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Summary. We prove that the derivative of a differentiable family X;(a) of
continuous martingales in a manifold M is a martingale in the tangent space for
the complete lift of the connection in M, provided that the derivative is bi-
continuousinzand a. We consider a filtered probability space (Q, (F )<<, P)
such that all the real martingales have a continuous version, and a manifold M
endowed with an analytic connection and such that the complexification of M
has strong convex geometry. We prove that, given an analytic family a — L(a)
of random variable with values in M and such that L(0) = xy € M, there exists
an analytic family a — X (a) of continuous martingales such that X (a) = L(a).
For this, we investigate the convexity of the tangent spaces 7" M, and we prove
that any continuous martingale in any manifold can be uniformly approxi-
mated by a discrete martingale up to a stopping time 7T such that P(7 < 1) is
arbitrarily small. We use this construction of families of martingales in complex
analytic manifolds to prove that every % -measurable random variable with
values in a compact convex set  with convex geometry in a manifold witha C!
connection is reachable by a V'-valued martingale.

Mathematics Subject Classification (1991): 60G44

1. Motivations, preliminaries, main results

Let (Q, (F)g<;<1, P) be a filtered probability space.

The main motivation of this paper is, given a manifold M of dimension d
with a connection V, and a % |-measurable random variable L with values in
a small compact subset of M, to prove the existence of a V-martingale X with
respect to the filtration (), such that X; = L. If such a martingale exists, we
will say that L is reachable.
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This problem has been solved in convex geometry (see section 2 for the
different notions of convexity) in [K1] and [P1] with Brownian filtrations and
in [P2] with more general filtrations like filtrations generated by independent
Brownian motions and Poisson processes (here the solutions are cadlag
martingales). In both cases, the method used is a discretisation of the fil-
tration and the convergence of discrete martingales into solutions of the
problem is established. In [D2], a solution is given using backward stochastic
differential equations, in the context of convex geometry and Brownian fil-
trations, and in [D3] the author shows how to deduce existence on a manifold
M with convex geometry which is an increasing union of compact sets with
convex geometry (and with additional geometric assumptions) from the ex-
istence on each compact set.

The solution given here is valid with the assumptions that all the real
(7 +)g<;< -martingales have a continuous version and L takes its values in a
compact convex set with convex geometry (with the help of [D3] we can then
deduce existence results in the non compact case).

This result is a consequence of a construction which will be done with
much stronger assumptions on the manifold. Indeed we assume first that the
manifold is endowed with an analytic connection and that its complexifi-
cation has strong convex geometry (see sections 2 and 4). The terminal value
L is replaced by an analytic family a+ L(a),a € [0,1], of #-measurable
random variables with values in M, such that L(1) = L and L(0) = x, € M.
An analytic family of martingales a — X (a) with terminal value L(a) will be
constructed (theorem 6.17).

In a first approach, assume that the real analytic family a — X (a) of M-
valued martingales such that Xj(a) = L(a) exists. Then the derivative
wn = 0%@) .o take its values in the spaces M% C T"M of n-th order de-
rivatives at time O of paths y such that y(0) = xo. As theorem 3.3 below will
show, a consequence is that the process " is a martingale with respect to the
n-th complete lift V) of the connection V, with terminal value L") (0). If one
knows W" for all n, then one knows a — X (a). But it will be shown in section
6 that constructing M¢-valued V(")-martingales with prescribed terminal
value can be performed with an easy induction. To give an idea of this
induction, assume that M is an open subset of R?. Then if the coordinates of

the martingales W" are (W,...,W,), one can write
00 a"
Xt<a>=xo+Z;HWn(t) : (0)

If Y is a semimartingale in R?, let ¥ denote its finite variation part (¥ = 0).
Since X (a) is a martingale we have

~ 1 ,
dX(a) = =5 Tj(X(a))d{X/(a), X"(a)) (1)
where F}k are the Christoffel symbols. Assume here that expansions in a
power series are allowed in both sides of (1) and commute with bracket and

finite variation part, one obtains for the first order term
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dWi() =0,  Wi(t) = E[L'(0)| 7] (2)
and for the second order term
1 ~ 1 ;
7@ () = =5 T(xo)d (W7, wh,
Wa(t) = E[L"(0) + Ty (o) (W, W), — (W, W) )| 7] (3)
(if one assumes that I'(xy) = 0, like in an exponential chart centered at xy,
then W; is a martingale). More generally, if W, W5, ..., W,_; are known, then

it is possible to compute 1%, since 1,(1) is the last coordinate of L (0) and
the expression of dW,(¢) given by (0) and (1) does not involve ,. Indeed, if
W, appears in one term, then the process X(0) = xo must appear in the
bracket, and hence the bracket is 0.

This formal computation leads to the following approach of the problem.
Now a— L(a) is a given analytic family with L(0) = x( and one constructs a
family of semimartingales W" with values respectively in M¢, with terminal
value L™ (0) and which are V)-martingales, i.e. such that in local coordi-
nates,

- 1 i i i ik
AW == r>ozp;]>0 CopgiDilj(x)W,\ ... Wy d(W,), W) 4)
x] o ptg=n
1<i) enir <d
where o = (o,...,a),i = (i1,...,i) and Cy,,; are constants defined in (18).

The question of the existence of X (a) boils down to establishing the con-
vergence of the series with n-th order derivative W” at a =0, i.e. the con-
vergence of (0) in local coordinates, and proving that the sum is a martingale.
This will be done in section 6.

We give now a brief description of the content of the paper.

In section 2, one defines different notions of convexity in a manifold.

Section 3 is devoted to the differentiability of families of martingales. It is
not supposed there that M or V are analytic. One shows that if a+— X (a) is a
differentiable family of V-martingales such that almost surely (¢,a) — % is
continuous, then a)géa) is a martingale in TM for the complete lift V' of V
(theorem 3.3). This is proved via an approximation of V' by a family of
connections on a neighbourhood of the diagonal in the product manifold
(proposition 3.1). Then it is shown that under convexity assumptions, if
Xi(a) is differentiable ()Xa‘—‘g") is the terminal value of a V'-martingale Y (a), then
X:(a) is differentiable and 6X0’—1Y’) = Y,(a) (proposition 3.7).

The end of section 3 is devoted to a discrete analogue to theorem 3.3.
Proposition 3.8 shows that exponential expectation commutes with differ-
entiation if the derivative random variable takes its values in a small subset
of the tangent bundle.

Going back to the problem of convergence of (0), one needs to complexify
the real manifold and the real connection, and to transform a into a complex
parameter. This is made possible in section 4. It is shown that under the
hypothesis of proposition 3.7, if a — X (a) is holomorphic, then a+— X;(a) is
holomorphic (corollary 4.5). Under convexity conditions, the discrete
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equivalent of the problem of convergence of (0) is solved, and one shows that
the solution in holomorphic in a (corollary 4.3). This gives upper bounds of
[ ((widiser ., wdsery)|| independent of the discrete filtration (corollary 4.4).

The aim of section 5 is to prove that the martingales W”" described above
can be approximated by discrete martingales W”9s“" This is done in a larger
context. Therorem 5.1 shows that any continuous martingale (X;),.,., in any
manifold can be uniformly approximated up to a stopping time 7 such that
P(T < 1) is as small as we want, by a discrete martingale.

The result of theorem 5.1 is used only in theorem 6.4, which shows that if
(0) converges absolutely, then the sum is a V-martingale. Here the co-
mmutativity of affine mappings with exponential barycenters (proposition
2.10), and complexification are used.

In section 6, the convergence of the series defined by the sequence
(W™),en (the convergence of (0) in local coordinates) is investigated. For this,
it is useful to study the geometry of 7" M and its symmetrized space Mg (see
propositions 6.3, 6.5, 6.6). It is shown that the martingales #” live in com-
pact convex subsets of M{ with convex geometry (corollary 6.12). For this,
one constructs convex functions (proposition 6.6) with a Hessian bounded
below by a scalar product and uses the fact that convex geometry is implied
by uniqueness of martingales with prescribed terminal value (see [K3] and
[K4]). Complexification is used again to give sharper bounds for
I (W,...,W,))| via the construction of a convex function on M (propo-
sition 6.13). This leads to the main result (theorem 6.17) which asserts that
(0) converges a.s. absolutely and uniformly in ¢, and that the sum is a
martingale X (a) with terminal value L(a), provided that the complexification
of the manifold M has strong convex geometry.

Section 7 is devoted to the existence of martingales with prescribed ter-
minal value in a compact convex set V' with convex geometry. It is first
proven in lemma 7.1 that it is sufficient to solve the problem replacing V by a
neighbourhood V; of x for every point x € V. This is done with an argument
of connexity of the set of reachable random variables for the topology of
almost sure uniform convergence. Then local existence of martingales with
prescribed terminal value is established by approximating a C' connection by
analytic connections, and this gives reachability of every V-valued random
variable (theorem 7.3).

From now on, we assume that all the real martingales with respect to
(Q,(F1)pesess P) have a continuous version. All the manifolds considered are
smooth.

By a connection on a manifold, we will mean a smooth torsion-free con-
nection.

2. Convexity on manifolds

Definition 2.1. — Let M be a manifold endowed with a CP connection
V(p € N\{0} or p = 00). A subset V of M will be called a convex set if for all
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X,y € V, there exists a unique geodesic [0,1] > t— vy, (¢) with values in V, such
that y,,(0) = x and y,,(1) =y, and if 7, ,(0) depends in a C? way on x and y.
This vector will be denoted by Xy.

Definition 2.2. — Let M be a manifold endowed with a connection V, and V a
compact subset of M. We shall denote by €(V) the set of functions fon V such
that there exists an open neighbourhood U of V such that f is defined and
convex on U.

Recall that a function f is convex on an open subset U of a manifold M
with connection, if for every geodesic y with values in U, the function f oy is
convex.

Definition 2.3. — We shall say that a manifold M endowed with a connection V
has convex geometry if there exists a convex function y : M x M — Ry such

that =" ({0}) = {(x,x), x € M}.

We shall say that a compact subset K of M has convex geometry if there
exists an open neighbourhood of K which has convex geometry.

Definition 2.4. — 1) We shall say that a manifold M endowed with a connection
V has strong convex geometry if the following conditions are fulfilled

(i) there exists a convex function W : M x M — R, such that y~'({0}) is
exactly the diagonal A = {(x,x), x € M}, the function  is smooth outside
A and its Hessian Vdf is definite positive outside A,

(if) there exists an open neighbourhood U of the null section in TM such that
the application

U—MxM, ur (m(u), €Xpry) )

(where m stands for the canonical projection TM — M) is a smooth dif-
feomorphism. Its inverse mapping defined on M x M will be denoted by
(x, ) = X7,

(iii) for any probability space (Q, F ,P) and any random variable W L(w)
with values in M, there exists a unique point x in M such that [E[xL} =0.
This point will be denoted by &(L), and will be called the exponential
expectation of L,

(iv) for any probability space (Q,F ,P) and any application (w,a)— L(a)(w)
defined on Q x I where I is an interval of R, such that almost surely the
map a— L(a)(w) is differentiable on I, the map

Mx1— 1M, (x,a)H[E[xL—(aﬂ

is differentiable and its differential with respect to x is everywhere inv-
ersible.

