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An easy O.D.E.

u=—uv?

vVi= uv’
u(0) =up >0, v(0)=v >0,

Up, Vo given in [0, 00),

where u, v : [0, T) — R are the unknown functions. Here § > 1.
Local existence of a nonnegative unique solution on a maximal
interval [0, T*) is well-known due to the C!-property of

(u,v) — uv®. Moreover u > 0,v > 0 and

(u+v)(t) =0= (u+ v)(t) = up + v,

so that:  supycpo, 7+ |u(t)] + [v(t)| < 400,

and therefore

T =400



What happens when diffusion is added?

Ot — diAu=—uv? in Qr = (0, T) x Q
Orv —dbAv = wPinQr=(0,T)xQ
dyu=0,v=00nX1 =(0,T) x 09,
u(0) =uo =0, v(0)=vo >0.

Here Q C RN, regular. The total mass is preserved:

/Qf)t(u—kv)—/QA(dlu%—dgv):O.

81,(d1u—|— d2V) =00nd) = / A(d1u+ d2V) =0.
Q

/Q(u+v)(t)/9uo+v0

Insufficient for global existence!



Local existence for reaction-diffusion systems with L*°-data

8u— diAu= —uvP on Qr
(S) Orv — dhAv = uvP on Qr

Oyu=09,v=0o0nZXT,

u(0) =up >0, v(0)=w >0.

Theorem: Let ug, vo € L(2),up > 0,vg > 0. Then, there exist
a maximum time T* > 0 and (u, v) unique classical nonnegative
solution of (S) on [0, T*[. Moreover,

sup  {[|lu(t)llLo() + [V()lle(@)} < +oo = [T* 4 oo].
te[0, T+
Remark: here [o(u+ v)(t) = [, uo + vo, that is
S[UP {llu(t)ll ) + HV(f)HLl(Q)} < lwoll2() + [voll ()
telo

How does this estimate help for global existence? Very frequent
situation in applications !



Same question for the general family of systems:

Vi=1,...m
O,ui — diAuj = fi(u1, U2, ..., Um) in Qr
auui =0

onxr
ui(0,-) = uP(-) > 0.

d; >0, f:[0,00)™ — R of class C' where

» (P): Positivity (nonnegativity) is preserved
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Same question for the general family of systems:

Vi=1,..m
O.uj — diAuj = fi(u1, uo, ..., Um) in Qr
oyui =0 onxr

5i(0,) = uP() > 0.

d; >0, f:[0,00)™ — R of class C' where
» (P): Positivity (nonnegativity) is preserved
» (M): >, ..., fi <0 or more generally
> (M) Vr € (0,007, 32 cicmaifi(r) < CI1+ 320 1]
for some a; > 0



Vi=1,...m
(E) o,ui — dilAuj = f;‘(Uh uz, ..., Um) in Qr
Ovu; =0 onkr

ui(0,) = uf () > 0.

» (P) Preservation of Positivity: Vi=1,....m
Vr = (I’l7 ey rm) c [07 C)O[m7 f,-(rl, ceey I‘,'_]_,O7 Fig1y ey rm) > 0.

r




Vi=1,..m
O,ui — diAu; = fi(uy, uz, ..., Um) in Qr
Opui =0 onXr

ui(0,-) = u?(:) > 0.

» (P) Preservation of Positivity: Vi =1,....m
Vr e [O —|—OO[ (rl,...,r,-_l,O, r,-+1,...,rm) > 0.

> (M): Zl<,<m i(r1y ..., rm) < 0 = "Control of the Total
Mass’:

vt >0, Zu,txdx</ dx.
Q

Q<i<r 1<i<r

Add up, integrate on £, use fQ Au; = fBQ o, ui = 0:

/Qat[z ui(t)]dx = /QZ fi(u)dx < 0.
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» = LY(Q)- a priori estimates, uniform in time.



Vi=1,...m
O,ui — diAu; = fi(uy, uz, ..., Um) in Qr
Opui =0 onXr

ui(0,-) = u?(:) > 0.

» (P) Preservation of Positivity: Vi=1,....m
Vr e [O —|—OO[ (rl,...,r,-_l,O, r,-+1,...,rm) > 0.

