Global solutions for some reaction-diffusion systems: L^{∞}, L^{p}, L^{1} and L^{2} -strategies

Michel Pierre

Ecole Normale Supérieure de Cachan-Bretagne and Institut de Recherche Mathématique de Rennes, France

Conference in honor of Jerry Goldstein Poitiers, June 10th, 2011

An easy O.D.E.

$$\begin{cases} u' = -u v^{\beta}, \\ v' = u v^{\beta}, \\ u(0) = u_0 \ge 0, \quad v(0) = v_0 \ge 0, \\ u_0, v_0 \text{ given in } [0, \infty), \end{cases}$$

where $u,v:[0,T)\to I\!\!R$ are the unknown functions. Here $\beta\geq 1$. Local existence of a nonnegative unique solution on a maximal interval $[0,T^*)$ is well-known due to the C^1 -property of $(u,v)\to uv^\beta$. Moreover $u\geq 0, v\geq 0$ and

$$(u+v)'(t) = 0 \Rightarrow (u+v)(t) = u_0 + v_0,$$

so that: $\sup_{t\in[0,T^*)}|u(t)|+|v(t)|<+\infty,$ and therefore

$$T^* = +\infty$$

What happens when diffusion is added?

$$\begin{cases} \begin{array}{l} \partial_t u - d_1 \Delta u = -uv^\beta \text{ in } Q_T = (0,T) \times \Omega \\ \partial_t v - d_2 \Delta v = uv^\beta \text{ in } Q_T = (0,T) \times \Omega \\ \partial_\nu u = \partial_\nu v = 0 \text{ on } \Sigma_T = (0,T) \times \partial \Omega, \\ u(0) = u_0 \geq 0, \quad v(0) = v_0 \geq 0. \end{array} \end{cases}$$

Here $\Omega \subset \mathbb{R}^N$, regular. The total mass is preserved:

$$\int_{\Omega}\partial_t(u+v)-\int_{\Omega}\Delta(d_1u+d_2v)=0.$$
 $\partial_{
u}(d_1u+d_2v)=0 ext{ on }\partial\Omega\Rightarrow\int_{\Omega}\Delta(d_1u+d_2v)=0.$ $\int_{\Omega}(u+v)(t)=\int_{\Omega}u_0+v_0$

Insufficient for global existence!

Local existence for reaction-diffusion systems with L^{∞} -data

$$(S) \left\{ \begin{array}{l} \partial_t u - d_1 \Delta u = -u v^\beta \text{ on } Q_T \\ \partial_t v - d_2 \Delta v = u v^\beta \text{ on } Q_T \\ \partial_\nu u = \partial_\nu v = 0 \text{ on } \Sigma_T, \\ u(0) = u_0 \geq 0, \ v(0) = v_0 \geq 0. \end{array} \right.$$

Theorem: Let $u_0, v_0 \in L^{\infty}(\Omega), u_0 \geq 0, v_0 \geq 0$. Then, there exist a maximum time $T^* > 0$ and (u, v) unique classical nonnegative solution of (S) on $[0, T^*[$. Moreover,

$$\sup_{t\in[0,T^*[}\left\{\|u(t)\|_{L^\infty(\Omega)}+\|v(t)\|_{L^\infty(\Omega)}\right\}<+\infty\Rightarrow [T^*+\infty].$$

Remark: here $\int_{\Omega} (u+v)(t) = \int_{\Omega} u_0 + v_0$, that is

$$\sup_{t\in[0,T^*[}\big\{\|u(t)\|_{L^1(\Omega)}+\|v(t)\|_{L^1(\Omega)}\big\}\leq \|u_0\|_{L^1(\Omega)}+\|v_0\|_{L^1(\Omega)}.$$

How does this estimate help for global existence? Very frequent situation in applications!

Same question for the general family of systems:

$$\begin{cases} \forall i=1,...,m \\ \partial_t u_i - d_i \Delta u_i = f_i(u_1,u_2,...,u_m) & \text{in } Q_T \\ \partial_\nu u_i = 0 & \text{on } \Sigma_T \\ u_i(0,\cdot) = u_i^0(\cdot) \geq 0. \end{cases}$$

$$d_i>0,\ f_i:[0,\infty)^m\to I\!\!R$$
 of class C^1 where

▶ (P): Positivity (nonnegativity) is preserved

Same question for the general family of systems:

$$\begin{cases} \forall i=1,...,m \\ \partial_t u_i - d_i \Delta u_i = f_i(u_1,u_2,...,u_m) & \text{in } Q_T \\ \partial_\nu u_i = 0 & \text{on } \Sigma_T \\ u_i(0,\cdot) = u_i^0(\cdot) \geq 0. \end{cases}$$

- $d_i>0,\ f_i:[0,\infty)^m\to I\!\!R$ of class C^1 where
 - ▶ (P): Positivity (nonnegativity) is preserved
 - ▶ **(M):** $\sum_{1 \le i \le m} f_i \le 0$ or more generally

Same question for the general family of systems:

$$\left\{ \begin{array}{l} \forall i=1,...,m\\ \partial_t u_i - d_i \Delta u_i = f_i(u_1,u_2,...,u_m) & \text{ in } Q_T\\ \partial_\nu u_i = 0 & \text{ on } \Sigma_T\\ u_i(0,\cdot) = u_i^0(\cdot) \geq 0. \end{array} \right.$$

- $d_i > 0, \ f_i : [0,\infty)^m \to I\!\!R$ of class C^1 where
 - ▶ (P): Positivity (nonnegativity) is preserved
 - ▶ **(M):** $\sum_{1 \le i \le m} f_i \le 0$ or more generally
 - $(M') \ \forall r \in [0, \infty[^m, \sum_{1 \le i \le m} a_i f_i(r) \le C[1 + \sum_{1 \le i \le m} r_i]$ for some $a_i > 0$

$$(E) \left\{ \begin{array}{l} \forall i=1,...,m \\ \partial_t u_i - d_i \Delta u_i = f_i(u_1,u_2,...,u_m) \\ \partial_\nu u_i = 0 \\ u_i(0,\cdot) = u_i^0(\cdot) \geq 0. \end{array} \right. \quad \text{in } Q_T$$

▶ **(P)** Preservation of Positivity: $\forall i = 1, ..., m$ $\forall r = (r_1, ..., r_m) \in [0, \infty[^m, f_i(r_1, ..., r_{i-1}, 0, r_{i+1}, ..., r_m) \ge 0.$

$$\begin{cases} \forall i = 1,...,m \\ \partial_t u_i - d_i \Delta u_i = f_i(u_1, u_2, ..., u_m) & \text{in } Q_T \\ \partial_{\nu} u_i = 0 & \text{on } \Sigma_T \\ u_i(0,\cdot) = u_i^0(\cdot) \geq 0. \end{cases}$$

- ▶ **(P)** Preservation of Positivity: $\forall i = 1, ..., m$ $\forall r \in [0, +\infty[^m, f_i(r_1, ..., r_{i-1}, 0, r_{i+1}, ..., r_m) \ge 0.$
- ▶ (M): $\sum_{1 \le i \le m} f_i(r_1, ..., r_m) \le 0 \Rightarrow$ 'Control of the Total Mass':

$$\forall t \geq 0, \ \int_{\Omega} \sum_{1 \leq i \leq r} u_i(t, x) dx \leq \int_{\Omega} \sum_{1 \leq i \leq r} u_i^0(x) dx.$$

