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We consider the following equation

dXt + 6§0 (Xt) (dt) =) (Xt) dt + o (Xt) th + / Y (Xt_, Z) dNt (dZ) .
RI\{0}

where
e Oy is the subdifferential of proper, l.s.c., convex function ;
e IV is a Brownian motion;

~

e NN is the compensated measure of a homogeneous Poisson random measure.



Lévy processes

Let (£, F, P) be a complete probability space. A d-dimensional stochastic process (L;),~
is called a Lévy process if: B

1.
2.

it is cadlag, 7.e. t — L; is right continuous and has finite left limits a.s.;
it is stochastically continuous, i.e. t — L; is continuous in probability;

the random variables L, , Ly, — Ly, ..., Ly — Ly are independent, for every n € N*

and0§t0<t1<"'<tn;

n—1

Li+s — Ly has the same law as L, for every ¢, s > 0; in particular, Ly = 0 a.s.



The law of a Lévy process (Lt),~ is determined by the characteristic exponent of L, i.e.
the unique continuous function ¥ : R — C such that ¥ (0) = 0 and

Eexp (i (X, L)) = exp (—t¥ (N\)), t >0, A € RY.

By the Lévy-Khintchine formula for infinitely divisible distributions, ¥ has the following
form:

(1) U (A) =i{a,\) +3Q (N +/ (1 — ' i () 1{|x|<1}) v (dx),

R4\{0}

where a € R?, Q) is a positive semi-definite quadratic form on R¢, and v is a measure on

R\ {0} such that
/ (1 A |a:|2) v (dz) < +o0.

The measure v is called the Lévy measure associated to L.
For every function ¥ given by the formula (1), there exists a Lévy process with character-
istic exponent V.



Examples:

o if U(N\):=3 (A, then L is a Brownian motion:
e if U()\):=c(1—e"), then L is a Poisson process of intensity ¢ > 0;
e A generalization of a Poisson process is the following:

Let &4,...,&,,, ... beindependent random variables with the same distribution v on R%\ {0},
and

S(n) =&+ +,

the corresponding random walk. If (IV;),., is a Poisson process of intensity ¢ > 0, then the
process

Ny
SoNy = Z gz
i=1

is a Lévy process, called a compound Poisson process with Lévy measure cv.
The characteristic exponent of S o IV; is

Y (N) = C/Rd (1 — ei<’\’x>) v (dx);

so, every Lévy process with a finite Lévy measure can be represented as the sum of a Brownian
motion and an independent compound Poisson process.



Definition. Let v be a o-finite measure on R?. A random measure N (w, dt,dz) is a
homogeneous Poisson random measure with intensity v, if:

i) for each w € Q, N (w, .,.) is a measure on R, x RY;

ii) for each set B € B(Ry x R?) with (dt ® v) (B) < +oo, the random variable N (-, B) is
Poisson with parameter (dt ® v) (B);

iii) if By,..., B, are disjoint Borel sets of Ry x R?, then N (-, By),...,N (-, B,) are inde-
pendent.

The compensated random measure of N

N (dt,dz) := N (dt,dz) — dt @ v (dz)

has the property that t — N ([0,t], A) is a martingale for every A € B(R%) with v (A) < +o0.



If L is a Lévy process on R? with Lévy measure v, then its jump counting measure, defined
by
N (t.A):= > 14(AL,), t>0, A€ B(R?) with 0 ¢ 4,

0<s<t

is a homogeneous Poisson random measure with intensity v, and the following holds:

(2) Lt:bt+aWt+/

2N (dz) + / 2Ny (dz)
{Iz]<1}

{lz[=1}

where b € R, o € R%*? and W is a Brownian motion independent of V.



