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Abstract. Let X and Y be horospherical Mori fibre spaces which are equiv-
ariantly birational with respect to the group action. Then, there is a horo-
spherical Sarkisov program from X/S to Y/T .
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1. Introduction

In this paper, we work over the field of complex numbers. Horospherical varieties
are examples of complex varieties endowed with an action of a linear algebraic
group, with finitely many orbits. They are for example rational. An important
class of horospherical varieties is given by toric varieties, on which the group Gnm
acts. Similarly to toric varieties, horospherical varieties admit a combinatorial
description. Indeed, to a horospherical variety Z and an ample divisor D one can
attach a polytope QD, called the moment polytope, describing the geometry of the
variety and of the action. For instance, some specific facets of QD are in bijection
with the divisors of the variety which are stable by the group.

In [Pas15] the second-named author described a minimal model program for horo-
spherical varieties, or horospherical MMP, completely in terms of moment polytopes
by considering a one-parameter family of polytopes of the form {QD+εKZ

}ε∈Q. For
small values of ε the polytope QD+εKZ

still defines the same variety Z, but, since
KZ is not pseudoeffective, as ε grows, facets of the polytope start collapsing. Even-
tually, the dimension of the polytope drops, defining a fibration to a variety of
smaller dimension.
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2 E. FLORIS AND B. PASQUIER

This process, for a suitable choice of D, is a minimal model program and ends
with a Mori fibre space X → S.

The natural question arises then of the relation between different horospherical
Mori fibre spaces which are outcome of two MMP on the same variety for two
different ample divisors.

Two birational Mori fibre spaces, without any further structure, are connected
by a Sarkisov program by the cornerstone results of [Cor95] and [HM13]. A Sarkisov
program is a sequence of diagrams, called links, of one of the following forms
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where W ′ → W are extremal divisorial contractions, horizontal dashed arrows
are isomorphisms in codimension 1 and all the other arrows are extremal contrac-
tions. In type IV, we have two cases depending on wether S → R and T → R are
fibrations (type IVm) or small birational maps (type IVs).

If X/S and Y/T are two Mori fibre spaces carrying the action of a complex
connected group and which are birational equivariantly with respect to the group,
then by [Flo20] there is an equivariant Sarkisov program, that is one in which all
the arrows in the links are equivariant with respect to the group.

In this work, we aim to produce a Sarkisov program in the spirit of [Pas15] and
prove the following.

Theorem 1. Let G be a complex connected reductive algebraic group. Let X and
Y be horospherical G-varieties which are G-equivariantly birational. Assume more-
over that there are Mori fibre space structures X/S and Y/T . Then, there is a
horospherical Sarkisov program from X/S to Y/T .

Given two Mori fibre spaces that are horospherical varieties, a horospherical
Sarkisov program is a Sarkisov program that can be realized by deforming moment
polytopes. More precisely, if X/S and Y/T are Mori fibre spaces that are horo-
spherical varieties, Z a horospherical G-variety, D and D′ ample divisors on Z such
that X/S (resp. Y/T ) is the outcome of a horospherical KZ-MMP with scaling of
D (resp. of D′) as in [Pas15], we construct a 2-parameter family of pseudo-moment
polytopes

{P δ,ε}(δ,ε)∈Q2

with the following properties: there are ε0 and ε1 such that {P 0,ε}ε∈[0,ε0] gives the
KZ-MMP with scaling of D and {P 1,ε}ε∈[0,ε1] gives the KZ-MMP with scaling of
D′. Moreover, for every δ ∈ [0, 1] the divisor δD+(1−δ)D′ is ample on Z and P δ,0 is
a pseudo-moment polytope for Z. The Sarkisov program X/S 99K Y/T is obtained
by considering the polytopes P δ,ε for (δ, ε) moving along a certain piecewise-linear
curve, which we call the Mori Polygonal Chain.
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More precisely, we set

P δ,ε := {x ∈ Qn | Ax ≥ (1− δ)B + δB′ + εC},

where the matrix A corresponds to primitive elements of edges (in a lattice iso-
morphic to Zn) of the colored fan of the horospherical G-variety Z, the column
matrices B and B′ correspond to the divisors D and D′, and the column matrix C
correspond to KZ . See also Definition 7.1 and Theorem 30.

We illustrate the intuitive idea behind the theorem with an example. Let X/S be
the toric variety P1×P1 with the first projection to P1. We consider the polytopes
Pε defined by A0x ≥ B0 + εC0 where

A0 =


1 0
0 1
−1 0
0 −1

 , B0 =


0
0
−2
−1

 , and C0 =


1
1
1
1

 .

For any ε ∈ [0, 1
2 [, the polytopes Pε are rectangles and are moment polytopes of

X = P1 × P1, and P 1
2
is a (horizontal) segment which is a moment polytope of P1

(see Figure 1).
Now let Y/T be the projective bundle F2 = P(O⊕O(2)). It is a two-dimensional

toric Mori fibre space. Consider the polytopes P ′ε , defined by A1x ≥ B1 +εC1 where

A1 =


1 0
0 1
−1 0
2 −1

 , B1 =


0
0
−1
−1

 , and C1 =


1
1
1
1

 .

For any ε ∈ [0, 1
2 [, the polytopes Pε are moment polytopes of Y , and P 1

2
is a (ver-

tical) segment which is a moment polytope of P1 (see Figure 1).

Figure 1. The families (Pε) and (P ′ε)

•
0

P0

P 1
4

P 1
2

•
0

P ′0

P ′1
4

P ′1
2

Thus we may add inequalities to the systems defining Pε and P ′ε , or, equivalently,
add lines to the matrices in order to get A0 = A1 = A and C0 = C1 = C (then B0



4 E. FLORIS AND B. PASQUIER

becomes B and B1 becomes B′). For example, we can consider

A =


1 0
0 1
−1 0
0 −1
2 −1

 , B =


0
0
−2
−1
−1

 , B′ =


0
0
−1
−3
−1

 , and C=


1
1
1
1
1

 .

Then the two-parameter family (P δ,ε)(δ,ε)∈Q2 defined by

P δ,ε := {x ∈ Qn | Ax ≥ (1− δ)B + δB′ + εC},
is such that, for any ε ≥ 0, Pε = P 0,ε and P ′ε = P 1,ε.

Figure 2. The families (P
1
2 ,ε) and (P

3
4 ,ε)

•
0

P
1
2 ,0

P
1
2 ,

1
4

P
1
2 ,

1
2

P
1
2 ,

3
4 •

0

P
3
4 ,0

P
3
4 ,

1
2

P ( 3
4 ,

1
2 )

P ( 3
4 ,

2
3 )

Note that the lines of A correspond to the primitive elements of the edges of the
fan of a two-dimensional toric variety W resolving the indeterminacies of X 99K Y .
Since we added only one line to A0 (resp A1) to get A, we have ρ(W/X) = 1 (resp.
ρ(W/Y ) = 1). We get therefore a type II link

W

��

W

��
P1 × P1

��

F2

��
P1 P1

The variety W obtained here does not have terminal singularities, hence this is
not a standard Sarkisov link, but terminality can be achieved by considering higher
resolutions. We do this in Example 6.1.

Structure of the paper. We recall in section 2 basic definitions and properties of
horospherical varieties. In section 3 and 4 we describe the results in [Pas15] and
prove that the ample divisors D such that theKZ-MMP scaled by D ends with X/S
form an euclidian open set. Section 5 contains the main technical results allowing
to translate the MMP and Sarkisov program into simple operation on polytopes.
Those results rely on the study of certain two-dimensional polytopes. All the details
of this study are reported in the Appendix. In section 6 we present two examples
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illustrating the horospherical Sarkisov program, and in section 7 we give the proof
of Theorem 1.

Acknowledgements: We would like to thank M. Brion for his comments on
an earlier draft of this paper and R. Terpereau for useful conversations. We are
grateful to the anonymous referee for all the suggestions and remarks, which greatly
improved the quality of the paper. Both authors acknowledge support by the ANR
Project FIBALGA ANR-18-CE40-0003-01.

2. Horospherical varieties

We begin by recalling very briefly the Luna-Vust theory of horospherical embed-
dings and by setting the notation used in the rest of the paper. For more details
on horospherical varieties, we refer the reader to [Pas08], and for basic results on
Luna-Vust theory of spherical embeddings, we refer to [Kno91].
Let G be connected reductive algebraic group. A closed subgroup H of G is said
to be horospherical if it contains the unipotent radical U of a Borel subgroup B of
G. This is equivalent to say that ([Pas08, Prop. and Rem. 2.2]), there exists a
parabolic subgroup P containing H such that the map G/H −→ G/P is a torus
fibration; or to say that there exists a parabolic subgroup P containing H such that
H is the kernel of finitely many characters of P .
Note that B ⊂ P = NG(H). We also fix a maximal torus T of B. Then we
denote by S the set of simple roots of (G,B, T ). Also denote by R the subset
of S of simple roots of P . In particular, if P is a minimal parabolic subgroup,
then R consists of only one element. Let X(T ) (resp. X(T )+) be the lattice of
characters of T (resp. the set of dominant characters). Similarly, we define X(P )
and X(P )+ = X(P )∩X(T )+. Note that the lattice X(P ) and the dominant chamber
X(P )+ are generated by the fundamental weights $α with α ∈ S\R and the weights
of the center of G.

We denote by M the sublattice of X(P ) consisting of characters of P vanishing
on H. The rank of M is called the rank of G/H and denoted by n. Let N :=
HomZ(M,Z).
For any free lattice L, we denote by LQ the Q-vector space L⊗Z Q.
For any simple root α ∈ S\R, the restriction of the coroot α∨ to M is a point of
N , which we denote by α∨M .
Moreover, we define the walls of the dominant chamber X(P )+ in the following
way. For any α ∈ S \R we set

Wα,P = X(P )+ ∩ {α∨ = 0}.

Definition 1. A G/H-embedding is a couple (X,x), where X is a normal algebraic
G-variety and x a point of X such that G · x is open in X and isomorphic to G/H.
The variety X is called a horospherical variety.

By abuse of notation, we often forget the point x, so that we call X a G/H-
embedding. But there are several non-isomorphic G/H-embeddings (X,x) for the
same horospherical varietyX. Two points x1 and x2 differ by an element of the torus
P/H, which acts on the right on G/H. Similarly to toric varieties (which are (C∗)n-
embeddings with the above defintion), G/H-embeddings are classified by colored
fans in NQ. For example, for the toric variety P2 we have different non-isomorphic
(C∗)2-embeddings, whose fans are the same up to the action of SL2(Z). In this
paper, since we define horospherical varieties by their colored fans, or equivalently
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by some of their moment polytopes, we are implicitly fixing a G/H-embedding up
to isomorphism.

Definition 2. (1) A colored cone of NQ is an couple (C,F) where C is a convex
cone of NQ and F is a set of colors (called the set of colors of the colored cone),
such that

(i) C is generated by finitely many elements ofN and contains {α∨M | α ∈ F},
(ii) C does not contain any line and F does not contain any α such that α∨M

is zero.
(2) A colored face of a colored cone (C,F) is a couple (C′,F ′) such that C′ is a

face of C and F ′ is the set of α ∈ F satisfying α∨M ∈ C′. A colored fan is a finite
set F of colored cones such that

(i) any colored face of a colored cone of F is in F,
(ii) and any element of NQ is in the interior of at most one colored cone of F.

The main result of Luna-Vust Theory of spherical embeddings is the one-to-one
correspondence between colored fans and isomorphic classes of G/H-embeddings
(see for example [Kno91]). It generalizes the classification of toric varieties in
terms of fans, case where G = (C∗)n and H = {1}. We will rewrite this result in
Section 2.1 for projective horospherical varieties in terms of polytopes and describe
explicitly the correspondence.
If X is a G/H-embedding, we denote by FX the colored fan of X in NQ and we
denote by FX the subset ∪(C,F)∈FX

F of S\R, which we call the set of colors of X.
We now recall the description of divisors of horospherical varieties.

We denote by X1, . . . , Xr the G-stable irreducible divisors of a G/H-embedding X.
For any i ∈ {1, . . . , r}, we denote by xi the primitive element in N of the colored
edge associated to Xi. The B-stable and not G-stable irreducible divisors of a
G/H-embedding X are the closures in X of B-stable irreducible divisors of G/H,
which are the inverse images by the torus fibration G/H −→ G/P of the Schubert
divisors of the flag variety G/P . The B-stable irreducible divisors of G/H are
indexed by simple roots of S\R, we write them Dα with α ∈ S\R.

We can now recall the characterization of Cartier, Q-Cartier and ample divisors
of horospherical varieties due to M. Brion in the more general case of spherical
varieties ([Bri89]). This will permit to define a polytope associated to a divisor of
a horospherical variety.

Theorem 2. (Section 3.3, [Bri89]) Let G/H be a horospherical homogeneous space.
Let X be a G/H-embbeding. Then every divisor of X is equivalent to a linear
combination of X1, . . . , Xr and Dα with α ∈ S\R. Now, let D =

∑r
i=1 aiXi +∑

α∈S\R aαDα be a Q-divisor of X.
(1) D is Q-Cartier if and only if there exists a piecewise linear function hD,

linear on each colored cone of FX , such that for any i ∈ {1, . . . , r}, hD(xi) = ai
and for any α ∈ FX , hD(α∨M ) = aα.

(2) Suppose that D is a divisor (i.e. a1, . . . , ar and the aα with α ∈ S\R are in
Z). Then D is Cartier if moreover, for any colored cone (C,F) of FX , the linear
function (hD)|C, can be defined as an element of M (instead of MQ for Q-Cartier
divisors).

(3) Suppose that D is Q-Cartier. Then D is ample, resp. nef if and only if
the piecewise linear function hD is strictly convex, resp. convex, and for any α ∈
(S\R)\FX , we have hD(α∨M ) < aα, resp. ≤ aα.
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(4) Suppose that D is Cartier. Let Q̃D be the polytope in MQ defined by the
following inequalities, where χ ∈MQ: for any colored cone (C,F) of FX , (hD)+χ ≥
0 on C, and for any α ∈ (S\R)\FX , χ(α∨M ) + aα ≥ 0. Note that here the weight of
the canonical section of D is v0 :=

∑
α∈S\R aα$α. Then the G-module H0(X,D) is

the direct sum, with multiplicity one, of the irreducible G-modules of highest weights
χ+ v0 with χ in Q̃D ∩M .

In all the paper, a divisor of a horospherical variety is always supposed to be
B-stable, i.e. of the form

∑r
i=1 aiXi +

∑
α∈S\R aαDα.

Corollary 3. A G/H-embbeding X is Q-factorial if and only if all the cones in
FX are simplicial and for any α ∈ FX , α∨M generates a ray of FX .
Moreover, in that case, the Picard number of X is the number of their B-stable
prime divisors minus the rank n (Equality (4.1.1) [Pas08]).

In what follows we denote by WDiv(X)Q (resp. WDiv0(X)Q) the vector space
of B-stable (linearly equivalent to zero) Q-Weil divisors on a horospherical variety
X and by Amp(X) (resp. Nef(X)) the cones in WDiv(X)Q of ample (resp. nef)
divisors. Both cones are polyhedral and, if X is Q-factorial, full-dimensional.

2.1. Projective horospherical varieties and polytopes. In this section we
recall how many properties of G/H-embeddings can be formulated in terms of
moment polytopes. Theorem 2 gives the following

Proposition 4. (Corollary 2.8, [Pas15]) Let X be a projective G/H-embedding and
D =

∑r
i=1 aiXi+

∑
α∈S\R aαDα be a Q-divisor of X. Suppose that D is Q-Cartier

and ample.
(1) The polytope Q̃D defined in Theorem 2 is of maximal dimension in MQ and

we have

Q̃D = {m ∈MQ | 〈m,xi〉 ≥ −ai, ∀i ∈ {1, . . . , r} and 〈m,α∨M 〉 ≥ −aα, ∀α ∈ FX}.

(2) Let v0 :=
∑
α∈S\R aα$α. The polytope QD := v0 + Q̃D is contained in

the dominant chamber X(P )+ of X(P ) and it is not contained in any wall of the
dominant chamber.

(3) Let (C,F) be a maximal colored cone of FX , then the element v0− (hD)|C of
MQ is a vertex of QD. In particular, if D is Cartier, then QD is a lattice polytope
(i.e. has its vertices in v0 +M).

(4) Conversely, let v be a vertex of QD. We define Cv to be the cone of NQ
generated by inward-pointing normal vectors of the facets of QD containing v. We
set Fv = {α ∈ S\R | v the corresp. wall of the dominant chamber}. Then (Cv,Fv)
is a maximal colored cone of FX .

The polytope QD is called the moment polytope of (X,D) (or of D), and the
polytope Q̃D the pseudo-moment polytope of (X,D) (or of D).
The projective G/H-embeddings are classifed in terms of G/H-polytopes (defined
below in Definition 2.3), and we can give an explicit construction of a G/H-
embedding from a G/H-polytope.

Definition 3. Let Q be a polytope in X(P )+
Q (not necessarily a lattice polytope).

We say that Q is a G/H-polytope, if its direction is MQ and if it is contained in no
wall Wα,P with α ∈ S\R.
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Let Q and Q′ be two G/H-polytopes in X(P )+
Q . Consider any polytopes Q̃ and

Q̃′ in MQ obtained by translations from Q and Q′ respectively. We say that Q and
Q′ are equivalent G/H-polytopes if the following conditions are satisfied.