Add up, integrate on Ω , use $\int_{\Omega} \Delta u_i = \int_{\partial\Omega} \partial_{\nu} u_i = 0$:

$$\int_{\Omega} \partial_t [\sum u_i(t)] dx = \int_{\Omega} \sum_i f_i(u) dx \leq 0.$$

$$\begin{cases} \forall i=1,...,m \\ \partial_t u_i - d_i \Delta u_i = f_i(u_1,u_2,...,u_m) \\ \partial_{\nu} u_i = 0 \\ u_i(0,\cdot) = u_i^0(\cdot) \geq 0. \end{cases}$$
 in Q_T on Σ_T

- ▶ **(P)** Preservation of Positivity: $\forall i = 1, ..., m$ $\forall r \in [0, +\infty[^m, f_i(r_1, ..., r_{i-1}, 0, r_{i+1}, ..., r_m) \ge 0.$
- ▶ (M): $\sum_{1 \le i \le m} f_i(r_1, ..., r_m) \le 0 \Rightarrow$ 'Control of the Total Mass':

$$\forall t \geq 0, \ \int_{\Omega} \sum_{1 \leq i \leq r} u_i(t, x) dx \leq \int_{\Omega} \sum_{1 \leq i \leq r} u_i^0(x) dx.$$

Add up, integrate on Ω , use $\int_{\Omega} \Delta u_i = \int_{\partial \Omega} \partial_{\nu} u_i = 0$:

$$\int_{\Omega} \partial_t [\sum u_i(t)] dx = \int_{\Omega} \sum_i f_i(u) dx \leq 0.$$

 $ightharpoonup
ightharpoonup L^1(\Omega)$ - a priori estimates, uniform in time.

$$\begin{cases} \forall i=1,...,m \\ \partial_t u_i - d_i \Delta u_i = f_i(u_1,u_2,...,u_m) & \text{in } Q_T \\ \partial_\nu u_i = 0 & \text{on } \Sigma_T \\ u_i(0,\cdot) = u_i^0(\cdot) \geq 0. \end{cases}$$

- ▶ **(P)** Preservation of Positivity: $\forall i = 1, ..., m$ $\forall r \in [0, +\infty[^m, f_i(r_1, ..., r_{i-1}, 0, r_{i+1}, ..., r_m) \ge 0.$
- ▶ (M): $\sum_{1 \le i \le m} f_i(r_1, ..., r_m) \le 0 \Rightarrow$ 'Control of the Total Mass':

$$\forall t \geq 0, \ \int_{\Omega} \sum_{1 < i < r} u_i(t, x) dx \leq \int_{\Omega} \sum_{1 < i < r} u_i^0(x) dx.$$

Add up, integrate on Ω , use $\int_{\Omega} \Delta u_i = \int_{\partial\Omega} \partial_{\nu} u_i = 0$:

$$\int_{\Omega} \partial_t [\sum u_i(t)] dx = \int_{\Omega} \sum_i f_i(u) dx \leq 0.$$

- ightharpoonup \Rightarrow $L^1(\Omega)$ a priori estimates, uniform in time.
- ► Remark: same with (M')

QUESTION: What about Global Existence of solutions under assumption (P)+(M)?? or more generally (P)+ (M') ??

Explicit examples with property (P)+(M) ou (M')

"Chemical morphogenetic process ("Brusselator", Prigogine)

$$\begin{cases} \partial_t u - d_1 \Delta u = -uv^2 + b v \\ \partial_t v - d_2 \Delta v = uv^2 - (b+1) v + a \\ u_{|\partial\Omega} = b/a, \ v_{|\partial\Omega} = a, \\ a, b, d_1, d_2 > 0. \end{cases}$$

Explicit examples with property (P)+(M)

"Chemical morphogenetic process ("Brusselator", Prigogine)

$$\begin{cases} \partial_t u - d_1 \Delta u = -uv^2 + bv \\ \partial_t v - d_2 \Delta v = uv^2 - (b+1)v + a \end{cases}$$

See also: Glycolosis model-Gray-Scott models

Explicit examples with property (P)+(M)

"Chemical morphogenetic process ("Brusselator", Prigogine)

$$\begin{cases} \partial_t u - d_1 \Delta u = -uv^2 + bv \\ \partial_t v - d_2 \Delta v = uv^2 - (b+1)v + a \end{cases}$$

See also: Glycolosis model-Gray-Scott models

Exothermic combustion in a gas

$$\begin{cases} \partial_t Y - \mu \Delta Y = -H(Y, T) \\ \partial_t T - \lambda \Delta T = q H(Y, T), \end{cases}$$

Y = concentration of a reactant, T = temperature,

Explicit examples with (P)+(M)

► Lotka-Volterra Systems (Leung,...)

$$\forall i=1...m, \ \partial_t u_i - d_i \Delta u_i = e_i u_i + u_i \sum_{1 \leq i \leq m} p_{ij} u_j,$$

with $e_i, p_{ij} \in \mathbb{R}$ such that for some $a_i > 0$.

$$\forall w \in R^m, \ \sum_{i,j=1}^m a_i w_i p_{ij} w_j \leq 0,$$

Explicit examples with (P)+(M)

► Lotka-Volterra Systems (Leung,...)

$$\forall i=1...m, \ \partial_t u_i - d_i \Delta u_i = e_i u_i + u_i \sum_{1 \leq j \leq m} p_{ij} u_j,$$

with $e_i, p_{ij} \in \mathbb{R}$ such that for some $a_i > 0$.

$$\forall w \in R^m, \ \sum_{i,j=1}^m a_i w_i p_{ij} w_j \leq 0,$$

▶ Model of diffusive calcium dynamics: H.G. Othmer

$$\begin{cases} \partial_t u_1 = d_1 \Delta u_1 + \lambda (\gamma_0 + \gamma_1 u_4)(1 - u_1) - \frac{\rho_1 u_1^4}{\rho_2^4 + u_1^4} \\ \partial_t u_2 - d_2 \Delta u_2 = -k_1 u_2 + k_1' u_3 \\ \partial_t u_3 - d_3 \Delta u_3 = -k_1' u_3 - k_2 u_1 u_3 + k_1 u_2 + k_2' u_4 \\ \partial_t u_4 - d_4 \Delta u_4 = k_2 u_1 u_3 + k_3' u_5 - k_2' u_4 - k_3 u_1 u_4 \\ \partial_t u_5 - d_5 \Delta u_5 = k_3 u_1 u_4 - k_3' u_5. \end{cases}$$

$$U_1 + U_2 \stackrel{k^+}{\rightleftharpoons} U_3$$

$$U_1 + U_2 \stackrel{k^+}{\rightleftharpoons} U_3$$

• $u_i = u_i(t, x) = \text{concentration of } U_i$

$$U_1 + U_2 \stackrel{k^+}{\rightleftharpoons} U_3$$

- $u_i = u_i(t, x) =$ concentration of U_i
- ► Law of Mass Action: The instantaneous variation of concentration of each *u_i* is proportional to the concentration of the reactants:

$$\partial_t u_1 + \nabla \cdot (u_1 \mathbf{V_1}) = k^- u_3 - k^+ u_1 u_2 \ (\mathbf{V_1} = \textit{velocity})$$

$$U_1 + U_2 \stackrel{k^+}{\rightleftharpoons} U_3$$

- $u_i = u_i(t, x) = \text{concentration of } U_i$
- ► Law of Mass Action: The instantaneous variation of concentration of each u_i is proportional to the concentration of the reactants:

$$\partial_t u_1 + \nabla \cdot (u_1 \mathbf{V}_1) = k^- u_3 - k^+ u_1 u_2 (\mathbf{V}_1 = velocity)$$