2) We shall say that a compact subset K of M has strong convex geometry
if K is convex and has an open neighbourhood with strong convex geometry.
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Definition 2.5. — Let p € [1,00). We shall say that a manifold M endowed with
a connection N has p-convex geometry if M has convex geometry and there is a
Riemannian distance 6 on M and two constants 0 < a < A such that the
Sfunction \y of definition 2.3 satisfies ad® < < A

We shall say that a manifold M endowed with a connection V has strong
p-convex geometry if M has p-convex geometry and strong convex geometry.

If p < p' and M has p-convex geometry, then M has p/-convex geometry.
Simply connected Riemannian manifolds with negative sectional curvatures
have 1-convex geometry. We know from [E] that any point x of any manifold
M with a connection V has a neighbourhood with strong 2-convex geometry,
and Kendall has shown in [K2] that regular geodesic balls in Riemannian
manifolds have p-convex geometry if p is sufficiently large.

Remark that the function y of definition 2.5 need not be the same as the
function  of definition 2.3.

Among the two notions of convexity of definition 2.1 and definition 2.3,
no one implies the other: every open subset of R? has convex geometry, even
if it is not convex. It is much more difficult to find a compact convex subset of
a manifold which has not convex geometry. An example has been given in
[KS5].

Definition 2.6. — If 9 is a o-field included in F and if X is a random variable
taking its values in a compact convex subset V (possibly random and 4-mea-
surable) of a manifold M, one defines the conditional expectation of X with
respect to G as the set of 9-measurable random variables Y taking their values
in V and such that f o Y < E[f o X|9)] for every convex function f belonging to
€(V) (possibly depending in a G-measurable way on ). This set (possibly
empty) will be denoted by E[X|¥9).

By [E.M] and [A2], we know that exponential conditional expectations
are a particular case of conditional expectations.

Definition 2.7. — 4 conditional expectation Y with respect to G of a random
variable X taking its values in a (9-measurable random) convex set will be
called an exponential conditional expectation if it satisfies

[E[W|<4 =0 .
If it is unique up to a negligible set, it will be denoted by &(X|9).

By [K1] theorem 7.3, we know that convex geometry implies uniqueness
for the exponential conditional expectation.

Definition 2.8. — Let M be a manifold endowed with a connection V, and let
1=(Ty < T <...<T,) be an increasing sequence of stopping times.

(i) We shall say that a M-valued process X% indexed by [Ty, T,] is a

discrete convex martingale if for all k € {0, ... ,n — 1}, the conditional law
& Xgi‘l‘m”?n) is almost surely included in a (random) compact subset

of M with strong convex geometry, X' ) is constant on [Ty, Ty11) and
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X]téiscr(‘r) cE |:Xdiscr(r)|ka:| )

Tt

(ily We shall say that a M-valued process X“"V) indexed by t is a discrete
exponential martingale if it is a discrete convex martingale and for all
ke{0,...,n—1},

Tt

discr(t discr(t
Xy ():g(X (>|=97Tk)

where & is the exponential conditional exceptation.
The next proposition was proven in [A2].

Proposition 2.9. — If (Q, 7 |P) is such that conditional laws with respect to any
o-field included in F | exist, if V (resp. V') is a compact subset of a manifold M
(resp. M') with strong convex geometry, if (L,L') is a random variable with
values in V x V' and X js a V-valued discrete convex martingale with
terminal value L, then there exists a V'-valued discrete comvex martingale
X' dser®) with terminal value L' such that (X¥sr® x'dser®) s g discrete
convex martingale with terminal value (L,L’).

Remark. — If X% (%) is a V-valued discrete exponential martingale, then we
can take for X’ (%) the V’-valued discrete exponential martingale with
terminal value L'.

To end this section, let us prove that exponential expectations commute
with affine mappings.

Proposition 2.10. — Let  : (M, V™) — (N, V") be an affine mapping between
two manifolds, and let L be a random variable with values in a compact convex
subset V of M such that (V) is included in a compact convex subset of N.
Suppose that x € V is an exponential expectation of L. Then (x) is an ex-
ponential expectation y(L). If both are unique, then

EN(W(L)) = (ML) .
Proof. — Let x be an exponential expectation of L. Then [E[E)} =0 and
v, (E[xL]) = E[y,(xL)] = 0. We have to show that E[(x)y(L)] = 0. Be-
cause of the equality above, it will be true if for each y,z € M, we have
W, (0Z) = y(»)¥(z). Let us establish this equality: since ¥ is affine, the map
t— Y(exp 13Z) is a geodesic with derivative y, (3Z) at the origin. Hence for all
t€[0,1], we have exp(ty,(3Z)) = y(exp£iZ), which for t=1 gives

exp(¥,(32)) = Y(z). Hence ,(3Z) = w(»)¥(z). This proves the proposi-
tion. [

3. Differentiable families of martingales

Let M be a manifold endowed with a connection V. In this section, we will
show that under continuity conditions, the derivative of a family of mar-
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tingales is a martingale in the tangent space 7M endowed with the completed
lift V' of V. This complete lift is described in [Y,I]. In local coordinates
(x!, . oxdxt o x?) (if x has coordinates (x!, ..., x9), a vector u above x has

coordinates (x',...,x%x! ..., x%) with u = 3" "2, if the Christoffel sym-

bols of V write F}k, then the Christoffel symlbols of V' write
F}’k =T, F}’I—C =0, l"g’k =0, F;f,; =0,

T i T i 1T i 1T
rjlk = <drjk7u>7 rjlk =, rjlié =, rjlfc =0.
The geodesics for V' are the Jacobi fields for V (see [Y,I] proposition 9.1).
Since the V-martingales in M are the same as the martingales for the
symmetrized connection, we shall assume that V is torsion free, and there-
fore that V' is torsion free. In this case, the geodesics determine the con-
nection.

Let us first give a natural approximation of V'.

Define for a € (0, 1]

l, U —-MxM

u— (m(u), €XPr(y) au)

where U, = %Ul is a neighbourhood of 0 in 7M such that I, : U, — 1,(U,) is
a diffeomorphism. Define A; = /,(U,) = [;(U,) and

0, A — U,
1 _
(60) = =3 = 1 (x,9))

where Xy := exp; ! y.

The set A; is a neighbourhood of the diagonal A in M x M, and the
diffeomorphism ¢, induces a connection V¢ on U,, image of the product
connection in Aj.

Proposition 3.1. — Ler f € €°(TM). If V is a relatively compact open subset of
TTM, then uniformly in A € V,V*df(4,A) converges to V'df (A, A) as a tends
to 0.

Proof. — Possibly by replacing V' by ¢V ,¢ > 0, one can assume that for all
A eV, the V'-geodesic t+—Jy(¢) in TM such that J;(0) = A4 exists for all
t€10,1]. Let 4 € ¥ and J4 be such a geodesic. Define y, = 7% = n(J,4) and
t—7%(t) geodesic in M such that (79(0),7%(0)) = l,.(4). This definition is
valid if a is small enough. We want first to show that 2 |,_y(r) = J,(¢) for
all +€0,1]. Since both are Jacobi fields, it is sufficient to show that
21, 74(0) = J4(0) and T|,_o 2|, 74(1) = T|,_oJa(r) where T denotes the
covariant derivative. We have 74(0) =exp, ) (a/4(0)) which gives
21.,_074(0) = J4(0); on the other hand,
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0 arn \Y% arn z
5 |t:0 % |a:OVA (t) - da |a:0 ot |t:0yA(t) - da |a:0 CXP, (aA)
v 0 \Y 0
=% lu=o En li—o expaJa(t) = B |0 % lo—o €Xp aJ4(t)

\%
E't:OJA(t)'

The first and the fourth equalities come from the fact that V is torsion-free.

The definition of V* implies that ¢—(a,4)(¢t) defined by ¥(a,4)(¢)
=Ly (0y5(1) = 0, (y4(1),75(1)) is a V“-geodesic in U, if a is small enough
and a # 0. Let us define ¥(0,4) = Ju

Lemma 3.2. — There exists ap > 0 such that the map (a,A,t)— y(a,A)(¢) is
smooth on [0,a0] x V x [0, 1].

Let us for the moment assume that the lemma is true. In particular, for all

rew a'J, a"
A J—
or (1) = l%atr"b(a’A)(t)

uniformly in 4 € V. Hence (f o(a,A4))"(¢) converges to (f oJy)"(¢) as a
tends to 0, uniformly in 4 € ¥ and ¢ € [0, 1]. Using the fact that

(f o ¥(a, 4))"(0) = Vdf ((a,4) (0),1(a, 4)(0)),
(f 0Ja)"(0) = V'df (4,4),
and that (a,4)'(0) = @,.l.(4) = A, this convergence gives
Lllllr(l) V4df(4,4) = V'df(4,4)

uniformly in 4 € V. O

Proof of the lemma. — In local coordinates, 1xy writes (x',1 Cj"(x V0O =)
where C" is a smooth function such that u = xexp, ¢ has coordinates ((x'),
(C(x, x) k) since Ty exp, = Id. Hence 1 yAyA writes (V’A,;C;‘(yA,yA)(/A —9).

But the function which maps (a,4,7) to 1 (7 (t) — y(1)) if @ # 0 and to J/ (1)

if a=0 is equal to fo ds 5 |pas (V) (), it is therefore a smooth function.
b b= , .

Hence the coordinates of 17,74 converge to (7, Cﬁ?(yA, 74)J4(1)) as a tends to

0, and the last coordinates are those of J,(¢). This proves the lemma. OJ

Remark. — In the definition of ¢,, instead of (x,y)+ Xy, one could have
chosen any smooth mapping (x,y) — e,(y) € T:M defined in a neighbour-
hood of the diagonal of M x M, such that e,(x) = 0 and Tye, = Id.

Let us state the main result of this section.

Theorem 3.3. Let I be an open interval in R and let X,(a)) ,e; cp0.1
of continuous martingales in M, such that o as., Vte [0 1] the map

i(a

ar—Xi(a)is €' inacl, and o a.s., the map (t,a)— d(é((a) is continuous on
[0,1] xI

be a family
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Then (0)2#) » is a family of V'- martingales in TM.

Proof. — One can assume that 0 € I. Define ¥ = a)i()ga) l.—o- It is sufficient to
show that Y is a V'-martingale. For this, it is sufficient to show that each
point u of TM has a relatively compact neighbourhood ¥, such that Y is a
martingale during the time it spends in ¥, (use [E] lemma (3.5)). But each
point u of TM has a neighbourhood ¥ such that every continuous process Z
with values in ¥/ is a martingale if and only if V/ : ¥/ — R smooth, satisfying
V'df > 0,f(Z) is a real submartingale (see [D1] [E] [Al]). Let U be such a
neighbourhood. Possibly by reducing U, we can assume that there are three
relatively compact open subsets U', U? and U? such that U c U' c U!
C U? C U? C U?, and that U? has the same property. Let g be any Riem-
annian metric on 7M and 6 be the associated Riemannian distance, and let
f:U?> = R be a smooth convex function such that V'df > 0. Then there
exists & > 0 such that V'df > &g on U>.

Suppose that T and 7’ are stopping times such that 7 < 7', T’ is bounded
and Y take its values in U on [T,T’]. If @ > 0, define A, = [,(U;) with the
notations before proposition 3.1. For a > 0, define

-l _
=T A inf{t > T,Vd' € (0,d],(X,(0),X,(d)) € A%,J)(,(O)Xt(a') € Ul}
and

A AN a ! ! l ! 2
7' =T Aninfy 1> T 3d" € (0,a], (X,(0), X,(a)) ¢ A; or —X,(0)X,(a) ¢ U .
a

Then 7 < 7% < T'* < T’ and the times 7¢ and 7" “ are stopping times. Since
_— .

o as. FX(0)X(d") converges uniformly in ¢ to Y as ' tends to 0 (% is

jointly continuous) and U? is compact, we have that almost surely T¢ de-

creases stationarily to 7 as a tends to 0 and for « small enough so that

T9 =T, T'“ increases stationarily to 7.