Jump-diffusions

Jump-diffusions are generalizations of SDEs driven by Lévy processes. Let (2, F, P) be a
complete probability space endowed with a right-continuous, complete filtration IF = {F;},,
W a d’-dimensional F-Brownian motion, and N a Poisson random measure with intensity
v, F-adapted and independent of W. Let us consider b : R — R™, o : R" — R"Xd’,
~: R™ X (]Rd\ {0}) — R™ satisfying the following assumptions:

(H1) b and o are Lipschitz functions;

(H2) + is a measurable function with

/\7 (0,2)|" v (dz) < 400 and /\7 T, 2) fy(x’,z)\QV(dz) SL\x—x’\Q.

Theorem (Gihman, Skorohod, 1972). Under the above assumptions, equation
dXt = b(Xt> dt—|—O'<Xt) th —|—/ ’}/(Xt_,Z> dNt (dZ)
RI\{0}

has a unique solution starting at £ € L? (9, Fy, P).



Reflected jump-diffusions

Let O be an open, convex and bounded subset of R™. Under assumptions (H1),

(H2)’ for every p > 2, we have
/\fy(),z v(dz) < C, and/\fyxz — v (@, 2)[ v (dz) < Cplz—2|".
an

(H3) 2+~ (z,2) € O, Vo € O,

Menaldi, Robin (1985) proved that equation
dXt = b(Xt) dt+O<Xt) th —|—/ ’)/(Xt_,Z) dNt (dZ) —th,
R4\{0}

where K is the reflecting process of X on the boundary of O, admits a unique solution with
given initial starting point x € O.



Variational inequalities

Let ¢ : R® — R be a proper, Ls.c., convex function with int (Dom ) # 0.
The subdifferential of ¢ is defined by

Op (z) :={z" eR" | (", y —z) + p(z) < (y), Yy e R"}.

. . 0, z € O; . C e
In the case p =I5 : x — { too, 120, the subdifferential is given by
{0}, z € O;
0I5 (x) =< Ng(r), z€bd0;

0, & O.



We consider the following equation

(3) dXt —|—8§0 (Xt) dt > b(Xt) dt—|—O'<Xt) th —|—/ ’)/(Xt_,Z) dNt (dZ) .
RI\{0}

We denote by D ([0,T];R"™) the class of R™-valued, cadlag functions on [0, 7], endowed
with the uniform convergence topology. We say that (X, K) € L2, (; D ([0,T];R"™)) x
L2, (Q;C ([0, T]);R™)) is a solution of (3) if:

e o(X)e L' (Qx[0,T]);

e K € L'(Q;BVy([0,T];R"™));

o Xi+ Ky = [yb(Xo)ds+ [y o (Xo)dWs + fy fea oy ¥ (X, 2) AN, (d2);
o [T{y(r)— X dK,)+ [ ¢ drstTgo(y(r»dr, Wy € D ([0,T];R").

Asiminoaiei, Ragcanu (1997): case v = 0.



Theorem (Uniqueness). Under assumptions (H1), (H2), equation (3) has at most one solution
starting from x € Dom .

For the proof, we consider two solutions (X, K) and (X, K) and apply Ito’s formula to
2
X - X,

AN, (dz)

+2// Xy — Kooy (Xso, )—W(Xs—,Z)>+(W(Xs—,Z)—v(Xs—,Z)
Rd\{O}

N //Rd\{()} Koo = Kooy (Xams2) = 1Kz, 2) ) v (d2) ds.

O'(X) o(X,)

0



For the existence result, we impose the condition (¢ > 1)
(H3)’ ¢ (z+7(z,2) <) +Cy (L+ |y (z,2)|"), V(z,2) € R* x (RN\ {0}).

Theorem (Existence). Under assumptions (H1), (H2)’, (H3)’, equation (3) has a unique
solution starting from zg € Dom .

The proof of this result uses the penalization method. We consider the Yosida regulariza-

tion of ¢
0. (v) rzinf{i!fﬂ—yﬁﬂow)\yGR”}, >0,

which is a C, convex function on R"™, with Vo, a Lipschitz function with Lipschitz constant
equal to 1/e. Moreover, by (H3)’,

b (z+7(2,2) <@ (2) + Oy L+ |y (2, 2)]%);

also, for simplicity, we can assume that ¢ (z) > ¢ (0) =0, Vz € R™ and 0 € int (Dom ¢) .
We consider the jump-diffusion X¢ given by

dXE + Vi, (X2)dt = b(X)dt + o (XE)dW; + / v (X2, 2) dN, (dz).
R4\ {0}

We will show that X¢ and K} := f; V. (XZ)ds converge to X and K.



