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SUMMARY
Whereas the PEs with viscosity resemble the incompressible
Navier Stokes equations, up to a certain point, the nonviscous
PEs, (also called hydrostatic Euler equations), do not resemble
the incompressible Euler equations, as we will see below.

There are (at least) two major issues concerning these
equations:

◮ A mathematical issue of well-posedness, and
◮ A computational/physical issue of appropriate boundary

conditions for Limited Areas Models.

We will present some theoretical results concerning the
linearized primitive equations and some computational results
concerning the full nonlinear equations.
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1. THE PRIMITIVE EQUATIONS OF THE OCEANS
AND THE ATMOSPHERE

• The Primitive Equations (PEs) of the ocean and the
atmosphere play a central role in a hierarchy of models aimed
at describing the motion of the ocean and the atmosphere
(General Circulation Models - GCM, Ocean General Circulation
Models - OGCM). The PEs are directly derived from the
fundamental laws of physics:

◮ Equations of conservation of momentum, mass, and
energy.

◮ Equations for the salinity, equation of state.
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• The unknowns:
The velocity function ~V3 = v + wez , the temperature T , the
pressure p and the density ρ. Possibly some other quantities
such as the salinity (ocean) or the concentration of water
(atmosphere)
• The PEs of the Ocean are obtained from the fundamental
laws using the following assumptions:

◮ Boussinesq assumption,
◮ Hydrostatic assumption in the vertical direction.
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In Cartesian coordinates (in the so-called β−plane
approximation) the Primitive Equation (PEs) without viscosity
are as follows:





∂v
∂t

+ (v · ∇)v + w
∂v
∂z

+ fk × v + ∇φ = 0,

∂φ

∂z
= −ρg,

∇ · v +
∂w
∂z

= 0,
∂T
∂t

+ (v · ∇)T + w
∂T
∂z

= 0, ρ = ρ(T ).

(1)

Whereas the theory of the PEs with viscosity resembles that
of the incompressible Navier-Stokes, up to a certain point (that
is before the recent works of Kobelkov, Cao and Titi, Kukavica
and Ziane), the theory of PEs without viscosity does not
resemble that of the Euler equations of incompressible fluids.
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A fundamental mathematical difficulty concerning the PEs
without viscosity is that there is no set of local boundary
conditions for which these equations are well posed (Oliger and
Sundstrom, 1978).

We now present this difficulty following Temam and Tribbia, J. of
Atm. Sciences, 2003 [TeTr03].
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2. ILL-POSEDNESS OF THE PRIMITIVE EQUATIONS
The PEs are linearized around a uniform stratified flow
ū = Ū0, v̄ = 0, T̄ = T̄ (z).
We set u′ = u − ū, etc., dropping the primes we obtain the
following equations for the disturbances:





ut + Ū0ux − fv + φx = 0,

vt + Ū0vx + fu + φy = 0,

Tt + Ū0Tx + N2 T0

g
w = 0,

ux + vy + wz = 0,

φz =
gT
T0

(= ψ),

(2)

where
ρ̄ = ρ0(1 − α(T̄ − T0)), and

N2 = − g
ρ0

d ρ̄
dz

= the Brunt-Väisälä (buoyancy) frequency,

assumed to be constant
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Modal Analysis

The domain is M = M′ × (−H,0), with M′ = (0,L1) × (0,L2);
and w = 0 at z = 0,−H.

We first proceed by separation of variables and look for a
solution of the form

u(x , y , z, t) = U(z)u(x , y , t), v(x , y , z, t) = V(z)v(x , y , t), etc.

Inserting these expressions in (2) we find by analysis that
U ,V,Z,Φ are proportional and we take them equal, and
similarly Ψ and W are (proportional) equal.