▶ Fick's diffusion law: $\mathbf{V_1} = -d_1 \nabla u_1 \Rightarrow \nabla (u_1 \mathbf{V_1}) = -d_1 \Delta u_1$

$$U_1 + U_2 \stackrel{k^+}{\rightleftharpoons} U_3$$

- $u_i = u_i(t, x) =$ concentration of U_i
- ► Law of Mass Action: The instantaneous variation of concentration of each *u_i* is proportional to the concentration of the reactants:

$$\partial_t u_1 + \nabla \cdot (u_1 \mathbf{V}_1) = k^- u_3 - k^+ u_1 u_2 (\mathbf{V}_1 = \textit{velocity})$$

▶ Fick's diffusion law: $\mathbf{V_1} = -d_1 \nabla u_1 \Rightarrow \nabla (u_1 \mathbf{V_1}) = -d_1 \Delta u_1$

$$\begin{cases} \partial_t u_1 - d_1 \Delta u_1 = -k^+ u_1 u_2 + k^- u_3 \\ \partial_t u_2 - d_2 \Delta u_2 = -k^+ u_1 u_2 + k^- u_3 \\ \partial_t u_3 - d_3 \Delta u_3 = k^+ u_1 u_2 - k^- u_3 \end{cases}$$

Note : $f_1 + f_2 + 2f_3 = 0$ and positivity is preserved.

A quadratic model

$$U_1 + U_2 \stackrel{k^+}{\stackrel{}{\overline{k}^-}} U_3 + U_4$$

$$\begin{cases} \partial_t u_1 - d_1 \Delta u_1 = -k^+ u_1 u_2 + k^- u_3 u_4 \\ \partial_t u_2 - d_2 \Delta u_2 = -k^+ u_1 u_2 + k^- u_3 u_4 \\ \partial_t u_3 - d_3 \Delta u_3 = k^+ u_1 u_2 - k^- u_3 u_4 \\ \partial_t u_4 - d_4 \Delta u_4 = k^+ u_1 u_2 - k^- u_3 u_4 \end{cases}$$

Note: $f_1 + f_2 + f_3 + f_4 = 0$ and positivity is preserved. L. Desvillettes, K. Fellner, M.P., J. Vovelle, Th. Goudon, A. Vasseur

▶ A general chemical reaction:

$$p_1U_1 + p_2U_2 + ... + p_mU_m \stackrel{k^+}{\rightleftharpoons} q_1U_1 + q_2U_2 + ... + q_mU_m,$$

 $p_i, q_i =$ nonnegative integers.

▶ A general chemical reaction:

$$p_1U_1 + p_2U_2 + ... + p_mU_m \stackrel{k^+}{\rightleftharpoons} q_1U_1 + q_2U_2 + ... + q_mU_m,$$

 $p_i, q_i =$ nonnegative integers.

$$\partial_t u_i - d_i \Delta u_i = (p_i - q_i) \left(k^- \prod_{j=1}^m u_j^{q_j} - k^+ \prod_{j=1}^m u_j^{p_j} \right), \forall i = 1...m.$$

A general chemical reaction:

$$p_1U_1 + p_2U_2 + ... + p_mU_m \stackrel{k^+}{\rightleftharpoons} q_1U_1 + q_2U_2 + ... + q_mU_m,$$

 $p_i, q_i =$ nonnegative integers.

$$\partial_t u_i - d_i \Delta u_i = (p_i - q_i) \left(k^- \prod_{j=1}^m u_j^{q_j} - k^+ \prod_{j=1}^m u_j^{p_j} \right), \forall i = 1...m.$$

▶ Here $\sum_i m_i p_i = \sum_i m_i q_i$ for some $m_i \in (0, \infty), i = 1...m$. This implies (M'): $\sum_{i=1}^m m_i f_i = 0$.

A general chemical reaction:

$$p_1U_1 + p_2U_2 + ... + p_mU_m \stackrel{k^+}{\rightleftharpoons} q_1U_1 + q_2U_2 + ... + q_mU_m,$$

 $p_i, q_i =$ nonnegative integers.

$$\partial_t u_i - d_i \Delta u_i = (p_i - q_i) \left(k^- \prod_{j=1}^m u_j^{q_j} - k^+ \prod_{j=1}^m u_j^{p_j} \right), \forall i = 1...m.$$

- ▶ Here $\sum_i m_i p_i = \sum_i m_i q_i$ for some $m_i \in (0, \infty), i = 1...m$. This implies (M'): $\sum_{i=1}^m m_i f_i = 0$.
- ▶ Global existence completely open in this general situation!

More examples

Diffusive epidemic models: SIR

S=Susceptibles= can be infected I=Infectives=infected and transmit disease R=Removed=immune; P=S+I+R

$$\begin{cases} S_t - \nabla \cdot d_1(x) \nabla S = bP - (m + kP)S - g(S, I) \\ I_t - \nabla \cdot d_2(x) \nabla I = -(m + kP)I + g(S, I) - \lambda I \\ R_t - \nabla \cdot d_3(x) \nabla R = -(m + kP)R + \lambda I \end{cases}$$

May be coupled with an extra variable: S = S(t, x, age)...

More examples

Diffusive epidemic models: SIR

S=Susceptibles= can be infected I=Infectives=infected and transmit disease R=Removed=immune; P=S+I+R

$$\begin{cases} S_t - \nabla \cdot d_1(x) \nabla S = bP - (m + kP)S - g(S, I) \\ I_t - \nabla \cdot d_2(x) \nabla I = -(m + kP)I + g(S, I) - \lambda I \\ R_t - \nabla \cdot d_3(x) \nabla R = -(m + kP)R + \lambda I \end{cases}$$

May be coupled with an extra variable: S = S(t, x, age)...

▶ Nickel-Iron alloy electrodeposition : N. Alaa, A. Tounsi et al. : $\forall i=1...5$

$$\begin{cases} \partial_t w_i - d_i(w_i)_{xx} + b(x)(w_i)_x - m_i[w_i \Phi_x]_x = S_i(w) \\ S_1 = S_2 = 0, \ S_3(w) = S_4(w) = -S_5(w) \\ -[\Phi]_{xx} = \sum_{i=1}^5 z_i w_i, \ z_i \in R, \text{ +bdy cond.} \end{cases}$$

Explicit examples

► Modelization of pollutants transfer in atmospher (N = 3): R. Texier-Picard, MP,(degenerate diffusion):

$$\begin{cases} \partial_t \phi_i = d_i \, \partial_{zz}^2 \phi_i + \omega \cdot \nabla \phi_i + f_i(\phi) + g_i, \ \forall i = 1...20, \\ + \text{Bdy and initial conditions} \end{cases}$$

Explicit examples

► Modelization of pollutants transfer in atmospher (N = 3): R. Texier-Picard, MP,(degenerate diffusion):

$$\begin{cases} \partial_t \phi_i = d_i \, \partial^2_{zz} \phi_i + \omega \cdot \nabla \phi_i + f_i(\phi) + g_i, \; \forall i = 1...20, \\ + \, \text{Bdy and initial conditions} \end{cases}$$