(1) There exist an integer j and 2j affine half-spacesH+
1 , . . . ,H

+
j andH′+1 , . . . ,H′

+
j

ofMQ (respectively delimited by the affine hyperplanesH1, . . . ,Hj andH′1, . . . ,H′j)
such that Q̃ is the intersection of the H+

i , Q̃′ is the intersection of the H′+i , and for
all i ∈ {1, . . . , j}, H+

i is the image of H′+i by a translation.
(2) With the notation of (1), for all subset J of {1, . . . , j}, the intersections

∩i∈JHi ∩Q and ∩i∈JH′i ∩Q′ have the same dimension.
(3) Q and Q′ intersect exactly the same walls of the dominant chamber.

Remark that this definition does not depend on the choice of Q̃ and Q̃′. We now
give a classification of projective horospherical varieties in terms of polytopes.

Proposition 5. (Proposition 2.10, [Pas15]) The correspondence between moment
polytopes and colored fans gives a bijection between the set of equivalence classes of
G/H-polytopes and (isomorphism classes of) projective G/H-embeddings.

Proposition 6. (Proposition 2.11 and Remark 2.12, [Pas15]) Let Q be a G/H-
polytope. Up to multiplying Q by an integer, there exists a very ample Cartier
divisor D of the corresponding G/H-embedding X such that Q = QD. More
precisely, X is isomorphic to the closure of the G-orbit G · [

∑
χ∈(v0+M)∩Q vχ] in

P(⊕χ∈(v0+M)∩QV (χ)).

Lemma 7. Let X be a G/H-embedding and let D be a nef divisor on X. Then
there is a horospherical subgroup H ( H ′ ⊆ G such that QD is the polytope of a
G/H ′-embedding X ′ and a suitable multiple of D defines a morphism X → X ′.

Proof. If D is nef, the polytope QD can be defined as in Proposition 4. The
colored fan that we can then construct is not necessarily FX , but the colored fan
of a horospherical G-variety Y (not necessarily a G/H-embedding), where the G-
equivariant map φD associated to the nef divisor goes from X to Y .

Indeed, up to multiplying D or Q by an integer, the proof of [Pas15, Proposi-
tion 2.11] and [Pas15, Remark 2.12] gives the projective G-equivariant map

φD : X −→ P(H0(X,D)∨)
x 7−→ [s 7→ s(x)]

whose image is the closure of theG-orbitG·[
∑
χ∈(v0+M)∩Q vχ] in P(⊕χ∈(v0+M)∩QV (χ)).

This closure is the variety Y by applying Proposition 6 to Q = QD. Thus Q is
a G/H ′-polytope with H ⊆ H ′, and Y is the G/H ′-embedding corresponding to
Q. �

By the duality between colored fans and moment polytopes we easily get that
if X is a Q-factorial G/H-embedding then for every ample B-stable divisor D the
polytope QD is simple. We can go further and give the following result, which is
a translation of Corollary 3 in terms of polytopes, by using Proposition 4 (3) and
(4). The matrix inequality Ax ≥ B comes from Proposition 4 (1).

Lemma 8. Let X be a G/H-embedding and let D be an ample B-stable divisor.
The polytope Q̃D can be defined by a matrix inequality Ax ≥ B, where the lines of
A are given by the xi’s and the α∨M ’s, and the column matrix B is given by minus
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the coefficients of D. For any vertex v of Q̃D, denote Iv the set of lines of A such
that AIvx = BIv .

Then X is Q-factorial if and only if AIv is surjective for any vertex v of Q̃D.

Similarly, we have the following result.

Lemma 9. Let X be a G/H-embedding and let D be an ample B-invariant divisor.
Let D′ be a B-invariant divisor of X and denote by B′ the column matrix is given
by minus the coefficients of D′.

Then D′ is Q-Cartier if and only if for any vertex v of Q̃D, B′ is in the image
of AIv .

Remark 1. The existence of G-equivariant morphisms between horospherical vari-
eties can be characterized in terms of colored fans [Kno91] or equivalently in terms
of moment polytopes [Pas15, section 2.4]. In this text, we will rather use Lemma
7.

3. Minimal Model Program

In this section, we recall the results in [Pas15] where the second-named author
describes a minimal model program from a horospherical variety in terms of a
one-parameter family of polytopes.
We start by recalling some standard terminology for the minimal model program
for projective varieties. We refer to [KM98] for the basic notions on the minimal
model program.

Let X be a projective variety with terminal singularities such that KX is not
nef. Then by the cone and contraction theorem there is a morphism ϕ : X → Y
such that ρ(X) = ρ(Y ) + 1 and for every curve C in X which is contracted to a
point by ϕ we have KX · C < 0. Moreover

• if dimY < dimX then ϕ is called a Mori fibre space;
• if dimY = dimX and Exc(ϕ) has codimension 1 in X then ϕ is said to be

divisorial;
• if dimY = dimX and Exc(ϕ) has codimension at least 2 in X then ϕ is said

to be small.
In the last case, by [HM07] and [HM10], there is ϕ+ : X+ → Y such that Exc(ϕ+)
has codimension at least 2 in X+ and for every curve C in X+ contracted by ϕ+

we have KX+ · C > 0. The data of ϕ and ϕ+ is called a flip.
In the second and third case Y is birational to X. We set X1 = Y and ϕ1 = ϕ

in the second case and X1 = X+ and ϕ1 = (ϕ+)−1 ◦ ϕ in the third case. If KX1

is not nef, then by the cone and contraction theorem there is again a morphism
X1 → Y1. An MMP, or minimal model program, is a sequence of birational maps
ϕi : Xi−1 99K Xi obtained as above. We say that it terminates if there is an integer
k such that KXk

is nef or there is a Mori fibre space Xk → T . A proper morphism
with connected fibres is called a contraction. A birational morphism ϕ : X → Y such
that ρ(X) = ρ(Y ) + 1 is called an extremal contraction. We say that a morphism
ϕ is K-negative (resp. K-positive) if for every curve C in X which is contracted to
a point by ϕ we have KX · C < 0 (resp. KX · C > 0).

3.1. HMMP scaled by an ample divisor. Let (X,D) be a polarized horo-
spherical variety: X is a G/H-embedding and D is a B-stable ample Q-divisor
of X. Write D =

∑r
i=1 biXi +

∑
α∈S\R bαDα. An anticanonical divisor of X is



10 E. FLORIS AND B. PASQUIER

−KX =
∑r
i=1Xi +

∑
α∈S\R aαDα, where aα are integers greater or equal than 2,

and given by an explicit formula [Bri97, Th. 4.2].
We consider the one-parameter family of polytopes (Q̃ε)ε≥0 defined by 〈x, xi〉 ≥

−bi+ε for all i ∈ {1, . . . , r} and 〈x, α∨M 〉 ≥ −bα+εaα for any α ∈ S\R. Equivalently,
letA be the matrix associated to the linear map ϕ(m) = (〈m,xi〉i=1...r, 〈m,α∨M 〉α∈F ).
Let B be the column matrix whose coordinates are minus the coefficents of D; and
C the column matrix whose coordinates are the coefficents of −KX .

We define (Qε)ε≥0 by Qε = Q̃ε +
∑
α∈S\R bα − εaα$α.

Remark 2. For small ε ∈ Q, Q̃ε = Q̃D+εKX
and Qε = QD+εKX

is the moment
polytope associated to the ample divisor D + εKX .

Theorem 10. (Corollary 3.16 and Section 4, [Pas15]) For every ample divisor
D over a Q-Gorenstein horospherical variety X, there exists εmax > 0, and, there
exist non-negative integers k, j0, . . . , jk, rational numbers αi,j for i ∈ {0, . . . , k} and
j ∈ {0, . . . , ji} and αk,jk+1 ∈ Q>0 ∪ {+∞} ordered as follows with the convention
that αi,ji+1 = αi+1,0 for any i ∈ {0, . . . , k − 1}:

(1) α0,0 = 0;
(2) for any i ∈ {0, . . . , k}, and for any j < j′ in {0, . . . , ji + 1} we have αi,j <

αi,j′ ;
and such that the different G/H-embedding associated to the polytopes in the family
(Qε)ε∈Q≥0

are given by the following intervals:
(1) Xi,0 when ε ∈ [αi,0, αi,1[, with i ∈ {0, . . . , k};
(2) Xi,j when ε ∈]αi,j , αi,j+1[, with i ∈ {0, . . . , k} and j ∈ {1, . . . , ji};
(3) Yi,j when ε = αi,j with i ∈ {0, . . . , k} and j ∈ {1, . . . , ji};
(4) T such that dimT < dimX when ε = αk,jk+1 = εmax.
Moreover we get dominant G-equivariant morphisms:
(1) φi,j : Xi,j−1 −→ Yi,j for any i ∈ {0, . . . , k} and j ∈ {1, . . . , ji};
(2) φ+

i,j : Xi,j −→ Yi,j for any i ∈ {0, . . . , k} and j ∈ {1, . . . , ji};
(3) φi : Xi,ji −→ Xi+1,0 for any i ∈ {0, . . . , k − 1};
(4) and φ : Xk,jk −→ T .

For every i, j the morphism φi,j is K-negative, the morphism φ+
i,j is K-positive and

their exceptional loci have codimension at least 2. For every i the morphism φi is
a K-negative divisorial contraction and φ is a fibration.

We can illustrate this result by the diagram in Figure 3: we draw the segment
[0, εmax] which is partitioned by points, and open or semi-open segments, so that
each set of the partition corresponds to a horospherical G-variety.

Figure 3.

ε = 0
[
X0,0

◦
Y0,1

◦
Y0,j0

X1,0

[

X1,j1

◦
Y1,1

◦
Y1,j1

[ [
Xk,0

◦
Yk,1

◦
Yk,jk

Xk,jk

•
T

ε = εmax

We now give an example of the implementation of Theorem 10.



HOROSARKISOV PROGRAM 11

Figure 4. The family (Qε)ε≥0 for ε = 0, 1
2 , 1, 4

3 ,
5
3 , 2, 7

3 and 5
2

(from right to left).

MQ

$β

$α
0

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

Example 1. Consider a rank-one horospherical homogeneous space with two colors
Dα and Dβ such that α∨M = 1 and β∨M = 2, aα = aβ = 3. In particular, M =
Z($α + 2$β).

Let X be the G/H-embedding without picked color, and let D = 2X1 + 5X2 +

5Dα + 5Dβ , which is an ample divisor of X. Then the family (Q̃ε)ε≥0 is defined by
Q̃ε := {x ∈MQ | Ax ≥ B + εC} where

A =


1
−1
1
2

 , B =


−2
−5
−5
−5

 , and C =


1
1
3
3

 .

And the family (Qε)ε≥0 is defined by Qε := (5−3ε)($α+$β) + Q̃ε, and illustrated
in Figure 4.

For any ε ∈ [0, 1[, the polytopes are associated to X = X0,0.
For any ε ∈ [1, 5

3 [, the polytopes are associated to the G/H-embedding X1,0 with
picked color β. For ε = 5

3 , the polytope corresponds to the (non-Q-factorial) G/H-
embedding Y1,1 with the two picked colors.
For any ε ∈] 5

3 ,
5
2 [, the polytopes are associated to the G/H-embedding X1,1 with
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picked color α.
And for ε = 5

2 , the polytope corresponds to the variety T = G/P ($β).

We first have a divisorial contraction, followed by a flip and we finish with a
Mori fibre space.

We will refer to the series of maps of Theorem 10 as HMMP, for horospherical
minimal model program.

Remark 3. We notice that the algorithm described in Theorem 10 is not necessar-
ily an MMP, as the morphisms involved are not extremal contractions. Nevertheless,
if X is Q-factorial, it is an MMP for a general choice of D, in particular φ is a Mori
fibre space.

Remark 4. In Theorem 10, we can also use the family (Q̃ε)ε∈Q≥0
. By replacing

the walls of the dominant chamber by the inequalities in Ax ≥ B + εC coming
from an α ∈ S\R, the study of the family and associated horospherical variety is
simpler.

4. Resolutions and Horospherical MMP

The main goal of this section is to prove that if X/T is a Mori fibre space and
Z → X a resolution of the singularites of X, then there is a euclidian open set in
WDiv(Z)Q of ample divisors A such that the HMMP from Z with scaling of A
ends with X/T .

Lemma 11. Let X and Y be G/H-embeddings. Then there is a smooth G/H-
embedding Z and Z → X × Y a resolution of the indeterminacy of X 99K Y .

Proof. The existence of a smooth resolution of the indeterminacy of X 99K Y is a
consequence of the same result for toric varieties. Indeed, we can first unpick colors
both for X and Y to obtain toroidal varieties. Then, we can apply De Concini-
Procesi theorem to the corresponding fans, to get a commun smooth resolution of
these two toroidal varieties (see for example [Ewa96, Page 252]). �

Lemma 12. Let X and Z be terminal and Q-factorial G/H-embeddings such that
Z is a resolution of the singularities of X.

Let E1, . . . , Ek be the exceptional divisors of φ : Z −→ X. Then, for any non-
negative rational numbers d1, . . . , dk, we have QD = Qφ∗(D)+

∑k
i=1 diEi

.

Proof. Since X has terminal singularites, we have KZ = φ∗KX +
∑k
i=1 aiEi with

ai > 0 for every i.
We denote by X1, . . . , Xr the G-stable irreducible divisors of X. For any i ∈

{1, . . . , r}, we denote by xi the primitive element in N of the colored edge associ-
ated to Xi. Then the G-stable irreducible divisors of Z are X1, . . . , Xr, E1, . . . , Ek.
We denote by ei the primitive element in N of the colored edge associated to Ei.
Let D =

∑r
i=1 biXi +

∑
α∈S\R bαDα be an ample B-stable divisor of X. Denote

by c1, . . . , ck the rational numbers such that φ∗(D) =
∑r
i=1 biXi +

∑k
j=1 cjEj +∑

α∈S\R bαDα. Then, for any non-negative rational numbers d1, . . . , dk, the poly-
tope QD coincides with
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Qφ∗(D)+
∑k

i=1 diEi
:=

{m ∈MQ | 〈m,xi〉 ≥ −bi, 〈m, ej〉 ≥ −cj − dj , 〈m,α∨M 〉 ≥ −aα for all i, j, α}.

By [Bri89], the divisors D and φ∗(D) are the divisors associated to the same
piecewise linear function hD defined in Theorem 2. Therefore, the coefficients dj
are the values hD(ej). In terms of polytopes, since D is ample, this means that
Hj := {m ∈MQ | 〈m, ej〉 = −cj} intersects QD along a face of QD. In particular,
intersecting QD with the halfspace {m ∈MQ | 〈m, ej〉 ≥ −cj−dj} does not change
the polytope. �

Lemma 13. Let X/T be a Mori fibre space such that X is a G/H-embedding. The
set of ample B-stable Q-divisors D of X such that the HMMP from X scaled by D
gives X −→ T is an open cone C1 in WDiv(X)Q.

Proof. Let R be the extremal ray of NE(X) corresponding to the Mori fibration
X −→ T . Let F be the dual facet of R inNef(X)Q. By abuse of notation we denote
by F the facet F +WDiv0(X)Q of the inverse image of Nef(X)Q in WDiv(X)Q.

Then the HMMP from X scaled by D gives X −→ T if and only if the half
line D+Q+KX intersects the boundary of Nef(X)Q +WDiv0(X)Q in the relative
interior F̊ of F . Equivalently, D is in C ′1 := F̊ −Q+KX = Q+(F̊ −KX).

Note that −KX · C > 0 for any [C] ∈ R, so that −KX is not in F and then C ′1
is of maximal dimension. This implies that D′− εKX is ample for any D′ ∈ F̊ and
ε > 0 small enough and then C ′1 intersects Amp(X)Q +WDiv0(X)Q non trivially.

Finally, the set C1 = C ′1∩Amp(X)Q +WDiv0(X)Q is the sought open cone. �

Proposition 14. Let X/T be a Mori fibre space such that X is a G/H-embedding.
Let Z → X be a resolution of singularities in the category of G/H-embeddings.
Then there is an euclidian open neighborhood UX of WDiv(Z)Q such that every
divisor in UX is ample and for every A ∈ UX the Mori fibre space X/T is the
outcome of the HMMP from Z with scaling of A.

Proof. Let C1 be the open cone in WDiv(X)Q of Lemma 13. Let D ∈ C1. Let η
be small enough such that D − ηKX ample.

We have WDiv(Z)Q = φ∗(WDiv(X)Q)⊕ V ect(E1, . . . , Ek), and φ∗(Nef(X)) is
a face of Nef(Z) = Amp(Z). Set

A := φ∗(D − ηKX) +

k∑
i=1

biEi.

There exists an open polyhedron PolD of Qk containing 0 in its boundary, such
that for any (b1, . . . , bk) ∈ PolD the divisor A is ample and dj := bj + ηaj > 0 for
all j ∈ {1, . . . , k}.

Since A + ηKZ = φ∗(D) +
∑k
i=1 diEi, we have QA+ηKZ

= QD by Lemma 12.
This, together with Lemma 13, proves that the HMMP scaled by A ends with the
Mori fibre space X/T . Indeed, the inequalities coming from the exceptional divisors
Ei are necessary to define the polytope QA but not the polytope QA+ηKZ

and the
polytopes QA+εKZ

with ε ≥ η.
Choose UX to be the set of divisors A = φ∗(D−ηKX)+

∑k
i=1 biEi, with D ∈ C1,

η > 0 such that D − ηKX is ample and (b1, . . . , bk) ∈ PolD,η. Remark that by
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construction, since Amp(X) and Amp(Z) are polyhedral, the condition D − ηKX

ample is given by an inequality depending linearly on the coefficents of D, and the
polyhedron PolD is given by inequalities depending linearly on the coefficents of D
and δ. In particular, UX is also an open polyhedron.