Hence it is sufficient to show that there exists ay > 0 such that for all
a € (0,a0],f(Y) is a submartingale on [T%, T"“].

Choose ay such that for all a € (0,a0], U? C ¢,(A;) and f is V-convex on
U?. This is possible because U? is compact, V'df > &g on U?, using propo-
sition 3.1 with V = {4 € TTM,my(4) € U?,g(4,4) = 1}(m, is the canonical
projection TTM — TM).

For all a € (0,a0), for all a’ € (O,a],f(iX(O)X(a’)) is a bounded sub-
martingale on [T%, T"]. But a.s. f (%X(O)X(a’)) converges to f(Y) uniformly
in ¢, which implies that f(Y) is a submartingale. This proves the theorem. [

In local coordinates, the martingales X (a) satisfy
= 1 ; .

dX'(a) = = T3 (X (2))d(X' (a), X' (a)) (5)
where X' stands for the finite variation part of X*. The formal differentiation
with respect to the parameter a at a = 0 of the right hand side of this equality
gives
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1, ‘
=5 (a0 (X(0)), Y)d(X’(0), X*(0))
| 4 4
=3 DX (0))(d(¥/, X*(0)) + d{x7(0), Y))
and theorem 3.3 says that these formal derivatives are in fact exactly the
coordinates of the drift of Y:

Corollary 3.4. — Let I be an open interval in R containing 0 and let (X (a)) ., be
a family of martingales satisfying the same hypothesis as in theorem 3.3. Define
Y = d’gfl”) luzo- Then in a chart (x',...,x% ¥, ..., )4), the finite variation part
Y' of the i-th component Y’ satisfies the relation

~. 1 . .
dY' = =2 (T (X(0)), Y)d(x/(0), X*(0))
1, , .
= 5 T (X (0)(a(Y7, X¥(0)) + d(x/(0), ¥4))
Proof. — The expression of the Christoffel symbols of the connection V' in the
chart chosen, the fact that ¥ is a V/-martingale and n(Y) = X(0) give the

formula. O

The proof of theorem 3.3 was nothing but saying that formal differen-
tiation of equation (1) is rigorous.

Lemma 3.5. — Let p € 2N* and (M,V) be a manifold with strong p-convex
geometry, such that the functions \y of definition 2.3 and definition 2.5 coincide
and \y is smooth on M x M. Let us define the function T*P\y : TM — R, by

TP (u) = TZ(P>KP(TC(L{), 1(w)(u® - @ u)

(T®Py is the p-th derivative of \ with respect to the second variable, on the
diagonal; it is p-linear since the derivatives of order less than p vanish, and it is
positive if u # 0 since the pth derivative does not vanish).

Then T®P\s is convex for the connection V'.

Proof. — Let J be a Jacobi field on M, let / be an open interval of R containing
0 and (%), a faI'nily of geodesics such that J = %i; l.—o- For all @ € I\{0},
the function #+— Z/(y°(¢),7%(1)) is convex, and converges to t+— TPy (J(t))
as a tends to 0. It implies that the latter function is convex and TPy is
convex. [

Corollary 3.6. — Let V be a compact subset of TM, where M is a manifold
which satisfies the same hypothesis as in lemma 3.5. Then if P is a F ;-me-
surable random variable with values in V', then there is at most one V-valued V'-
martingale with terminal value P.

Proof. —If Y and Y’ are two V-valued V’-martingales with terminal value P,
then 7n(Y) and 7n(Y’') are two M-valued V-martingale with terminal value
n(P), hence n(Y) = n(¥’) since M has strong convex geometry. It implies that
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the process ¥ — Y’ is well defined and is a V/-martingale with values in a
compact of TM, and with terminal value 0. Hence 7®Py/(Y — Y’) is a bounded
non-negative submartingale with terminal value 0. It implies that
T°PY(Y —Y)=0and Y =Y. O

Now we investigate the case where we only know that the terminal value
of a family of martingales is differentiable.

Proposition 3.7. — Let p > 1 and let M be a manifold with a connection V. Let
I be an open interval containing 0, and for all a € I, let X(a) be a M-valued V-
martingale such that almost surely avw Xi(a) is differentiable; define
L(a) = X\(a) and let Y be a TM-valued V'-martingale with ¥, = L'(0).

Assume that

(i) forall a € I, almost surely, X(a) takes its values in a compact subset K of
M with p-convex geometry

(ii) for all a € I, almost surely, L'(a) and Y take their values in a compact
subset V of TM,

(iii) every compact subset of TM has an open neighbourhood with strong
convex geometry.
Then almost surely, for all t € 0, 1], the map a— X,(a) is differentiable at
a = 0, with derivative Y;.

Remark. — By [K4] corollary 3.4, uniqueness of martingales with prescribed
terminal value on a compact subset W of a manifold implie convex geometry
for W. From this and corollary 3.6, one can think that assumption (iii) on 7M
is not too restrictive.

Proof of proposition 3.7. — Let ¢ be a function defining p-convex geometry on
M, with ¢ < ¢ < Co” where J is a Riemannian distance on M. Then
@(X(0),X(a)) is a bounded non-negative submartingale, and therefore, for
all £ € [0, 1],

P(X,(0), Xi(a)) < Elp(X1(0),X1(a))| 7] -

It gives
F06(0), Xi(a)) < E(X(0), Xi (@)1 7]

and since DXO‘—OE@ is bounded, there exists a non-negative copstant C’ such that
& (X(0),X,(a)) < ECPaPl. This gives 6(X;(0),X,(a)) < (£)’C'a, and it implies
that there exists a relatively compact open subset ¥’ of TM and ay > 0 such
that for all a € (0,a),X(0)X (a) exists, 1X(0)X(a) € V',Y € V' and V' C U,
(see definition of U, before proposition 3.1). Let U be an open neighbour-
hood of ¥’ with strong convex geometry. Since the function i defining strong
convex geometry on U has a strictly positive Hessian outside the diagonal,
for any metric g on U x U, for any ¢ > 0, there exists a; € (0, ap) such that if
0<d <aj, then Y is convex for the connection VY@V on
V' x V'\iy~'([0,¢)) (this is a consequence of proposition 3.1). It implies that
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for this connection, V., =sup(y,e) is convex on V' x V!, and that
¥, (LX(0)X(d'),Y ) is a submartingale. But ¥, (1.X,(0)X; (d'), Y12 is bounded
and tends almost surely stationarily to ¢ as a’ tends to 0. Hence almost surely,
for all ¢ € [0,1], ¥, (1 X,(0)X,(d'), Y;) tends to ¢ as a’ tends to 0. Since this is
true for all ¢ > 0, we have that almost surely, for all 7 € [0, 1],%)(,(0))6(a)
tends to ¥, as a tends to 0 (see [K1] lemma 4.5). Therefore almost surely, for
all ¢ € [0, 1], the map a+ X,(a) is differentiable at a = 0 with derivative Y.
To end this section, let us prove that exponential expectations commute
with differentiation. This can be seen as a discrete analogue to theorem 3.3.

Proposition 3.8. — Let (M,V) be a manifold endowed with a torsion-free
connection, and let W be a random variable with values in an open subset V of
TM such that (V,N') has strong convex geometry. Denote by L the projection
n(W). Assume that the differential of the exponential expectation & at point L
in the direction W, denoted by (T&(L), W), belongs to V.

Then (T&(L), W) is the exponential expectation &' (W) of W with respect to
the connection V'.

Remark. — If W takes its values in a small set, then (T& (L), W) is very close to
this set and it is possible to find an open set ¥ with strong convex geometry
such that the assumptions are fulfilled.

Proof  of proposition 3.8. — Let ar L(a) be a smooth family of random
variables with values in M, such that almost surely L'(0) = . Define
x(a) = &(L(a)) and U(a) = x(a)L(a). Then x'(0) is equal to (T&(L), W).

If a— u(a) is a differentiable path in TM with projection 7 (u(a)) = x(a),
one gives the two following equivalent definitions of the complete lip u“(a) of u:

(1) u(a) is the vector in T7TM with projection 7m>(u°(a)) = x'(a) in TM, and
with coordinates (u/(a), (u') (a));

(i) u‘(a) is the vector in TTM with projection m;(u(a)) = ¥'(a) in TM, with
horizontal part the horizontal lift of u(a) in Ty, TM and with vertical

part the vector Vf;i”>, where ¥ denotes the covariant derivative.

Since the first definition does not require the connection and the second
one does not require a chart, u°(a) depends on none of them.

We have E[U(a)] = 0 by definition of the exponential expectation (defi-
nition 2.4), and this implies by derivation and by the definition (i) of U*(a),
that E[U°(0)] = 0. To show that x’(0) is the exponential expectation of L'(0),
it remains to verify that if exp’ denotes the exponential map with respect to
V', then expl,, U°(0) = L'(0). This is exactly what the following lemma
says. [

Lemma 3.9. — Let a— x(a) and a— I(a) be two differentiable curves defined on
an interval I of R containing 0 and with values in V. Denote by u(a) the vector
x(a)l(a) € TyaM.

Then exp,(u/'(0)) = exp’ u¢(0), where exp’ denotes the exponential map
defined with V' and exp, denotes the tangent map to exp.
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Proof. — Let (t,a) — 7y(t,a) be the V-valued map defined on [0, 1] x I, such
that for each a € I, the path ¢+ y(z,a) is a geodesic with y(0,a) = x(a) and
y(1,a) = I(a) . Then we have for all a € I,u(a) = d'(“’ |, o- Denote by J the
Jacobi field % |.—o- It is sufficient to show that J’(()) = u°(0). For this, we are
going to use the definition (ii) of 4°(0) and show that the projections, and the
horizontal and vertical parts of the two vectors coincide.

It is clear that they have the same projection x'(0) € V. Since
m o J(t) = y(2,0), we have 71.(J'(0) = u(0), and we deduce that they have
the same horizontal part. As for the vertical part, we have

v \V4 0 \V4 0 \VJ
&h:o J(t) = 5'1:0% =07 (2, G)% L;:o@ l—o7(t,a) = %bzo“(") .

This proves the lemma. [

4. Complexification of a manifold with connection

In this section, the manifold M® is real analytic, and endowed with a real
analytic torsion-free connection V®. According to [W,B], there exists a
complexification M of M® which is a complex analytic manifold. For every
point x in M® and every analytic function ¢® defined on a neighbourhood V'®
of x in M®, there exists a neighbourhood ¥ of x in M and a unique holo-
morphic extension ¢ of ¢® to V. We shall show, possibly by reducing the
neighbourhood M of M®, that this fact allows us to extend V¥ to an holo-
morphic connection in M such that M® is a totally geodesic submanifold.