The reaction terms:

```
\begin{cases} f_1(\phi) &= -k_1\phi_1 + k_{22}\phi_{19} + k_{25}\phi_{20} + k_{11}\phi_{13} + k_9\phi_{11}\phi_2 + k_3\phi_5\phi_2 \\ &+ k_2\phi_2\phi_4 - k_{23}\phi_1\phi_4 - k_{14}\phi_1\phi_6 + k_{12}\phi_1\phi_2 - k_{10}\phi_{11}\phi_1 - k_{24}\phi_{19}\phi_1, \\ f_2(\phi) &= k_1\phi_1 + k_{21}\phi_{19} - k_9\phi_{11}\phi_2 - k_3\phi_5\phi_2 - k_2\phi_2\phi_4 - k_{12}\phi_{10}\phi_2 \\ f_3(\phi) &= k_1\phi_1 + k_{17}\phi_4 + k_{19}\phi_{16} + k_{22}\phi_{19} - k_{15}\phi_3 \\ f_4(\phi) &= -k_{17}\phi_4 + k_{15}\phi_3 - k_{16}\phi_4 - k_2\phi_2\phi_4 - k_{23}\phi_1\phi_4 \\ f_5(\phi) &= 2k_4\phi_7 + k_7\phi_9 + k_{13}\phi_{14} + k_6\phi_7\phi_6 - k_3\phi_5\phi_2 + k_{20}\phi_{17}\phi_6 \\ f_6(\phi) &= 2k_{18}\phi_{16} - k_9\phi_9\phi_6 - k_6\phi_7\phi_6 + k_3\phi_5\phi_2 - k_{20}\phi_{17}\phi_6 - k_{14}\phi_1\phi_6 \\ f_7(\phi) &= -k_4\phi_7 - k_5\phi_7 + k_{13}\phi_{14} - k_6\phi_7\phi_6 \\ f_8(\phi) &= k_4\phi_7 + k_5\phi_7 + k_7\phi_9 + k_6\phi_7\phi_6 \\ f_9(\phi) &= -k_7\phi_9 - k_8\phi_9\phi_6 \\ f_{10}(\phi) &= k_7\phi_9 + k_9\phi_{11}\phi_2 - k_{12}\phi_{10}\phi_2 \\ f_{11}(\phi) &= k_{11}\phi_{13} - k_9\phi_{11}\phi_2 + k_8\phi_9\phi_6 - k_{10}\phi_{11}\phi_1 \\ f_{12}(\phi) &= k_9\phi_{11}\phi_2 \\ f_{33}(\phi) &= -k_{11}\phi_{13} + k_{10}\phi_{11}\phi_1 \\ f_{34}(\phi) &= -k_{13}\phi_{14} + k_{12}\phi_{10}\phi_2 \\ f_{15}(\phi) &= k_{14}\phi_1\phi_6 \\ f_{16}(\phi) &= -k_{19}\phi_{16} - k_{18}\phi_{16} + k_{16}\phi_4 \\ f_{17}(\phi) &= -k_{20}\phi_{17}\phi_6 \\ f_{18}(\phi) &= -k_{21}\phi_{19} - k_{22}\phi_{19} + k_{25}\phi_{20} + k_{23}\phi_1\phi_4 - k_{24}\phi_{19}\phi_1 \\ f_{20}(\phi) &= -k_{25}\phi_{20} + k_{24}\phi_{19}\phi_1. \end{cases}
                                                                                                                                                                        -k_1\phi_1 + k_{22}\phi_{10} + k_{25}\phi_{20} + k_{11}\phi_{13} + k_{9}\phi_{11}\phi_2 + k_{3}\phi_5\phi_2
                                                                                                                                             = -k_{25}\phi_{20} + k_{24}\phi_{19}\phi_{1}
```

Back to the model example: what about L^{∞} -estimates?

$$(S) \left\{ \begin{array}{l} \partial_t u - d_1 \Delta u = -uv^\beta \ \ \text{on} \ \ Q_T \\ \partial_t v - d_2 \Delta v = uv^\beta \ \ \text{on} \ \ Q_T \\ \partial_\nu u = \partial_\nu v = 0 \ \ \text{on} \ \Sigma_T, \\ u(0) = u_0 \geq 0, \quad v(0) = v_0 \geq 0. \end{array} \right.$$

By maximum principle

$$\partial_t u - d_1 \Delta u \leq 0 \Rightarrow \|u(t)\|_{L^\infty(\Omega)} \leq \|u_0\|_{L^\infty(\Omega)}$$

Back to the model example: what about L^{∞} -estimates?

$$(S) \left\{ \begin{array}{l} \partial_t u - d_1 \Delta u = -u v^\beta \text{ on } Q_T \\ \partial_t v - d_2 \Delta v = u v^\beta \text{ on } Q_T \\ \partial_\nu u = \partial_\nu v = 0 \text{ on } \Sigma_T, \\ u(0) = u_0 \geq 0, \ \ v(0) = v_0 \geq 0. \end{array} \right.$$

By maximum principle

$$\partial_t u - d_1 \Delta u \leq 0 \Rightarrow \|u(t)\|_{L^{\infty}(\Omega)} \leq \|u_0\|_{L^{\infty}(\Omega)}$$

▶ If
$$d_1 = d_2 = d$$
: $\partial_t (u + v) - d\Delta(u + v) = 0$

$$\Rightarrow \|u(t) + v(t)\|_{L^{\infty}(\Omega)} \leq \|u_0 + v_0\|_{L^{\infty}(\Omega)}$$

By Positivity, $\forall t \in [0, T^*)$,

$$\Rightarrow \|u(t)\|_{L^{\infty}(\Omega)}, \ \|v(t)\|_{L^{\infty}(\Omega)} \leq \|u_0 + v_0\|_{L^{\infty}(\Omega)}$$
$$\Rightarrow T^* = +\infty.$$

Back to the model example: what about L^{∞} -estimates?

$$(S) \left\{ \begin{array}{l} \partial_t u - d_1 \Delta u = -u v^\beta \text{ on } Q_T \\ \partial_t v - d_2 \Delta v = u v^\beta \text{ on } Q_T \\ \partial_\nu u = \partial_\nu v = 0 \text{ on } \Sigma_T, \\ u(0) = u_0 \geq 0, \ v(0) = v_0 \geq 0. \end{array} \right.$$

By maximum principle

$$\partial_t u - d_1 \Delta u \leq 0 \Rightarrow \|u(t)\|_{L^{\infty}(\Omega)} \leq \|u_0\|_{L^{\infty}(\Omega)}$$

▶ If
$$d_1 = d_2 = d$$
: $\partial_t (u + v) - d\Delta(u + v) = 0$

$$\Rightarrow \|u(t)+v(t)\|_{L^{\infty}(\Omega)} \leq \|u_0+v_0\|_{L^{\infty}(\Omega)}$$

By Positivity, $\forall t \in [0, T^*)$,

$$\Rightarrow \|u(t)\|_{L^{\infty}(\Omega)}, \ \|v(t)\|_{L^{\infty}(\Omega)} \leq \|u_0 + v_0\|_{L^{\infty}(\Omega)}$$
$$\Rightarrow T^* = +\infty.$$

▶ What happens when $d_1 \neq d_2$?

$$(S) \begin{cases} \partial_t u - d_1 \Delta u = -uv^{\beta} \text{ on } Q_T \\ \partial_t v - d_2 \Delta v = uv^{\beta} \text{ on } Q_T \\ \partial_{\nu} u = \partial_{\nu} v = 0 \text{ on } \Sigma_T, \\ u(0) = u_0 \ge 0, \quad v(0) = v_0 \ge 0. \end{cases}$$
$$\partial_t v - d_2 \Delta v = -[\partial_t u - d_1 \Delta u], \quad u \in L^{\infty}(Q_{T^*}).$$
$$v = -[\partial_t - d_2 \Delta]^{-1} (\partial_t - d_1 \Delta) u (= \mathcal{A}u).$$

$$(S) \left\{ \begin{array}{l} \partial_t u - d_1 \Delta u = -u v^\beta \text{ on } Q_T \\ \partial_t v - d_2 \Delta v = u v^\beta \text{ on } Q_T \\ \partial_\nu u = \partial_\nu v = 0 \text{ on } \Sigma_T, \\ u(0) = u_0 \geq 0, \ \ v(0) = v_0 \geq 0. \end{array} \right.$$

$$\partial_t v - d_2 \Delta v = -[\partial_t u - d_1 \Delta u], \ u \in L^{\infty}(Q_{T^*}).$$
$$v = -[\partial_t - d_2 \Delta]^{-1} (\partial_t - d_1 \Delta) u (= Au).$$