�

5. Two-parameters families of polytopes

In this section, we study some two-parameters families of polytopes. We present
in this section many auxiliary results whose proofs, mainly relying on linear algebra
tools, are in the Appendix.

5.1. A two-parameters family of polytopes: definitions and first proper-
ties. Let n and p be two positive integers. Denote by I0 the set {1, . . . , p}. Then
two matrices A ∈Mp×n(Q) and d ∈Mp×1(Q) define a polyhedron

P := {x ∈ Qn | Ax ≥ d}.

Remark 5. Suppose that P is non-empty. Then P is a polytope, that is a bounded
polyhedron, if and only if the following condition is satisfied.

Condition 1. There is no non-zero x ∈ Qn satisfying Ax ≥ 0.

Indeed, assume that there is a non-zero x ∈ Qn satisfying Ax ≥ 0. Let y ∈ P .
Then for every t ∈ Q≥0 we get A(y + tx) = Ax + tAy ≥ d, thus y + tx belongs to
P . Conversely, if P is not bounded, P contains at least an affine half-line, and x
can be taken to be a generator of the direction of this half-line.

Note that Condition 1 implies that A is injective.

To define a two-parameters family of polytopes, we fix A satisfying Condition 1
and we define divisors depending on two rational parameters δ and ε.
Let B, B′ and C in Mp×1(Q). Set I0 := {1, . . . , p} and define

D : Q2 → Qp
(δ, ε) 7→ (1− δ)B + δB′ + εC.

Note that D is an affine map.

Definition 4. Given A, B, B′ and C as above, we define for any (δ, ε) ∈ Q2:

P δ,ε := {x ∈ Qn | Ax ≥ D(δ, ε)}.

We do not exclude the case where some lines of A are zero. Notice that P δ,ε can
be empty, even for all (δ, ε) ∈ Q2.

Condition 1 implies that for any (δ, ε) ∈ Q2, the set P δ,ε is a polytope (possibly
empty).

Now, we want to describe some equivalence classes of polytopes in this family,
looking at their faces that correspond to lines of A. A face F δ,ε of P δ,ε is given
by some equalities in Ax ≥ D(δ, ε) and then is associated to some I ⊆ I0. We
formalize this below.

For any matrixM and any i ∈ I0, we denote byMi the matrix consisting of the
line i of M. More generally, for any subset I of I0 we denote by MI the matrix
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consisting of the lines i ∈ I ofM. For any subset I of I0, we can identify DI with
the affine map

DI : Q2 → Q|I|
(δ, ε) 7→ (1− δ)BI + δB′I + εCI .

Let (δ, ε) ∈ Q2. Denote by Hδ,εi the hyperplane {x ∈ Qn | Aix = Di(δ, ε)}. For
any I ⊆ I0, denote by F δ,εI the face of P δ,ε defined by

F δ,εI := (
⋂
i∈I
Hδ,εi ) ∩ P δ,ε.

Note that for any face F δ,ε of P δ,ε there exists a unique maximal I ⊆ I0 such that
F δ,ε = F δ,εI (we include the empty face and P δ,ε itself).

Definition 5. Let I ⊆ I0. Define ΩI to be the set of (δ, ε) ∈ Q2 such that F δ,εI is not
empty. Define ωI to be the subset of ΩI such that, if I ′ ⊆ I0 satisfies F δ,εI = F δ,εI′ ,
then I ′ ⊆ I.

In other words,

ΩI = {(δ, ε)| there is x ∈ Qn such that AIx = DI(δ, ε) and Ax ≥ D(δ, ε)}
and

ωI = {(δ, ε)| there is x ∈ Qn such that AIx = DI(δ, ε) and AIcx > DIc(δ, ε)}
where Ic denotes the complement of I in I0.

To simplify the notation, we often write i instead of {i}, for any i ∈ I0.

Remark 6. If (δ, ε) ∈ ω∅, then the polytope P δ,ε is of dimension n (i.e. has a
non-empty interior). And, for any i ∈ I0, if (δ, ε) ∈ ωi and Ai 6= 0, then F δ,εi is a
facet of P δ,ε.

The following lemma describes the first properties of the sets ΩI and ωI . It
follows from Lemmas 32 and 33.

Proposition 15. Let I ⊆ I0.
(1) The sets ΩI and ωI are convex subsets of Q2.
(2) The set ωI is open, for the euclidean topology, inside {(δ, ε)| DI(δ, ε) ∈

ImAI} = D−1
I ImAI .

(3) There are four cases: either ωI is empty, or it is a point, or it is a convex
part of an affine line (a segment, a half-line or a line), or it is a non-empty open
set in Q2.

(4) If ωI is not empty, we have ωI ⊂ ΩI = ωI .

The next result will be useful in the next sections. It follows from Lemma 35.

Lemma 16. Let I ⊆ I0 be such that ωI = {(δ0, ε0)}. Suppose that the image
of AI is of codimension 2. There is i ∈ I such that the image of AI\{i} is of
codimension 1. For any such i, the point (δ0, ε0) belongs to ΩI\{i}\ωI\{i}.

If B and B′ are general, then the sets ωI and ΩI intersect "nicely", as proved in
the next proposition.

We denote by Aff(S) the affine space generated by a set S.
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Proposition 17. There is an open Zariski subset V of the ample cone such that for
every (B,B′) ∈ V ×V the subsets ΩI and ωI of Definition 5.2 satisfy the following.

(1) If ωI 6= ∅, the dimension of ωI equals 2 − codim ImAI (which is then at
least 0).

(2) There is a finite union of convex parts of affine lines

L = ∂Ω∅ ∪
⋃

I⊆I0 dim ΩI≤1

ΩI ⊆ Q2

such that if (δ, ε) 6∈ L then P δ,ε is an n-dimensional simple polytope or it is empty.
(3) For any I, J ⊆ I0 such that dimωI = dimωJ = 1,we have Aff(ωI) = Aff(ωJ)

if and only if ωI∩J is a non-empty open convex part of an affine line. Moreover in
this case, we have ωI∩J ⊇ ωI ∪ ωJ .

(4) For any I, J ⊆ I0 such that dimωI = dimωJ = 0, we have ωI = ωJ if and
only if ωI∩J is a singleton, equal to ωI = ωJ .

(5) For any I, J ⊆ I0 such that dimωI = 0 and dimωJ = 1, Aff(ωJ) contains
ωI if and only if ωI∩J is a non-empty open convex part of Aff(ωJ).

The proof of Proposition 17 is given in Section A.2.

Lemma 18. Let B,B′ be as in Proposition 17. Let I ⊆ I0, such that ωI 6= ∅.
There exists J ⊆ I as above and such that dimωI = dimωJ and J is minimal with
the property.

Proof. Follows from Lemma 34(3). �

Remark 7. Let I ⊆ I1 be such that ImAI and ImAI1 have codimension 1 and are
defined by the same equation

∑
i∈I λiXi = 0. Assume moreover that I = {i| λi 6=

0}. Then for every j ∈ I the morphism induced by AI1\{j} is surjective.

Notation 1. Let B,B′ be as in Proposition 17.
(1) Let I ⊆ I0 be such that ωI is one-dimensional. By Lemma 18 without loss

of generality we can assume that for any i ∈ I, AI\{i} is surjective. Then there are
rational numbers λIi with i ∈ I such that

∑
i∈I λ

I
iAi = 0. We notice that λIi 6= 0

for every i ∈ I. Indeed, if there is j such that λIj = 0, then
∑
i∈I\{j} λ

I
iXi is a

nontrivial equation for the lines of AI\{j}. We can assume that
∑
i∈I λ

I
iCi is zero

or one. We fix such numbers.
(2) Let L ⊆ I0 be such that ωL is a singleton. By Lemma 18 we can assume

that L is minimal with the property. As above, we get two independent relations∑
`∈L λ`X` = 0 and

∑
`∈L µ`X` = 0 on the lines of AL. We set I = {` ∈ L| λ` 6= 0}

and J = {` ∈ L| µ` 6= 0}. We can choose the relations such that I and J are proper
in L. Then, as the image of AL\{`} has codimension 1 for every ` ∈ L, the images
of AI and AJ have codimension 1 and we have I ∪ J = L.

5.2. Polyhedral decomposition and the geography of models. Let G be
a reductive group and H ⊆ G be a horospherical subgroup. We choose a basis
of MQ so that MQ ∼= Qn. We fix a horospherical embedding Z of G/H and set
p = r + |S\R|. Recall that, by the notation given in Section 2, r is the number of
G-stable prime divisor of Z and |S\R| is the number of B-stable prime divisor of
G/H. In particular, p is the number of B-stable prime divisor of Z. Let A be the
p × n matrix associated to the linear map ϕ(m) = (〈m,xi〉i=1...r, 〈m,α∨M 〉α∈S\R).
Denote by J0 ⊆ I0 the set of indices S\R.
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Let B = (−d1, . . . ,−dr, (−dα)α∈S\R) and B′ = (−d′1, . . . ,−d′r, (−d′α)α∈S\R) be
such that D =

∑d
i=1 diZi +

∑
α∈S\R dαDα and D′ =

∑d
i=1 d

′
iZi +

∑
α∈S\R d

′
αDα

are ample divisors on two varieties X and Y respectively, in the sense that Q̃D and
Q̃D′ are pseudo-moment polytopes for X and Y respectively. Notice that it may
occur that some Di’s are not divisors of X or Y as we observe in Lemma 13. Let
C = (c1, . . . , cr, (cα)α∈S\R) be such that ci > 0 for every i and cα > 0 for every α.
Since X is projective, Q̃D = {x ∈ MQ | Ax ≥ B} is a polytope and then Condi-
tion 1 is verified by A.

From now on, following remark 4, if a polytope Q is defined by {x ∈ MQ |
Ax ≥ D}, with D = (−d1, . . . ,−dr, (−dα)α∈S\R), we will say that it is the pseudo-
moment polytope associated to the moment polytope v0+Q with v0 =

∑
α∈S\R dα$α,

or similarly the pseudo-moment polytope of the associated G/H-embedding as soon
as v0 +Q is a G/H-polytope (Definition 2.3).

Remark 8. Let (δ, ε) ∈ ω∅, then P δ,ε is of maximal dimension in MQ and contains
no hyperplane defined as Hδ,εα := {Ajx = Dδ,ε

j } with j ∈ J0 associated to the simple
root α. In particular, if vδ,ε =

∑
j∈J0 D

δ,ε
j $α, we can check that the polytope

vδ,ε + P δ,ε is a G/H-polytope.
Consider now the case where (δ, ε) ∈ Ω∅\ω∅. Let M ′Q be the linear subspace

generated by P δ,ε and M ′ the sublattice M ′Q ∩M of M , let R′ be the union of R
with the set of simple roots α ∈ S\R such that P δ,ε ⊂ Hδ,εα , and define P ′ to be
the parabolic subgroup containing B whose simple roots are R′; and H ′ to be the
kernel of characters of M ′ ⊂ X(P ′). Then, we can also check that the polytope
vδ,ε + P δ,ε is a G/H ′-polytope.

We suppose that B and B′ belong to the open set V existing by Proposition 17.
Then we define the following locally closed subsets of Ω∅. Recall that by Aff(S)

we denote the affine space generated by a set S.

Definition 6. We set
U2 = {(δ, ε) ∈ Ω∅| (δ, ε) ∈ ωI ⇒ dimωI = 2}
U1 = {(δ, ε) ∈ Ω∅| (δ, ε) 6∈ U2, (δ, ε) ∈ ωI ∩ ωJ ⇒ dim Aff ωI ∩Aff ωJ ≥ 1}
U0 = {(δ, ε) ∈ Ω∅| ∃I, {(δ, ε)} = ωI}
U ′0 = Ω∅ \ (U2 ∪ U1 ∪ U0).

Note that U0, U
′
0 are finite sets as B and B′ are as in Proposition 17. By con-

struction, Ω∅ is the disjoint union of these four sets.
Moreover, we have U2 ⊆ ω∅. Indeed, by Proposition 15, Ω∅ = ω∅, therefore

Ω∅\ω∅ is a union of zero or one-dimensional ωI ’s. We also have U ′0 ⊆ ω∅, be-
cause points of U ′0 are intersections of non-colinear one-dimensional ωI ’s by Propo-
sition 17. However, note that points of U1 and U0 can be either in ω∅ or in Ω∅\ω∅.

We can now give the following notation, using Remark 8 and Proposition 5.

Notation 2. Let (δ, ε) be such that P δ,ε is not empty.
(1) If (δ, ε) ∈ U2, the polytope P δ,ε is the pseudo-moment polytope of a G/H-

embedding which we denote by Xδ,ε.
(2) If (δ, ε) ∈ U1, there is H ′ ⊇ H such that P δ,ε is the pseudo-moment polytope

of a G/H ′-embedding which we denote by Y δ,ε.
(3) If (δ, ε) ∈ U0, there is H ′ ⊇ H such that P δ,ε is the pseudo-moment polytope

of a G/H ′-embedding which we denote by Zδ,ε.
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Remark 9. By Proposition 17(2), the generality assumption on B and B′ and
Lemma 8 for every (δ, ε) ∈ U2 the variety Xδ,ε is Q-factorial. In particular, by
Corollary 3, its Picard number is

(1) ρ(Xδ,ε) = |Iδ,ε1 t J0| − n

where Iδ,ε1 := {i ∈ I0\J0 | (δ, ε) ∈ ωi}. Since (δ, ε) ∈ U2, we can replace Iδ,ε1 by
Iδ,ε2 = {i ∈ I0\J0 | (δ, ε) ∈ Ωi} in the formula.

Let (δ0, ε0) ∈ U2. Let ` : Q→ Q2 be the parametrisation of a rational affine line
such that `(0) = (δ0, ε0). Let t̄ > 0 be the minimum such that `(t̄) ∈ Ω∅ \U2. There
is a G-equivariant morphism from Xδ0,ε0 to the variety corresponding to P `(t̄).
Indeed, for every t ∈ [0, t̄), the polytope P `(t) is the pseudo-moment polytope of a
polarized variety (X`(t), D`(t)), and all the P `(t) for t ∈ [0, t̄) are equivalent. Thus
the corresponding varieties are isomorphic to Xδ0,ε0 . The divisor D(`(t̄)) is nef,
but not ample, on Xδ0,ε0 . Hence, by Lemma 7 there is a G equivariant morphism
from Xδ0,ε0 to the variety corresponding to P `(t̄).

5.2.1. If `(t̄) ∈ U1. We assume in this paragraph that `(t̄) = (δ1, ε1) ∈ U1. The
main result of this paragraph is Proposition 23, which describes the different sorts
of G-equivariant morphisms we can get from Xδ0,ε0 to Y δ1,ε1 . We start with some
preparatory lemmas.

Lemma 19. Let (δ, ε) ∈ U1. Let I be such that (δ, ε) ∈ ωI and dimωI = 1.
Assume moreover that I is minimal with the property. Let {λIi } be the coefficients
defined in Notation/Construction 1. Denote by I+ := {i ∈ I | λIi > 0} and
I− := {i ∈ I | λIi < 0}. Note that I = I+ t I−.

Then (δ, ε) ∈ ω∅ if and only if both I+ and I− are not empty.

Proof. Follows from Lemma 46 in the Appendix. �

Lemma 20. Let (δ, ε) ∈ U1 ∩ ω∅. Let I be such that (δ, ε) ∈ ωI and dimωI = 1.
Assume moreover that I is minimal with the property. Let i ∈ I0\J0. Then (δ, ε) ∈
Ωi\ωi if and only if I+ or I− equals {i}.

In particular, there is at most one i ∈ I0\J0, such that (δ, ε) is in Ωi\ωi.

Proof. Follows from Lemma 47 in the Appendix. �

Lemma 21. Let (δ, ε) ∈ U1∩Ω∅\ω∅. Let I be such that (δ, ε) ∈ ωI and dimωI = 1.
Assume moreover that I is minimal with the property. Let i ∈ I0\I. Then either
(δ, ε) 6∈ ΩI∪{i} or (δ, ε) ∈ ωI∪{i}.

Proof. Follows from Lemma 48 in the Appendix. �

Corollary 22. Let (δ, ε) ∈ U1.
(1) Assume that (δ, ε) ∈ ω∅. If there is i ∈ I0\J0 such that I+ or I− equals

{i}, then the G-stable prime divisors of Y δ,ε are in bijection with Iδ,ε1 = Iδ,ε2 \{i}.
Otherwise the G-stable prime divisors of Y δ,ε are in bijection with Iδ,ε1 = Iδ,ε2 .

(2) Assume that (δ, ε) ∈ Ω∅\ω∅. Then the G-stable prime divisors of Y δ,ε are in
bijection with

{i ∈ I0\I | (δ, ε) ∈ ωI∪{i}} = {i ∈ I0\I | (δ, ε) ∈ ΩI∪{i}} = Iδ,ε2 \(I
δ,ε
2 ∩ I).
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Proof. The set of B-stable prime divisors of Y δ,ε is the union of G-stable divisors
and colors of the horospherical homogeneous space. The G-stable prime divisors
correspond bijectively to the facets F δ,εi with i ∈ I0\J0 that are not equal to some
F δ,εj with j ∈ J0.

Assume that (δ, ε) ∈ ω∅. Thus Y δ,ε is a G/H-embedding, colors are indexed
by S\I or equivalently by J0. If there are i and j ∈ I0 with i 6= j and such that
F δ1,ε1i = F δ1,ε1j is a facet, then Ai and Aj are colinear, one of i or j is in J0, and
I = i, j. Lemma 20 implies the claim.

