6, €) & wrugiy-

Finally, as the coefficients of (R1) do not have all the same sign, A has opposite
sign than AF for j € L\(I U {i}).

The last statment is not difficult.

([l

Proposition 51. Let (d2,€2) € Uy N MPC and let L be minimal such that wy, =
{(62,€2)}. We refer to the notation of Construction 8 and to Definition 5.5. Then
there is a partition L = KOU .. .U K™ with r > 0, such that

I
(1) for every s € {0,...,r + 1}, for every h,k € K* we have f% Y
vs € [—00,0]; for every s < s € {0,...,r+ 1}, we have vy > vy. " ’
(2) The set Ks = L\ K® is such that the codimension of the image of Ak, is
1 and for every k € K, the map Ak \(x} is surjective. If K C L is such that
the codimension of the image of Ak is 1 and for every k € K the map A\ (x}
is surjective, then K = K, for some s € {0,...,r + 1}. Moreover, if (J2,€2) is a
vertex then Ko = I and K,11 = J and if it is not then Kqg = I and KO = L\I.
Note that, by Lemma 35, wi, is not empty and with an extremity equals to wry,.
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(3) The slope of wg, is
Yiet N (Bl = Bi) +vs 3¢5 A (B} — By)
1+ dv,

with d =1 if (62, €2) is a vertex and d =3,y )\J C; otherwise.

(4) Up to a rotation, the slopes decrease when s increases (see picture below).

SZKS =

Proof. Let K C L be such that the codimension of the image of Ag is 1 and for
every k € K the map Ag\ () is surjective. Then there is an equation

(Ri) D AEX,=0

satisfied by the lines of Ag.

Assume that (02, €3) is a vertex and let I, J be as in Construction 3. The relation
(Rk) is a linear combination of (Ry) and (Rj;). Thus there are pr, pt; such that
(Ri) = pr(Rr) + py(Ry). We notice that if 4y = 0, then by the minimality of K
we have K = J and if p; = 0 then by the minimality of K we have K = I.

Assume that (d2,€2) is not a vertex and let I be as in Construction 3. The
relation (Rg) is a linear combination of (R;) and (Rp). Thus there are py,
such that (Rx) = pur(R1) + pr(Rr). We notice that if gy, = 0 then by minimality
of K we have K = I and if py, # 0 then L\I C K.

If (65, €2) is not a vertex, we set J = {j € L | A} # 0}. Notice that .J gives the
relation (Rp).

If AL+ g # 0 for every k, then the image of Ap\{¢y has the same codimen-
sion as the image of Ay, and this is a contradiction. Therefore the set {k| ur AL +

J)\k = 0} is non-empty and K is the complement of this set in L.
We set N = {—\ /)\J} {vo > ... > vp41} with the convention that v, = —oc.
We set K, = {k| — A./\] = v} andK =L\ K.
This proves (1) and (2).

As for (3), the slope sk, is

D okeK. )‘155 (B, — Br)
> okeK, A Ch

Since up to a multiple )\fs = A + I/5>\£, we get the third part of the state-
ment, with the assumption that, if (62,62) is a vertex, we have Y, A Cj
andzej)\jC =1, and otherwise >_ Ci=1land ), MGy =1or 0.

jeL "'
Set

el z
a = Z’LEI /\ZI(B/ Bl) = Sl]
b:Z]eJ)\j](B — Bj) =sl; and

_f 1if (02, 62) is a vertex and

B { Y jer AFC; (which is 1 or 0) otherwise.

a—+ bx
1+dx

To prove (4), set f(z) = . Note that slx, = f(vs). And apply a rotation

1

a7 ( ¢ _al ) in order to replace sl = a by 400 (vertical direction). This way,

1
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the slopes slx are replaced by relative slopes relslix := 7aaleS?— 1. Set g(x) =
— Sk
a?+ 1+ z(ab+d)
z(ad —b)
We now prove that ad — b < 0. By Construction 3, if (42, €2) is a vertex we have
wr € {d < d2} and wy C {§ > d2}. By the convexity of Qy the slope si; is smaller
that sly, so that ad — b < 0. If (ds,€2) is not a vertex and d = 1, similarily we
have sl; < sly = % , so that ad — b < 0. And if d = 0, we have b > 0 (still by
Construction 3).
In all cases, since g is increasing, relsli, is decreasing from +oo (s = 0 and

vs =0) to L (1, = —oo0).

so that relslk, = g(vs).

O
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