> (M): 21<,<m i(r1y ..., rm) < 0 = "Control of the Total
Mass’:

vt >0, Zu,txdx</ dx.
Q

Q<i<r 1<i<r

Add up, integrate on £, use fﬂ Au; = fOQ o, ui = 0:
/ 0> ui(t)]dx = / > fi(u)dx < 0.
Q [l

» = LY(Q)- a priori estimates, uniform in time.
» Remark: same with (M’)



QUESTION:

What about Global Existence of solutions
under assumption (P)+(M)?7?
or more generally (P)+ (M’) 77



Explicit examples with property (P)4+(M) ou (M’)

” Chemical morphogenetic process (” Brusselator”, Prigogine)

owu — diyAu= —uv’>+ bv
Ov — doAv=uv?— (b+1)v+a
Uy = b/a, Vg = 3,

a,b,d,dr, > 0.



Explicit examples with property (P)+4(M)

» " Chemical morphogenetic process (” Brusselator”,
Prigogine)

Ou — diAu= —uv? + bv
Orv — dhAv = w? — (b+1)v+a

See also: Glycolosis model-Gray-Scott models



Explicit examples with property (P)+4(M)

» " Chemical morphogenetic process (” Brusselator”,
Prigogine)

Ou — diAu= —uv? + bv
Ov —doAv = uv? — (b+1)v+a
See also: Glycolosis model-Gray-Scott models

» Exothermic combustion in a gas

8:Y — uAY = —H(Y, T)
0: T —AAT =qH(Y.T),

Y = concentration of a reactant, T = temperature,



Explicit examples with (P)+4(M)
> Lotka-Volterra Systems (Leung,...)

Vi=1..m, Oiu; — diAu; = e;u; + u; Z pijuj,

1<j<m

with e, pj € R such that for some a; > 0.

m
Yw e R™, Z ajw;pjw; <0,
ij=1



Explicit examples with (P)+4(M)
> Lotka-Volterra Systems (Leung,...)
Vi=1..m, Oiu; — diAu; = e;u; + u; Z pijuj,
1<j<m

with e, pj € R such that for some a; > 0.

m
Yw e R™, Z ajw;pjw; <0,
ij=1

» Model of diffusive calcium dynamics: H.G. Othmer

4
Oeun = diAuy + Mo + y1us)(1 — ) — 2
py+uy
Oty — doAupr = —kyup + k{U3
Oruz — d3Auz = *kiu:), — kouguz + kyur + kéu;;
Orlg — daAug = kouuz + kéU5 — kéU4 — kauquy
8tU5 - d5AU5 == k3U1U4 - kéU5.
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» u; = u;(t, x) = concentration of U;

» Law of Mass Action: The instantaneous variation of
concentration of each u; is proportional to the concentration
of the reactants:

Ortn + V- (V1) = k™ u3 — kT uup (V1 = velocity)
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Elementary chemical reactions: a simple example

>

Pt
U, + Up = Us

» u; = u;(t, x) = concentration of U;

» Law of Mass Action: The instantaneous variation of
concentration of each u; is proportional to the concentration
of the reactants:

Orur + V- (u1V1) = k= uz — kT ugup (V1 = velocity)
» Fick's diffusion law: V1 = —d1Vu; = V(i1 V1) = —di Ay

o1 — di1Aug = —k+U1U2 + k™ us
Oty — o Aup = —kTuiup + k™ us3
Oruz — d3Auz = k+U1U2 — k™ u3

Note :fi + f» + 2fz3 = 0 and positivity is preserved.



A quadratic model

+

k
U1—|—U2 k_—_‘ U3+U4

Oru; — diAup = —k+U1U2 + k™ U3y
Ortiy — dhAup = —k+U1U2 + k" uzuy
Oruz — dzAuz = k+U1U2 — k™ U3y
Oetgy — dyAus = kT uiup — k™ u3ua

Note: f; + f, 4+ 3+ f, = 0 and positivity is preserved.
L. Desvillettes, K. Fellner, M.P., J. Vovelle, Th. Goudon, A. Vasseur



Superquadratic reaction-diffusion systems.

» A general chemical reaction:
k+

prUs + poUz + ... + pmUn = qUi + @l + ...+ gnUn,

pi, gi =nonnegative integers.
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Superquadratic reaction-diffusion systems.