▶ **Lemma:** the operator \mathcal{A} is continuous from $L^p(Q_T)$ into $L^p(Q_T)$ for all $p \in]1, \infty[$ and all T > 0. [dual statement of the L^p -regularity theory for the heat operator] $\Rightarrow \forall p < +\infty, \ \|v\|_{L^p(Q_{T^*})} < +\infty$

$$(S) \left\{ \begin{array}{l} \partial_t u - d_1 \Delta u = -u v^\beta \text{ on } Q_T \\ \partial_t v - d_2 \Delta v = u v^\beta \text{ on } Q_T \\ \partial_\nu u = \partial_\nu v = 0 \text{ on } \Sigma_T, \\ u(0) = u_0 \geq 0, \ \ v(0) = v_0 \geq 0. \end{array} \right.$$

$$\partial_t v - d_2 \Delta v = -[\partial_t u - d_1 \Delta u], \ u \in L^{\infty}(Q_{T^*}).$$
$$v = -[\partial_t - d_2 \Delta]^{-1} (\partial_t - d_1 \Delta) u (= Au).$$

Lemma: the operator A is continuous from $L^p(Q_T)$ into $L^p(Q_T)$ for all $p \in]1, \infty[$ and all T > 0. [dual statement of the L^p-regularity theory for the heat operator]

$$\Rightarrow \forall p < +\infty, \ \|v\|_{L^p(Q_{T^*})} < +\infty$$

► Next: $||v||_{L^{\infty}(Q_{T^*})} \le C||uv^{\beta}||_{L^q(Q_{T^*})}$ si q > (d+1)/2

$$(S) \left\{ \begin{array}{l} \partial_t u - d_1 \Delta u = -u v^\beta \ \ \text{on} \ Q_T \\ \partial_t v - d_2 \Delta v = u v^\beta \ \ \text{on} \ Q_T \\ \partial_\nu u = \partial_\nu v = 0 \ \ \text{on} \ \Sigma_T, \\ u(0) = u_0 \geq 0, \ \ v(0) = v_0 \geq 0. \end{array} \right.$$

$$\partial_t v - d_2 \Delta v = -[\partial_t u - d_1 \Delta u], \ u \in \underline{L}^{\infty}(Q_{T^*}).$$
$$v = -[\partial_t - d_2 \Delta]^{-1} (\partial_t - d_1 \Delta) u (= Au).$$

- ▶ **Lemma:** the operator \mathcal{A} is continuous from $L^p(Q_T)$ into $L^p(Q_T)$ for all $p \in]1, \infty[$ and all T > 0. [dual statement of the L^p -regularity theory for the heat operator] $\Rightarrow \forall p < +\infty, \ \|v\|_{L^p(Q_{T^*})} < +\infty$
- ► Next: $||v||_{L^{\infty}(Q_{T^*})} \le C||uv^{\beta}||_{L^q(Q_{T^*})}$ si q > (d+1)/2
- ▶ Therefore $||v||_{L^{\infty}(Q_{T^*})} < +\infty$ et $T^* = +\infty$.

- The same approach provides global existence
 - for the "Brusselator", for the epidemic models SIR
 - for the 3×3 system

$$U_1 + U_2 \quad \stackrel{k^+}{\stackrel{}{k^-}} \quad U_3 : \left\{ \begin{array}{l} \partial_t u_1 - d_1 \Delta u_1 = -k^+ u_1 u_2 + k^- u_3 \\ \partial_t u_2 - d_2 \Delta u_2 = -k^+ u_1 u_2 + k^- u_3 \\ \partial_t u_3 - d_3 \Delta u_3 = k^+ u_1 u_2 - k^- u_3 \end{array} \right.$$

- ▶ The same approach provides global existence
 - for the "Brusselator", for the epidemic models SIR
 - for the 3×3 system

$$U_1 + U_2 \stackrel{k^+}{\underset{k}{\rightleftharpoons}} U_3 : \begin{cases} \partial_t u_1 - d_1 \Delta u_1 = -k^+ u_1 u_2 + k^- u_3 \\ \partial_t u_2 - d_2 \Delta u_2 = -k^+ u_1 u_2 + k^- u_3 \\ \partial_t u_3 - d_3 \Delta u_3 = k^+ u_1 u_2 - k^- u_3 \end{cases}$$

▶ More generally it applies to m × m systems if there exists a triangular invertible matrix Q with nonnegative entries such that

$$\forall r \in [0,\infty)^m, \ Q f(r) \leq [1 + \sum_{1 \leq i \leq m} r_i] \mathbf{b},$$

for some $\mathbf{b} \in I\!\!R^m, f = (f_1, ..., f_m)^t$.

▶ *L*^p-approach does not apply to

$$\begin{cases} \partial_t u - d_1 \Delta u = -u e^{v^2} \text{ in } Q_T \\ \partial_t v - d_2 \Delta v = u e^{v^2} \text{ in } Q_T \end{cases}$$

▶ *L*^p-approach does not apply to

$$\begin{cases} \partial_t u - d_1 \Delta u = -u e^{v^2} \text{ in } Q_T \\ \partial_t v - d_2 \Delta v = u e^{v^2} \text{ in } Q_T \end{cases}$$

neither to the system

$$\left\{ \begin{array}{l} \partial_t u - d_1 \Delta u = u^3 v^2 - u^2 v^3 \text{ in } Q_T \\ \partial_t v - d_2 \Delta v = u^2 v^3 - u^3 v^2 \text{ in } Q_T \end{array} \right.$$

▶ *L*^p-approach does not apply to

$$\begin{cases} \partial_t u - d_1 \Delta u = -u e^{v^2} \text{ in } Q_T \\ \partial_t v - d_2 \Delta v = u e^{v^2} \text{ in } Q_T \end{cases}$$

neither to the system

$$\begin{cases} \partial_t u - d_1 \Delta u = u^3 v^2 - u^2 v^3 \text{ in } Q_T \\ \partial_t v - d_2 \Delta v = u^2 v^3 - u^3 v^2 \text{ in } Q_T \end{cases}$$

▶ and even not to the "better" system with $\lambda \in [0, 1[$

$$\begin{cases} \partial_t u - d_1 \Delta u = \lambda u^3 v^2 - u^2 v^3 \text{ in } Q_T, \\ \partial_t v - d_2 \Delta v = u^2 v^3 - u^3 v^2 \text{ in } Q_T \end{cases}$$

where $f(u, v) + g(u, v) \le 0$ et also $f(u, v) + \lambda g(u, v) \le 0$

Finite time L^{∞} -blow up may appear!

$$\begin{cases} \partial_t u - d_1 \Delta u = f(u, v) \text{ in } Q_T, \\ \partial_t v - d_2 \Delta v = g(u, v) \text{ in } Q_T \end{cases}$$

Theorem: (D. Schmitt, MP) One can find polynomial nonlinearities f, g satisfying (P) and

$$\textbf{(M)} \ f+g\leq 0, \ \textit{and also}: \exists \lambda \in [0,1[,f+\lambda g\leq 0,$$

and for which there exists $T^* < +\infty$ with

$$\lim_{t\to T^*}\|u(t)\|_{L^{\infty}(\Omega)}=\lim_{t\to T^*}\|v(t)\|_{L^{\infty}(\Omega)}=+\infty.$$

Finite time L^{∞} -blow up may appear!

$$\begin{cases} \partial_t u - d_1 \Delta u = f(u, v) \text{ in } Q_T, \\ \partial_t v - d_2 \Delta v = g(u, v) \text{ in } Q_T \end{cases}$$

Theorem: (D. Schmitt, MP) One can find polynomial nonlinearities f, g satisfying **(P)** and

(M)
$$f + g \le 0$$
, and also : $\exists \lambda \in [0, 1[, f + \lambda g \le 0,$

and for which there exists $T^* < +\infty$ with

$$\lim_{t\to T^*}\|u(t)\|_{L^{\infty}(\Omega)}=\lim_{t\to T^*}\|v(t)\|_{L^{\infty}(\Omega)}=+\infty.$$

The blow up is similar to $u(t,x) = \frac{1}{(T^*-t)^2+|x|^2}$ The solution goes out of $L^{\infty}(\Omega)$ at $t=T^*$, but still exists for $t>T^*.-->$ Incomplete blow up!