Furthermore U and W = U ′ are solutions of a Sturm Liouville
problem giving the solutions, U = Un,W = Wn with
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Un =

√
2
H

cos(λnz), Wn =

√
2
H

sin(λnz),

λn =

√
1

gHn
=

nπ
H
, n ≥ 1, and

U0 =

√
1
H
,W0 = 0, λ0 = 0.
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We then look for a solution of (2) using the corresponding
modal expansions, that is

u(x , y , z, t) = ΣnUn(z)un(x , y , t),

v(x , y , z, t) = ΣnUn(z)vn(x , y , t),

T = ΣnUn(z)Tn(x , y , t)

φ(x , y , z, t) = ΣnUn(z)φn(x , y , t),

ψ = ΣnWn(z)ψn(x , y , t),

w(x , y , z, t) = ΣnWn(z)wn(x , y , t).

(3)

We arrive, for each mode n, at the following system (ψ = φz)





unt + Ū0unx − fvn + φnx = 0,

vnt + Ū0vnx + fun + φny = 0,

ψnt + Ū0ψnx + N2wn = 0,

unx + vny + λnwn = 0

ψn = −λnφn.

(4)
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The characteristic values of (4) are Ū0, Ū0 + λ−1
n and Ū0 − λ−1

n .
Counting characteristics, we see that if λ−1

n < Ū0 three
boundary conditions are needed at x = 0 (supercritical case),
but if λ−1

n > Ū0, two boundary conditions are needed at x = 0
and one at x = L (subcritical case). Hence the global problem
is ill-posed for any local set of boundary conditions.

The most challenging case is the subcritical case λ−1
n > Ū0,

which corresponds to just a few modes,which are however the
most energetic ones.

For realistic values of the data (Ū0 ≃ 25m/s,L ≃ a few
thousands km,H ≃ 10km) there are about 5 subcritical modes,
which are physically the most important and mathematically the
most challenging.
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Before we proceed we rewrite equation (4) in the form (n ≥ 1) :





∂un

∂t
+ Ū0

∂un

∂x
− fvn − 1

λn

∂ψn

∂x
= 0;

∂vn

∂t
+ Ū0

∂vn

∂x
+ fun − 1

λn

∂ψn

∂y
= 0,

∂ψn

∂t
+ Ū0

∂ψn

∂x
− N2

λn

(
∂un

∂x
+
∂vn

∂y

)
= 0.

(5)
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For n = 0,w0 = ψ0 = 0 and there remains




∂u0

∂t
+ Ū0

∂u0

∂x
− fv0 +

∂φ0

∂x
= 0,

∂v0

∂t
+ Ū0

∂v0

∂x
+ fu0 +

∂φ0

∂y
= 0,

∂u0

∂x
+
∂v0

∂y
= 0.

(6)

Note that, since the considered problem is linear, there is no
coupling between the different modes; see the remark below
about the nonlinear case which introduces these couplings.
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Our aim is now to propose boundary conditions for (4)-(5)
which make these equations well–posed and consequently
Equations (2) also. The boundary conditions are different
depending on whether

1 ≤ n ≤ nc, or n > nc ,

where nc, λnc are such that

ncπ

L3
= λnc <

N
Ū0

< λnc+1 =
(nc + 1)π

L3
. (7)

We will not study the non generic case where L3N/πŪ0 is an
integer.
The modes 0 ≤ n ≤ nc are called subcritical, and the modes
n > nc are called supercritical.
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3. STUDY OF THE EQUATIONS (5) - (6)

a) The stationary equations associated with (5)-(6).

The (physical) spatial domain under consideration will be
M = M′ × (−H,0), where M′ is the interface
atmosphere/ocean, M′ = (0,L1) × (0,L2).

We introduce, componentwise, the differential operators
An = (An1,An2,An3) operating on Un = (un, vn, ψn),

AnUn =





Ū0unx − 1
λn
ψnx ,

Ū0vnx − 1
λn
ψny ,

Ū0ψnx − N2

λn
(unx + vny ),

(8)

with Ū0,N and λn > 0 as above.
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Our first remark concerns the nature of the stationary (time
independent) equations in M′ :

AnUn = Fn = (Fun,Fvn,Fψn), n ≥ 1. (9)

Dropping the indices n we look for the characteristics of the
differential system AU = F ; that is in matrix form:

EUx + GUy = F . (10)

After an easy calculation we find the real characteristic
x = const for all modes and the two other characteristics are
imaginary for the subcritical modes and real for the supercritical
ones.