» A general chemical reaction:

+

prUs + poUz + ... + pmUn = qUi + @l + ...+ gnUn,

pi, gi =nonnegative integers.

Orui—d;Auj = (pi—q;) (k—njn;lujf — k+nj";1uff) Yi=1..m.

> Here Y. mip; = >, mjq; for some m; € (0,00),i = 1...m.
This implies (M*): >-7, m; f; = 0.



Superquadratic reaction-diffusion systems.

» A general chemical reaction:
k+

prUs + poUz + ... + pmUn = qUi + @l + ...+ gnUn,

pi, gi =nonnegative integers.

Orui—d;Auj = (pi—q;) (k—njn;lujf — k+nj";1uff) Yi=1..m.

> Here Y . mjp; = >, miq; for some m; € (0,00),i = 1...m.
This implies (M*): >-7, m; f; = 0.

» Global existence completely open in this general situation!



More examples

» Diffusive epidemic models: SIR
S=Susceptibles= can be infected
I=Infectives=infected and transmit disease
R=Removed=immune; P=S+/+ R

Iy — V- do(x)VI = —(m + kP)l + g(S,1) — Al

St — V- di(x)VS = bP — (m+ kP)S — g(S. 1)
R: =V -d3(x)VR=—(m+ kP)R + Al

May be coupled with an extra variable: S = S(t, x, age)....



More examples

» Diffusive epidemic models: SIR
S=Susceptibles= can be infected
I=Infectives=infected and transmit disease
R=Removed=immune; P=S+/+ R

Iy — V- do(x)VI = —(m + kP)l + g(S,1) — Al

St — V- di(x)VS = bP — (m+ kP)S — g(S. 1)
R: =V -d3(x)VR=—(m+ kP)R + Al

May be coupled with an extra variable: S = S(t, x, age)....

» Nickel-Iron alloy electrodeposition : N. Alaa, A. Tounsi
etal. :Vi=1..5

Orwi — di(wi)xx + b(x)(w;)x — mi[w; ] = Si(w)
51 = 52 = O7 53(W) = 54(W) = —55(W)
—[(D]XX - Z?zl ziwi, zj € R, +bdy cond.



Explicit examples

» Modelization of pollutants transfer in atmospher
(N = 3): R. Texier-Picard, MP,(degenerate diffusion):

Ordj = di 0201 +w - Vi + () + gi, Vi = 1...20,
+ Bdy and initial conditions



Explicit examples

» Modelization of pollutants transfer in atmospher
(N = 3): R. Texier-Picard, MP,(degenerate diffusion):

Ordj = di 0201 +w - Vi + () + gi, Vi = 1...20,
+ Bdy and initial conditions

P The reaction terms:
f(¢) —kid1 + ko2 d19 + kasdoo + ki1 d13 + kod11d2 + ks do

ko2 P4 — ko3 P14 — kiad1de + k121092 — kiod11¢1 — koadr9bi,
kip1 + kor¢19 — kodp1102 — kadsdo — kadods — kiodrod2

kip1 + ki7da + kigd1e + koodr9 — kisds

—ki7¢4 + kis Pz — kigpa — koo s — ko3 P1da

+

( =

E =
fs(¢) = 2kagp7 + krdg + ki3d1a + ke d7d6 — ksds o + koo d1706
fo(¢) = 2kigpis — kedods — ked7d6 + ksdspa — kaod17d6 — kiad1de
f7(¢) = —kadr — ks + ki3p1a — ke 76
fs(¢) = ka7 + ksd7 + k1o + ke 706
fo(¢) = —kdg — kgdods
fio(#) = kydg + ko112 — kiadro¢2
f1(¢) = kidiz — kopr1¢2 + kgdgds — kiop11é1
fia(¢) = kobri¢o
f3(¢) = —kiodis + kiod11o1
fis(¢) = —kizdua + kindrod2
fis(¢) = Fkudide
fie(¢) = —kigdie — kisdie + kieda
fir(¢) = —koobi7de
fig(¢) = kodi7de
fio(¢) = —ko1od1o — kaad1g + kasdoo + kosbrda — koadi9dn
f0(¢) = —kasdoo + koadrod-



Back to the model example: what about L*>-estimates?
| 4

Oy — diAu=—uv® on Qr
(S) Oyv — dbAv = uv® on Qr

o,u=9,v=0o0nXr,

u(0) =up >0, v(0)=v >0.