Proposition 4.1. — Possibly by reducing the complexification M of M®, there
exists a connection NV on M such that the equation of geodesics in an holo-
morphic chart is

7= =T (6)

where the coordinates are taken in C and the T lk are holomorphic functions.
For this connection, the set M®, is a totally geodeszc submanifold and the
inclusion (M®,V®) — (M, V) is aﬁ?ne. The equation of continuous martingales
in an holomorphic chart is
~ 1 ok

dZ = _E jk(Z)d<Zjvz > ) (7)
where the coordinates are taken in C and Z denotes the finite variation part in
these coordinates.

Proof. — Consider an analytic exponential chart in M® with image an open
ball B®(0,R) in R?, such that the Christoffel symbols

!
r Jk Z kﬁx
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converge on this domain, where summation is taken over multiindexes
6 € N“. We have I'(0) = 0. Considering R? as a subset of C? and denoting by
B(0, R) the open ball of center 0 and radius R in C?, we can assume that
B(0,R) is the image of the complexification of the real chart in M®. We can
define holomorphic functions on B(0, R) by

r/lk Z k&z . (8)

The uniqueness of the holomorphic extension of the Christoffel symbols
together with the existence of a locally finite covering of M® with charts as
above allow us to say that it is sufficient to consider only one chart and to
show that the functions given by (8) define a connection V on B(0, R) which
extends the connection V® on B®(0, R), and for which this subset is a totally
geodesic submanifold of B(0, R).

Denote by z¢ = x? + ix*( and z/ = x* + ixP z¢ = x° + ix") the coordinates
in €%, and by TY.(z) = T'¥(z) +iT%(z) the decomposition into real and
imaginary part of the function I'j.. Considering B(0,R) as a real manifold
with the system of coordinates (x“,x*), one verifies that equation (6) is
equivalent to the equation of geodesics for the real connection whose
Christoffel symbols A are

a __ yar a __ ai a __ ai a __ ar
Abc - 1—‘bc7 Aby - _rbc’? Aﬂc - _rbc’ Aﬁ, - _Fbc )
o __ yai o __ y1ar o __ Tar o __ ai
Abc - Fbw Ab}‘ - l—‘bc7 A[ic - l—‘bc7 A[Jy - _rbc' :

In the same way, one verifies that equation (8) is the same as the equation for
martingales in the real manifold B(0, R) endowed with the connection with
Christoffel symbols A in the canonical coordinates.

The fact that the coefficients c¢,; are real implies that the equation of
geodesics in (B®(0,R), V®) is the same as the equation in B(0,R) with real
initial conditions. Hence the inclusion (B®(0,R), V®) — (B(0,R), V) is affine
and BR(0,R) is totally geodesic in B(0,R). O

Let M be as in proposition 4.1. Since the connection in M is holomorphic,
we have the following results:

Lemma 4.2. — Let .9 : TM — TM be the complex structure on TM, i.e. the
multiplication by i of the complex coordinates of vectors in TM.

Then J is an affine diffeomorphism.

Proof. — 1t is sufficient to prove that the image by .# of a geodesic is a
geodesic. One verifies that the equation of a geodesic in 7M is in complex
coordinates

J' = (TR IV = DU + 974

Since the FJI are holomorphic, we have (TF’ (n), £y = ((Tl"l (y),J)). If we
replace J,J7,J* J' by 4J,iJ7,iJ*,iJ', the ‘above equation is still satisfied.
Hence #J is a geodesic and ] is afﬁne. O
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Corollary 4.3. — Assume that M has strong convex geometry. Then the fol-
lowing assertions are true:

1) Denote by U an open neighbourhood of the null section in TM such that
the application U — M x M, ur (n(u),expy,) u) is a diffeomorphism.
Then exp : U — M is holomorphic.

2) If a—L(a) is a holomorphic family of M-valued random variables, then
the application a— &(L(a)) is holomorphic.

3) Let a— L(a) be a holomorphic family of M-valued random variables, and
for each a, let X" (a) be a discrete exponential martingale with terminal
value L(a). Then almost surely, for each t € [0,1], the map a— X% (a)
is holomorphic.

Corollary 4.4. — With the hypothesis of 3) of corollary 4.3, if the map a— L(a)
is defined on some closed disc D(0,A4), if M = B(0,R) and if we write

x n
discr __ ydiscr a discr
AP ) = XBTO) 3 S
then for each n € N, we have
HI/Vndiscr” S n|£ .
Ar

Remark. — The upper bounds obtained for the discrete process W7 are
independent of the filtration. The question arises whether this result gener-
alizes for non-discrete filtrations, and a positive answer will be given at the
end of section 6.

Proof of corollary 4.3. — 1) Consider two holomorphic maps a+— K(a) € M
and a+— L(a) € M defined on the same open subset of C, and consider for
each a the geodesic ¢+ y(a,f) which satisfies 7(a,0) =K(a) and
y(a,1) = L(a). It is sufficient to show that for each ¢, the map a y(a,?) is
holomorphic and then to differentiate at time ¢ = 0.

For each ¢, the map a— 7y(a, ¢) is differentiable since M has strong convex
geometry, and if Tyy(a, t) denotes the differential with respect to a and u € C,
we have that t— (T1y(a, 1), u) is a V'-geodesic in TM, t+— (Tyy(a, t),iu) is a V'-
geodesic in 7M. But since .# is affine, t— #((T1y(a, ), u)) is a V'-geodesic in
TM with the same end points as those of ¢ — (T7y(a,t),iu). The consequence
is that (Ty(a,t),iu) = S ({(Ty(a,t),u)) and 1) is proved.

2) is a consequence of 1) and of the implicit function theorem applied to
(x,a)—E xL(a)}, using (iv) of definition 2.4.

3) is a direct consequence of 2). [J

Proof of corollary 4.4. — It is a consequence of the formula

Wdiscr(t) _ n‘i/ )(tdiscr(a) da
" 27'El (5(07/4) a"“
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where %(0,4) denotes the circle in C of center 0 and of radius 4.

Corollary 4.5. — Let A > 0 and for each a € D(0,A4), let X(a) be an M-valued
continuous martingale with terminal value L(a), such that a.s. for all
t €[0,1],a— X;(a) is differentiable on D(0,A4), and a — L(a) is holomorphic on
D(0,4).

Assume that

a) the manifold M has strong p-convex geometry with p € 2N*, the function
Y of definition 2.3 is the same as the function \ of definition 2.5 and is
smooth on M x M,

b) almost surely, the map (t,a)— ThX,(a) is continuous and bounded on
[0, 1] x D(0,4)(T2X,(a) denotes the differential with respect to a).

Then almost surely, for all t € [0,1],a— X,(a) is holomorphic on D(0,4).

Proof. — 1t is sufficient to check that the Cauchy-Riemann equations are
satisfied at a = 0. For u € C, set Y* = (T»X (a), u)|,_,- The processes ¥* and
Y are V'-martingales in TM by theorem 3.3. The process .#Y* is a V'-
martingale by lemma 4.2. Hence the process Y* — .#Y* is a bounded mar-
tingale above X(0), with terminal value 0. It implies by lemma 3.5 that
TPy (Y™ — #Y") is a bounded non-negative real submartingale with termi-
nal value 0. Hence T®Py(Y™ — #Y*) =0 and Y™ = #Y". OJ

5. Approximations of martingales in a manifold

In this section, we give general results of approximations of a continuous
martingale in a manifold by discrete exponential martingales. They extend
the results obtained in [A2] in convex geometry.

Theorem 5.1. — Let (Xi)y.,<, be a continuous martingale in a manifold M
endowed with a connection V.

Then for all ¢ > 0, for all stopping times S, T such that S < T, for any
Riemannian distance on M, there exists a stopping time T, such that
S<T,<T,P(T, # T) < ¢ and such that X" can be a.s. uniformly approxi-
mated between S and T by a discrete exponential martingale at a distance less
than e.

Proof of theorem 5.1. — For the sake of simplicity, one can take § = 0,7 =1
and assume that X is a constant. Since we are interested in the martingale X
up to a stopping time equal to 1 with probability less than 1, we can assume
that X lives in a compact subset K of M. It makes sense to define square
integrable martingales living in a compact set: take any Riemannian metric
on the manifold and say that X is square integrable if its Riemannian qua-
dratic variation with respect to this metric has finite expectation. By using a
stopping time equal to 1 with probability as close to 1 as we want, we can
suppose that X is square integrable.
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Let g be a Riemannian metric on M, and ¢ the associated Riemannian
distance. In the following, the Levi-Civita connection of g will not be used.
Let o € (,1); define for m € N*Ty" = 0 and for i € {0,...,m — 1}

1
= 1nf{t > T, 6(Xrm, Xy) = }

mOf
(by convention, these stopping times are equal to 1 when the sets are empty).
Lemma 5.2. — The probability P(T" # 1) tends to 0 as m tends to cc.

Remark. — The proof will only use o < 1.

Proof of lemma 5.2. — Let n: M x M — R be a smooth function with com-
pact support, which coincides with 6 in a neighbourhood of the diagonal of
the compact set K. There exists a constant ¢ >0 such that for all
X € M,Vdn(x,-) <cg. In the following, Vdn(x,-) will be denoted by
Hessyn(x, ), and dy(x, -) by dan(x, ). If S, T are two stopping times such that
S < T, then the It6 formula gives

T
n(Xs, Xr) =/ (dan(Xs, X;),dX;) + / Hess, n(Xs, X;) (dX ® dX),
s

where the first term in the right hand side is an It6 integral. This yields
1 T
Eln(Xs, X7)] = 3 E {/ Hess»n (X5, X;) (dX ® dX),
s
¢
< SEIXIX); — (X))
where (X|X) stands for the Riemannian quadratic variation of X. Applying
this inequality to S = 7" and T = T}},, summing over i, and taking m suf-

t+1’
ficiently large, we can replace 5 by 6% and write

[Elm_io 5 (XTim,XT;;])] E[(X[X),] -

<‘E
2
On {T" < 1}, we have for all i,é(XT‘m,Xml) = -1 Hence we have
m c
ﬁP({Tn’? <1}) SE[EKX|X>1] ;

which yields
P({Ty < 1}) < m* ' SE(X]X),]

and the right hand side tends to 0 as m tends to oo since 2« — 1 < 0. This
proves the lemma. [

Fix m big enough for any ball of radius % centered in K to be included in
a manifold with strong 2-convex geometry, and for 7" to be different of 1
with probability less than 5. This is possible thanks to lemma 5.2. Then X
takes its values in a mdnlfold with strong 2-convex geometry between times

T and T77,.
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Let n € N (n will be much greater than m). The idea of the proof of
theorem 5.1 is to approximate X uniformly on intervals of the form
(T T2 with T2 = T720). P(TYy" # T") and BT/} # T7%,) being very
small. This will be performed using subdivisions of the form Ty <
Tmn S < Tmn

FlI‘St deﬁne by induction the stopping times S;",0<i<m—1,
0<j<n-—1by

. 1
S =0, Soer =11 /\mf{t > o) ’b(XSm" Xi) = n“} .

The induction relation is: for 0 < i < m — 2, define

mmn __ omn
Si+1,0 - Si,n

and for0 <;j<n-—1,

1
1+1]+l T1+2 A ll'lf{t > 14,.1]; 5(XS"'" )(t) = nx} .