We infer from these remarks that the stationary system
AnUn = Fn is fully elliptic for the zero mode, partly hyperbolic
and partly elliptic for the other subcritical modes (one real
characteristic) and fully hyperbolic in the supercritical case
(three real characteristics). This remark will be underlying the
studies in Sections 4 and 5, although we do not use it directly.
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b) A trace theorem

We consider the same differential operator A = (A1,A2,A3),
as in (8) operating on U = (u, v , ψ), but the indices n are
dropped for the sake of simplicity:

AU = (Ū0ux − 1
λ
ψx , Ū0vx − 1

λ
ψy , Ū0ψx − N2

λ
(ux + vy ))T , (11)

with Ū0,N, λ = λn > 0 as above, and we consider the space.

X =
{

U ∈ L2(M′)3,AU ∈ L2(M′)3
}
, (12)

endowed with its natural Hilbert norm

(|U|2L2(M′)3 + |AU|2L2(M′)3)
1
2 .
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We have
Theorem 3.1. If U = (u, v , ψ) ∈ X , the traces of v and ψ are
defined on all of ∂M′, the trace of u is defined at x = 0 and L1,
and they belong to the respective spaces H−1

x (0,L1) and
H−1

y (0,L2). Furthermore the trace operators are linear
continuous in the corresponding spaces, e.g. U ∈ X → u|x=0 is
continuous from X into H−1

y (0,L2).

The proof is based on a repeated use of the idea of Lax and
Phillips (1960).
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4. WELL POSEDNESS OF THE LINEARIZED EQUATION
Handled mode by mode and then globally for all modes.
Subcritical Modes (One Subcritical Mode, 1 ≤ n ≤ nc)
We temporarily drop the indices n and consider (5) when the
mode is subcritical, that is λ = λn < N/Ū0.
We choose the following boundary conditions:

{
ψ = 0 at x = L1, and y = 0,L2,

v = 0 and u = ψ/λŪ0 at x = 0,
(13)

and we introduce the space

D(A) =
{

U ∈ L2(M′)3,AU ∈ L2(M′)3,U satisfies (13)
}
, (14)

and the operator1

AU = AU, ∀U ∈ D(A).

1When needed we will write also An, An, D(An) to emphasize the
dependence on n (λ = λn).
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a) Regularity Result for D(A).
We now have a regularity result for U in D(A).
Theorem 4.1. If U = (u, v , ψ) ∈ D(A), then v and ψ belong to
H1(M′) and ux belongs to L2(M′)
b) Positivity of A and A∗

We endow the space H = L2(M′)3 with the Hilbert scalar
product and norm

(U, Ũ)H =

∫

Γi

(
uũ + vṽ +

1
N2ψψ̃

)
dM′,

|U|H = {(U,U)H}1/2 .

To apply the Hille-Phillips-Yoshida theorem, we need to prove
that A and its adjoint A∗ are positive in the sense

{
(AU,U)H ≥ 0, ∀U ∈ D(A),

(A∗U,U)H ≥ 0, ∀U ∈ D(A∗).
(15)

This result is proven by approximation using the regularity
theorem.
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(AU,U)H =

∫

Γi

[
Ū0ux − 1

λ
ψx

)
u +

((
Ū0vx − 1

λ
ψy

)
v

+

(
Ū0

N2ψx − 1
λ

(ux + vy )

)
ψ ] dM′

=
Ū0

2

∫ L2

0
(u2 + v2)(L1, y)dy

−
∫ L2

0

[
Ū0

2
(u2 +

1
N2ψ

2)(0, y) − 1
λ

(uψ)(0, y)

]
dy

≥ Ū0

2

∫ L2

0

((
λŪ0

)−2 − N−2
)
ψ2(0, y)dy ≥ 0.

(16)
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Supercritical Modes
a) The operator A and its adjoint A∗

Here, for one supercritical mode we choose the following
boundary conditions:

{
u, v , and ψ = 0 at x = 0,

and ψ = 0 at y = 0 and L2.
(17)

In this case the operator A = An, is defined by AU = AU as in
(8), and

D(A) =
{

U ∈ H = L2(M′)2,AU ∈ L2(M′),U satisfies (17)
}
.