Assume that (δ, ε) ∈ Ω∅\ω∅. Then Y δ,ε is a G/H ′-embedding with H ′ ( H as
explained in Remark 8. In the proof of Lemma 46, we prove that P δ,ε generates the
affine subspace {x ∈MQ | AIx = DI(δ, ε)}, so that M ′ = ker(AI) ∩M . Moreover,
the colors of G/H ′ are indexed by J0\(J0 ∩ I). If for some i, j ∈ I0, F δ,εi = F δ,εj is a
facet, then i, j 6∈ I, Ai and Aj are colinear modulo the vector space N ′′Q generated
by the lines of AI . If i 6= j, it would give another relation to the one given by I and
then (δ, ε) is in a zero dimensional ωK with K ⊃ I ∪ {i, j}, that is a contradiction
with (δ, ε) ∈ U1. Then i = j. Note also that for any i ∈ I0\I, F δ,εi = F δ,εI∪{i}, and if
it is not empty then Ai 6∈ N ′′Q. Indeed, if Ai ∈ N ′′Q, we have another relation to the
one given by I.

Hence Lemma 21 implies the claim. �

Proposition 23. Let (δ0, ε0) ∈ U2. Let ` : Q → Q2 be the parametrisation of a
rational affine line such that `(0) = (δ0, ε0). Let t̄ > 0 be the minimum such that
`(t̄) ∈ Ω∅ \ U2. Assume that `(t̄) = (δ1, ε1) ∈ U1.

Set I minimal such that (δ1, ε1) ∈ ωI .
The morphism from Xδ0,ε0 to Y δ1,ε1 is an extremal contraction and one of the

following occurs.
(1) If I = I+ or I− then dimY δ1,ε1 < dimXδ0,ε0 , Y δ1,ε1 is Q-factorial and

ρ(X) = ρ(Y ) + 1.
(2) If |I| ≥ 2 and I+ or I− is {i} with i ∈ I0\J0 then Y δ1,ε1 is Q-factorial and

Xδ0,ε0 → Y δ1,ε1 is an extremal divisorial contraction or an isomorphism.
(3) In the other cases Xδ0,ε0 → Y δ1,ε1 is a small extremal contraction.

Proof. Assume that I = I+ or I−. By Lemma 19, we have (δ1, ε1) ∈ Ω∅ \ω∅ and by
Remark 8 we have dimY δ1,ε1 < dimXδ0,ε0 .

By Lemma 21, the B-stable prime divisors of Y δ1,ε1 are in bijection with (Iδ1,ε12 t
J0)\I. Let F δ1,ε1J be a face of P δ1,ε1 , choose J such that (δ1, ε1) ∈ ωJ . Then Im(AI)

and Im(AJ) have both codimension 2 in Q|I| and Q|J| respectively. We can see Q|I|
and Q|J\I| as supplementary subsapces of Q|J|, so that Im(AJ) ⊂ Im(AI)⊕Q|J\I|.
Since both subspaces are two-codimensional subspaces of Q|J|, they are equal. We
then deduce that the restriction of AJ\I to ker(AI) is surjective. This implies, with
Lemma 8 applied to the matrix of lines of AI0\I restricted to ker(AI), that Y δ1,ε1
is Q-factorial. Now, the dimension of ker(AI) is n− |I|+ 1 and by Corollary 3, the
Picard number of Y δ1,ε1 is |(Iδ1,ε12 t J0)\I| − (n − |I| + 1) = |Iδ1,ε12 t J0| − n − 1.
But, since the Ωi’s are closed, Iδ1,ε12 = Iδ0,ε02 , so that the relative Picard number of
Xδ0,ε0 −→ Y δ1,ε1 is 1.

Assume that I+ or I− is {i} with i ∈ I0\J0 and |I| ≥ 2. By Lemma 19 we have
(δ1, ε1) ∈ ω∅. By Remark 8 we have dimY δ1,ε1 = dimXδ0,ε0 .
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By Corollary 22, the B-stable prime divisors of Y δ1,ε1 are in bijection with
(Iδ1,ε12 \{i})t J0 = (Iδ0,ε02 \{i})t J0. For the sake of shortness we denote by K \ {i}
the set K ∩ (I0 \ {i}).

Let F δ1,ε1J be a face of P δ1,ε1 , choose J such that (δ1, ε1) ∈ ωJ .
Suppose that AJ is not surjective, then ωJ is of dimension 1 ( because (δ1, ε1) ∈

U1). Then (δ1, ε1) ∈ U1 ∩ ωI ∩ ωJ implies that ωI and ωJ are in the same affine
line. We conclude by Proposition 17 (3) and the minimality of I that I ⊆ J . Then
by Remark 7, for any i ∈ I, AJ\{i} is surjective. This implies, with Lemma 8, that
Y δ1,ε1 is Q-factorial. Then its Picard number is |(Iδ0,ε02 \{i}) t J0| − n. This is the
Picard number of Xδ0,ε0 minus one if i ∈ Iδ0,ε02 and the Picard number of Xδ0,ε0 if
not. In that latter case, since P δ1,ε1 can be defined as well without the line i, it is
an equivalent G/H-polytope to P δ0,ε0 , and then Xδ0,ε0 = Y δ1,ε1 .

In the other cases, again by Lemma 19 and Remark 8 we have dimY δ1,ε1 =
dimXδ0,ε0 .

Corollary 22 implies that the B-stable prime divisors of Y δ1,ε1 are the same as
the ones of Xδ0,ε0 , they are therefore in bijection with Iδ0,ε02 t J0.

Let F δ1,ε1J be a face of P δ1,ε1 , choose J such that (δ1, ε1) ∈ ωJ . If AJ is not
surjective, then ωJ is one-dimensional and I ⊆ J . Then a B-stable Q-divisor of
Y δ1,ε1 is Q-Cartier if and only if its coefficients satisfy the equation

∑
i∈I λ

I
iXi.

Also note that for I = J , AJ is not surjective.
Then the relative Picard number of Xδ0,ε0 −→ Y δ1,ε1 is 1. �

Remark 10. If I+ = I or I− = I, for every i ∈ I the polytope P δ,ε is contained in
Hδ,εi = {x ∈ Qn | Aix = Dδ,ε

i }. There are two possible cases for I. Either I = {i}
and Ai = 0, so that P δ,ε has dimension n, the associated horospherical variety X
has the same rank as G/H, the same lattice M but its open homogeneous space
has one color less (αi); or Ai 6= 0 for any i ∈ I (and |I| ≥ 2), so that P δ,ε is of
maximal dimension an affine subspace directed by ker(AI), then it has dimension
n − |I| + 1, and the associated horospherical variety X has rank n − |I| + 1, its
lattice is M ∩ kerAI and the colors of its open homogeneous space are the colors
of G/H whose index of line in not in I.

If I+ = {i} or I− = {i}, then the condition Aix ≥ Di(δ, ε) is superfluous in the
definition of P δ,ε.

5.2.2. If `(t̄) ∈ U0. We assume in this paragraph that `(t̄) = (δ2, ε2) ∈ U0. We
want to study the morphisms from Xδ0,ε0 to Zδ2,ε2 .

Let L be such that {(δ2, ε2)} = ωL. By Lemma 16, there is I such that ωI has
dimension one and (δ2, ε2) ∈ ΩI . Then all but a finite set of points of ωI are in
ωI ∩ U1. Choose (δ1, ε1) ∈ ωI ∩ U1 close to (δ2, ε2).

By Lemma 7 there are G-equivariant morphisms from Xδ0,ε0 to Y δ1,ε1 and Zδ2,ε2 ,
and from Y δ1,ε1 to Zδ2,ε2 . Moreover the morphism from Xδ0,ε0 to Zδ2,ε2 factorizes
through Y δ1,ε1 .

We suppose from now on that {(δ2, ε2)} = ωL ⊂ Ω∅\ω∅.

Notation 3. Let L be such that ωL = {(δ̄, ε̄)} ⊂ Ω∅\ω∅ and ε̄ > 0. Then, by
Propostion 17, the image of AL has codimension two. By Lemma 18, we can
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suppose up to taking a subset of L that for every ` ∈ L the image of AL\{`} has
codimension 1 in Q|L|.

We have two possible cases.
(1) If ωL is a vertex of Ω∅\ω∅, by Notation/Construction 1(2) there exist I and

J subsets of L such that, for any i ∈ I and any j ∈ J , AI\{i} and AJ\{j} are
surjective, ωI , ωJ have dimension 1 and are contained in Ω∅\ω∅. By Lemma 19 we
can fix two linearly independent equations for the lines of AL

(RI)
∑
i∈I λ

I
iXi = 0, λIi > 0 ∀i ∈ I

(RJ)
∑
j∈J λ

J
jXj = 0, λJj > 0 ∀j ∈ J

We suppose that ωI ⊆ {δ < δ̄} and that ωJ ⊆ {δ > δ̄}.
We can moreover assume that

∑
i∈I λ

I
iCi = 1 and

∑
j∈J λ

J
j Cj = 1.

(2) If ωL is not a vertex of Ω∅\ω∅, then there is I ⊆ L such that, for any i ∈ I
the matrix AI\{i} is surjective, and ωI is a segment of Ω∅\ω∅ containing ωL. By
Lemma 19, we can fix two linearly independent equations for the lines of AL

(RI)
∑
i∈I λ

I
iXi = 0, λIi > 0 ∀i ∈ I

(RL)
∑
j∈L λ

L
j Xj = 0, λLj 6= 0 ∀j ∈ L \ I

We verify that λLj 6= 0 ∀j ∈ L \ I. Indeed if the second equation has one
zero coefficient λLj for some j ∈ L\I, then AL\{j} would also have an image of
codimension 2, contradicting the minimality of L. Moreover, the coefficients with
indexes in L\I in the relation (RL) do not have all the same sign.

Indeed, if not, we can suppose that that they are positive, and by adding to (RL)
a positive multiple of (RI), we would obtain a second equation, linearly independent
with (RI), with positive coefficients, associated to some J ( I. By Lemma 19 the
set ωJ would be contained in Ω∅ \ ω∅, contradicting the hypothesis on ωL, as it
would be the vertex between the segments ωI and ωJ .

With the same argument we can also suppose that λLj ≥ 0 for any j ∈ I but
some are zero.

We set (L \ I)+ = {j ∈ L \ I | λLj > 0} and (L \ I)− = {j ∈ L \ I | λLj < 0}.
We can moreover assume that

∑
i∈I λ

I
iCi = 1 and either

∑
j∈L λ

L
j Cj = 1, or∑

j∈L λ
L
j Cj = 0 and

∑
j∈L λ

L
j (B′j −Bj) > 0. Indeed if

∑
j∈L λ

L
j Cj < 0 we take the

opposite and add a positive multiple of the first equation and we obtain the wanted
equation with

∑
j∈L λ

L
j Cj > 0. And if

∑
j∈L λ

L
j Cj = 0 and

∑
j∈L λ

L
j (B′j − bj) > 0,

we take the opposite and add a positive multiple of the first equation and we obtain∑
i∈I λ

I
iCi > 0.

Lemma 24. Let (δ, ε) ∈ U0∩Ω∅\ω∅ and assume that (δ, ε) is a vertex. Let L ⊆ I0 be
a minimal subset such that ωL = {(δ, ε)}. Let i ∈ I0\L. Then either (δ, ε) 6∈ ΩL∪{i}
or (δ, ε) ∈ ωL∪{i}.

Proof. Follows from Lemma 49 in the Appendix. �

Lemma 25. Let (δ, ε) ∈ U0∩Ω∅\ω∅ and assume that (δ, ε) is not a vertex of Ω∅\ω∅.
Let L ⊆ I0 be a minimal subset such that ωL = {(δ, ε)}. Let I be a minimal subset
such that ωL ⊆ ωI and dimωI = 1. Let i ∈ I0\I. If (δ, ε) ∈ ΩI∪{i}\ωI∪{i} then
i ∈ L\I and either L \ I+ = {i} or L \ I− = {i}. In particular, there are at
most 2 indices i such that (δ, ε) ∈ ΩI∪{i}\ωI∪{i}. If there are 2 such indices, then
|L| = |I|+ 2 and the restriction of AL\I to ker(AI) consists of twice the same line
if L\I ⊆ I0\J0.
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Proof. Follows from Lemma 50 in the Appendix. �

Corollary 26. Let (δ, ε) ∈ U0 ∩ ∂Ω∅. Let L be minimal such that ωL = {(δ, ε)}.
(1) If ωL is a vertex, the set of G-stable prime divisors of Zδ,ε is in bijection

with Iδ,ε2 \(I
δ,ε
2 ∩ L);

(2) if ωL is not a vertex and there is i ∈ I0 \ J0 such that either L\I+ or L\I−
is {i}, the set of G-stable prime divisors of Zδ,ε is in bijection with Iδ,ε2 \ {i};

(3) otherwise, the set of G-stable prime divisors of Zδ,ε is in bijection with Iδ,ε2 .

Proof. By Remark 8, the variety Zδ,ε is a G/H ′-embedding with H ′ ( H. We let
M ′ be the lattice of characters vanishing on H and N ′ its dual. Note that N ′Q is
the quotient NQ/N

′′
Q where N ′′Q is the subspace generated by the lines of AL.

The G-stable prime divisors of Zδ,ε correspond bijectively to the facets F δ,εi with
i ∈ I0\J0 that are not equal to some F δ,εj with j ∈ J0.

Assume that ωL is a vertex. The polytope P δ,ε generates the affine subspace
{x ∈ MQ | ALx = DL(δ, ε)}, so that M ′ = ker(AL) ∩M . Moreover, the colors
of G/H ′ are indexed by J0\(J0 ∩ L). If for some i, j ∈ I0, F δ,εi = F δ,εj is a facet,
then, i, j 6∈ L, Ai and Aj are colinear modulo N ′′Q. If i 6= j we would have another
relation other than the two given by L. Thus we have i = j.

Note also that for any i ∈ I0\L, we have F δ,εi = F δ,εL∪{i}. If the latter is non
empty and if Ai ∈ N ′′Q we would have another relation other than the two given by
L so that Ai 6∈ N ′′Q. Hence by Lemma 24 the G-stable prime divisors of the variety
Zδ,ε are in bijection with

{i ∈ I0\L | (δ, ε) ∈ ωL∪{i}} = {i ∈ I0\L | (δ, ε) ∈ ΩL∪{i}} = Iδ,ε2 \(I
δ,ε
2 ∩ L).

Assume that ωL is not a vertex. The polytope P δ,ε generates the affine subspace
{x ∈ MQ | AIx = DI(δ, ε)}, so that M ′ = ker(AI) ∩M . Moreover, the colors of
G/H ′ are indexed by J0\(J0 ∩ I). If for some i 6= j ∈ I0, F δ,εi = F δ,εj is a facet,
then Ai and Aj are colinear modulo the vector space N ′Q generated by the lines of
AI , and then L = I ∪ {i, j}. Hence, by Lemma 25, the G-stable prime divisors of
the variety Zδ,ε are in bijection with

{i ∈ I0\I | (δ, ε) ∈ ωI∪{i}} = Iδ,ε2 \{i}

if L\I+ or L\I− is {i} with i ∈ I0\J0, and else with

{i ∈ I0\I | (δ, ε) ∈ ωI∪{i}} = Iδ,ε2 .

�

Proposition 27. Let (δ0, ε0) ∈ U2. Let ` : Q → Q2 be the parametrisation of a
rational affine line such that `(0) = (δ0, ε0). Let t̄ > 0 be the minimum such that
`(t̄) ∈ Ω∅ \ U2. Assume that `(t̄) = (δ2, ε2) ∈ U0 ∩ Ω∅\ω∅.

Let L be a minimal set such that {(δ2, ε2)} = ωL. The morphism from Xδ0,ε0 to
Zδ2,ε2 has relative Picard number at most 2.

Proof. Suppose first that ωL is a vertex.
By Corollary 26, the B-stable prime divisors of Zδ2,ε2 are in bijection with

(Iδ2,ε22 tJ0)\L. Let F δ2,ε2J be a face of P δ2,ε2 , choose J such that (δ2, ε2) ∈ ωJ . Then
L ⊆ J and ωJ = ωL, so that the restriction of AJ\L to ker(AL) is surjective. This
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implies, by Lemma 8 applied to the matrix of lines of AI0\L restricted to ker(AL),
that Zδ2,ε2 is Q-factorial. Then its Picard number is

|(Iδ2,ε22 t J0)\L| − (n− |L|+ 2) = |Iδ2,ε22 t J0| − n− 2.

Since Iδ2,ε22 ⊇ Iδ0,ε02 , the relative Picard number of Xδ0,ε0 −→ Zδ2,ε2 is at most 2.

Suppose now that ωL is not a vertex. By Corollary 26, the B-stable prime
divisors of Zδ2,ε2 are in bijection with a subset of (Iδ2,ε22 t J0)\I of cocardinality
at most 1. Let F δ2,ε2J be a face of P δ2,ε2 , choose J such that (δ2, ε2) ∈ ωJ . Then
I ⊆ J . Assume that ωJ is one-dimensional. Then the restriction of AJ\I to ker(AL)
is surjective.

Assume that ωJ has dimension zero. Then ωJ = ωL, so that the restriction of
AJ\I to ker(AI) implies the same equation for every such J .