Then define the stopping time R™" by
R™ =T A inf {S/" such that S/." < T}

m 0<l<n1—
where by convention, the infimum is equal to 1 if the set is empty (in fact we
expect this set to be empty with a large probability).
Now define for 0 <i<m—1and 0 <j <n— 1 the stopping times

no__ Szzjn A R™

m,n

(the discrete martingale is stopped at the first time S;)" which is strictly less
than T}%,). A consequence of lemma 5.2 is that there ex1sts a constant C > 0
such that almost surely, for all i € {0, .. -1},

m,n m,n C_
Pl () S =130 {Sh < 1T | <5
0<i’'<i—1 "

which yields

m—1
P(R’”v”<T$):ZP< ﬂ {S; =T n{s," < Tml}> 2

i=0 0<i’'<i—1

We shall show that the stopping time R™" is, for n large enough, the answer
to our question.
We have constructed an increasing sequence of m(n + 1) stopping times

O_Tmn < Tmn S < Tmn_Tmn < Tmn S <Tmn _RmJ[

0,n m—1,n

such that if S and T belong to this sequence and are consecutive, then
(X5, Xr) < 5z Moreover, between 7;;" and 7}, the law of X conditionned
by & T is carrled by a (random) mamfold with strong 2-convex geometry.
This i 1ncreas1ng sequence of stopping times will be denoted by "".
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Lemma 5.3. — Let p > I and let N be a manifold with strong p-convex geom-
etry.

Then there exists a constant C' > 0, such that for any martingale Y with
values in N and for any sequence of stopping times

T=1(q) ={So=0<8<...<8,}

which satisfies
1
sup 0(¥s, ) < —
q

Si<t<Siti

b

if Y s the exponential discrete martingale with terminal value Ys,, then

almost surely,
!

dzscr(r)
sup (Y, Y] ) S =
€)0,,] ' g1

Proof. — The proof goes as in [A2] proposition 3.3, following the construction
of Picard ([P2], proof of théoréme 6.3). Since (Y5, ,,¥s,) < qi, we have by
[A2] proposition 2.15, §(Ys,_, g’sfr<f)) < £ where C is a constant depending
only on the manifold. Deﬁne (g—1)={S=0<8<...<8,.1} and
ydiser(t(¢=1)) the discrete exponential martingale with termlnal value Ys .
Then (Ydiser(=(a)) ydiser(z(a=1))) is a discrete exponential martingale up to time
Sq—1, and since N has strong p-convex geometry, for any Riemannian dis-

tance 0, there exists a constant C” depending only on N and J, such that

5p(YOdiscr(z(q—l)) Y(;/iscr(r(q))) < C'"E {5p (Ygiscr(r(q—l)) Y;liscr(r(q)))]
’ — g1 7 T 8g-1
1 p
< (CT> )
q o

. _ X 1
S Ydlscr(‘c(q 1))7 Ydlscr(r(q)) < CN% (C—) .
( 0 0 ) q3o:

which yields

Replacing S, by S,-1, and then S,_; by S,_» and so on, we obtain ¢ similar
inequalities, and we add them, It yields

isc 1
5<YOa Ydlsd(‘t(l))) 4 5( dtscr (t(g— 1)), Yodlscr(r(q))) < qcﬁi (C—)

6]3‘“
iscr 1 1
o(077) = (e i)
=

This proves the inequality of the lemma at time 0 and similarly, at tlme
S;,0 < j < gq. Itis not difficult to extend this inequality for all times since ‘1
tends to 0 as ¢ tends to oo.

and hence

Remarks. — 1) Since o > 5 we have 3¢ — 1 > 0 and the upper bound tends to 0
as ¢ tends to co.
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2) In general, a subdivision 7(¢) does not exist up to time 1. It exists up to a
time which is strictly less than 1 with a probability tending to 0 as ¢ tends to co.

We are now able to finish the proof of theorem 5.1.

Let C” be a constant such that for each x € K, for each ball of radius mi
and of center x, the function y defining the 2-convexity of this ball satisfies
ad® <y < 48> with4 < C". Define b(n) = C’ —r where C’ is as in lemma 5.3
(here C’ depends on all the balls of radius 2 centered in K). Suppose that n is
big enough so that the inequality

m*

V" b(n) < mi (9)

is satisfied. Then it will be shown that the discrete exponential t™"-martin-
gale Z™" with terminal value Xgn. exists (where ™" is the subdivision con-
structed before lemma 5.3). It exists clearly from time 77", o to time R™", and
by lemma 5.3, we have

m—1,0

m,n 1
5<X,::IJII.O,ZT&,H ) < C PP = b(}’l) . (10)(m)

Using condition (9), inequality (10)(m) and the fact that balls of radius mi
have strong 2-convex geometry, the construction of Z™" can be performed on

[T 0: Ty o] since the conditional law 3’(2”2;,",,[0|J o ) is almost surely

included in a ball of radlus = and centered at Xpmn .

Denote by 71" the subd1V1s1on " stopped at tlme T o(=T,7,). In
the same way, the discrete exponentlal m=Ln_martingale Z"~! " with terminal
value Xpn - exists from time " _20 to time 7, ; and from the strong 2-

convex geometry of balls centered in Xpn - and of radius 2 we obtain that

(zm='n Zmn) is an exponential discrete martingale on r "2,,7 w1 ) It yields
5(2;@,,}*”, z5 ) <VC"b(n) . (11)
m-2,0 m-2.0

Like (10)(m), the following inequality (10)(m — 1) is valid:

m=2,0

m N 1
5(XT’”” ZT'””1 ) S C/ }’[30‘71 ) (10)(m - 1)

and inequalities (10)(m — 1) and (11) yield

-2,0 m=2,0

5()(;3,,'3, \Z0 ) < b(n)(1+VC") < mV/C""b(n) < —

It implies that the conditional law £ Z7 |/Tmn ) is almost surely in-

cluded in a ball of radlus = and centered i 1n Xij3 .

By the same method deﬁnmg Z"=2" discrete martingales can be con-

structed from time 7, | to time 7,"", and one obtains
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O Xpmn \ Z70
L5500 2T
m—2.n m—2.n —m—1.n m—1.n —mn
<o <XT;~"}‘0, Zyna” ) +9 <ZT;”‘”3,0 » Zyna ! ) +9 <ZT’ZMW ’ZT,Z"”3,0>

Sb(n)(1+\/ﬁ+\/ﬁz).

By iteration, one can construct Z™" on the whole subdivision t”" and one
has

(X0, ZI") < b(n) (1 NN/ e \/C"’”) < mV/C""b(n) < mi
(12)

using (9). It is obvious that in (12) the time 0 can be replaced by any element
of ™",

Let ¢ > 0. Choose m such that every ball of radius % is included in a
manifold with strong 2-convex geometry, P(7,’ # 1) <4 and # < 5, choose
ng such that myv/C"" b(ng) < £.n > no such that L < £and P(R™" < T7) < &.
Define 7, = R™". We have

[sup o(Z"™" . Xi) o <

t<T;
(13)
+

oo

<é .

o0

sup o(Z7", Xr)

Tegmn

sup o0(Xr,X7)

Tiermn, te[T;, i)

This proves the theorem. [J

Remarks. — 1) Although T, is strictly less than 1 with probability less than ¢,
we can not expect to obtain a uniform convergence of the discrete martin-
gales almost surely for 0 < ¢ < 1. We can not even define discrete martingales
up to time 1.

2) If (Q,7,P) is such that conditional laws with respect to any o-field
included in & exist, then the conclusion of theorem 5.1 and inequality (13)
are still valid if we replace Z™" by a convex discrete martingale with terminal
value X7,. Proposition 2.9 is then required at different steps of the proof.

6. Construction of holomorphic families of continuous martingales
with prescribed terminal value

Let M be a manifold. Set 7OM = M and for n > 1, define by induction
TWM = TT"=YM. If V is a connection on M, set V(¥ =V, and for n > 1,
denote by V) the complete lift in 7")M of the connection V=1 in T~V s,

For n € N*, define 7, : T")M — T~V the canonical projection. Define
for xo € M,
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M"=M"(xo) ={we TWM nomo...0 (W) = x0}
and by induction TS<0)M =M, TS<1>M = TM and for n > 2
TS(">M ={we TTS('FUM, (W) = m1, (W)} .
Define for n > 1,
M =M"NT"'M .

Note that the dimension of Mg is nd and that T, S<")M is the set of n-th de-
rivatives of smooth paths with values in M. A point of T, S(">M can also be seen
as an equivalence class of smooth curves in M, for the equivalence relation
given by n-th order tangency at one point of M.

Lemma 6.1. — If Y : (V,V") — (W,N") is an affine mapping between two
manifolds endowed with torsion-free connections, then W, : (IV,V") —
(Tw,N"") is affine.

Proof. — It is sufficient to show that the images by , of geodesics in TV are
geodesics in TW.

Let 1+ J(¢) be a geodesic in TV defined on [0, ¢). If ¢ > 0 is small enough,
then there exists a smooth map (a,t) — y(a,t) defined on [0,¢") x [0, ¢) such
that for every a € [0,¢), 1+ y(a, ) is a geodesic in V and 2 |,_y(a,1) = J(1).

Since v is affine, for every a € [0,¢'),7— (y(a,t)) is a geodesic in W and
therefore t— 2| _ W (y(a,t)) =y, (J(¢)) is a V"' -geodesic in TW. O

Lemma 6.2. — If V and W are two manifolds with a connection, y : V. — W is
an affine submersion and if W' is a totally geodesic submanifold of W, then
Yy (W) is a totally geodesic submanifold of V.

Proof. — The set ¥’ = ' (W) is a submanifold of ¥ since  is a submersion.
Let x € V',u € T,V' and denote by 7y the geodesic in ¥ which satisfies
7(0) = u. Then since ¥ is affine, ¥ o y is a geodesic in W with initial condition
(¥ 079)'(0) = T:y(u) and this vector belongs to Ty . It implies that y o y is
a geodesic in W’ and y is a geodesic in V. This proves that V' is totally
geodesic. [

Lemma 6.1 and lemma 6.2 yield:

Proposition 6.3. — Assume that the manifold M is endowed with a connection V.
Then the submanifolds (M", V™), (TS<">M, V) (M2, V™) are totally geodesic
in TWM.

The manifolds Mg are the ones we are interested in, because the n-th
derivatives at @ = 0 of families of martingales defined by an equation like (0)
live in Mg. Assume that M is the domain of a chart centered in xo. An element
w" € M (resp. w" € TS(")M) will be denoted by (wy,...,w,) (resp. (x,
wi,...,w,)) in canonical coordinates, forgetting the repetitions of coordi-
nates.
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So as to show that equations (0) and (1) in section 1 define a martingale
X (a), we have to show that the series (0) converges, and that if it converges,
the sum is a V-martingale. First we give an answer to the second point.

Assume M = B(0,R) is an holomorphic manifold endowed with an ho-
lomorphic connection and that we are given a holomorphic family

X(a) = x(O) + Y C () (14)
n=1 """

of processes such that the series converges, X(0) is a V-martingale, and for
each n > 1, the process W" € TS(")M with coordinates (X (0), #,...,W,) is a
V("-martingale. The question arises whether X (a) is a V-martingale, and
with the help of corollary 4.4 and theorem 5.1, it is possible to give the
following answer:

Theorem 6.4. — Assume that M = B(0,R) C C? is a complex manifold endowed
with an holomorphic connection V, such that the holomorphic Christoffel
symbols are defined on M (see section 4 for details). Assume that almost surely
the series (14) converges absolutely and uniformly in t, @ on the closed disc
D(0,4) C C of center 0 and radius A and that there exists a compact subset V
of M with strong convex geometry such that almost surely, for all
(t,a) € [0,1] x D(0,4), X,(a) takes its values in V.