(18)
We can then prove (5).
Theorem 5.1. In the supercritical case, for every U ∈ D(An),An

defined in (18), we have (AnU,U)L2(M′)3 ≥ 0. Similarly, we
have (A∗

nU,U)L2(M′)3 ≥ 0, for every U in D(A∗
n),A

∗
n and D(A∗

n)
appropriately defined.
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Subsequent steps
The zeroth (barotropic) mode necessitates a whole analysis by
itself.
Then we consider the whole system, and obtain again
existence and uniqueness of solutions using the semigroup
theory.
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5. NUMERICAL IMPLEMENTATION FOR THE 3D-PEs




ut + Ū0ux − fv + φx = 0

vt + Ū0vx + f (Ū0 + u) + φy = 0

ψt + Ū0ψx + N2w = 0

ϕz = ψ

ux + vy + wz = 0

(19)

Normal modes expansion (in vertical direction)




(u, v , φ) =
∑

n≥0

Un(z)(un, vn, φn)(x , y , t)

(w , ψ) =
∑

n≥1

Wn(z)(wn, ψn)(x , y , t)
(20)
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The modes n ≥ 1





unt +Ū0unx − 1
Nλn

ψnx − fvn = 0,

vnt +Ū0vnx + fun − 1
Nλn

ψny = 0,

ψnt +Ū0ψnx − N
λn

unx − N
λn

vny = 0,

(21)

Un = (un, vn, ψn)T

∂Un

∂t
+ Ln

∂Un

∂x
+ Mn

∂Un

∂y
+ NnUn = 0. (22)

(51) is a symmetric hyperbolic system in two space variables
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Ln =




Ū0 0 − 1
λn

0 Ū0 0
− 1
λn

0 Ū0


 , Mn =




0 0 0
0 0 − 1

λn

0 − 1
λn

0




Nn =




0 −f 0
f 0 0
0 0 0




Ln has eigenvalues Ū0 +
1
λn
, Ū0 and Ū0 −

1
λn

Mn has eigenvalues 0,
1
λn
,− 1

λn
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Introduce Σn = (ξn, vn, ηn)T





ξn = −
√

2
2 un +

√
2

2 ψn

vn = vn

ηn =
√

2
2 un +

√
2

2 ψn





un = −
√

2
2 ξn +

√
2

2 ηn

vn = vn

ψn =
√

2
2 ξn +

√
2

2 ηn

{Un = PΣn

∂

∂t




ξn

vn

ηn


+




Ū0 + 1
λn

Ū0

Ū0 − 1
λn


 ∂

∂x




ξn

vn

ψn




+ other terms = 0.
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Boundary conditions
For 1 ≤ n ≤ nc (subcritical modes, Ū0 − 1

λn
< 0)





ξn(0, y , t) = 0

vn(0, y , t) = 0

ηn(L1, y , t) = 0.
(23)

For n > nc (supercritical modes, Ū0 − 1
λn
> 0)





ξn(0, y , t) = 0

vn(0, y , t) = 0

ηn(0, y , t) = 0
(24)
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Introduce also Ωn = (un, αn, βn)T





un = un

αn =
√

2
2 vn −

√
2

2 ψn

βn =
√

2
2 vn +

√
2

2 ψn





un = un

vn =
√

2
2 (αn + βn)

ψn = −
√

2
2 αn +

√
2

2 βn

(25)

{Un = QΩn





∂

∂t




un

αn

βn


+ Q−1

LnQ
∂

∂x




un

αn

βn


+




0
1
λn

− 1
λn




∂

∂y




un

αn

βn


+ Q−1

NnQ




un

αn

βn


 = 0.
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Boundary Conditions
For all n ≥ 1

{
αn(x ,0, t) = 0

βn(x ,L2, t) = 0
(26)

x

y

L1

L2

0

ξn = 0, n ≥ 1

vn = 0, n ≥ 1

ηn = 0, n > nc

ηn = 0, 1 ≤ n ≤ nc

βn = 0, n ≥ 1

αn = 0, n ≥ 1
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The zeroth mode





u0t + Ū0u0x + φ0x − fv0 = 0,

v0t + Ū0v0x + φ0y + fu0 + F0 = 0,F0 =
√

L3f Ū0,

u0x + v0y = 0.