CONCLUSION at this stage:

Look rather for *weak solutions* which are allowed to go out of $L^{\infty}(\Omega)$ from time to time or even often.

We ask the nonlinearities to be at least in $L^1(Q_T)$.

$$f_i(u) \in L^1(Q_T)$$
 ?

An L¹-approach

$$(S) \left\{ \begin{array}{l} \forall i=1,...,m \\ \partial_t u_i - d_i \Delta u_i = f_i(u_1,u_2,...,u_m) \\ \partial_\nu u_i = 0 \\ u_i(0,\cdot) = u_i^0(\cdot) \geq 0. \end{array} \right. \quad \text{in } Q_T$$

 L^1 -**Theorem.** Assume the two conditions **(P)+ (M')** hold. Assume moreover that the following a priori estimate holds:

$$\forall i=1,...,m,\ \int_{Q_T}|f_i(u)|\leq C.$$

Then, there exists a global weak solution for System (S).

$$\begin{cases} \partial_t u - d_1 \Delta u = -u e^{v^2} \text{ in } Q_T \\ \partial_t v - d_2 \Delta v = u e^{v^2} \text{ in } Q_T \end{cases}$$
$$\int_{\Omega} u(T) + \int_{Q_T} u e^{v^2} = \int_{\Omega} u_0,$$

whence the $L^1(Q_T)$ -estimate of the nonlinearity.

$$\left\{ \begin{array}{l} \partial_t u - d_1 \Delta u = \frac{\lambda}{2} u^3 v^2 - u^2 \, v^3 \mbox{ in } Q_T, \\ \partial_t v - d_2 \Delta v = u^2 \, v^3 - u^3 v^2 \mbox{ in } Q_T \end{array} \right.$$

$$\left\{ \begin{array}{l} \partial_t u - d_1 \Delta u = \frac{\lambda}{2} u^3 v^2 - u^2 v^3 \text{ in } Q_T, \\ \partial_t v - d_2 \Delta v = u^2 v^3 - u^3 v^2 \text{ in } Q_T, \end{array} \right.$$

$$\int_{\Omega} u(T) + \int_{Q_{T}} u^{2}v^{3} = \lambda \int_{Q_{T}} u^{3}v^{2} + \int_{\Omega} u_{0}.$$

$$\int_{\Omega} v(T) + \int_{Q_{T}} u^{3}v^{2} = \int_{Q_{T}} u^{2}v^{3} + \int_{\Omega} v_{0}$$

$$\begin{cases} \partial_t u - d_1 \Delta u = \lambda u^3 v^2 - u^2 v^3 & \text{in } Q_T, \\ \partial_t v - d_2 \Delta v = u^2 v^3 - u^3 v^2 & \text{in } Q_T \end{cases}$$

$$\int_{\Omega} u(T) + \int_{Q_T} u^2 v^3 = \lambda \int_{Q_T} u^3 v^2 + \int_{\Omega} u_0.$$

$$\int_{\Omega} v(T) + \int_{Q_T} u^3 v^2 = \int_{Q_T} u^2 v^3 + \int_{\Omega} v_0$$

$$\Rightarrow \int_{Q_T} u^3 v^2 \le \lambda \int_{Q_T} u^3 v^2 + \int_{\Omega} u_0 + v_0$$

$$\begin{cases} \partial_t u - d_1 \Delta u = \lambda u^3 v^2 - u^2 v^3 & \text{in } Q_T, \\ \partial_t v - d_2 \Delta v = u^2 v^3 - u^3 v^2 & \text{in } Q_T \end{cases}$$

$$\int_{\Omega} u(T) + \int_{Q_T} u^2 v^3 = \lambda \int_{Q_T} u^3 v^2 + \int_{\Omega} u_0.$$

$$\int_{\Omega} v(T) + \int_{Q_T} u^3 v^2 = \int_{Q_T} u^2 v^3 + \int_{\Omega} v_0$$

$$\Rightarrow \int_{Q_T} u^3 v^2 \le \lambda \int_{Q_T} u^3 v^2 + \int_{\Omega} u_0 + v_0$$
For $\lambda < 1 : \Rightarrow \int_{Q_T} u^3 v^2 < +\infty, \int_{Q_T} u^2 v^3 < +\infty$

$$\begin{cases} \partial_t u - d_1 \Delta u = \lambda u^3 v^2 - u^2 v^3 & \text{in } Q_T, \\ \partial_t v - d_2 \Delta v = u^2 v^3 - u^3 v^2 & \text{in } Q_T \end{cases}$$

$$\int_{\Omega} u(T) + \int_{Q_T} u^2 v^3 = \lambda \int_{Q_T} u^3 v^2 + \int_{\Omega} u_0.$$

$$\int_{\Omega} v(T) + \int_{Q_T} u^3 v^2 = \int_{Q_T} u^2 v^3 + \int_{\Omega} v_0$$

$$\Rightarrow \int_{\Omega} u^3 v^2 \le \lambda \int_{\Omega} u^3 v^2 + \int_{\Omega} u_0 + v_0$$

For
$$\lambda < 1 :\Rightarrow \int_{Q_T} u^3 v^2 < +\infty, \int_{Q_T} u^2 v^3 < +\infty$$

▶ Open problem if $\lambda = 1$: L^1 -estimate of the nonlinearity??

More generally it applies if there exists an invertible matrix ${\it Q}$ with nonnegative entries such that

$$\forall r \in [0,\infty)^m, \ Q f(r) \leq [1+\sum_{1 \leq i \leq m} r_i]\mathbf{b},$$

for some $\mathbf{b} \in \mathbb{R}^m, f = (f_1, ..., f_m)^t$.

A surprising a priori L^2 -estimate for these systems

$$(S) \begin{cases} \forall i = 1, ..., m \\ \partial_{\iota} u_i - d_i \Delta u_i = f_i(u_1, u_2, ..., u_m) & \text{in } Q_T \\ \partial_{\nu} u_i = 0 & \text{on } \Sigma_T \\ u_i(0, \cdot) = u_i^0(\cdot) \geq 0. \end{cases}$$

 L^2 -**Theorem.** Assume **(P)+(M')**. Then, the following a priori estimate holds for the solutions of (S):

$$\forall i=1,...,m, \ \forall T>0, \ \int_{Q_T} u_i^2 \leq C.$$

A surprising a priori L^2 -estimate for these systems

$$(S) \begin{cases} \forall i = 1, ..., m \\ \partial_t u_i - d_i \Delta u_i = f_i(u_1, u_2, ..., u_m) & \text{in } Q_T \\ \partial_\nu u_i = 0 & \text{on } \Sigma_T \\ u_i(0, \cdot) = u_i^0(\cdot) \ge 0. \end{cases}$$

 L^2 -**Theorem.** Assume **(P)+(M')**. Then, the following a priori estimate holds for the solutions of (S):

$$\forall i=1,...,m, \ \forall T>0, \ \int_{Q_T} u_i^2 \leq C.$$

▶ Corollary of the L^1 - and L^2 -Theorems: Assume (P),(M') and f_i is at most quadratic. Then, System (S) has a global weak solution.