Then for every a belonging to the closed disc D(0,4),X (a) is a V-martin-
gale.

Proof. — It is sufficient to obtain the result for every a belonging to the open
disc D(0,4), since we can then obtain it in the closed disc using the uniform
convergence. According to [A2] proposition 2.12 (one verifies that the strong
convex geometry assumption of definition 2.4 is sufficient to apply this result)
and [A1] proposition 3.4, it is sufficient to show that for any function
fe®b(V), foralla e D(0,4), f(X(a)) is a real submartingale. Let / be such a
function and s, € [0, 1] such that s <z We are going to show that for all

a € D(0,4)./(X(a)) < E[f(Xi(a)) | 7.

Let £¢>0,4"€(0,4) and N €N such that almost surely, for all
a € D(0,4), for all u,
N

X,(a) — X Z%W

n=1

(15)

and such that for every increasing sequence of stopping times
1={Tp <T) <...<T;} and every holomorphic family L(a) of random
variables defined on D(0,4), with_values in V', such that L(a) = Y}ikl <r®) ()

where Y5 (q) = ydser(®) (0) 4- Z Wd“cr 9(.) is an exponential discrete

martingale, we have for a € D(0, A )

N
Ydiscr('c) (Ll) _ Ydivcr T Z dzvct (r

<e. (16)




Differentiable and analytic families of continuous martingales 243

Note that this is possible because of the majoration of corollary 4.4, which
gives

o n A N+l
a 4
discr(t) (A)

2 | <R

n=N+1"" A

as soon as |a| < 4.

By theorem 5.1, there exists a stopping time 7 with s <7 <¢ and
P(T # t) < ¢ and a subdivision 7 of [s, 7] such that the discrete exponential
martingale WY@ with values in T{”M and with terminal value

WYt — | with coordinates (et (0), B mderty exists
and satisfies:
Wne{0,1,...,N}, || — ) <nl—0 (17)
(N + 1)ar

where one defines W) = (p0)dser(®) — ydiser(®)(0) " Since the canonical
projections TS(")M — TS('H)M are affine, a consequence of proposition 2.10 is
that 7, (W)@ ) = (wn=1y5 for all n e {1,...,N}. We can assume
that for all m € {1,...,N}, if T; and ;4 are two times of the discretisation,
then the random variable Wy ‘j:m(f) takes its values in a random Z r,-mea-
surable set V(m,k,w) with strong convex geometry and that
(Té (WTZIII’d”"“”f ) Wgﬁlm(f)) belongs to ¥ (n,k,®). The assumptions of

proposition 3.8 are fulfilled and we deduced that

W;‘i,discr(r) _ <T(5E(W;i:ll Jdiscr(t) |=g;T,(>; W£ﬁ5c1(1)> '
By induction on the indexes of the subdivision 7 (going from the upper index
to the lower index) and by induction on the derivatives, we deduce that for
ne{l,...,N}, the process (W")®" ™ is the n-th derivative of X(%)(q) at
time a = 0. Hence, since the family of discrete exponential martingales
X%ser()(g) with terminal values X7(a) is holomorphic in a, there exist CY-

valued discrete processes ,"““)(.) n > N such that the processes X% () (q)
write
Xdiscr(r) (a) _ Xdiscr(r)(o) + zN:a_n Wdiscr(r)(.) + XOC: a_n W/discr(r)(.>
B =" St " .

Putting together (15), (16) and (17), we obtain that on [s, 7], for all
a € D(0,4), the distance between X7 (a) and X% ()(a) is less than 3e. But
Xdiser(®) (g) is a discrete martingale with values in K and hence f (X% () (q)) is
a bounded discrete submartingale on [s, 7], which yields f (X ”c"(r)(a)) <
[E[f(X}hscr(I)(a))Wf’s]. By letting ¢ tend to 0, and using the fact that f is
bounded on V, we deduce that f(X;(a)) < E[f (X;(a))|F,]. O

We are going to investigate the convergence of the series (0) of section 1.
It will be shown that the martingales #” live in compacts of manifolds with
strong convex geometry, and this will give us the appropriate bounds.
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The following result is immediate:

Proposition 6.5. — Let M be a manifold with connection and xy € M. Then for
each n > 1, given two points in M{ = M{(xo), there exists one and only one
geodesic living in Mg and joining these two points.

Proof. — The equation of geodesics in a coordinates system of M{ gives the
same induction relation as in section 1 with martingales and it is possible to
give explicit solutions. One obtains

wmzw@+(wm—wm%fﬁ@[wmw)+K¢AMMML

and as equation (18) below shows it, W, is a polynomial in ¢ if for all
i <n-—1,w; and w; are polynomials in ¢.

Proposition 6.6. — Let M be a manifold with connection, xy € M, and forn > 1,
denote by (wi,...,w,) the coordinates in M inherited from a chart in a
neighbourhood of xo. Then for each n > 1, there exists a convex function
hy : Mg — Ry such that

(i) h? is a polynomial in ||w;|,i € {1,...,n}, without any monomial of order 0
or 1.

(i) hp = [Jwal,

(iii) there exists a polynomial P,(Xi,...,X,) such that for any geodesic

w'(t) in ME,

(o w2, 0)" < Pl O] I (1 + .+ i )P

(iv) for any geodesic w"(t) in Mg, for all p € N,p > 2, the measure (h2 o w™)"
is greater than the measure in R with density p||\w,||"~|W,|”.

Remark. — Let n,p € N*. If h, : M{ — R, is defined, then it extends to a
convex function on Mgﬂ’ by composition by the affine mapping
Tuid © v Tuyp - MG — MZ. Tt will be still denoted by 4,.

Proof of proposition 6.6. — Let us prove this proposition by induction.

For n = 1, take h;(w!) = |lwy].

Let n € N*, and suppose that 4, ..., h,_; exist. Let w"(¢) be a geodesic in
M¢. A dimension argument together with the definition of V" show that
wy(t) is the n-th order derivative at a =0 of a family (indexed by a) of
geodesics y(¢,a) such that for all ¢,7(¢,0) = x. Differentiating n times the

equation j = —I ()7 yields the equation for w,(z)
= > CopgiDiTjlxo)wl, ... wly Wik (18)
r>0,p,g>0
)+t ptg=n
1<i poir <d
where « = («1,...,0),i = (i1,...,i) and C,,,; are constants uniquely de-

termined. Note that the right hand side involves only indexes less than n — 1.
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From the inequality
laras . ..ay 1a,| <1 +aj+d5+.. . +a", +d*

which comes from the iteration of lab| < a® + b* (and using ay = 1), we
obtain that each term |C, ¢, D;T uwi, ... wj W/ w"| is bounded above by a sum
of terms Of the form C|jw;||" ||w,|| Wlth m e 2N,z,],€ {1,...,n—1}. But
[lwil|™ ||w,|| is bounded above by the second derivative of § (h’” + hz) o w(1).
Indeed, this second derivative is equal to

(0w ) + (B 0wy, )

() + 2 00) (B o W)+ (1 o))

(where ();_ denotes a right derivative) and the term in the right is greater
than 2[jw;]|"|w;||* by the induction relation. The second derivative to
t|wa(2)]] is

1 ( 2010 112 .2 Wn o .
e (U1 = () ) (o
wall wal

added to a non-negative Dirac mass at ||w,|| = 0; the first term is non-neg-
ative and W, ) is greater than
HW [

AT it ik
- E \C(,_‘M’,Dlrjkw“l W W

%P g
>0, p,g>0
o+ Ao tprg=n
1<i) i <d

This means that there exists a sum f,(w'"') of terms C(h"+h?)’,
me?2N, i;je{l,...,n—1},C >0, such that

S 2 YT [CopgaDil W) Wi

r>0,p,g>0
o+t tptq=n
1< onir<d

and w" — ||w,|| + f,(w"™!) is convex. This is not exactly the function we are
looking for, because the second derivative of its square is not big enough: let

us denote by W/, the tangential part < (A ,wn> of w, and by w® = w, — W/, m
its normal part. The right derivative of 7— (|[w, ()| + f,(w"™! (t)))2 is

20| + S (w1 ())) (<ﬁw> U ow“);) (19)
if [|w, ()| # 0. The second derivative of ¢— 1 (|[w,(7)|| +f,,(w”‘1(t)))2 is

o 2
(W4 (o 0w )+ (Il m(w"‘))(”wn' +<H$—:”,m>+<ﬁ7 ow"1>">

[[wal

added to a non-negative Dirac mass at ||w,|| = 0, and it is greater than

: SN2 (e
(W + (oo w™)) iy
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Applying the inequality (a + b)* > 342 — 3b% to the first term, one obtains

that the second derivative of 71— (||wn( M+ fru(w ! (t)))2 is greater than
[all* = 6 o w2
The right derivative of (A + 42)* 0w~ is

20+ 1) (52 (o) +(ow?) ) o

Hence using (iii) and (i) of the induction relation at the order n — 1, it is
possible to bound (f, ow" 1) by a sum of terms Clw;|"|w;|> with
me2Ni,je{l,....n—1}. Addlng to (||[wall + fu(w"™ ))2 a sum S,(w" ")
of terms of the form Cc(nr +h2) m e 2N, i, je{l,. —-1}C > 0, one
obtains a convex function with second derivative gredter than ||, ]|>. Define

() =\ (wall + fu(w=1))% + S, (w1)

and let us show that it is convex and satisfies (i) to (iv):

Lemma 6.7. — Let f, g : [0, 1] — R be two convex non-negative functions. Then
\ f*+ g2 is convex.
Proof. — Let h=+/f?+g% Since f and g are convex, we have for
t€10,1], a,b €10,1],

W1 = )+ 1) < /(1= 0f (@) + £ (B) + (1 - )g(a) + 19(b))?

the right hand side term is

VU—0%4@+ﬂW@%+%U—ﬂU@U@)+M@%H)

and this is less than

\/(1 — 1)’ h2(a) + 2h2(b) + 2t(1 — t)h(a)h(b) = (1 — O)h(a) + th(b). O]

From lemma 6.7 and the shape of S,(w"~!), we deduce that 4, is convex.

Conditions (i), (i) and (iv) are fulfilled by construction (remark that if (iv)
is fulfilled at order 2, it is fulfilled at order p > 2). As for condition (iii), using
the induction relation and (20), it is sufficient to bound the square of the
derivative (19). But one can bound

2
Wy . n—1y\/
— W, ) + (fn ow ) )
<QMH > "
by 2(Ilwnll2 +((fuo W'H);)z) and it yields (iii). O
Definition 6.8. — Let n € N*. On MY, define

fo=+h+.  +h .

Then f, is non-negative, convex, greater than ||w”||* and its Hessian is
greater than the scalar product on 7Mg.
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As a consequence, one can give a stochastic version of proposition 6.5:

Proposition 6.9. — Let M be a manifold endowed with a connection and xo € M.
Then for each n> 1, given a bounded random variable L" with values in
M§ = M{(xo), there exists one and only one bounded martingale W" with ter-
minal value L". Furthermore, if in a chart (Wi, ..., W,) are the coordinates of
W", and the decomposition of Wi for 1 <k <n into martingale and finite
variation part is My + Wy, then for all p > 1, the random variables My (1) and
[ |dWi(2)| belong 1o LP.