(27)

Euler type equations

x

y

L1

L2

v0 = 0

u0 = 0

v0 = 0

v0 = 0
u0 = 0

0
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Numerical scheme for the zero mode
Let ∆t = T/K , vk ≈ v(x , y , k∆t), and vk+ 1

2 represents an
intermediate value between vk and vk+1, etc.
First Step:





vk+ 1
2 − vk

∆t
+ Ū0v

k+ 1
2

x + f k × vk + ∇φk
0 + Gk

0 = 0,

vk+ 1
2 |x=0 = 0,

(28)

Here

Gk
0 =

( ∫ 0
−L3

B(uk , vk ,wk ; uk )U0(z) dz
∫ 0
−L3

B(uk , vk ,wk ; vk )U0(z) dz + f Ū0
√

H

)
, (29)

Second Step: (projection method)





vk+1 − vk+ 1
2

∆t
+ ∇(φk+1

0 − φk
0) = 0,

∇ · vk+1 = 0,

vk+1 · n = 0 on ∂M′.

(30)
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Neumann Problem

From the Second Step, we can find φk+1
0 by solving the

Neumann problem




△φk+1
0 = △φk

0 +
∇ · vk+ 1

2

∆t
,

∇φk+1
0 · n =

vk+ 1
2

∆t
, ∂M′.

(31)

and imposing the compatibility condition

∫

M′

φk+1
0 dx dy = 0.
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Stability Issue

Given the mesh size h = (∆x ,∆y), we have the following
stability result:

Lemma 1
If ∆t and S(h) satisfy the conditions

∆t S4(h) ≤ 1
c2

1K4
, ∆t ≤ 1

8
, where S2(h) =

1
(∆x)2 +

1
(∆y)2 ,

(32)
then, for 0 ≤ n ≤ NT , we have

|vn
h|2h ≤ K4, (∆t)3

NT∑

k=1

|∇hφ
k
h|2h ≤ K4. (33)
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The subcritical and supercritical modes

We rewrite (6) in the matrix form as follows:

∂Un

∂t
+ En

∂Un

∂x
+ Fn

∂Un

∂y
+ Gn = 0. (34)

Here,

Un =




un

vn

ψn


 ,En =




Ū0 0
−1
λn

0 Ū0 0
−N2

λn
0 Ū0



,Fn =




0 0 0

0 0
−1
λn

0
−N2

λn
0




(35)
and

Gn =




−fvn +
∫ 0
−H B(u, v ,w ; u)Un(z)dz

fun +
∫ 0
−H B(u, v ,w ; v)Un(z)dz∫ 0

−H B(u, v ,w ;ψ)Wn(z)dz


 . (36)
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Change of Variables

Change of variables:




ξn

vn

ηn


 =




un − ψn

N
vn

un +
ψn

N


 ,




un

αn

βn


 =




un

vn +
ψn

N
vn − ψn

N


 . (37)

37 / 84



Boundary Conditions for the subcritical modes

Boundary conditions for the subcritical modes:





ξn(0, y , t) = 0,

vn(0, y , t) = 0,

ηn(L1, y , t) = 0.

{
αn(x ,L2, t) = 0,

βn(x ,0, t) = 0.
(38)

FIGURE 1: Boundary conditions for the subcritical modes
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Boundary conditions for the supercritical modes

Boundary conditions for the supercritical modes:




ξn(0, y , t) = 0,

vn(0, y , t) = 0,

ηn(0, y , t) = 0.