If the cocardinality of a subset of (Iδ2,ε22 t J0)\I is one, then this equation does
not occur for B-stable divisors and then Zδ2,ε2 is Q-factorial. In any case,the Pi-
card number of Zδ2,ε2 is |(Iδ2,ε22 t J0)\I| − (n− |I|+ 1)− 1 = |Iδ2,ε22 t J0| − n− 2.
But Iδ2,ε22 is either Iδ0,ε02 or the union of Iδ0,ε02 with i as in Lemma 25, so that the
relative Picard number of Xδ0,ε0 −→ Zδ2,ε2 is 1 or 2.

�

Remark 11. If ωL = {(δ2, ε2)} is a vertex and the relative Picard number of
Xδ0,ε0 −→ Zδ2,ε2 is not 2, then there exists i ∈ Iδ2,ε22 \Iδ0,ε02 . In particular, ωL is a
vertex of Ωi that does not contain (δ0, ε0). Hence, there exists K ⊂ I0, such that
ωK ⊂ ω∅ is one dimensional with one extremity equals to ωL.
If ωL is not a vertex, such ωK exists by definition.
5.3. Mori polygonal chain. We start with the following definition.
Definition 7. The Mori polygonal chain of the family P δ,ε is

MPC := (Ω∅\ω∅) ∩ {(δ, ε) ∈ Q2, | 0 ≤ δ ≤ 1}.
Throughout this section we suppose that (0, 0) and (1, 0) are in ω∅, that for every

i ∈ I0\J0 there exist negative ε0 and ε1 such that (0, ε0) and (1, ε1) are in ωi and
that C ≥ 0. Then {(δ, ε) ∈ Q2 | ε ≤ 0 and 0 ≤ δ ≤ 1} is a contained in ω∅.

Note that, with the above hypothesis, the Mori polygonal chain is contained
in the half plane defined by ε > 0. It is polygonal because Ω∅\ω∅ is a union of
one-dimensional ΩI .

We say that ωI is a segment of the Mori polygonal chain if dimωI = 1 and the
intersection of ωI with MPC is not empty. If (δ, ε) ∈MPC, then either P δ,ε is not
of maximal dimension or there exists i such that Ai = 0 and Di(δ, ε) = 0.

By Lemma 19, if ωI is a segment of MPC such that AI\{j} is surjective for every
j ∈ I, then there is an equation

∑
i∈I λ

I
iXi = 0 for the lines of AI such that λIi > 0

for every i ∈ I.
Definition 8. Let K ⊆ I0 be such that dimωK = 1 and the codimension of the
image AK is 1. Let

∑
i∈K λ

K
i Xi = 0 be an equation for the lines of AK . The slope

of ωK is

slK =

{ ∑
i∈K λK

i (B′i−Bi)∑
i∈K λK

i Ci
if
∑
i∈K λ

K
i Ci 6= 0,

∞ if
∑
i∈K λ

K
i Ci = 0.
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Remark 12. The segment ωK is included in the line defined by

ε

(∑
i∈K

λKi Ci

)
+ δ

(∑
i∈K

λKi (B′i −Bi)

)
+
∑
i∈K

λKi Bi = 0

and slK is the slope of this line.

The next result is the key technical step for the proof of the main theorem. It
describes the configuration of sets ωI around a vertex of the Mori polygonal chain.
We show in the main theorem that these configurations correspond to Sarkisov link.

Proposition 28. Let (δ2, ε2) ∈ U0 ∩MPC and let L be minimal such that ωL =
{(δ2, ε2)}. We refer to the notation of Construction 3. Then there is a partition
L = K0 t . . . tKr+1, with r ≥ 0, such that

(1) for every s ∈ {0, . . . , r + 1}, for every h, k ∈ Ks we have −λ
I
h

λJh
= −λ

I
k

λJk
=:

νs ∈ [−∞, 0]; for every s < s′ ∈ {0, . . . , r + 1}, we have νs > νs′ .
(2) The set Ks = L \ Ks is such that the codimension of the image of AKs

is
1 and for every k ∈ Ks the map AKs\{k} is surjective. If K ⊆ L is such that
the codimension of the image of AK is 1 and for every k ∈ K the map AK\{k}
is surjective, then K = Ks for some s ∈ {0, . . . , r + 1}. Moreover, if (δ2, ε2) is a
vertex then K0 = I and Kr+1 = J and if it is not then K0 = I and K0 = L\I.

Note that, by Lemma 16, ωKs is not empty and with an extremity equals to ωL.
(3) The slope of ωKs

is

slKs
=

∑
i∈I λ

I
i (B

′
i −Bi) + νs

∑
j∈J λ

J
j (B′j −Bj)

1 + dνs

with d = 1 if (δ2, ε2) is a vertex and d =
∑
j∈L λ

L
j Cj otherwise.

(4) Up to a rotation, the slopes decrease when s increases (see picture below).

•
ωL

ωI
ωJ

ωK1

ωK2

ωKr

•
ωL

ωI

ωK1

ωK2

ωKr+1

6. Two examples

In this section we present two examples illustrating the horosperical Sarkisov
program.

6.1. A toric example. Set X := P1 × P1, S = P1, Y the projective bundle
P(O ⊕O(2)) and T = P1. Fans of X and Y are the following:
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0

FX

0

FY

Here G = (C∗)2 and coincides with the Borel subgroup.
A resolution of X and Y is the toric variety Z given by the following fan, where

we index the edges as in the picture:

0

FZ

1

2

3

4 5

6

We let p : Z → X and q : Z → Y be the two morphisms resolving the indetermi-
nacy of X 99K Y .

We will consider the following matrix A :=


1 0
0 1
−1 0
0 −1
1 −1
2 −1

.

A G-stable divisor of Z is of the form D =
∑6
i=1 diDi. Note that D1, D2, D3

and D4 are also prime G-stable divisor of X and D1, D2, D3 and D6 are also prime
G-stable divisor of Y .
Let D =

∑6
i=1 diDi be a divisor on Z and B = (−d1, . . . ,−d6). The divisor D is

ample if and only if for any I ⊆ {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {1, 6}} we have
AIc(A−1

I BI) > BI .
This inequality system reduces to the following system, thus defining the ample

cone of Z:

(2) d1 + d5 > d6, d2 + d6 > 2d1, d3 + d5 > d4, d4 + d6 > 2d5.

The polytope QD is the pseudo-moment polytope of (X, p∗D) if and only if for
every I ⊆ {{1, 2}, {2, 3}, {3, 4}, {1, 4}} we have AIc(A−1

I BI) > BI . Equivalently, if
and only if the following inequalities are satisfied

(3) d1 + d3 > 0, d2 + d4 > 0, d5 > d1 + d4, d6 > 2d1 + d4.

Note that the first two inequalities correspond to the condition for p∗D to be ample
and the last two other correspond to the fact that the lines 5 and 6 are not necessary
to define QD.
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Similarly, QD is the pseudo-moment polytope of (Y, q∗D) if and only if for every
I ⊆ {{1, 2}, {2, 3}, {3, 6}, {1, 6}} we have AIc(A−1

I BI) > BI . Equivalently, if and
only if the following inequalities are satisfied

(4) d1 + d3 > 0, d2 + d6 > 2d1, d4 > 2d3 + d6, d5 > d3 + d6.

Note that the first two inequalities correspond to the condition for q∗D to be ample
and the last two other correspond to the fact that the lines 4 and 5 are not necessary
to define QD.
To run the horospherical Sarkisov program, we have to choose D, D′ such that

(1) QD and QD′ are pseudo-moment polytopes of (X, p∗D) and (Y, q∗D
′) re-

spectively;
(2) there exist ε < 0 and ε′ < 0 such that D + εKZ and D′ + ε′KZ are ample

over Z.
(3) the HMMP with scaling of D (resp. D′) ends with X/S (resp. Y/T ).

Condition (1) is given by (3) and (4).

For condition (2), note that −KZ =
∑6
i=1Di and thus C = (1, . . . , 1). Then

D + εKZ is ample over Z if and only if

d1 + d5 > d6 + ε, d2 + d6 > 2d1, d3 + d5 > d4 + ε and d4 + d6 > 2d5.

Hence, there exists ε < 0 such that D + εKZ is ample over Z if and only if
d2 + d6 > 2d1 and d4 + d6 > 2d5. Similarly, there exists ε′ < 0 such that D′+ ε′KZ

is ample over Z if and only if d′2 + d′6 > 2d′1 and d′4 + d′6 > 2d′5.

As for condition (3), note first that the HMMP from any ample divisor of Y ends
with Y → S, because only one extremal ray of NE(Y ) is K-negative. If d1 + d3 <
d2 + d4 (resp. d1 + d3 > d2 + d4) the HMMP from D gives the first (resp. the
second) projection P1 × P1 → P1

Since D and D′ are given up to linearly equivalence, we can choose them such
that d1 = d2 = d′1 = d′2 = 0. In particular, QD and QD′ have a "south-west" vertex
at 0 (but the same is not true for Qε,λ for ε 6= 0). The conditions on D and D′ are
then

d3 > 0, d6 > d4 > 0 and d4 < d5 <
1

2
(d4 + d6), with either d3 < d4 or d3 > d4;

d′3 > 0, d′6 > 0, d′4 > 2d′3 + d′6 and d′3 + d′6 < d′5 <
1

2
(d′4 + d′6).

For example we can have B :=


0
0
−1
−2
−5/2
−4

 and B′ :=


0
0
−1
−6
−7/2
−2

.

Here is a scheme of Ω∅ for this choice of B,B′.
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◦(0, 0)

◦(0, 1/2) •
ωL1

•
ωL2

◦ (1, 1/2)

◦ (1, 0)

ω1,4,5

ω3,4,5
ω1,5,6

ω3,5,6

X = P1 × P1 Y = F2

Z

X ′

F1

Y ′

P1 P1 P1

P1 P1

Here X ′ is the blow-up of X at a point and Y ′ is the blow-up of F1 at a point in
the (−1)-section. Note that L1 = {1, 3, 4, 5} and L2 = {1, 3, 5, 6}. Also note that
(1/2, 0) is in U ′0.

In the above example, we have d3 < d4. If we choose B :=


0
0
−6
−1
−3/2
−3

, then

d3 > d4. Thus we obtain the following scheme. Note that the first Sarkisov link is
the type IV link from the first to the second projection P1 × P1 −→ P1.
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◦(0, 0)

◦(0, 3/2)

•
ωL1

•
ωL2

•
ωL3

◦ (1, 1/2)

◦ (1, 0)

ω1,4,5

ω3,4,5

ω1,5,6

ω3,5,6

X = P1 × P1

Y = F2

Z

X ′

F1

Y ′

P1
P1

P1

P1

{pt}

The fifth line of A does not correspond to a divisor of X or Y , but is added in
order to get Z to be smooth. The strategy given in the paper also works by chosing a
(not necessarily smooth) resolution of indeterminacies Z ′, but non-terminal varieties
can appear. In this example, if we forget the fifth line of A, we can obtain a unique
Sarkisov link of type II with X ′ = Y ′ = Z ′.

6.2. A rank one horospherical example. Choose a connected algebraic group
G with simple roots. Set

S\R = {α1, α2, α3, α4, α5}

with the notation of section 2. Let χ = $1 + $2 − $3 − $4 and H ⊂ P be the
kernel in P of the character χ. In particular, M = Zχ. We identify χ with 1 in
M ' Z. Then N ' Z, α∨1M = α∨2M = 1, α∨3M = α∨4M = −1 and α∨5M = 0.

Since G/H is of rank one, projective G/H-embedding are uniquely determined
by their colors, that is, by subsets of {α1, α2, α3, α4}. Denote by XK the projective
G/H-embedding such that FXK

= {αk | k ∈ K}. In particular, Z := X∅ is a
common resolution of all XK .

Denote by PK the parabolic subgroup of G containing B whose the set of simple
roots is {αk | k ∈ K} ∪R.

Let H ′ ⊂ P5 be the kernel in P5 of the character χ. It is a horospherical subgroup
associated to the same lattice M . Denote by YK the projective G/H ′-embedding
Y such that FYK

= {αk | k ∈ K}.
Suppose that the coefficients aαi

’s are respectively 2, 3, 2, 3 and 2 for any
i = 1, . . . , 5. We consider A to be the column matrix associated to

(α∨1M , α
∨
2M , α

∨
3M , α

∨
4M , α

∨
5M , 1,−1) = (1, 1,−1,−1, 0, 1,−1).
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Then C is the column matrix associated to (2, 3, 2, 3, 2, 1, 1).
Let B and B′ be the column matrices associated to −(0, 1, 7, 6, 5, 2, 2) and

−(2, 0, 6, 7, 1, 3, 7) respectively. Then the associated horospherical Sarkisov pro-
gram gives a link of type IVm, followed by a link of type III, a link of type IVm and
a last one of type IVs.

We then obtain the following scheme (only with ε ≥ 0 and 0 ≤ δ ≤ 1). In black
we draw the one dimensional ωI ’s giving fibrations and in grey the ones giving
birational contractions. We dash the ones corresponding to flips.

◦(0, 0) ◦ (1, 0)

◦(0, 2/3)
•
ωL1

•
ωL2

•
ωL3

•
ωL4

◦ (1, 1/2)•

ω1,2

ω4,7

ω3,7

ω3,4

X = X1

Y = X2,3

X2

X2,4G/P1

G/P2

G/P2,4

Y2,4

Y2,3

7. Proof of the main theorem

Let G be a reductive group and H ⊆ G be a horospherical subgroup. We
choose a basis of MQ so that MQ ∼= Qn. We fix a horospherical embedding Z of
G/H and set p = r + |S\R|. Let A be the matrix associated to the linear map
ϕ(m) = (〈m,xi〉i=1...r, 〈m,α∨M 〉α∈S\R). Denote by J0 ⊆ I0 the set of indices S\R.

LetB = (−d1, . . . ,−dr,−dα) andB′ = (−d′1, . . . ,−d′r,−d′α) be such that
∑
diZi+∑

dαDα and
∑
d′iZi+

∑
d′αDα are ample divisors. Let −KZ =

∑
ciZi+

∑
cαDα.

Let C = (c1, . . . , cr, cα).
Suppose now that for any i ∈ I0\J0 there exist negative ε0 and ε1 such that

(0, ε0) and (1, ε1) are in ωi. Then for any δ, the intersection ωi ∩ {(δ, ε) | ε ≥ 0}
is an open segment (possibly empty) with one extremity at (δ, 0). Then the family
(P δ,ε)ε∈Q≥0

describes a HMMP.

Proposition 29. For any δ ∈ [0, 1] in the complement of a finite set, the HMMP
described by the family (P δ,ε)ε∈Q≥0

is an MMP.

Proof. By Theorem 10, the family (P δ,ε)ε∈Q≥0
describes an HMMP. Let U ′′ be

the set of δ such that there is a 1-dimensional set ωI included in {δ} × Q. Let
p1 : Q2 → Q be the projection onto the first factor and let δ ∈ [0, 1]\p1(U0∪U ′0)∪U ′′.
By Proposition 23, the HMMP described by the family (Qδ,ε)ε∈Q≥0

consists of
extremal contractions.

�

Definition 9. Let G be a connected reductive algebraic group. Let X and Y be
horospherical G-varieties which are G-equivariantly birational. Assume moreover
that there are Mori fibre space structures X/S and Y/T .

Let Z be a horospherical resolution of the indeterminacy of X 99K Y , and let
AX and AY be ample divisors of Z.
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We set

P δ,ε := {x ∈ Qn | Ax ≥ (1− δ)B + δB′ + εC}

and Ω = {(δ, ε) ∈ Q2 | P δ,ε 6= ∅}. We say that the two-parameter family
of polytopes {P δ,ε}δ,ε is associated to (Z,AX , AY ) and describes a horospherical
Sarkisov program from X/S to Y/T , if there exist ε0, ε′0 in Q, and singletons
ωL1

, . . . , ωL`
⊆ ∂Ω such that

(1) every point (δ, ε) ∈ Ω defines the horospherical variety of pseudo-moment
polytope P δ,ε;

(2) X/S and Y/T are the outcomes of the horospherical KZ-MMP with scaling
of AX and AY respectively described by the one-parameter families (P 0,ε)ε≥ε0 and
(P 1,ε)ε≥ε′0 respectively;

(3) every ωLi defines a Sarkisov link involving horospherical varieties of pseudo-
moment polytope P δ,ε with (δ, ε) in a neighborhood of ωLi

in Ω, including varieties
in the sequences of flips.

(4) the Sarkisov links defined by the ωLi
’s give a Sarkisov program from X/S

to Y/T .

Theorem 30. Let G be a connected reductive algebraic group. Let X and Y be
horospherical G-varieties which are G-equivariantly birational. Assume moreover
that there are Mori fibre space structures X/S and Y/T .

For any horospherical resolution (smooth or with terminal singularities) of the
indeterminacy Z of X 99K Y , there exist two euclidean open sets UX and UX of
WDiv(Z)Q, such that for any AX ∈ UX and AY ∈ UX , there is a two-parameter
family of polytopes associated to (Z,AX , AY ) that describes a horospherical Sarkisov
program from X/S to Y/T .

Recall that, since the birational mapX 99K Y isG-equivariant, X and Y are both
G/H-embedding with the same horospherical homogeneous space G/H; and by
Lemma 11, there exists horospherical resolutions of the indeterminacy of X 99K Y .
Then the second part of Theorem 30 implies Thoerem 1.

Proof of Theorem 30. By Proposition 14 there are euclidean open sets UX and UY
of WDiv(Z)Q such that every divisor in UX (resp. UY ) is ample and for every
A ∈ UX (resp. in UY ) the Mori fibre space X/T (resp. Y/S) is the outcome of the
HMMP from Z with scaling of A.

Since the open set determined in Proposition 17 is Zariski open, we can now find
open subsets UX ⊆ UX and UX ⊆ UY , such that any (AX , AY ) ∈ UX ×UY satisfies
the generality conditions of Proposition 17.