A surprising a priori L^2 -estimate for these systems

$$(S) \begin{cases} \forall i = 1, ..., m \\ \partial_t u_i - d_i \Delta u_i = f_i(u_1, u_2, ..., u_m) & \text{in } Q_T \\ \partial_\nu u_i = 0 & \text{on } \Sigma_T \\ u_i(0, \cdot) = u_i^0(\cdot) \ge 0. \end{cases}$$

 L^2 -**Theorem.** Assume **(P)+(M')**. Then, the following a priori estimate holds for the solutions of (S):

$$\forall i=1,...,m, \ \forall T>0, \ \int_{Q_T} u_i^2 \leq C.$$

- ▶ Corollary of the L^1 and L^2 -Theorems: Assume (P),(M') and f_i is at most quadratic. Then, System (S) has a global weak solution.
- ▶ Recall that nonlinearities are quadratic in many examples.

$$U_1 + U_2 \stackrel{\underline{k}^+}{=} U_3 + U_4$$

$$\begin{cases} \partial_t u_1 - d_1 \Delta u_1 = -k^+ u_1 u_2 + k^- u_3 u_4 \\ \partial_t u_2 - d_2 \Delta u_2 = -k^+ u_1 u_2 + k^- u_3 u_4 \\ \partial_t u_3 - d_3 \Delta u_3 = k^+ u_1 u_2 - k^- u_3 u_4 \\ \partial_t u_4 - d_4 \Delta u_4 = k^+ u_1 u_2 - k^- u_3 u_4 \end{cases}$$

 $U_1 + U_2 \stackrel{\underline{k}^+}{=} U_3 + U_4$

$$\begin{cases} \partial_t u_1 - d_1 \Delta u_1 = -k^+ u_1 u_2 + k^- u_3 u_4 \\ \partial_t u_2 - d_2 \Delta u_2 = -k^+ u_1 u_2 + k^- u_3 u_4 \\ \partial_t u_3 - d_3 \Delta u_3 = k^+ u_1 u_2 - k^- u_3 u_4 \\ \partial_t u_4 - d_4 \Delta u_4 = k^+ u_1 u_2 - k^- u_3 u_4 \end{cases}$$

► Global existence of a weak solution

$$U_1 + U_2 \stackrel{\underline{k}^+}{=} U_3 + U_4$$

$$\begin{cases} \partial_t u_1 - d_1 \Delta u_1 = -k^+ u_1 u_2 + k^- u_3 u_4 \\ \partial_t u_2 - d_2 \Delta u_2 = -k^+ u_1 u_2 + k^- u_3 u_4 \\ \partial_t u_3 - d_3 \Delta u_3 = k^+ u_1 u_2 - k^- u_3 u_4 \\ \partial_t u_4 - d_4 \Delta u_4 = k^+ u_1 u_2 - k^- u_3 u_4 \end{cases}$$

- Global existence of a weak solution
- ► The L^p-approach does not work

 $U_1 + U_2 \stackrel{k^+}{=} U_3 + U_4$

$$\begin{cases} \partial_t u_1 - d_1 \Delta u_1 = -k^+ u_1 u_2 + k^- u_3 u_4 \\ \partial_t u_2 - d_2 \Delta u_2 = -k^+ u_1 u_2 + k^- u_3 u_4 \\ \partial_t u_3 - d_3 \Delta u_3 = k^+ u_1 u_2 - k^- u_3 u_4 \\ \partial_t u_4 - d_4 \Delta u_4 = k^+ u_1 u_2 - k^- u_3 u_4 \end{cases}$$

- ► Global existence of a weak solution
- ▶ The L^p-approach does not work
- ▶ This solution is regular (=classical) in dimension N = 1, 2

$$U_1 + U_2 \stackrel{\underline{k}^+}{=} U_3 + U_4$$

$$\begin{cases} \partial_t u_1 - d_1 \Delta u_1 = -k^+ u_1 u_2 + k^- u_3 u_4 \\ \partial_t u_2 - d_2 \Delta u_2 = -k^+ u_1 u_2 + k^- u_3 u_4 \\ \partial_t u_3 - d_3 \Delta u_3 = k^+ u_1 u_2 - k^- u_3 u_4 \\ \partial_t u_4 - d_4 \Delta u_4 = k^+ u_1 u_2 - k^- u_3 u_4 \end{cases}$$

- Global existence of a weak solution
- ▶ The L^p-approach does not work
- ▶ This solution is regular (=classical) in dimension N = 1, 2
- ▶ For $N \ge 3$, the set of points around which the solution is unbounded is "small" in the sense that its Hausdorff dimension is at most $(N^2 4)/N$ (Th. Goudon, A. Vasseur)

$$U_1 + U_2 \stackrel{\underline{k}^+}{\overline{k}^-} U_3 + U_4$$

$$\begin{cases} \partial_t u_1 - d_1 \Delta u_1 = -k^+ u_1 u_2 + k^- u_3 u_4 \\ \partial_t u_2 - d_2 \Delta u_2 = -k^+ u_1 u_2 + k^- u_3 u_4 \\ \partial_t u_3 - d_3 \Delta u_3 = k^+ u_1 u_2 - k^- u_3 u_4 \\ \partial_t u_4 - d_4 \Delta u_4 = k^+ u_1 u_2 - k^- u_3 u_4 \end{cases}$$

- Global existence of a weak solution
- ► The *L^p*-approach does not work
- ▶ This solution is regular (=classical) in dimension N = 1, 2
- ▶ For $N \ge 3$, the set of points around which the solution is unbounded is "small" in the sense that its Hausdorff dimension is at most $(N^2 4)/N$ (Th. Goudon, A. Vasseur)
- ▶ Open problem: does the solution blow up in $L^{\infty}(\Omega)$ in finite time or not??

$$\partial_t \left(\sum_i u_i \right) - \Delta \left(\sum_i d_i u_i \right) \leq 0.$$

$$\partial_t \left(\sum_i u_i \right) - \Delta \left(\sum_i d_i u_i \right) \leq 0.$$

$$\partial_t W - \Delta (a W) \le 0, \quad W = \sum_i u_i \quad a = \frac{\sum_i d_i u_i}{\sum_i u_i}$$

$$\partial_t \left(\sum_i u_i \right) - \Delta \left(\sum_i d_i u_i \right) \leq 0.$$

$$\partial_t W - \Delta(aW) \le 0, \quad W = \sum_i u_i \quad a = \frac{\sum_i d_i u_i}{\sum_i u_i}$$

$$0 \leq \min_{i} d_{i} \leq a = \frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}} \leq \max_{i} d_{i} < +\infty$$

$$\partial_t \left(\sum_i u_i \right) - \Delta \left(\sum_i d_i u_i \right) \leq 0.$$

$$\partial_t W - \Delta (a W) \le 0, \quad W = \sum_i u_i \quad a = \frac{\sum_i d_i u_i}{\sum_i u_i}$$

$$0 \leq \min_{i} d_{i} \leq a = \frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}} \leq \max_{i} d_{i} < +\infty$$