{
αn(x ,L2, t) = 0,

βn(x ,0, t) = 0.
(39)

FIGURE 2: Boundary conditions for the supercritical modes

39 / 84



Numerical Schemes for the subcritical modes

Splitting method:
The First Step:

U
k+ 1

2
n − Uk

n

∆t
+ En

∂U
k+ 1

2
n

∂x
+ Gk

n = 0. (40)

The Second Step:

Uk+1
n − U

k+ 1
2

n

∆t
+ Fn

∂Uk+1
n

∂y
= 0. (41)

Remark

◮ This is a partly implicit scheme.
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Numerical scheme for the subcritical modes

The First Step:





ξ
k+ 1

2
n,i ,j − ξk

n,i ,j

∆t
+ (Ū0 +

N
λn

)
ξ

k+ 1
2

n,i ,j − ξ
k+ 1

2
n,i−1,j

∆x
= Sk ,1

n,i ,j , i = 2, · · · , I + 1,

v
k+ 1

2
n,i ,j − vk

n,i ,j

∆t
+ Ū0

v
k+ 1

2
n,i ,j − v

k+ 1
2

n,i−1,j

∆x
= Sk ,2

n,i ,j , i = 2, · · · , I + 1,

η
k+ 1

2
n,i ,j − ηk

n,i ,j

∆t
+ (Ū0 −

N
λn

)
η

k+ 1
2

n,i+1,j − η
k+ 1

2
n,i ,j

∆x
= Sk ,3

n,i ,j , i = 1, · · · , I,

and j = 1, · · · , J + 1 in all cases,
(42)

where

SK ,1
n,i ,j , Sk ,2

n,i ,j and Sk ,2
n,i ,j are nonlinear terms.
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Numerical scheme for the subcritical modes

The boundary conditions for ξ
k+ 1

2
n , v

k+ 1
2

n and η
k+ 1

2
n are

ξ
k+ 1

2
n,0,j = 0, v

k+ 1
2

n,0,j = 0, η
k+ 1

2
n,I,j = 0, for 0 ≤ j ≤ J, (43)

The Second Step




uk+1
n,i ,j − u

k+ 1
2

n,i ,j

∆t
= 0,

αk+1
n,i ,j − α

k+ 1
2

n,i ,j

∆t
− N
λn

αk+1
n,i ,j+1 − αk+1

n,i ,j

∆y
= 0,

βk+1
n,i ,j − β

k+ 1
2

n,i ,j

∆t
+

N
λn

βk+1
n,i ,j − βk+1

n,i ,j−1

∆y
= 0

(44)

The boundary conditions for αk+1
n , βk+1

n are

{
αk+1

n,I,j = 0, for 0 ≤ j ≤ J,

βk+1
n,i ,0 = 0, for 0 ≤ i ≤ I.

(45)
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Numerical schemes for the supercritical modes

Splitting method:
The First Step:





ξ
k+ 1

2
n,i ,j − ξk

n,i ,j

∆t
+ (Ū0 +

N
λn

)
ξ

k+ 1
2

n,i ,j − ξ
k+ 1

2
n,i−1,j

∆x
= Sk ,1

n,i ,j , i = 2, · · · , I + 1,

v
k+ 1

2
n,i ,j − vk

n,i ,j

∆t
+ Ū0

v
k+ 1

2
n,i ,j − v

k+ 1
2

n,i−1,j

∆x
= Sk ,2

n,i ,j , i = 2, · · · , I + 1,

η
k+ 1

2
n,i ,j − ηk

n,i ,j

∆t
+ (Ū0 −

N
λn

)
η

k+ 1
2

n,i ,j − η
k+ 1

2
n,i−1,j

∆x
= Sk ,3

n,i ,j , i = 1, · · · , I,
and i = 1, · · · , J + 1 in all cases ,

(46)

The boundary conditions for ξ
k+ 1

2
n , v

k+ 1
2

n and η
k+ 1

2
n are, for

0 ≤ j ≤ J,

ξ
k+ 1

2
n,0,j = 0, v

k+ 1
2

n,0,j = 0, η
k+ 1

2
n,0,j = 0. (47)
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Numerical schemes for the supercritical modes

The second Step:




uk+1
n,i ,j − u

k+ 1
2

n,i ,j

∆t
= 0,

αk+1
n,i ,j − α

k+ 1
2

n,i ,j

∆t
− N
λn

αk+1
n,i ,j+1 − αk+1

n,i ,j

∆y
= 0,

βk+1
n,i ,j − β

k+ 1
2

n,i ,j

∆t
+

N
λn

βk+1
n,i ,j − βk+1

n,i ,j−1

∆y
= 0

(48)

The boundary conditions for αk+1
n , βk+1

n are

{
αk+1

n,I,j = 0, for 0 ≤ j ≤ J,

βk+1
n,i ,0 = 0, for 0 ≤ i ≤ I.