Let fix such a (AX , AY ) ∈ UX × UY .
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Let B = (−d1, . . . ,−dr, (−dα)α∈S\R) and B′ = (−d′1, . . . ,−d′r, (−d′α)α∈S\R) and
C = (c1, . . . , cr, (cα)α∈S\R) be such that

AX =

d∑
i=1

diZi +
∑

α∈S\R

dαDα

AY =

d∑
i=1

d′iZi +
∑

α∈S\R

d′αDα

−KZ =

d∑
i=1

ciZi +
∑

α∈S\R

cαDα.

Let ΩI and ωI be the polytopes of Definition 5.2.
Thus there are two segments ωI and ωJ of the Mori poligonal chain such that

every (δ, ε) in a euclidean neighborhood of ωI satisfies Xδ,ε ∼= X and if (δ1, ε1) ∈ ωI
then Y δ1,ε1 ∼= T . The same holds for J .

The segments ωI and ωJ disconnect the chain. Let C ⊆ MPC be such that
ωI ∪ C ∪ωJ is connected. Let ωL1 , . . . , ωLh

be the points in U0 ∩ C. We notice that
U ′0 ∩ ∂Ω∅ = ∅. Indeed, if (δ, ε) ∈ ωI ∩ ωJ and ωI , ωJ are not aligned, then the
convex hull of ωI and ωJ is non-empty and open (and thus of dimension 2), proving
that (δ, ε) ∈ ω∅.
We prove that every ωLi

describes a link. We write ωL for simplicity.
Let L = K0 t · · · t Kr+1 be the partition existing by Proposition 28. We

fix a euclidean neighborhood ∆ of ωL and for any i ∈ {0, . . . , r}, let Xi be the
horospherical variety corresponding to a point in the open set delimited by ωKi

and
ωKi+1

. If ωL is not a vertex, let Xr+1 be the horospherical variety corresponding
to a point in the open set delimited by ωKr+1

and ωI . Let t be r if ωL is a vertex
and r + 1 if not. We denote by T0, respectively Tt+1, the horospherical variety
corresponding to a point in MPC on the left, respectively on the right, of ωL.

We prove first that

Claim 31. the only possible divisorial contractions between two varieties Xi and
Xi±1 are X1 → X0 and Xt−1 → Xt.

Recall that we have Mori fibrations X0 → T0 and Xt → Tt+1. Let s ∈ {1, . . . , r}.
First assume that ωL is a vertex. Then Ks is such that K−s = K0 t · · · tKs−1 and
K+
s = Ks+1 t · · · tKr+1. By Proposition 23, around ωKs we have flips except if

s = 1 and K0 = {i} with i ∈ I0\J0 or s = r and Kr+1 = {i} with i ∈ I0\J0.
Assume now that ωL is not a vertex. Let s ∈ {1, . . . , t}, then Ks is such that

K−s = K0
−tK1t· · ·tKs−1 and K+

s = K0
+tKs+1t· · ·tKr+1. Since K0

+ and K0
−

are non-empty (by Notation 3), by Proposition 23 around ωKs we have flips except
if s = 1 and K0

− = {i} with i ∈ I0\J0 or s = r + 1 and K0
+ = {i} with i ∈ I0\J0.

This finishes the proof of the claim.

Let R be the variety corresponding to ωL. Notice that we have fibrations from
T0 → R and Tt+1 → R. There are three cases:

(1) R ∼= T0
∼= Tt+1;

(2) R ∼= T0 or R ∼= Tt+1, and we are not in case 1;
(3) R 6∼= T0 and R 6∼= Tt+1.
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In case 1, by Remark 11, we have t ≥ 1. In particular, slK1
< slK0

, or slKt
>

slKt+1 (with the convention that Kr+2 = I if ωL is not a vertex). A priori, slK1

and slKt could be ∞, but the next paragraph proves that it cannot happen.
If slK1

< slK0
, then the Mori fibration X0 99K R factors through X0 99K Y → R

where Y is the horospherical variety corresponding to a point of ωK1
. Then the

map X0 99K Y is either an isomorphism or a K-negative contraction. It cannot be
a K-negative contraction because slK1 < slK0 . Then X0 = Y , which implies that
X1 → X0 is a divisorial contraction. Similarly, if slKt > slKt+1 , Xt−1 → Xt has to
be a divisorial contraction.
Thus there is i = 1 or i = t− 1 such that ρ(Xi) = ρ(R) + 2. Assume it is i = 1. By
Proposition 27 and Claim 31, for every i ∈ {1, . . . , t− 1} we have ρ(Xi) = ρ(X1) so
that ρ(Xt−1) = ρ(Xt) + 1 and thus Xt−1 → Xt is also a divisorial contraction. We
have a type II link.

In case 2, assume that R ∼= T0. Again by Proposition 23 the variety R is Q-
factorial. Thus R 6∼= Tt+1 implies ρ(Tt+1) = ρ(R) + 1 and ρ(Xt) = ρ(R) + 2. By
Proposition 27 and Claim 31, for every i ∈ {1, . . . , t} we have ρ(Xi) = ρ(Xt) =
ρ(R) + 2 = ρ(T0) + 2. Since ρ(X0) = ρ(T0) + 1, the map X1 → X0 is a divisorial
contraction and we have a type I link. Similarly if R ∼= Tr+1 we get a type III link.

In case 3 we have ρ(T0) = ρ(R) + 1 and ρ(Tt+1) = ρ(R) + 1. Moreover ρ(X0) =
ρ(T0) + 1 and ρ(Xt) = ρ(Tt+1) + 1. By Proposition 27 and Claim 31, for every
i ∈ {0, . . . , t− 1} the map Xi 99K Xi+1 is an isomorphism in codimension 1 and we
get a type IV link. �

Remark 13. If ωL is not a vertex then we cannot have a link of type IV with
fibrations T0 −→ R and Tt+1 −→ R. Indeed from ωI (both side) to ωL we get two
birational maps, one of the two can be divisorial (if we are in the hypotheses of
Lemma 25 occurs), but not in case 3.

Appendix A.

A.1. A polyhedral partition of Q2. In this section we collect the proofs of the
facts quoted in Section 5.
The following lemma describes the first properties of the sets ΩI and ωI defined in
Definition 5.2.

Lemma 32. Let I ⊆ I0.
(1) The sets ΩI and ωI are convex subsets of Q2.
(2) The set ωI is open, for the euclidean topology, inside {(δ, ε)| DI(δ, ε) ∈

ImAI} = D−1
I ImAI .

(3) There are four cases: either ωI is empty, or it is a point, or it is a convex
part of an affine line (a segment, a half-line or a line), or it is a non-empty open
set in Q2.

(4) If ωI is not empty, we have ωI ⊂ ΩI ⊂ ωI .

Proof. (1) Assume that ΩI has at least two points, (δ1, ε1) and (δ2, ε2). Then
there exist x1 and x2 in Qn such that AIxi = DI(δi, εi) and AIcxi ≥ DIc(δi, εi) for
i = 1, 2. For any rational number t ∈ [0, 1], we get AI(tx1 + (1− t)x2) = DI(tε1 +
(1−t)ε2, tδ1+(1−t)δ2) and AIc(tx1+(1−t)x2) ≥ DIc(tε1+(1−t)ε2, tδ1+(1−t)δ2),
so that t(δ1, ε1) + (1− t)(δ2, ε2) is in ΩI .

Replacing ≥ by >, we prove the convexity of ωI .
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(2) The inclusion ωI ⊆ D−1
I ImAI follows from the definition of ωI .

If D−1
I ImAI is a point or if ωI is empty, there is nothing to prove.

Let (δ0, ε0) ∈ ωI . Then there is x0 such that AIx0 = DI(δ0, ε0) and AIcx0 >
DIc(δ0, ε0).

Assume thatD−1
I ImAI is two-dimensional. Let (δ1, ε1) and (δ2, ε2) inD−1

I ImAI
such that the three (δi, εi)’s are not in the same line. Let x1 and x2 be such that
AIx1 = DI(δ1, ε1) and AIx2 = DI(δ2, ε2). Then

AI((1−t1−t2)x0+t1x1+t2x2) = DI((1−t1−t2)ε0+t1ε1+t2ε2, (1−t1−t2)δ0+t1δ1+t2δ2)

and for (t1, t2) in a neighborhood of 0 in Q2, we have

AIc((1−t1−t2)x0+t1x1+t2x2) > DIc((1−t1−t2)ε0+t1ε1+t2ε2, (1−t1−t2)δ0+t1δ1+t2δ2).

The proof for the case dimD−1
I ImAI = 1 is analogous. This concludes the proof

of the statement.
(3) It follows from the two previous statements.
(4) The first inclusion is obvious.
To prove the second one, remark that for all (δ1, ε1) ∈ ωI and (δ2, ε2) ∈ ΩI , the

segment {(1− t)(δ1, ε1) + t(δ2, ε2)| t ∈ (0, 1]} is contained in ωI . Indeed, let x1 and
x2 be such that AIxi = DI(δi, εi), AIcx1 > DIc(δ1, ε1) and AIcx2 ≥ DIc(δ2, ε2).
Then, for any t ∈ (0, 1], we set xt := tx1 + (1 − t)x2 and (δt, εt) := (tε1 + (1 −
t)ε2, tδ1 + (1− t)δ2). Thus AIxt = DI(δt, εt) and AIcxt > DIc(δt, εt).

This remark implies directly that if (δ2, ε2) ∈ ΩI then (δ2, ε2) ∈ ωI , as soon as
ωI is not empty.

�

Remark 14. Lemma 32 is still true if we consider polytopes in an R-vector space.
The proof is the same after replacing Q by R everywhere.

Lemma 33. Let I ⊆ I0 be such that ωI is not empty. Then ΩI = ωI and ΩI is
polyhedral in Q2.

Proof. If ωI is reduced to a point, by Lemma 32 we have nothing to prove, so we
suppose that ωI contains at least two points.

For (δ, ε) ∈ R2 we also set

P δ,ε := {x ∈ Rn | Ax ≥ (1− δ)B + δB′ + εC}.

and we define as before F δ,εI .
For I ⊆ I0 we set

ΩI(R) = {(δ, ε) ∈ R2 | F δ,εI 6= ∅}
and

ωI(R) = {(δ, ε) ∈ R2 | if I ′ ⊆ I0 satisfies F δ,εI = F δ,εI′ , then I
′ ⊆ I}.

Since the matrices A, B, B′ and C have rational coefficients, if (δ, ε) ∈ Q2 and
if there exists x ∈ Rn, such that AIx = DI(δ, ε), then there is x′ ∈ Qn, such
that AIx′ = DI(δ, ε); and x′ can be chosen arbitrarily close to x. In particular,
if AIcx > DIc(δ, ε), then x′ can be chosen such that AIcx′ > DIc(δ, ε). Hence,
ωI = ωI(R) ∩Q2.

Moreover, ΩI =
⋃
I⊆I′⊆I0 ωI′ (over R and Q), then we also have ΩI(Q) =

ΩI(R) ∩Q2.
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We first prove that ΩI(R) is closed. This, together with Lemma 32 will imply
that ΩI(R) = ωI(R).

Let (δk, εk)k∈N be a sequence of elements in ΩI(R) converging to (δ̄, ε̄) in R2.
The elements (δk, εk) are contained in a compact set K of R2. Then, for every
k ∈ N, the polytope P δk,εk is contained in the polytope

PK := {x ∈ Rn | Ax ≥ Min(δ,ε)∈K D(δ, ε)}
where Min(δ,ε)∈K D(δ, ε) is the vector whose i-th coordinate is Min(δ,ε)∈K D(δ, ε)i.
The set PK is compact by Remark 5.

By definition, for any k ∈ N, there exists xk ∈ Rn such that AIxk = DI(δk, εk)
and AIcxk ≥ DIc(δk, εk). Since the xk ∈ PK that is compact, there is {km}m∈N
such that km →∞ as m tends to infinity, such that (xkm)m∈N converges to x̄ ∈ R.
Then x̄ satisfies AI x̄ = DI(δ̄, ε̄) and AIc x̄ ≥ DIc(δ̄, ε̄). This implies that (δ̄, ε̄) is
also in ΩI .

We now prove that ΩI(R) is polyhedral. If ωI(R) is either empty, or a point, or
a convex part of an affine line, then there is nothing to prove. Suppose that ωI(R)
is open in R2. Then the boundary of ΩI(R) is

ΩI(R)\ωI(R) =
⋃

I(I′⊆I0

ωI′(R) =
⋃

I(I′⊆I0

ΩI′(R).

But for every I ′ such that I ( I ′ ⊆ I0, the set ΩI′(R) is either empty, or a point,
or a closed convex part of an affine line. We proved that the boundary of ΩI(R) is
a finite union of closed convex parts of affine lines. Hence, ΩI(R) is polyhedral in R2.

To conclude, we have to prove that the vertices of ΩI(R) are rational and that
the maximal half lines in the boundary of ΩI(R) are rational half-lines, that is, they
have a rational extremity and rational direction.

A vertex of ΩI(R) is (δ, ε) such that there is I ′ 6= I with {(δ, ε)} = ωI′(R). By
Lemma 32 we have {(δ, ε)} = D−1

I′ ImAI′ ⊗ R. Since DI′ and AI′ are defined over
Q, we have {(δ, ε)} ∈ Q2.

In the same way, the boundary is a union of finitely many ωI′j for j = 1 . . . r with
I ′j 6= I. Let I ′ ∈ {I ′1, . . . , I ′r} so that ωI′(R) has dimension 1. By Lemma 32, we
have ωI′(R) ⊆ D−1

I′ ImAI′ ⊗ R open. The latter is an affine subspace defined over
Q, thus its direction is rational. The extremities are vertices of ΩI(R) and are then
rational. �

We now study inclusions between the ω’s, generalizing the easy following fact:
for any J ⊆ I ⊆ I0, we have ΩI ⊆ ΩJ .

Lemma 34. Let J ⊆ I ⊆ I0, such that ωI 6= ∅.
(1) If ωJ is not empty and has the same dimension of ωI , then ωI ⊆ ωJ .
(2) If the images of AI and AJ have the same codimension k, then ωJ is not

empty.
(3) There exists J ⊆ I as above and such that ωI ⊆ ωJ and for any j ∈ J the

codimension of the image of AJ\{j} is less than k.

Proof. (1) If ωJ is not empty, Lemma 33 implies that ωJ is the interior part ΩJ .
Since ωI is not empty, it is as well the interior part of ΩI . As ΩI ⊆ ΩJ , we conclude
that ωI ⊆ ωJ .
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(2) We prove the claim by induction on h = |I \ J |. If h = 0 the claim is true.
We assume now that the claim is true for h and let J be such that |I \ J | = h+ 1.
Let i ∈ I\J and J ′ = J ∪ {i}. By inductive hypothesis ωJ′ is not empty. Let
(δ, ε) ∈ ωJ′ and let x ∈ Qn such that AJ′x = DJ′(δ, ε) and A(J′)cx > D(J′)c(δ, ε).
Since the codimensions of the image of AI and of the image of AJ are equal to k,
and AJ is the product of AJ with the projection matrix onto the indices J ⊆ J ′,
also the codimension of the image of AJ′ is k. By the rank theorem, we have
dim Ker(AJ) = dim Ker(AJ′) + 1. Thus, there is y ∈ Ker(AJ)\Ker(AJ′). We can
choose y such that Aiy > 0. Then for t > 0 small enough, we have AJ(x + ty) =
DJ(δ, ε), Ai(x + ty) > Di(δ, ε) and A(J′)c(x + ty) > D(J′)c(δ, ε). This proves that
(δ, ε) ∈ ωJ .

(3) It is enough to take J minimal such that the images of AI and AJ have the
same codimension, and apply the previous statement.

�

Lemma 35. Let I ⊆ I0 be such that ωI = {(δ0, ε0)}. Suppose that the image
of AI is of codimension 2. There is i ∈ I such that the image of AI\{i} is of
codimension 1. For any such i, the point (δ0, ε0) belongs to ΩI\{i}\ωI\{i}.

Proof. Let i ∈ I be such that there exists rational numbers λj for j ∈ I\{i} such
that Ai =

∑
j∈I\{i} λjAj . Then the image of AI\{i} is of codimension one. Let

(δ1, ε1) 6= (δ0, ε0) such that DI\{i}(δ1, ε1) is in Im(AI\{i}). Let x and y in Qn such
that AIx = DI(δ0, ε0), AIcx > DIc(δ0, ε0) and AI\{i}y = DI\{i}(δ1, ε1). For any
t ∈ Q, define zt := (1 − t)x + ty and (δt, εt) := (1 − t)(δ0, ε0) + t(δ1, ε1). Then
for any t we have AI\{i}zt = DI\{i}(δt, εt) and for any t small enough we have
AIczt > DIc(δt, εt). Now if Aiy > 0 we have Aizt > Di(δt, εt) for any t > 0; and
if Aiy < 0 we have Aizt > Di(δt, εt) for any t < 0. Hence, for any t small enough,
either positive or negative, we have A(I\{i})czt > D(I\{i})c(δt, εt) and (δt, εt) is in
ωI\{i}. We have proved that ωI is in the closure of ωI\{i}.

But ωI = {(δ0, ε0)} cannot be in ωI\{i}, because the relation Ai =
∑
j∈I\{i} λjAj

implies that if AI\{i}x = DI\{i}(δ0, ε0) then AIx = DI(δ0, ε0). Hence ωI is in
ΩI\{i}\ωI\{i}.