Proof. —Let n > 1 and L" be a bounded random variable with values in M.
For 1 <m < n, denote by L™ the random variable 7, o...n,(L"), with
coordinates (Li,...,Ly,). One can construct #(1 < k < n) by induction. At
rank 1, W is only the bounded martingale with terminal value ;. One
assumes that up to rank m, the processes W, are bounded and the random
variables M; (1) and fol |dW,(¢)| belong to L? for all p > 1. With equation (4)
at rank m + 1, using the fact that all the coefficients in the right are less than
m, using the induction assumptions and the Burkholder-Davis-Gundy in-
equalities, one obtains that fol |d W1 (1) belongs to L? for all p > 1. Then
using the relation W,,.;(1) = L, and the fact that the latter is bounded, we
obtain that M, (1) belongs to L? for all p > 1. Finally, using the fact that
St (W™ is a bounded submartingale, one obtains that W”*! is bound-
ed. O

Proposition 6.6 gives a sequence of convex functions 4, such that if
t—w'(1) is a geodesic, the second derivative of ¢+ h2 o w"(¢) is greater than
[, ]|%. It will be useful to have a stochastic application of this result.

Proposition 6.10. — Let M be a manifold endowed with a connection V, let b be
a continuous non-negative section of the symmetric tensor product T*M © T*M
and let f : M — R be a function such that for any geodesic y in M, the second
derivative (f ov)" is a measure and is greater than b(7,7)dt.

Then for any V-martingale X, for any stopping times S, T with S < T, we
have

ELF (X)) — £ (Xs) = %[E[ / Tb(d)e,dmufs}

Proof. — We will follow the proof of [E,Z] theorem 2 where the case b = 0 is
considered.

Let g be a Riemannian metric on M and ¢ the associated Riemannian
metric. We can assume that S = 0, T is bounded, X lives in a compact set and
the Riemannian quadratic variation (X|X), is bounded. The fact that b is
non-negative implies that f is convex. We can assume that on [0, 7], the
martingale X lives in a small (and relatively compact) ball ¥ of center X, and
with strong convex geometry. Following [E,Z], we can assume that every
point of ¥ is the center of a normal chart (¢’(a,b)),.,.,, where €'(a,b) is the
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i-th coordinate of exp, ' (b). We will denote by I, (a,-) the Christoffel sym-
bols in the chart €'(a,-). One can write

£ ) = £ (%0) = (df XoX7 )
o o [ oo (505) (5., 557 )

where ( df', XoX7 ) denotes a Gateaux differential. Let ¢ > 0 and replace 0 and
T by R, and R, where (R,),.y in such that Ry = 0, and R, is equal to

(1)

TA(R,+¢) /\inf{t > Ry, sup \F;k(XRn,)(,)| > a} .
ik

Then following the proof of [E,Z] theorem 2, one can write

E[f(Xr) — f(X0)] = D E[f (Xk,..) = f(X&,)] -
neN
Using (21) and summing over n, we know from [E,Z] that the first term in the
right hand side is greater than —¢CE[(X|X),] where C is a constant de-
pending only on the manifold. As for the second term, we are going to show
that its expectation converges to %[E[ fOT b(dX,,dX,)] Indeed, the absolute
value of the difference between

1 t
/ dt / ds b (CXp* (SXR,,XR"H) (XR,,XR,,H ) , €XP, (SXR,‘XR”H) (.Xv}gn)(}gn_l ))
0 0

—

and %b(XRnXRM, ) is less than 7 (e)d* (Xz , Xz
hi(e) = sup |b(exp, (v)(u), exp, (v)(u)) — b(u,u)|

ol <em(v)e,llull=1

T
Xz Xz

n+1

) where

n? n+1

which tends to 0 as ¢ tends to 0. There exists a constant C’ > 0 (see the proof
of lemma 5.2) such that

E[0 (X, Xn,..)] < CE[(X1X)g,, = (X1X)g | -

Summing over n, one can bound the term obtained by C'%;(¢)E[(X|X),].
Hence it suffices to show that the expectation of

1
5 b (XRnXRnH s XR, AR, )
neN
converges to %[E[fOT b(dX,,dX[)} as ¢ tends to 0.

Let b;; denote the coordinates of b inherited from the chart e(Xg,, ). The
difference

e [ b, an)] - efp (i i) |

is bounded by
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’[E[/:+l by (X;) — bij(XR,,)|d(ei(XRn»X)ve/(XRmX»s]

Ry )
n [E[ [ bt (i, X))
R,

—bij(Xz, )€ (Xr, Xr,,)€ (X&,, X, ., )]

and since b is uniformly continuous (¥ is relatively compact), there exists a
function 4,(¢) tending to 0 as ¢ goes to 0 such that the first term is less than
hy(e)E[(X|X)p . — (X|X)g ] As for the second term, since X is a martingale,
it is bounded by

Rus1 ) )
E [ Js (rz, (X X)e! (i, X)
R,

T (i, X060t ) )6 (0, ), /08, )|

and since the Christoffel symbols are bounded by ¢ in absolute value,
€'(Xg,,"),€ (Xg,, ), bij are bounded on V, there is a constant C” such that this
is bounded by C":E[(X|X),  — (X|X);]. Adding the majorations and
summing over n, one obtains that there is a non-negative function #;(e)
tending to 0 as ¢ goes to 0, such that

T
E[Zb(XR,,XRHmXRUXRM) —[EM b(d)ﬂ,d)ﬂ)}

neN
This proves the proposition. [

<h3(e)E[< XX >7] .

From proposition 6.10 and proposition 6.9 and [K3], one obtains

Corollary 6.11. — For every n > 1, if M" is a compact subset of Mg, then M"
has convex geometry.

Proof. — The hypothesis are not exactly the same as those of Kendall [K3]
theorem 4.2, because the convex function on M we are going to use is not
smooth. But Kendall’s proof works in this case, because we only need that
the expectation of the quadratic variation of M"-valued martingales is
bounded by a constant depending only on M", and here by proposition 6.10,

we know that 2sup £, is a bound for these quadratic variations. In fact, with
M'H
[K4] corollary 3.4 which says that in a compact set, uniqueness of martingale

with prescribed value implies convex geometry, one can avoid using prop-
osition 6.10 and the strict convexity of M™. [

For the rest of this section, the manifold M is a ball B(0,R) C C? endowed
with an holomorphic connection such that the complex Christoffel symbols
converge on M and vanish at 0 (see section 4). We furthermore assume that M
has strong convex geometry. We are given an almost surely holomorphic map
a— L(a)(w) with values in M and defined on D(0,1), and such that
L(0)(w) =0 € M.



250 M. Arnaudon

As a consequence of proposition 6.9, we have

Corollary 6.12. — With the assumptions above, for every n > 1, there exists one
and only one process W"(t) with values in M defined by the formal equations
(0) and (1) (i.e. W" is a V" -martingale) and by W"(1) = L"(0), living in a
compact set.

Proof. — The random variable L") (0) is bounded because a — L(a) is almost
surely holomorphic and bounded. Hence we can apply proposition 6.9. [J

It is not sufficient to show that ,(¢) is a bounded process. We have to
show that the series (0) converges. Convex functions inherited from the
complex structure will be useful.

Assume that there exists a convex function f:M = B(0,R) — R, of the
form z+— h(||z||) with 4 : [0,R) — R, continuous, satisfying #(0) = 0, strictly
increasing. Note that since I'(0) = 0, this condition is not too restrictive.

For each n > | and for each w" € M{ with coordinates (wy,...,w,), de-
fine the set E,(w") of sequences (wy1,...) of elements of C? such that for all

aeD,1), Z—I;wk converges and the sum belongs to M; if E,(w") is not
k=1~
empty, define g"(w") by

g"(W'") = inf sup (Z i wk> .

(Wat1,--)€En qeD(0,1)

Proposition 6.13. — For every n > 1, the function g" is convex on
My = {w" € M¢, E,(W'") is not empty} .

Proof. — Let v" and w" be two points of M with coordinates respectively
(v1,...,0,) and (wy,...,wy), and v™° = (v1,..., 0y Upily...), W = (Wi,...,
Wi, W,H,l, ...) two sequences such that Va € D(0, l)J(Zf 1 ‘,f, Uk) < h(R) and
(Zk v wk) < h(R). Define
0k 00
a _—
= — s = — l7 == t .
=3 S P xlt.a) = expi{ania)

k=1

Since ¢ —x(t,a) is a geodesic and x(z,0) = 0, we have by corollary 4.31)

exp tx ZOC: k—
k=1

where w¥(¢) is the geodesic in M¥ such that wk(0) = ¥ and wF(1) = wk.
We have to show that for all 7 € [0, 1],

g' W' (@)) < (1 =0)g"(v") + 19" (W") .

But since f is convex, we have

fx(t,a)) < (1= 0)f(x(a)) + tf (v(a))
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and hence
f(x(t,a)) < (1—1t) sup f(x(a))+¢ sup f(y(a))
aeD(0,1) aeD(0,1)
and
sup f(x(t,a)) < (1—1) sup f(x(a))+t sup f(y(a))
aeD(0,1) aeD(0,1) aeD(0,1)

which gives

g'W'(@) < (1—1) sup flx(a))+1 sup f(y(a)) .

aeD(0,1) aeD(0,1)

This inequality is true for all sequences v, w> which extend ¢v”, w" and
therefore

g'w' (@) < (1 = 0)g" (") + 19" (W") .
The function ¢” is convex. [

Proposition 6.14. — For ry € [0,R), denote by MY (ry) the set of elements

€ MY such that g"(w") < h(ry). Let w™® = (wy,wn,...) be a sequence such
that for all n>1, the element w" in M with = (wy,...,w,) belongs to
Mg’ (ro).

Then ) % Wi conver ges on D(0,1) and

k=1 o ak
f(ZHwk> < h(ry) .

k=1

Proof. — Let n > 1. Since w" belongs to M¢' (ry), for all « > 0, there exists a

sequence w™ = (wy,..., w,,,wﬁHl, ...) such that for all a € D(0, 1),
Wk + Z " <rg+o .
k=n+1

It implies that for all n > 1, |w,|| < nlry and for all &£ > 1, |w;|| < kl(ro + ).
Hence for all n > 1, for all a € D(0, 1 — &), we have

00 (lk (1 _ 8)n+l (1 _ S)rlJrl
T <r0f, Z ka <(r+a)———
k=n+1 k=n+1
and

00 k 0 k
/
Wi Wk+ Z klwk ok + "

: k=n+1 k=n+1 k=n+1"

r0<1+(2+%>%> Yo

This is valid for all n > 1 and all a > 0, hence for all @ € D(0,1 —¢),
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[ee] ak
— Wy

kzz:lk' S}"Q.

This is true for all ¢ > 0, hence this is true for all @ € D(0,1) . O

Convex geometry is, as next lemma shows it, a useful tool to construct,
given a convex set, convex non-negative functions which vanish only on this
set:

Lemma 6.15. Let N be a manifold with convex geometry and let A be a
relatively compact convex subset of N.

Then there exists a convex non-negative function Y, on N such that
-1 -

vy ({0}) = 4.