(49)
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Treatment of the integral of the nonlinear term

In our study, we only need to consider a small number of
modes (≤ 10), and it is then appropriate to transform these
integrals into the sums of the Fourier coefficients.
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Numerical Simulations in a nested domain

Consider two domains as follows:
The larger domain:

M = (0,L1) × (0,L2) × (−L3,0)

The middle-half domain:

M1 = (L1/4,3L1/4) × (L2/4,3L2/4) × (−L3,0)

FIGURE 3: The larger domain M and the middle half domain M1.
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Numerical simulations in a nested domain

Objectives:

◮ Given the initial and boundary conditions, we perform
simulations on the larger domain.

◮ We perform simulations on the middle-half domain using
the initial and boundary conditions provided from Step 1.

◮ We consider the data from Step 1 as the true solution, and
compare these two data from Step 1 and Step 2 in the
middle-half domain and compute relative errors.
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Numerical Experiments

In the simulation, the initial conditions are given by these scalar
functions:




u(x , y , z,0) =
x
L1

2π
L2

sin (
2πx
L1

) cos (
2πy
L2

) + sin (
4πx
L1

) cos (
4πy
L2

)

cos (
πz
H

),

v(x , y , z,0) =
−1
L1

(
sin (

2πx
L1

) +
2πx
L1

cos (
2πx
L1

)

)
sin (

2πy
L2

)

+
L2

L1

(
sin2 (

4πx
L1

) + sin (
4πx
L1

) sin (
4πy
L2

) cos (
πz
H

)

)
,

w(x , y , z,0) =
−4H

L1
(sin (

4πx
L1

) + cos (
4πx
L1

)) cos (
4πy
L2

) sin (
πz
H

),

φ(x , y , z,0) = Ū0 sin (
2πx
L1

) sin (
2πy
L2

)(cos (
πz
H

) − cos (
2πz
H

)),

ψ(x , y , z,0) =
πŪ0

H
sin (

2πx
L1

) sin (
2πy
L2

)(2 sin (
2πz
H

) − sin (
πz
H

)).

(50)
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Numerical Experiments

Boundary conditions: homogeneous conditions
for the zero mode,

{
u0(0, y , t) = 0, u0(L1, y , t) = 0,

v0(0, y , t) = 0, v0(x ,0, t) = 0, v0(x ,L2, t) = 0;
(51)

for the subcritical modes, i.e. when 1 ≤ n < nc ,

{
ξn(0, y , t) = 0, vn(0, y , t) = 0, ηn(L1, y , t) = 0,

αn(x ,L2, t) = 0, βn(x ,0, t) = 0;
(52)

and for the supercritical modes, i.e. when n > nc ,

{
ξn(0, y , t) = 0, vn(0, y , t) = 0, ηn(0, y , t) = 0,

αn(x ,L2, t) = 0, βn(x ,0, t) = 0.
(53)
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Numerical Experiments

The physical parameters:

The length of the domain in x − direction L1 = 103 km,

The length of the domain in y − direction L2 = 500 km,

The length of the domain in z − direction L3 = 10 km ,

The constant reference velocity Ū0 = 20m/s,

The Coriolis parameter f = 10−4,

The Brunt–Väisälä (buoyancy) frequency N = 10−2,

The final time T = 5 × 104 s ,

The number of modes Nmax = 5.
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Numerical Experiments

The numerical parameters:

The number of time steps NT = 1600,

The number of mesh grids in x Nx = 400,

The number of mesh grids in y Ny = 200,

The number of mesh grids in z Nz = 40.
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FIGURE 4: Top row: evolution of the solution u in the L2 and L∞ norms. Bottom row:
evolution of the relative errors for u in the L2 and L∞ norms.
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FIGURE 5: Top row: evolution of the solution v in the L2 and L∞ norms. Bottom row:
evolution of the relative errors for v in the L2 and L∞ norms.
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FIGURE 6: Top row: evolution of the solution w in the L2 and L∞ norms. Bottom
row: evolution of the relative errors for w in the L2 and L∞ norms.