�

Remark 15. A similar result could be proved from a one-dimensional ωI . Let
I ⊂ I0 such that ωI is an open convex part of an affine line. Suppose that the
image of AI is of codimension 1. Then there exists i ∈ I such that ωI is a subset
of ΩI\{i}\ωI\{i} and AI\{i} is surjective.

Lemma 36. Let I and J such that ωI and ωJ are not empty. Then ωI∩J is not
empty and contains the strict convex hull of any element of ωI with any element of
ωJ .

Proof. Let x and y in Qn be such that AIx = DI(δ1, ε1), AIcx > DIc(δ1, ε1),
AJy = DJ(δ2, ε2) and AJcy > DJc(δ2, ε2).
For any t ∈]0, 1[, zt := (1− t)x+ ty and (δt, εt) := (1− t)(δ1, ε1) + t(δ2, ε2) satisfy
AI∩Jzt = DI∩J(δt, εt), A(I∩J)czt > D(I∩J)c(δt, εt). Hence, ωI∩J contains the strict
convex hull of (δ1, ε1) and (δ2, ε2). In particular, ωI∩J is not empty. �

Remark 16. If I = {i} and Ai 6= 0, or more generally if AI is surjective, Lemma 32
implies that ωI is open (possibly empty).
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If I = {i} and Ai 6= 0, for any (δ, ε) ∈ ΩI\ωI , either the polytope P δ,ε can be
defined without the line i, in other words

P δ,ε = {x ∈ Qn | A{i}cx ≥ D{i}c(δ, ε)},

or the polytope P δ,ε is not of dimension n. Indeed, if (δ, ε) ∈ ΩI\ωI , and P δ,ε has
maximal dimension, then F δ,εi is not a facet of P δ,ε or equals another F δ,εj and in
both cases the inequality Aix ≥ Di(δ, ε) is superfluous in the definition of P δ,ε.
If I is such that AI is invertible, then F δ,εI is either empty or a vertex of P δ,ε. If
(δ, ε) ∈ ΩI , then P δ,ε is simple at the corresponding vertex if (δ, ε) ∈ ωI . But the
converse is false: it can happen that P δ,ε is simple but (δ, ε) 6∈ ωI if an inequality
Aix ≥ Di(δ, ε) with i 6∈ I is superfluous in the definition of P δ,ε and F δ,εI = F δ,εI∪{i}.

A.2. Generality of the polarization. In this section we prove Proposition 17.
Throughout the section by general we mean in a Zariski open set.

By Lemma 32 (2), ωI is one-dimensional implies that the codimension of Im(AI)
is at least 1, and ωI is zero-dimensional implies that the codimension of Im(AI) is
at least 2. The lemma tells that, for general B and B′, equalities hold for any I in
both cases.

Lemma 37. We can choose B and B′ general such that for any I ⊆ I0, we have
the following.

• If the image of AI has codimension 1 in QI , then ωI is an open convex part
of an affine line (possibly empty).

• If the image of AI has codimension 2 in QI , then ωI is either empty or a point.
• If the image of AI has codimension 3 in QI , then ωI is empty.

Proof. The set {DI(δ, ε) | (δ, ε) ∈ Q2} is the affine subspace passing through BI
and directed by B′I − BI and CI . It is a plane for B and B′ general (that is, if
B′−B is not colinear to C). Now, to have the three conditions above, it is enough
to choose B and B′ such that:

• if the image of AI has codimension 1 in QI , then BI and B′I are not in the
image of AI ;

• if the image of AI has codimension 2 in QI , then B′I −BI is not in the vector
subspace Im(AI) +QCI (of codimension at least one in QI), and if CI is in Im(AI)
then BI is not in Im(AI);

• if the image of AI has codimension 3 in QI , B′I −BI is not in Im(AI) and BI
is not in the vector subspace Im(AI) +QCI +Q(B′I −BI) (of codimension at least
one in QI).
This, together with Lemma 32, means that it is enough to choose B and B′ outside
finitely many proper linear subspaces of Qp, thus B and B′ in an open set of Qp. �

From now, we assume that B and B′ general in the sense of Lemma 37.

Corollary 38. There is a finite union of convex parts of affine lines

L = ∂Ω∅ ∪
⋃

I⊆I0 dim ΩI≤1

ΩI ⊆ Q2

such that if (δ, ε) 6∈ L then P δ,ε is an n-dimensional simple polytope or it is
empty.
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Proof. Assume that P δ,ε is not empty. If P δ,ε has of dimension n and is not simple,
then there exists a vertex v of P δ,ε that is contained in at least n+ 1 facets. Then
there is I ⊆ I0 of cardinality p ≥ n + 1 such that the vertex is F δ,εI = {v}. In
particular, if we choose I maximal among the subsets I of I0 such that F δ,εI = {v},
we have (δ, ε) ∈ ωI . But AI is a p × n matrix with p ≥ n + 1 so it cannot be
surjective. By Lemma 37, ωI is either a segment or a point.

If P δ,ε is of dimension at most n, then (δ, ε) 6∈ ω∅, which is open and non-empty
by hypothesis. Then (δ, ε) is in the boundary of Ω∅, which is a finite union of convex
parts of affine lines.

We set then
L = ∂Ω∅ ∪

⋃
I⊆I0 dim ΩI≤1

ΩI .

�

Remark 17. Notice that the condition we impose on Ω∅ \ L is stronger than the
polytope P δ,ε being simple. Indeed, the vertices of P δ,ε for (δ, ε) ∈ Ω∅ \ L are
contained in exactly n affine hyperplanes Hi := {x ∈ Qn | Aix = Di(δ, ε)}, while
a vertex of an affine polytope is contained in exactly n facets.

Notation 4. Let I ⊆ I0 be such that the image of AI is contained in a hyperplane,
and such that for any i ∈ I, AI\{i} is surjective. For the sake of clarity we repeat
here Notation/Construction 1. Then there are rational numbers λIi with i ∈ I such
that

∑
i∈I λ

I
iAi = 0. We notice that λIi 6= 0 for every i ∈ I. Indeed, if there is

j such that λIj = 0, then
∑
i∈I\{j} λ

I
iXi is a nontrivial equation for the lines of

AI\{j}. We can assume that
∑
i∈I λ

I
iCi is zero or one. We fix such numbers.

Let I ⊆ I0 such that ωI is not empty, the image of AI has codimension at least
two and such that for any i ∈ I, the image of AI\{i} has codimension one. In
particular, the image of AI has codimension exactly two. Then there are rational
numbers λIi and λ′Ii with i ∈ I such that

∑
i∈I λ

I
iAi = 0 and

∑
i∈I λ

′I
i Ai = 0 are

two independent relations. For B and B′ general as in Lemma 37, the point in ωI
is the only solution of the linear system{

(
∑
i∈I λ

I
iCi)ε+ (

∑
i∈I λ

I
i (B

′
i −Bi))δ +

∑
i∈I λ

I
iBi = 0

(
∑
i∈I λ

′I
i Ci)ε+ (

∑
i∈I λ

′I
i (B′i −Bi))δ +

∑
i∈I λ

′I
i Bi = 0

therefore
∑
i∈I λ

I
iCi and

∑
i∈I λ

′I
i Ci cannot be simultaneously zero. After perhaps

replacing λ′Ii with λ′Ii −λIi , we can assume that
∑
i∈I λ

I
iCi = 1 and

∑
i∈I λ

′I
i Ci = 0.

Moreover, for any i ∈ I, either λIi or λ′Ii is not zero. Indeed, if there is j such
that λIj = 0 and λ′Ij = 0, then

∑
i∈I\{j} λ

I
iXi and

∑
i∈I\{j} λ

′I
i Xi are nontrivial

linearly independent equations for the lines of AI\{j}.
We fix such numbers.

Remark 18. Let I 6= J be such that the images of AI and AJ have codimension
d and for any i ∈ I and j ∈ J , the images of AI\{i} and AJ\{j} have codimension
d − 1. Then I 6⊆ J and J 6⊆ I. Indeed if we had I ( J , there would be j ∈ J \ I
and Im(AI) would have codimension at most the codimension of Im(AJ\{j}).

Now we prove that if B and B′ are general, two sets ωI and ωJ of dimension 0
or 1 intersect or are aligned only in specific cases.
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Lemma 39. Let I 6= J be such that ωI and ωJ are non-empty open convex parts
of the same affine line, and such that for any i ∈ I and j ∈ J , AI\{i} and AJ\{j}
are surjective. Then B and B′ satisfy a quadratic or linear condition.

Proof. Set B′′ := B′ − B. By remark 18 we have I 6⊆ J and J 6⊆ I. Since ωI
and ωJ are non-empty open convex parts of affine lines, the images of AI and AJ
have codimension at least one. Since AI\{i} and AJ\{j} are surjective, they have
codimension exactly one.

The affine line containing ωI (resp. ωJ) has as equation
∑
i∈I λ

I
iDi(δ, ε) = 0

(resp.
∑
i∈I λ

J
jDj(δ, ε) = 0), i.e.

(
∑
i∈I

λIiCi)ε+(
∑
i∈I

λIiB
′′
i )δ+

∑
i∈I

λIiBi = 0, resp. (
∑
j∈J

λJj Cj)ε+(
∑
j∈J

λJj B
′′
j )δ+

∑
j∈J

λJj Bj = 0.

Those two equations by hypothesis define the same line. It follows from Construc-
tion 4 that the coefficients of ε are either both zero or both one.

If
∑
i∈I λ

I
iCi =

∑
j∈J λ

J
j Cj = 0, since the two equations define the same line,

we have
(
∑
i∈I

λIiB
′′
i )(
∑
j∈J

λJjBj) = (
∑
j∈J

λJjB
′′
j )(
∑
i∈I

λIiBi).

This condition is nontrivial: let i ∈ I and j ∈ J such that i 6∈ J and j 6∈ I, then
the coefficient in the quadratic condition in B′′i Bj is λIi λJj and this is non zero by
Construction 4.

If
∑
i∈I λ

I
iCi =

∑
j∈J λ

J
j Cj = 1, then

∑
i∈I λ

I
iB
′′
i =

∑
j∈J λ

J
j B
′′
j and

∑
i∈I λ

I
iBi =∑

j∈J λ
J
j Bj . �

Corollary 40. Assume that B and B′ are general. Then for any I and J subsets
of I0 such that ωI and ωJ are nonempty open convex parts of affine lines, ωI and
ωJ are contained in the same affine line if and only if ωI∩J is a non-empty open
convex part of an affine line. Moreover in this case, we have ωI∩J ⊇ ωI ∪ ωJ .

Proof. Let I and J be subsets of I0 such that ωI and ωJ are non-empty open convex
parts of the same affine line L. By Lemma 34, there exist I ′ ⊆ I and J ′ ⊆ J such
that ωI′ and ωJ′ are non-empty open segments contained in L, and such that for
every i ∈ I ′ and j ∈ J ′, AI′\{i} and AJ′\{j} are surjective. By Lemma 39, for B
and B′ general, we must have I ′ = J ′. In particular I∩J ⊃ I ′ and ωI ⊂ ωI∩J ⊆ ωI′
so that ωI∩J is a non-empty open convex part of an affine line.

Conversely, if ωI , ωJ and ωI∩J are non-empty open convex part of an affine line,
then they are contained in the same affine line because ωI ⊂ ωI∩J ⊃ ωJ . �

Lemma 41. Let I 6= J be such that ωI = ωJ is reduced to a point, and such that
for any i ∈ I and j ∈ J , the images of AI\{i} and AJ\{j} have codimension one.
Then B and B′ satisfy quadratic conditions.

Proof. Set B′′ := B′ − B. By remark 18 we have I 6⊆ J and J 6⊆ I. Since ωI
and ωJ are points, the images of AI and AJ have codimension at least two. Since
AI\{i} and AJ\{j} have codimension exactly one, the images of AI and AJ have
codimension exactly two.

Let (δ0, ε0) be such that ωI = ωJ = {(δ0, ε0)}.
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By Notation/Construction 4, (δ0, ε0) is the unique solution of the two following
systems:{
ε+ (

∑
i∈I λ

I
iB
′′
i )δ +

∑
i∈I λ

I
iBi = 0

(
∑
i∈I λ

′I
i B
′′
i )δ +

∑
i∈I λ

′I
i Bi = 0

and
{
ε+ (

∑
j∈J λ

J
j B
′′
j )δ +

∑
j∈J λ

J
j Bj = 0

(
∑
j∈J λ

′J
j B

′′
j )δ +

∑
j∈J λ

′J
j Bj = 0

.

Comparing the first and second equations of the two systems we get

(C1) : (
∑
i∈I

λ
′I
i B
′′
i )(
∑
j∈J

λ
′J
j Bj) = (

∑
j∈J

λ
′J
j B

′′
j )(
∑
i∈I

λ
′I
i Bi).

(C2) :

(
∑
i∈I

λIiB
′′
i )− (

∑
j∈J

λJj B
′′
j )

∑
i∈I

λ′Ii Bi−

∑
i∈I

λIiBi −
∑
j∈J

λJj Bj

∑
i∈I

λ′Ii B
′′
i = 0.

To conclude, one proves, with an easy but tedious computation that the condi-
tions (C1) and (C2) cannot be both trivial. �

Corollary 42. For B and B′ general we have the following: for any I, J ⊆ I0 such
that ωI and ωJ are singletons, we have ωI = ωJ if and only if ωI∩J is a singleton,
equal to ωI = ωJ .

Proof. Let I and J be subsets of I0 such that ωI = ωJ = {(δ0, ε0)}. By Lemma 34,
there exist I ′ ⊆ I and J ′ ⊆ J such that ωI′ = ωJ′ and for any i ∈ I ′ and j ∈ J ′, the
images of AI′\{i} and AJ′\{j} have codimension one. By Lemma 41, for general B
and B′, we must have I ′ = J ′. In particular I ∩J ⊃ I ′ and ωI∩J ⊆ ωI′ = {(δ0, ε0)}.
By Lemma 36 the set ωI∩J is not empty, then it must be ωI∩J = {(δ0, ε0)}.

Conversely, if ωI , ωJ and ωI∩J are singletons then ωI = ωI∩J = ωJ because
ωI ⊂ ωI∩J ⊃ ωJ . �

Lemma 43. Let I and J be such that ωI = {(δ0, ε0)}, ωJ is an open convex part of
an affine line, and ωI is contained in this affine line. Suppose that for every i ∈ I,
the image of AI\{i} has codimension one and for every j ∈ J , AJ\{j} is surjective.

Then either J ⊆ I or B and B′ satisfy a quadratic condition.

Proof. Set B′′ = B′ −B.
The affine line containing both ωI and ωJ has equation

(
∑
j∈J

λJj Cj)ε+ (
∑
j∈J

λJj B
′′
j )δ +

∑
j∈J

λJj Bj = 0,

where
∑
j∈J λ

J
j Cj is zero or one and (δ0, ε0) is the unique solution of the system

(SI) :

{
ε+ (

∑
i∈I λ

I
iB
′′
i )δ +

∑
i∈I λ

I
iBi = 0

(
∑
i∈I λ

′I
i B
′′
i )δ +

∑
i∈I λ

′I
i Bi = 0

.

If
∑
j∈J λ

J
j Cj = 0 we have

(
∑
i∈I

λ
′I
i B
′′
i )(
∑
j∈J

λJj Bj) = (
∑
i∈I

λ
′I
i Bi)(

∑
j∈J

λJj B
′′
j ).

And if
∑
j∈J λ

J
j Cj = 1, we have

(
∑
i∈I

λIiB
′′
i )(
∑
j∈J

λJj Bj) = (
∑
i∈I

λIiBi)(
∑
j∈J

λJj B
′′
j ).
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In both cases, if there exists j ∈ J that is not in I, then there exists i ∈ I such
that the coefficent of BjB′′i is non zero (it is λ

′I
i λ

J
j in the first case and λIi λJj is the

second case) so that the condition is not trivial. �

Corollary 44. For B and B′ general we have the following: for any I and J
subsets of I0 such that ωI is a singleton and ωJ is an open convex part of an affine
line `, the affine line ` contains ωI if and only if ωI∩J is a non-empty open convex
part of `.

Proof. By Lemma 34, there exist I ′ ⊆ I and J ′ ⊆ J such that ωI′ = ωI , ωJ ⊂ ωJ′

and for any i ∈ I ′ and j ∈ J ′, the image of AI′\{i} has codimension one and AJ′\{j}
is surjective. Then, by Lemma 43, , for general B and B′, we must have J ′ ⊆ I ′.

In particular, J ′ ⊆ I ∩ J and by Lemma 34 we have ωI∩J ⊂ ωJ′ , so that ωI∩J
is either empty or an open convex part of an affine line (the same affine line as for
ωJ).

By with Lemma 36, the set ωI∩J is not empty. �

We end this subsection with the following lemma in order to avoid the case where
three affine lines intersect into a point except in only one situation.

Lemma 45. Let I, J and K be distinct subsets of I0 such that the images of AI ,
AJ and AK have codimension one, and such that for any i ∈ I, j ∈ J and k ∈ K,
AI\{i}, AJ\{j} and AK\{k} are surjective. If the three affine lines generated by
ωI , ωJ and ωK intersect, then either B and B′ satisfy some linear or quadratic
condition or I ∪ J = I ∪K = J ∪K = I ∪ J ∪K.

Proof. Set B′′ := B′ −B.
By Lemma 39, if the three lines are not distinct, we are done. Suppose then that

the three lines are not distinct and meet at the point (δ0, ε0).
Let L = I, J,K. The affine line containing ωL has equation

∑
`∈L λ

L
` D`(δ, ε) = 0.