By maximum principle

Oru— d1Au <0 = u(t)|[ o) < lluoll= (o)
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| 4

Oy — diAu=—uv® on Qr
(S) Oyv — dbAv = uv® on Qr

o,u=9,v=0o0nXr,

u(0) =up >0, v(0)=v >0.

By maximum principle
Oru— d1Au <0 = u(t)|[ o) < lluoll= (o)
> Ifdi=do=d: O(u+v)—dA(u+v)=0
= [lu(t) + v(t)]| L) < lluo + vollL=(q)
By Positivity, Vt € [0, T*),
= [[u(t)| o)y VIE)lL=() < lluo + vollL=(q)

= T" = 400.



Back to the model example: what about L*>-estimates?
| 4

Oy — diAu=—uv® on Qr
(S) Oyv — dbAv = uv® on Qr

o,u=9,v=0o0nXr,

u(0) =uy >0, v(0)=v >0.

By maximum principle
Oru— d1Au <0 = u(t)|[ o) < lluoll= (o)
> Ifdi=do=d: O(u+v)—dA(u+v)=0
= [lu(t) + v(t)]| L) < lluo + vollL=(q)
By Positivity, Vt € [0, T*),
= [[u(t)| o)y VIE)lL=() < lluo + vollL=(q)

= T" = 400.
» What happens when d; # d,?



A general LP-approach

>
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(S) Orv — dbAv = uvP on Qr

dyu=0,v=00nXt,
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v=—[0: — oA (0r — d1A) u(= Au).
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» Lemma: the operator A is continuous from LP(Q7) into
LP(QT) for all p €]1,00[ and all T > 0.
[dual statement of the LP-regularity theory for the heat operator|

= Vp < +00, [|v[tp(@r.) < +00
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A general LP-approach

>

Ou— diAu=—uv® on Qr
(S) Orv — dbAv = uvP on Qr

dyu=0,v=00nXt,

u(0) =uy >0, v(0)=wv >0.

Orv — doAv = —[0ru — d1Au], u e L(Qr+).
v=—[0: — oA (0r — d1A) u(= Au).
» Lemma: the operator A is continuous from LP(Q7) into

LP(QT) for all p €]1,00[ and all T > 0.
[dual statement of the LP-regularity theory for the heat operator|

= Vp < +00, [|v[tp(@r.) < +00
> Next: [[v][ (@) < CHUVﬁHLq(QT*) sig>(d+1)/2
» Therefore ||v|[ (g,.) < +oo et T* = +o0.



Extensions and limits of the LP-approach

» The same approach provides global existence

- for the " Brusselator”, for the epidemic models SIR
- for the 3 x 3 system

Ui+ Us i Ot — th A = —kVT i + k™ us3

n Oetn — dh Aty = —ktT i + k~us
= U3 :
k- Oruz — d3Auz = k+U1U2 — k™ us



Extensions and limits of the LP-approach

» The same approach provides global existence
- for the " Brusselator”, for the epidemic models SIR
- for the 3 x 3 system
P Oetn — dh Aty = —ktT i + k~us
Ui + Us I?—_ Us : Oty — dbAup = 7k+U1U2 + k™ us
Oruz — d3Auz = k+U1U2 — k™ us
» More generally it applies to m x m systems if there exists a
triangular invertible matrix @ with nonnegative entries such
that
Vre[0,00)", Qf(r)<[1+ Y rib,

1<i<m

for someb e R™ f = (f,..., fm)".
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» [P-approach does not apply to

Ot — di1Au = —ue” in QT
Orv — dhAv = ve”’ in Qr
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Extensions and limits of the LP-approach

» L[P-approach does not apply to

Ot — di1Au = —ue” in QT
Orv — dhAv = ve”’ in Qr

» neither to the system

O — diAu = u3v2 — 2 Vv3in Qr
Ov — dbAv = 2 v3 — 13v2 in Qt

» and even not to the "better” system with A € [0, 1]

O — diAu = Pv? — v?v3in Qr,
Orv — dhAv = 12 v3 — 3v2 in Q1

where f(u,v) + g(u,v) <0 et also f(u,v)+ Ag(u,v) <0



Finite time L*°-blow up may appear!