54 / 84



FIGURE 7: Top row: evolution of the solution ψ in the L2 and L∞ norms. Bottom
row: evolution of the relative errors for ψ in the L2 and L∞ norms.

55 / 84



FIGURE 8: Top row: evolution of the solution φ in L2 and L∞ norms. Bottom row:
evolution of the relative errors for φ in L2 and L∞ norms.
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FIGURE 9: The exact velocity u, v and pressure ϕ at t = 0 (on the left); the
approximated velocity u, v and pressure ϕ at t = T (on the right).
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FIGURE 10: The initial state of velocity field in the larger domain M

FIGURE 11: The initial state of ψ in the larger domain M
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FIGURE 12: The initial state of φ in the larger domain M
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FIGURE 13: Contour plot of u at z = −2500m, at t = 0.

FIGURE 14: Contour plot of v at z = −2500m, at t = 0.

60 / 84



FIGURE 15: Contour plot of w at z = −2500m, at t = 0.

FIGURE 16: Contour plot of ψ at z = −2500m, at t = 0.
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FIGURE 17: Contour plot of φ at z = −2500m, at t = 0.

FIGURE 18: The velocity field with cone plot in the larger domain M at t = T
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FIGURE 19: The state of ψ in the larger domain M at t = T .
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FIGURE 20: The state of φ in the larger domain M at t = T .
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FIGURE 21: Contour plot of u at z = −2500m, at t = T .

65 / 84



FIGURE 22: Contour plot of v at z = −2500m, at t = T .
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FIGURE 23: Contour plot of w at z = −2500m, at t = T .
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FIGURE 24: Contour plot of ψ at z = −2500m, at t = T .
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FIGURE 25: Contour plot of φ at z = −2500m, at t = T .
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FIGURE 26: The velocity field with cone plot in the middle half domain M1 at t = T
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FIGURE 27: The state of ψ in the middle half domain M1 at t = T .
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FIGURE 28: The state of φ in the middle half domain M1 at t = T .
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FIGURE 29: Contour plot of u at z = −2500m, at t = T .
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FIGURE 30: Contour plot of v at z = −2500m, at t = T .
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FIGURE 31: Contour plot of w at z = −2500m, at t = T .
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FIGURE 32: Contour plot of ψ at z = −2500m, at t = T .
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FIGURE 33: Contour plot of φ at z = −2500m, at t = T .
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FIGURE 34: Top row: evolution of the solution u in L2 and L∞ norms. Bottom row:
evolution of the relative errors for u in L2 and L∞ norms.
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FIGURE 35: Top row: evolution of the solution v in L2 and L∞ norms. Bottom row:
evolution of the relative errors for v in L2 and L∞ norms.
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FIGURE 36: Top row: evolution of the solution w in L2 and L∞ norms. Bottom row:
evolution of the relative errors for w in L2 and L∞ norms.
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FIGURE 37: Top row: evolution of the solution ψ in L2 and L∞ norms. Bottom row:
evolution of the relative errors for ψ in L2 and L∞ norms.
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FIGURE 38: Top row: evolution of the solution φ in L2 and L∞ norms. Bottom row:
evolution of the relative errors for φ in L2 and L∞ norms.
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Numerical Experiments

Remark The relative errors for u, v,ψ, and φ in both the L2 and
L∞ norms, are of the order of O(10−2), and the relative errors
for w are of the order of O(10−1).
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SUMMARY

◮ A new set of nonlocal boundary conditions has been
implemented.

◮ We numerically verify that the proposed boundary
conditions, proven suitable for the linearized equations, are
also suitable for the nonlinear case.

◮ We numerically verify the transparency property of the
proposed boundary conditions.
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