If we set  aL =
∑
`∈L λ

L
` C`

bL =
∑
`∈L λ

L
` B
′′
`

cL =
∑
`∈L λ

L
` B`

then the equation becomes aLε+bLδ+cL = 0. By hypothesis the point (aL, bL, cL)
belongs to the plane aε0 + bδ0 + c = 0 for L = I, J,K.

By Construction 4 we have aL ∈ {0, 1}.
Assume that there is L such that aL = 0. Without loss of generality we can assume
that L = I. Notice that then only I is such that aI = 0, because two affine lines
distinct and parallel do not meet.

Then bI(cJ − cK) = cI(bJ − bK), that is,

(
∑
i∈I

λIiB
′′
i )(
∑
j∈J

λJj Bj −
∑
k∈K

λKk Bk) = (
∑
i∈I

λIiBi)(
∑
j∈J

λJj B
′′
j −

∑
k∈K

λKk B
′′
k ).

Assuming that we do not have I ∪ J = I ∪K = J ∪K = I ∪ J ∪K we prove
that this condition is not trivial. There are three cases, either J ∪K 6= I ∪ J ∪K,
or I ∪ J 6= I ∪ J ∪K, or I ∪K 6= I ∪ J ∪K. The last two cases are proved in the
same way.

If J ∪K 6= I ∪ J ∪K let i ∈ I be such that i 6∈ J ∪K. As J 6= K we can assume
without loss of generality that there is j ∈ J, j 6∈ K. Then the coefficient of B′′i Bj
in the quadratic condition is λIi λJj which is non zero by Construction 4.
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If I ∪ J 6= I ∪ J ∪ K let k ∈ K such that k 6∈ I ∪ J . Then for every i ∈ I
the coefficient of B′′i Bk in the quadratic condition is λIi λkk which is non zero by
Construction 4.

Assume that aL = 1 for every L. Without loss of generality we can assume that
I∪J 6= I∪J ∪K. With similar computations as above, we prove that the condition

(bI − bJ)(cI − cK) = (bI − bK)(cI − cJ)

verified by the coefficients of the two linear equations is not trivial.
�

A.3. Polyhedral decomposition and the geography of models.

Lemma 46. Let (δ, ε) ∈ U1. Let I be such that (δ, ε) ∈ ωI and dimωI = 1. Assume
moreover that I is minimal with the property. Denote by I+ := {i ∈ I | λIi > 0}
and I− := {i ∈ I | λIi < 0}. Note that I = I+ t I−.

Then (δ, ε) ∈ ω∅ if and only if both I+ and I− are not empty.

Proof. Let
∑
i∈I λ

I
iXi = 0 be a relation satified by the lines of AI as in Construction

4. Notice that λIi 6= 0 for any i ∈ I by minimality of I. Indeed, if λIi = 0 then the
image of AI\{i} still have codimension 1 and ωI ⊆ ωI\{i} by Lemma 34(3).

Fix x ∈ Qn such that AIx = DI(δ, ε) and AIcx > DIc(δ, ε).
Assume first that I+ and I− are not empty. Let i ∈ I+, then

Ai = −
∑

j∈I+,j 6=i

λIj
λIi
Aj +

∑
j∈I−

−λIj
λIi

Aj .

By the minimality of I, the matrix AI\{i} is surjective. Therefore, there exists
y ∈ Qn such that Ajy > 0 for any j ∈ I\{i} and Ajy big enough for j ∈ I− so that
Aiy is also positive. Then for any t > 0 small enough, we have A(x+ ty) > D(δ, ε).
This means that (δ, ε) ∈ ω∅.

Conversely, suppose that I+ = I and I− = ∅. First, we prove that
∑
i∈I λ

I
iDi(δ, ε) =

0. Since (δ, ε) ∈ ωI , there is x ∈ Qn such that Ax ≥ D(δ, ε) and AIx = DI(δ, ε).
Thus 0 =

∑
i∈I λ

I
iAix =

∑
i∈I λ

I
iDi(δ, ε).

Now, let y ∈ Qn such thatAy ≥ D(δ, ε). Then 0 =
∑
i∈I λ

I
iAiy ≥

∑
i∈I λ

I
iDi(δ, ε) =

0, so that AIy = DI(δ, ε). In particular, (δ, ε) 6∈ ω∅.
The same occurs if I− = I. �

Remark 19. The proof implies in particular that, if both I+ and I− are not empty,
then there is y ∈ Qn such that AIy > 0.

Lemma 47. Let (δ, ε) ∈ U1 ∩ ω∅. Let I be such that (δ, ε) ∈ ωI and dimωI = 1.
Assume moreover that I is minimal with the property. Let i ∈ I0\J0. Then (δ, ε) ∈
Ωi\ωi if and only if I+ or I− equals {i}.

In particular, there is at most one i ∈ I0\J0, such that (δ, ε) is in Ωi\ωi.

Proof. Let
∑
i∈I λ

I
iXi = 0 be a relation satified by the lines of AI as in Construction

4. Notice that λIi 6= 0 for any i ∈ I by minimality of I.
Suppose that there exists i ∈ I0\J0 such that (δ, ε) ∈ Ωi\ωi. Then there exists

J ⊆ I0 containing i such that (δ, ε) ∈ ωJ . Pick such J minimal. By Lemma 34(1),
since (δ, ε) 6∈ ωi, the image of AJ has codimension either one or two. By assumption
on (δ, ε), ωJ is not a point, so that ωJ is one-dimensional and then by Corollary 40
and the generality assumption, I ⊂ J . By minimality of J , we have J = I ∪ {i}.
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Assume by contradiction that i 6∈ I. With Notation 4, we have λJi = 0, that is,
J and I give the same relation.

Since (δ, ε) ∈ ω∅, by Lemma 46 and Remark 19 and 7, there exists y ∈ Qn such
that AIy > 0 and such that Aiy = 0. Let x ∈ Qn such that AJx = DJ(δ, ε) and
AJcx > DJc(δ, ε). Then for any t > 0 small enough Ai(x + ty) = Di(δ, ε) and
A{i}c(x+ ty) > D{i}c(δ, ε). This is a contradiction with (δ, ε) 6∈ ωi. Then i ∈ I and
I = J .

By assumption the matrix AI\{i} is surjective. If I\{i} is not contained in ei-
ther I+ or I−, we can find y ∈ Qn such that Ajy > 0 for any j ∈ I\{i} and∑
j∈I\{i} λ

I
jAjy = 0, which implies that Aiy = 0. Let x ∈ Qn be such that

AIx = DI(δ, ε) and AIcx > DIc(δ, ε). Then, for any t > 0 small enough we have
Ai(x + ty) = Di(δ, ε) and A{i}c(x + ty) > D{i}c(δ, ε). This is a contradiction with
(δ, ε) 6∈ ωi. We conclude with Lemma 46 and the hypothesis (δ, ε) ∈ ω∅, that
{i} = I+ or I−.

Conversely, suppose that I+ = {i}. Note that (δ, ε) ∈ Ωi is obvious. Since there

exists x ∈ Qn such that AIx = DI(δ, ε), we have Di(δ, ε) =
∑
j∈I\{i}

−λI
j

λI
i
Dj(δ, ε).

For any y ∈ Qn, such that A{i}cy ≥ D{i}c(δ, ε) we have

Aiy =
∑

j∈I\{i}

−λIj
λIi

Ajy ≥
∑

j∈I\{i}

−λIj
λIi

Dj(δ, ε) = Di(δ, ε).

And we have equality if and only if AI\{i}y = DI\{i}(δ, ε). Then (δ, ε) 6∈ ωi.

For the last statment, note that if |I| = 1 then AI is a zero line and i ∈ J0; and
if |I| = 2 with |I+| = 1 then the two lines of AI generate the same ray of NQ and
at most one could be the primitive element of the ray, so that the other line has
index in J0. �

Lemma 48. Let (δ, ε) ∈ U1∩Ω∅\ω∅. Let I be such that (δ, ε) ∈ ωI and dimωI = 1.
Let i ∈ I0\I. Then either (δ, ε) 6∈ ΩI∪{i} or (δ, ε) ∈ ωI∪{i}.

Proof. Let i ∈ I0\I such that (δ, ε) ∈ ΩI∪{i}. There exists J ⊆ I0 containing i and
I such that (δ, ε) ∈ ωJ . By hypothesis on (δ, ε) the set ωJ is one-dimensional and
Lemma 34 implies that ωJ ⊆ ωI∪{i}. In particular, (δ, ε) ∈ ωI∪{i}. �

Recall that by Notation/Construction 3 if L is such that ωL = {(δ̄, ε̄)} ⊂ Ω∅\ω∅
and ε̄ > 0 and, for B and B′ are general, then there are either I and J subsets of
L and two linearly independent equations for the lines of AL

(RI)
∑
i∈I λ

I
iXi = 0, λIi > 0 ∀i ∈ I

(RJ)
∑
j∈J λ

J
jXj = 0, λJj > 0 ∀j ∈ J

or there is I ⊆ L and two linearly independent equations for the lines of AL

(RI)
∑
i∈I λ

I
iXi = 0, λIi > 0 ∀i ∈ I

(RL)
∑
j∈L λ

L
j Xj = 0, λLj 6= 0 ∀j ∈ L \ I

Lemma 49. Let (δ, ε) ∈ U0∩Ω∅\ω∅ and assume that (δ, ε) is a vertex. Let L ⊆ I0 be
a minimal subset such that ωL = {(δ, ε)}. Let i ∈ I0\L. Then either (δ, ε) 6∈ ΩL∪{i}
or (δ, ε) ∈ ωL∪{i}.
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Proof. If (δ, ε) ∈ ΩL∪{i}\ωL∪{i}, there exists J ⊆ I0 containing i and L such that
(δ, ε) ∈ ωJ . By Lemma 34, we have ωL∪{i} = ωL = ωJ . In particular (δ, ε) ∈ ωL∪{i}.

�

Lemma 50. Let (δ, ε) ∈ U0∩Ω∅\ω∅ and assume that (δ, ε) is not a vertex of Ω∅\ω∅.
Let L ⊆ I0 be a minimal subset such that ωL = {(δ, ε)}. Let I be a minimal subset
such that ωL ⊆ ωI and dimωI = 1. Let i ∈ I0\I. If (δ, ε) ∈ ΩI∪{i}\ωI∪{i} then
i ∈ L\I and either L \ I+ = {i} or L \ I− = {i}. In particular, there are at
most 2 indices i such that (δ, ε) ∈ ΩI∪{i}\ωI∪{i}. If there are 2 such indices, then
|L| = |I|+ 2 and the restriction of AL\I to ker(AI) consists of twice the same line
if L\I ⊆ I0\J0.

Proof. The proof is similar to the proof of Lemma 47.
If (δ, ε) ∈ ΩI∪{i}\ωI∪{i}, then there exists J ⊆ I0 containing i and I such that

(δ, ε) ∈ ωJ and ωJ is one or zero-dimensional. The set ωJ cannot have dimension
one, otherwise Lemma 34 would imply that (δ, ε) ∈ ωJ ⊆ ωI∪{i}. Hence, ωJ = ωL
and J = L ∪ {i}.

We prove that i ∈ L. Assume that it is not the case. Since the coefficients
λLj do not have the same sign for j ∈ L\I, there exist positive µLj such that∑
j∈L\I λ

L
j µ

L
j = 0. By Remark 7 there exists y ∈ ker(AI) such that Ajy = µLj > 0

for any j ∈ L\I and so that Aiy = 0. Since (δ, ε) ∈ ωL∪{i}, there is x ∈MQ is such
that AL∪{i}x = DL∪{i}(δ, ε) and A(L∪{i})cx > D(L∪{i})c(δ, ε). Thus for t small,
we have AI∪{i}(x + ty) = DI∪{i}(δ, ε) and AL\I(x + ty) > DL\I(δ, ε) proving that
(δ, ε) ∈ ωI∪{i}, which is a contradiction. Thus i ∈ L.

We prove now that all the λLj for j ∈ L\(I ∪ {i}) have the same sign. Again, by
contradiction, if the λLj for j ∈ L\(I ∪ {i}) do not have the same sign, by Remark
7 we can find y ∈ ker(AI) such that Ajy > 0 for any j ∈ L\(I ∪ {i}) and Aiy = 0.
Let x ∈ Qn such that ALx = DL(δ, ε) and ALcx > DLc(δ, ε). Then for any t > 0
small enough AI∪{i}(x+ ty) = DI∪{i}(δ, ε) and A(I∪{i})c(x+ tx′) > D(I∪{i})c(δ, ε).
This is a contradiction, as (δ, ε) 6∈ ωI∪{i}.

Finally, as the coefficients of (RL) do not have all the same sign, λLi has opposite
sign than λLj for j ∈ L\(I ∪ {i}).

The last statment is not difficult.
�

Proposition 51. Let (δ2, ε2) ∈ U0 ∩MPC and let L be minimal such that ωL =
{(δ2, ε2)}. We refer to the notation of Construction 3 and to Definition 5.5. Then
there is a partition L = K0 t . . . tKr+1, with r ≥ 0, such that

(1) for every s ∈ {0, . . . , r + 1}, for every h, k ∈ Ks we have −λ
I
h

λJh
= −λ

I
k

λJk
=:

νs ∈ [−∞, 0]; for every s < s′ ∈ {0, . . . , r + 1}, we have νs > νs′ .
(2) The set Ks = L \ Ks is such that the codimension of the image of AKs

is
1 and for every k ∈ Ks the map AKs\{k} is surjective. If K ⊆ L is such that
the codimension of the image of AK is 1 and for every k ∈ K the map AK\{k}
is surjective, then K = Ks for some s ∈ {0, . . . , r + 1}. Moreover, if (δ2, ε2) is a
vertex then K0 = I and Kr+1 = J and if it is not then K0 = I and K0 = L\I.

Note that, by Lemma 35, ωKs
is not empty and with an extremity equals to ωL.
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(3) The slope of ωKs
is

slKs
=

∑
i∈I λ

I
i (B

′
i −Bi) + νs

∑
j∈J λ

J
j (B′j −Bj)

1 + dνs

with d = 1 if (δ2, ε2) is a vertex and d =
∑
j∈L λ

L
j Cj otherwise.

(4) Up to a rotation, the slopes decrease when s increases (see picture below).

Proof. Let K ⊆ L be such that the codimension of the image of AK is 1 and for
every k ∈ K the map AK\{k} is surjective. Then there is an equation

(RK)
∑

λKk Xk = 0

satisfied by the lines of AK .
Assume that (δ2, ε2) is a vertex and let I, J be as in Construction 3. The relation

(RK) is a linear combination of (RI) and (RJ). Thus there are µI , µJ such that
(RK) = µI(RI) + µJ(RJ). We notice that if µI = 0, then by the minimality of K
we have K = J and if µJ = 0 then by the minimality of K we have K = I.

Assume that (δ2, ε2) is not a vertex and let I be as in Construction 3. The
relation (RK) is a linear combination of (RI) and (RL). Thus there are µI , µL
such that (RK) = µI(RI) + µL(RL). We notice that if µL = 0 then by minimality
of K we have K = I and if µL 6= 0 then L\I ⊆ K.
If (δ2, ε2) is not a vertex, we set J = {j ∈ L | λLj 6= 0}. Notice that J gives the
relation (RL).

If µIλIk +µJλ
J
k 6= 0 for every k, then the image of AL\{`} has the same codimen-

sion as the image of AL, and this is a contradiction. Therefore the set {k| µIλIk +
µJλ

J
k = 0} is non-empty and K is the complement of this set in L.

We set N = {−λIk/λJk} = {ν0 > . . . > νr+1} with the convention that νr+1 = −∞.
We set Ks = {k| − λIk/λJk = νs} and Ks = L \Ks.

This proves (1) and (2).

As for (3), the slope slKs is∑
k∈Ks

λKs

k (B′k −Bk)∑
k∈Ks

λKs

k Ck
.

Since up to a multiple λKs

k = λIk + νsλ
Ĩ
k, we get the third part of the state-

ment, with the assumption that, if (δ2, ε2) is a vertex, we have
∑
i∈I λ

I
iCi = 1

and
∑
j∈J λ

J
j Cj = 1, and otherwise

∑
i∈I λ

I
iCi = 1 and

∑
j∈L λ

L
j Cj = 1 or 0.

Set
a =

∑
i∈I λ

I
i (B

′
i −Bi) = slI

b =
∑
j∈J λ

J
j (B′j −Bj) = slJ and

d =

{
1 if (δ2, ε2) is a vertex and∑
j∈L λ

L
j Cj (which is 1 or 0) otherwise.

To prove (4), set f(x) =
a+ bx

1 + dx
. Note that slKs

= f(νs). And apply a rotation

1
1+a2

(
a −1
1 a

)
in order to replace slI = a by +∞ (vertical direction). This way,
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the slopes slK are replaced by relative slopes relslK :=
a slK + 1

a− slK
. Set g(x) =

a2 + 1 + x(ab+ d)

x(ad− b)
so that relslKs

= g(νs).

We now prove that ad− b < 0. By Construction 3, if (δ2, ε2) is a vertex we have
ωI ⊆ {δ < δ2} and ωJ ⊆ {δ > δ2}. By the convexity of Ω∅ the slope slI is smaller
that slJ , so that ad − b < 0. If (δ2, ε2) is not a vertex and d = 1, similarily we
have slI < slJ = b

d , so that ad − b < 0. And if d = 0, we have b > 0 (still by
Construction 3).

In all cases, since g is increasing, relslKs
is decreasing from +∞ (s = 0 and

νs = 0) to ab+d
ad−b (νs = −∞).

�
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