► The operator $W \to \partial_t W - \Delta(aW)$ is not of divergence form and a is not continuous, but bounded from above and from below so that the operator is parabolic and, at least:

$$||W||_{L^2(Q_T)} \leq C||W_0||_{L^2(\Omega)}.$$

$$\partial_t \left(\sum_i u_i \right) - \Delta \left(\sum_i d_i u_i \right) \leq 0.$$

$$\partial_t W - \Delta (a W) \le 0, \quad W = \sum_i u_i \quad a = \frac{\sum_i d_i u_i}{\sum_i u_i}$$

$$0 \leq \min_{i} d_{i} \leq a = \frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}} \leq \max_{i} d_{i} < +\infty$$

► The operator $W \to \partial_t W - \Delta(aW)$ is not of divergence form and a is not continuous, but bounded from above and from below so that the operator is parabolic and, at least:

$$||W||_{L^2(Q_T)} \leq C||W_0||_{L^2(\Omega)}.$$

▶ We may even show that the mapping $W_0 \in L^2(\Omega) \to W \in L^2(Q_T)$ is compact where $\partial_t W - \Delta(aW) = 0$, $W(0) = W_0$.

$$U_1 + U_2 \stackrel{1}{\rightleftharpoons} C \stackrel{k_2}{\rightleftharpoons} U_3 + U_4$$

$$U_1 + U_2 \stackrel{1}{\underset{k_1}{\rightleftharpoons}} C \stackrel{k_2}{\underset{1}{\rightleftharpoons}} U_3 + U_4$$

▶ The intermediate C is highly reactive, so that we may assume that $k_1, k_2 \rightarrow +\infty$.

What is the limit kinetics when space diffusion occurs?

$$U_1 + U_2 \stackrel{1}{\rightleftharpoons} C \stackrel{k_2}{\rightleftharpoons} U_3 + U_4$$

► The intermediate C is highly reactive, so that we may assume that $k_1, k_2 \rightarrow +\infty$. What is the limit kinetics when space diffusion occurs?

▶ Mass Action law + Fick's diffusion law lead to the system

$$\left\{ \begin{array}{l} \partial_t u_1 - d_1 \Delta u_1 = -u_1 u_2 + k_1 c \\ \partial_t u_2 - d_2 \Delta u_2 = -u_1 u_2 + k_1 c \\ \partial_t c - d_c \Delta c = u_1 u_2 - (k_1 + k_2)c + u_3 u_4 \\ \partial_t u_3 - d_3 \Delta u_3 = -u_3 u_4 + k_2 c \\ \partial_t u_4 - d_4 \Delta u_4 = -u_3 u_4 + k_2 c, \end{array} \right\} \text{ on } Q_T$$

$$U_1 + U_2 \stackrel{1}{\rightleftharpoons} C \stackrel{k_2}{\rightleftharpoons} U_3 + U_4$$

► The intermediate C is highly reactive, so that we may assume that $k_1, k_2 \rightarrow +\infty$. What is the limit kinetics when space diffusion occurs?

▶ Mass Action law + Fick's diffusion law lead to the system

$$\left\{ \begin{array}{l} \partial_t u_1 - d_1 \Delta u_1 = -u_1 u_2 + k_1 c \\ \partial_t u_2 - d_2 \Delta u_2 = -u_1 u_2 + k_1 c \\ \partial_t c - d_c \Delta c = u_1 u_2 - (k_1 + k_2)c + u_3 u_4 \\ \partial_t u_3 - d_3 \Delta u_3 = -u_3 u_4 + k_2 c \\ \partial_t u_4 - d_4 \Delta u_4 = -u_3 u_4 + k_2 c, \end{array} \right\} \text{ on } Q_T$$

► The L^p-approach applies to this system so that global existence of classical solutions holds!

The limit system

Theorem. The solution $(u_1^k, u_2^k, c^k, u_3^k, u_4^k), k = (k_1, k_2)$ of the previous system converges as $k_1 + k_2 \to +\infty$ in $L^2(Q_T)^5$ for all T > 0 to $(u_1, u_2, 0, u_3, u_4)$ solution of

$$\begin{cases} \partial_t u_1 - d_1 \Delta u_1 = -\alpha u_1 u_2 + \beta u_3 u_4 \\ \partial_t u_2 - d_2 \Delta u_2 = -\alpha u_1 u_2 + \beta u_3 u_4 \\ \partial_t u_3 - d_3 \Delta u_3 = \alpha u_1 u_2 - \beta u_3 u_4 \\ \partial_t u_4 - d_4 \Delta u_4 = \alpha u_1 u_2 - \beta u_3 u_4, \end{cases}$$

where $\alpha = \lim_{k_1 + k_2 \to \infty} \frac{k_2}{k_1 + k_2}$, $\beta = 1 - \alpha$. The chemical reaction

$$U_1 + U_2 \stackrel{1}{\underset{k_1}{\rightleftharpoons}} C \stackrel{k_2}{\underset{1}{\rightleftharpoons}} U_3 + U_4$$

"tends" to the limit chemical reaction:

$$U_1 + U_2$$
 $1 = 0$ $U_3 + U_4$

Other boundary conditions

▶ All the previous results extends to Dirichlet or Robin type boundary conditions, assuming they are all of the same type in all equations

Other boundary conditions

- All the previous results extends to Dirichlet or Robin type boundary conditions, assuming they are all of the same type in all equations
- ▶ Blow up in finite time may occur in the system

$$\left\{ \begin{array}{l} \partial_t u - d_1 \Delta u = -u v^\beta \text{ in } Q_T \\ \partial_t v - d_2 \Delta v = u v^\beta \text{ in } Q_T \\ u = 1, \ \partial_\nu v = 0 \text{ on } \Sigma_T. \end{array} \right.$$

Other boundary conditions

- All the previous results extends to Dirichlet or Robin type boundary conditions, assuming they are all of the same type in all equations
- Blow up in finite time may occur in the system

$$\left\{ \begin{array}{l} \partial_t u - d_1 \Delta u = -u v^\beta \text{ in } Q_T \\ \partial_t v - d_2 \Delta v = u v^\beta \text{ in } Q_T \\ u = 1, \ \partial_\nu v = 0 \text{ on } \Sigma_T. \end{array} \right.$$

▶ Work in progress with Jerry, Gisele + M. Meyries (Karlsruhe) on nonlinear boundary conditions, including Wentzell type, like

$$\begin{cases} \partial_t u_i - d_i \Delta u_i = f_i(u) \text{ in } Q_T \\ \sigma \partial_t u_i + d_i \partial_\nu u_i - \delta_i \Delta_{\partial \Omega} u_i = g_i(u) \text{ on } \Sigma_T \end{cases}$$

with σ , $\delta_i > 0$.

More open problems

- atmospheric vertical diffusion/transport of pollutants (partial results with assumptions on the transport).
- Uniqueness of weak solutions...or more precisely, what is the way to select the "best" solution, since for instance there is even not uniqueness for $\partial_t u \Delta u = u^3$.
- how to define renormalized solutions for systems???
- what about initial data in $L^1(\Omega)$?
- what about nonlinear diffusions??

$$(E) \left\{ \begin{array}{ll} \partial_t u - \Delta u^m = f(u, v) & \text{on } Q_T \\ \partial_t v - \Delta v^p = g(u, v) & \text{on } Q_T, \end{array} \right.$$

- Same questions with general Lyapounov type of structure

$$h'_1(u)f(u,v) + h'_2(v)g(u,v) \le 0, h_1, h_2 \text{ convex.}$$

- same questions for elliptic systems.