Proof. — Let y : N x N — R be a non-negative convex function which van-

ishes exactly on the diagonal of N x N. Define

VN — R, x— infy(y,x) .
yed

Since 4 is compact in N, it is clear that ' ({0}) = 4. Let us show that v, is
convex:

Let #+— y(¢) be a geodesic in N defined on [0,1]. We have to show that for
all £ € [0, 1],

Va(r(0) < (1 =0y, (2(0)) + 0, (2(1)) - (22)

Let ¢>0 and y,z,ed such that y,(y(0)) >y (y,y(0)) —¢ and
W ,(y(1)) > ¥(z,9(1)) — &. Since 4 is convex, there exists a geodesic ¢ which
takes its values in 4 and such that ¢(0) = y and ¢(1) = z. Since y is convex,
we have that for all 7 € [0, 1],

Y(e(t),7(1)) < (1 =) ((0),7(0)) + t(e(1),y(1)) -

The left hand side term is greater than y,(y(¢)) since ¢(¢) € 4 and the right
hand side term is less than (1 — #)y,(y(0)) + af,(y(1)) + ¢ by definition of y
and z. It yields

Ya((1) < (1= 0P (7(0)) + 4 (>(1)) + &
for all ¢ > 0. This establishes inequality (22). [J

Corollary 6.16. — Let N be a manifold with convex geometry and let K be a
compact convex subset of N.

If Wis a N-valued martingale such that almost surely Wy € K and W lives in
a compact subset N' of N, then almost surely, for all t € [0, 1], W; belongs to K.

Proof. — By lemma 6.15, there exists a convex non-negative function y, on N
which vanishes exactly on K. Furthermore, ¥/, (W) is a bounded non-nega-
tive submartingale since /,(N'), is compact, and it satisfies (W) = 0. Tt
implies that Y (W) =0 and W lives in K. [J

We are now able to prove the convergence of (0).
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Theorem 6.17. — Let M = B(0,R) be a complex manifold with a holomorphic
connection NV such that the holomorphic Christoffel symbols T are defined on M
and satisfy I'(0) = 0 (see section 4 for details). Assume furthermore that M has
strong convex geometry and there exists a convex function [ : M — Ry of the
Sform z— h(]|z||) with h:[0,R) — R, continuous, satisfying h(0) = 0, strictly
increasing.

Let a— L(a)(w) be an almost surely holomorphic map with values in a
closed ball B(0,r) C M(r < R) and defined for a € D(0,1), and such that a.s.
L(0)(w)=0€e M.

Then the bounded MZ-valued NV -martingales W" with terminal values
LY(0) define a family a— X(a) of V-martingales for a € D(0,1), such that
for all a X\(a) = L(a), almost surely, for all t € [0, 1], the map a— X,(a)(w) is
holomorphic on D(0,1) and 54X (a)|,_o = W". In coordinates, this writes

o0 n

x(@) =3 %m0 ()

n=1

and the series converges absolutely in D(0,1).

Proof. — By proposition 6.14, to show that the series converges, it is sufficient
to show that for all n € N*, g(W") < h(r).

By corollary 6.12, W" lives in a convex compact set K" since W"(1) is
bounded.

By corollary 6.11, the compact set K” has convex geometry.

By proposition 6.13, the set M2 (r) = (¢") ' ([0, 4(r)]) is a convex compact
set.

By corollary 6.16, since M¢'(r) is convex and K” has convex geometry and
is compact, W" lives in M{'(r), and hence g(W") < h(r). Using proposition
6.14, this proves the convergence of (0").

By theorem 6.4, using the fact that the series converges absolutely on
D(0,1 — ¢) for all ¢ > 0 and takes its values in B(0, ), the sum of this series is
a martingale. []

Corollary 6.18. — The assumptions on M are the same as in theorem 6.17. Let
r € [0,R). Given a random variable L with values in B(0,r) C M, there exists a
V-martingale X with terminal value L.

If M is the complexification of the real ball M® = B®(0, R) (see section 4)
and if L takes it values in M®, then X takes it values in M®, and
is a V®-martingale.

Proof. — Define for a € D(0,1),L(a) = aL and apply theorem 6.17. The so-
lution to our problem is the martingale X (1).

If L takes its value in M®, then since K = M® N B(0,r) is a compact
convex subset of M, by corollary 6.16, the martingale X (1) takes its values in
K and hence in M®. O
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One knows that any point of any real analytic manifold has an open
neighbourhood M® such that there is a complexification M of M® which
satisfies the assumptions of theorem 6.17. This together with corollary 6.18
yield the following result.

Corollary 6.19. — Let N be a real analytic manifold endowed with a real
analytic connection V™. Every point x of N has a neighbourhood V;, such that if
L is a F -measurable random variable with values in Vi, then there exists a
unique Ve-valued V®-martingale X such that X, = L.

It would be interesting to know in which domain of C the holomorphic
family of martingales a+— X (a) of theorem 6.17 extends, and on which ho-
lomorphic extension of M the extension of X takes its values. In the case
when M® is an open hemisphere, if L(a) = aL and L takes its values in a
compact subset of M®, then for all x € R, L(ix) takes its values in a hyper-
bolic space and one would expect that the family of martingales x — X (ix)
with terminal values x — L(ix) is analytic.

7. Existence of martingales with prescribed terminal value in compact convex
sets with convex geometry

This section is devoted to quantitative results on existence of martingales
with prescribed terminal value, and to the case where it is not supposed any
more that M and V are analytic.

Lemma 7.1. — Let N be a manifold endowed with a C' connection NV, and let V
be a compact convex subset of N with convex geometry. Assume that every
point x of 'V has a neighbourhood V; such that for every & -measurable random
variable L with values in V,, there exists a Vi-valued V-martingale X such that
X1 = L. Then for every & -measurable random variable L with values in V,
there exists a V-valued V-martingale X such that X; = L.

Proof. — Let  be a function on U x U defining the convex geometry of V,
where U is an open neighbourhood of V. Since  is convex on U x U and
equal to 0 on the diagonal and V' is compact, one can find a Riemannian
distance 0 on V which satisfies y < §. Conversely, with the same arguments
as in [K1] lemma 4.3, one shows that there exists a nonnegative increasing
function 4 : R — R, continuous at 0, which satisfies #(0) = 0 and such that
0<hoyonV xV.Let Z(V) be the set of reachable random variables, i.e.
the set of V-valued % ;-measurable random variables L such that there exists
a V-martingale X which satisfies X; = L. Since 2(V) is not empty and the set
of V-valued % -measurable random variables is connected for the topology
of a.s. uniform convergence (with respect to ), it is sufficient to show that
(V) is both open and closed for this topology.

Let us show that (V) is closed. Let (L"), be a sequence of elements of
A(V) converging to L, and let (X"),_, be the sequence of martingales such
that X' = L" for all n € N. Let n,m € N. Since (X”,X™) is a martingale, we
have
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Y XT) < B L)) < WL L) < [lo(L", L™)

lloo

for all 7€]0,1]. But this implies that as n,m tends to infinity,
I supg<;<; 0(X)", X", converges to 0 (here we use the fact that 6 < hoy).
Hence () ")qen 18 @ Cauchy sequence for the topology of a.s. uniform con-
vergence. It converges to a V-martingale X with terminal value L, since the
set of V-martingales is closed for the topology of uniform convergence in
probability ([E 4.43]).

Let us now show that Z(V) is open. For x€V and o >0, let
B(x,0) = {y € V,¥(x,y) < a}. Let « > 0 be small enough so that for every
xevV,

V. = B(B(x,a),0) = {z € V,3y € B(x,a), z € B(y,o)}

satisfies the assumption of the lemma (in particular one easily verifies that V;
is convex). Let L be an element of (V). Since ¥ < 9, it is sufficient to show
that every random variable L' satisfying almost surely (L, L) < aisin (V).
There exists an increasing sequence of stopping times

0=7"<T'<...<1"

such that (7"),., converges stationarily to 1 and between two consecutive
stopping times S and T of this discretization, the martingale X with terminal
value L lives in the set B(Xs, o). For n € N, let L" be the random variable
defined by L" = L' on {T" = 1} and L" = X7» on {T" < 1}. We have almost
surely y(X7,,L") < aand L" € Vx, .- Hence, conditioning by # 1.1, we have
that between the times 77! and 7" there exists a martingale X” with terminal
value L". Since (X,X") is a martingale, it satisfies

l//(XTn—l,Xern,l) S [E[lp(XTn,Ln)‘g:Tn—]} § a .

Let £k <n—1 and assume that we have constructed the martingale X" be-
tween the times 7%*! and 7" and that almost surely Y (X7e1, X)) < . By
the same method, conditionning by % + gives the construction of X" between
the times 7% and 7%*!. Hence we have a martingale X” with terminal value
L". Using [D3 proposition 4.4] (note that convex geometry is sufficient to
apply this result), we deduce that as » tends to infinity, X” converges uni-
formly in probability to a ¥-valued martingale X’ with terminal value L'. [J

A direct consequence of lemma 7.1 and lemma 6.19 is the following result.

Corollary 7.2. — Let M be a real analytic manifold with an analytic connection
V. Let V be a compact convex subset of M with convex geometry. Then for
every random variable L with values in V, there exists a V-valued NV-martingale
X with terminal value L.

We can now state the main result of this section.

Theorem 7.3. — Let M be a manifold with a C' connection V. Let V be a
compact convex subset of M with convex geometry. Then for every random
variable L with values in V, there exists a V-valued V-martingale X with
terminal value L.
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Proof. — By lemma 7.1, it is sufficient to prove that every point of ¥ has a
neighbourhood 7, with the desired property. Hence one can assume that
is contained in the domain of an exponential chart. We will identify this
domain with a ball in R? containing 0, such that the Christoffel symbols
satisfie T*, ;(0) = 0. Possibly by reducing ¥, we can assume that the func-
tions I k. are the restrictions to ¥ of C' functions RY — R with compact
support We can also assume that the map y : V x V — R, defined by
Y(x,x) =1(2 + |« +¥'||*)||l¥' — x||* is convex for the product connection (seze
[E4 4.59]). By convolution with the analytic functions ¢,(z) = ( \/,;_n)de 5t ,
one can approximate the functions Fk uniformly in V' by analytlc functions
”l"f‘j, with the further property that the derlvatlves of ”Fk converge uni-
formly to those of l"k Setting ”Fk( ) = ”Fk (x) — "Fk (0), we have the same
properties with ”ij(O) =0as addmonal one These functions define analytic
connections V" on ¥ which converge uniformly to V. The assumptions on
the derivatives of the Christoffel symbols together with the proof of [E4 4.59]
allow us to say that for » sufficiently large, y is convex for the product
connection V" x V". Let L be a random variable with values in V. By cor-
ollary 7.2, there exists a V"-martingale X” with terminal value L. We are left
to show that (X"),., converges to a V-martingale X as n tends to infinity.
But since (V x V)d\y is strictly positive outside the diagonal, for every ¢ > 0,
there exists n(e) such that if m,n > n(e), the function Y, = sup(y,e) is
(V" x V™)-convex. This implies that y,(X”,X™) is the constant submartin-
gale equal to e. Hence X" converges a.s. uniformly to a continuous adapted
process X. Now let f be a function on ¥ such that Vdf > 0. Then V"df > 0
for n sufficiently large, and this implies that f(X) is a submartingale. This is
true for all f with Vdf > 0, hence by [A1] proposition 3.4 and [A2] propo-
sition 2.12, X is a V-martingale and X; = L. []

d n“||z]

Remark. — From Theorem 7.3 together with theorem 5.2 of [D3] we deduce
the existence of martingales with prescribed terminal value in a convex
manifold M with convex geometry (with some additional assumptions on the
function which defines the convex geometry and an integrability condition on
the terminal value) if M is an increasing union of compact sets with convex
geometry.
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