>

Oru — diAu = f(u,v) in Qr,
Orv — dbAv = g(u, v) in Qr

Theorem: (D. Schmitt, MP) One can find polynomial
nonlinearities f, g satisfying (P) and

(M) f+g<0, and also : I\ € [0,1], f + A\g <0,
and for which there exists T* < 400 with

Hrp. Nty = i, I(E)lo=y = oo



Finite time L*°-blow up may appear!

>

Oru — diAu = f(u,v) in Qr,
Orv — dbAv = g(u, v) in Qr

Theorem: (D. Schmitt, MP) One can find polynomial
nonlinearities f, g satisfying (P) and

(M) f+g<0, and also : I\ € [0,1], f + A\g <0,
and for which there exists T* < 400 with

lim[u(t) (@) = lim_ V(D) (g = +ov.
» The blow up is similar to u(t,x) = m The solution
goes out of L>(Q) at t = T*, but still exists for
t> T*.— — — > Incomplete blow up !



CONCLUSION at this stage:

Look rather for weak solutions which are allowed to
go out of L>(Q) from time to time or even often.

We ask the nonlinearities to be at least in L}( Q7).

fi(u) € LY(Q7) 7



An ['-approach

Vi=1,...m
() O.uj — diAu; = fi(uy, up, ..., um) in Qr
o,ui =0 onxr

i(0,) = u() = 0.

['-Theorem. Assume the two conditions (P)+ (M’) hold.
Assume moreover that the following a priori estimate holds:

Vizl,...,m,/ fi(u)l < C.
QT

Then, there exists a global weak solution for System (S).



['-Theorem applies to many situations

Ot — dyAu = —ue”” in Q
Oiv — dbAv = ue¥’ in QT

/Qu(T)—l—/QTueVz:/Quo,

whence the L'(Q7)-estimate of the nonlinearity.
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>
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>
Oru — diAu = \udv? — u?v3in Qr,
Orv — doAv = 2 v3 — u3v2 in Qr
/u(T)+/ u2v3:)\/ u3v2+/uo.
Q QT QT Q
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Q QT Qr Q
>

:>/ u3v2§/\/ u3v2+/uo+v0
QT QT Q



['-Theorem applies to many situations

>

Orv — doAv = 2 v3 — u3v2 in Qr

/u(T)+/ u2v3:)\/ u3v2+/ uo.

Q QT QT Q
/V(T)+/ u3v2:/ u2v3+/ Vo
Q QT Qr Q

= u3v2§/\/ u3v2+/uo+v0
QT QT Q

Fora<l .= w3v? < 400, u?v? < 400
QT QT

{ Oru — diAu = \udv? — u?v3in Qr,



['-Theorem applies to many situations

>

Orv — doAv = 2 v3 — u3v2 in Qr

/u(T)+/ u2v3:)\/ u3v2+/ uo.

Q QT QT Q
/V(T)+/ u3v2:/ u2v3—i—/ Vo
Q QT Qr Q

= u3v2§/\/ u3v2+/uo+v0
QT QT Q

Fora<l .= w3v? < 400, u?v? < 400
QT QT

» Open problem if A = 1: [!-estimate of the nonlinearity??

{ Oru — diAu = \udv? — u?v3in Qr,



['-Theorem applies to many situations

More generally it applies if there exists an invertible matrix @ with
nonnegative entries such that

Vre[0,00)", Qf(r)<[1+ > rib,

1<i<m

for someb e R™ f = (f,..., fm)".



A surprising a priori L?-estimate for these systems

>
Vi=1,..m
(S) O,u; — diAu; = fi(ur, Uz, ...y Up) in Qr
O,u; =0 onXr

ui(0,-) = Wo(-) > 0.

[?-Theorem. Assume (P)+4(M’). Then, the following a
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A surprising a priori L?-estimate for these systems

>
Vi=1,..m
(S) O,u; — diAu; = fi(ur, Uz, ...y Up) in Qr
O,u; =0 onXr

ui(0,-) = Wo(-) > 0.