I. Boundedness of (X¢) and (K¢)

Ito’s formula for | X¢|°

t

X2+ 2 / (X2, V. (XE))ds = |aol” + / 2(X2,5(X5)) + o (X5)P)ds

t
// 2) 2w (dz)ds+2/ (XE o (X5)dWV.)
Rd\{O} 0
€ e |2 \
// |X_+’y( S2) P — | X ]dNS(dz).
R4\ {0}

We obtain, since ¢, (z) < (V. (z),x), Vo € R™,

- 2
E sup |X:|*VE / . (X5)ds SC’(1+\:130]4> :
t€[0,T] 0

Also, 3rg > 0, IMy > 0: 170 |V, (z)| < (z,Ve, () + My, Vz € R"; it follows that

2
T
€ € 4
E|K° | 5y (o.ym) =E< / Voo <Xs>\ds> < C (1+ ')



I1. Estimate for E [sup,c 1 |V, (Xf)m

It6’s formula for @2 (XF):

Ao+ | o (X2) Vi, (X2) s < . (a0)? +2 / o (X2) (V. (X5) b (X5))ds
[ V0 (X0 Plo (00 P 2 [ (X2 o (7)o

/ 0. (X5) (V. (X2) 0 (X2)dW,)

/ /Rd\{o} o2 (X537 (X2, 2)) dN, (dz)

T / / DL, (X5 (X2, 2)) v (d2) ds,
0 JRA{0} ~°

where



We hawve, since [V, (z)]° < 20, (z), Vo € R™,

D02 (X557 (Xi,2)) | < sup 2|V, (X5 4 py (X5, 2)) e (X5 + py (X5, 2)) |7 (X5, 2))|

pel0,1]
2v/2
< —75 Sup =2 (X;f_—i—/w(Xg : ))|3/2”Y( s— ,z)‘
&7 pelo1]
2\/7 - 3/2 €
< 51/2![905()( D+C A+ [y (X)) Iy (X, 2) ]

1
D2 (X557 (X5,2) | < ( Sl[lopl] [{W)g (X2 + py (X2, 2))] ] + -, (X7) ) v (X2, 2)|°
relv,

2
< Zsup [ (X5 4y (X5,2)] |y (X2, %))
€ pelo,1]

< e+ 0 (I (X)) b (X2, 2)

This will give the following estimate:




III. Cauchy sequences argument
[t6’s formula for ’XE — X5’2:

t
X5 - X7 +2/ (XS — X3, Vg, (XE) — Vs (XP))ds
0

:/t[2<X5 X5 b<X€)_b(Xg)>‘|"U(Xs)—J(Xg)ﬁ]ds

//Rd\{o} — (X2, 2) Pv (dz) ds

/ (X2 X0 (0 (X5) — o (X2))dW,)

/ / XS =X+ (X, 2) =y (X, 2) P — | X5 — X§_|2] dN, (dz).
Rd\{o}
We use the fact that

(Ve (2) = Vs (y), 2 —y) 2 = (e +0) (Vo (2), Vs (y))

to obtain that Esup,c(y 1 ‘Xf — XfrL — 0 as 0,e — 0 and Esup,¢jo.1 |Kt8 — Kfﬁ — 0.



IV. Passing to the limit
There exist X € L2, (; D ([0,T];R")) and K € L, (Q;C ([0,T];R")) such that

E sup [IX7 = X'+ |Kf — K[! -0
te[0,T]

Since (K¢) is also bounded in L? (Q; BV, ([0, T];R™)), it converges weakly to K. It is now
a standard argument to show that (X, K) is a solution of equation (3).
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Thank you for your attention!