[?-Theorem. Assume (P)+4(M’). Then, the following a
priori estimate holds for the solutions of (S):

Vi=1,..m VT >0, / u? < C.
QT

» Corollary of the L!- and L2-Theorems: Assume (P),(M’)
and f; is at most quadratic. Then, System (S) has a global
weak solution.

» Recall that nonlinearities are quadratic in many examples.
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Application to the quadratic chemical reaction:

>
kt
U+l = Us+ Uy

Orup — diAup = —k+U1U2 + kT uzuy

Oty — doAup = —k+U1U2 + kT uzuy

Orus — dz3Auz = k+U1U2 — kT uzuy

Ortis — dyAus = ktuiuy — k~usuy
» Global existence of a weak solution
» The LP-approach does not work
» This solution is regular (=classical) in dimension N = 1,2
» For N > 3, the set of points around which the solution is

unbounded is "small” in the sense that its Hausdorff
dimension is at most (N? —4)/N (Th. Goudon, A. Vasseur)

» Open problem: does the solution blow up in L*°(2) in finite
time or not??
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|dea of the proof of the L?-estimate

e (Z u,-> ~A (Z d,-u,-> <0.

»
cdu;
oW —-—A(aW) <0, W= E,. uj a:ZZ,:,'Ui
g d
Ogmjnd,-gazugmaxd,-<+oo
! uj 1

i
» The operator W — 0:W — A(aW) is not of divergence form
and a is not continuous, but bounded from above and from

below so that the operator is parabolic and, at least:

IWll2en < ClWollzo)-

» We may even show that the mapping
Wo € L2(Q) — W € L?(Q7) is compact
where 0:W — A(aW) = 0, W(0) = Wp.
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An application of the L?-compactness

>

1 ko
U+U, = C = Us+ Uy
k1 1

» The intermediate C is highly reactive, so that we may assume
that ki, ko — +o00.
What is the limit kinetics when space diffusion occurs?

» Mass Action law + Fick's diffusion law lead to the system

Orn — di1Aup = —uup + kic
Oty — dhAup = —uup + kic
Orc — deAc = ujup — (k1 + kz)C + uzuy on Qrt
Otz — d3Auz = —uzug + koc
Oty — dgAug = —uzug + koc,

» The LP-approach applies to this system so that global
existence of classical solutions holds!



The limit system
Theorem. The solution (u¥, uk, c*, uk, uk), k = (ki, ko) of the
previous system converges as ki + ko — +o0 in L2(Q7)° for all
T >0 to (u1, up,0, us, ug) solution of

Orup — di1Aup = —anus + Busy
Oty — do Ay = —anup + Buzug
Otz — d3Auz = augun — Buzug
Orug — dgAuy = auyup — Buzug,

where a = limy 4+ 4,00 ﬁ,ﬁ =1 — «. The chemical reaction

1 k
U+ Uy, = C = Us+ Uy
ke 1

"tends” to the limit chemical reaction:

Ui + Us 1%(1 Us + Us
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Other boundary conditions

» All the previous results extends to Dirichlet or Robin type
boundary conditions, assuming they are all of the same type in
all equations

» Blow up in finite time may occur in the system

Oru — diAu=—uP in Qt
Ov — dhAv = whfin Qt
u=1 9d,v=00nXT.

» Work in progress with Jerry, Gisele + M. Meyries (Karlsruhe)
on nonlinear boundary conditions, including Wentzell type, like

Oruj — diAuj = fi(u) in Qt
O'atu,' + diaz/ui - 5]A8QUi = gi(u) on ZT

with o,6; > 0.



More open problems

- atmospheric vertical diffusion/transport of pollutants (partial
results with assumptions on the transport).

- Uniqueness of weak solutions...or more precisely, what is the way
to select the "best” solution, since for instance there is even not
uniqueness for Oiu — Au = u°.

- how to define renormalized solutions for systems???
- what about initial data in L}()?

- what about nonlinear diffusions??

() o,u—Au™ = f(u,v) on Qt
O — AP =g(u,v)  on Qr,

- Same questions with general Lyapounov type of structure
Ry (u)f(u, v) + hy(v)g(u, v) <0, hy, hy convex.

- same questions for elliptic systems.






