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SUMMARY

Whereas the PEs with viscosity resemble the incompressible
Navier Stokes equations, up to a certain point, the nonviscous
PEs, (also called hydrostatic Euler equations), do not resemble
the incompressible Euler equations, as we will see below.

There are (at least) two major issues concerning these
equations:

» A mathematical issue of well-posedness, and

We will present some theoretical results concerning the
linearized primitive equations and some computational results
concerning the full nonlinear equations.
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Whereas the PEs with viscosity resemble the incompressible
Navier Stokes equations, up to a certain point, the nonviscous
PEs, (also called hydrostatic Euler equations), do not resemble
the incompressible Euler equations, as we will see below.

There are (at least) two major issues concerning these
equations:

» A mathematical issue of well-posedness, and

» A computational/physical issue of appropriate boundary
conditions for Limited Areas Models.

We will present some theoretical results concerning the
linearized primitive equations and some computational results
concerning the full nonlinear equations.



1. THE PRIMITIVE EQUATIONS OF THE OCEANS
AND THE ATMOSPHERE

e The Primitive Equations (PEs) of the ocean and the
atmosphere play a central role in a hierarchy of models aimed
at describing the motion of the ocean and the atmosphere
(General Circulation Models - GCM, Ocean General Circulation
Models - OGCM). The PEs are directly derived from the
fundamental laws of physics:

» Equations of conservation of momentum, mass, and
energy.
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e The unknowns:

The velocity function \73 =V + we,, the temperature T, the
pressure p and the density p. Possibly some other quantities
such as the salinity (ocean) or the concentration of water
(atmosphere)

e The PEs of the Ocean are obtained from the fundamental
laws using the following assumptions:

» Boussinesqg assumption,



e The unknowns:

The velocity function \73 =V + we,, the temperature T, the
pressure p and the density p. Possibly some other quantities
such as the salinity (ocean) or the concentration of water
(atmosphere)

e The PEs of the Ocean are obtained from the fundamental
laws using the following assumptions:

» Boussinesqg assumption,
» Hydrostatic assumption in the vertical direction.



In Cartesian coordinates (in the so-called 5—plane
approximation) the Primitive Equation (PEs) without viscosity
are as follows:

ov ov
ﬁ+(v-V)v+wa—Z+kav+V¢:0,
0

ow
V-v4+—=0,
o aT
g TVVIT +wor =0, p=p(T).

Whereas the theory of the PEs with viscosity resembles that
of the incompressible Navier-Stokes, up to a certain point (that
is before the recent works of Kobelkov, Cao and Titi, Kukavica
and Ziane), the theory of PEs without viscosity does not
resemble that of the Euler equations of incompressible fluids.
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A fundamental mathematical difficulty concerning the PEs
without viscosity is that there is no set of local boundary
conditions for which these equations are well posed (Oliger and
Sundstrom, 1978).

We now present this difficulty following Temam and Tribbia, J. of
Atm. Sciences, 2003 [TeTr03].



2. ILL-POSEDNESS OF THE PRIMITIVE EQUATIONS
The PEs are linearized around a uniform stratified flow
U=UyV=0T=T(2).

We set u’ = u — U, etc., dropping the primes we obtain the
following equations for the disturbances:

ut‘i_L_JouX_fV‘i_(b)(:O7
vt + Ugvx +fu + ¢y =0,

- T
2.0, _
Ti +UgTx + N gW—O, (2)
UX + Vy + WZ == O,
_9T _
¢Z - -I-0 (_ w)v
where
p = po(1 —a(T —To)), and
N2 = —gg = the Brunt-Vaisala (buoyancy) frequency,
Po

assumed to be constant



Modal Analysis

The domain is M = M’ x (—H, 0), with M’ = (0,L;) x (0, Ly);
andw =0atz =0,—H.

We first proceed by separation of variables and look for a
solution of the form

u(x,y,z,t) =U(z)u(x,y,t), v(x,y,z,t) =V(z)v(x,y,t), etc.

Inserting these expressions in (2) we find by analysis that
Uu,V, Z o are proportional and we take them equal, and
similarly W and W are (proportional) equal.

Furthermore &/ and W = U’ are solutions of a Sturm Liouville
problem giving the solutions, U = Uy, W = W, with
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We then look for a solution of (2) using the corresponding
modal expansions, that is

u(x,y,z,t) = nun(z)un(x,y,t),

V(X7y7 t) = n(Z)Vn(X,y,t),
nun(Z)Tn(vav t) (3)

(b(X,y,Z,t) = nun(z)¢n(xvy7t)7

'l/} = Zan(Z)wn(vavt)v
W(X,Y,Z,t) = ZnWh(Z)Wn(X,y,t).

We arrive, for each mode n, at the following system (i) = ¢;)

( Unt + L_JOUnx —fvn + énx =0,

Vnt + UgVnx + fun + ¢ny =0,
Pt + Ugthnx + NZWn =0, (4)
Unx + Vny + )\an == 0

wn = —)\n(ﬁn-
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The characteristic values of (4) are Ug, Ug + A;t and Ug — A7 L.
Counting characteristics, we see that if \; 1 < Ug three
boundary conditions are needed at x = 0 (supercritical case),
but if \; > Ug, two boundary conditions are needed at x = 0
and one at x = L (subcritical case). Hence the global problem
is ill-posed for any local set of boundary conditions.

The most challenging case is the subcritical case A5t > Uy,
which corresponds to just a few modes,which are however the
most energetic ones.

For realistic values of the data (Up ~ 25m/s, L ~ a few
thousands km, H ~ 10km) there are about 5 subcritical modes,
which are physically the most important and mathematically the
most challenging.
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Before we proceed we rewrite equation (4) in the form (n > 1) :

( é)LJn — é)LJn ]. é)@bn .
a Yo MLk T
E)\/n - é)\/n 1- é)@bn _
ot +U06—X+fun_)\_n6y =0, (5)
OMn = OPn N2 (Quy  Ovp)
o TV T \ax Tay ) Y
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For n = 0,wg = 19 = 0 and there remains

aUQ aUQ 8¢0 .

ot Yo ~Vot 5 =0

aVQ — 8V0 agbo .

gt T Yogx Tl 5 =0 (6)
Oug OVg .

x Ty O

Note that, since the considered problem is linear, there is no
coupling between the different modes; see the remark below
about the nonlinear case which introduces these couplings.
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Our aim is now to propose boundary conditions for (4)-(5)
which make these equations well-posed and consequently
Equations (2) also. The boundary conditions are different
depending on whether

1<n<ne, or n>ng,

where nc, A, are such that

n N n 1
ﬁ:)\nc<—_<)\nc+l:(c+7)ﬂ-~

;
L Oy L (7)

We will not study the non generic case where L3N /7Uy is an
integer.

The modes 0 < n < n. are called subcritical, and the modes
n > n¢ are called supercritical.
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3. STUDY OF THE EQUATIONS (5) - (6)
a) The stationary equations associated with (5)-(6).

The (physical) spatial domain under consideration will be
M = M’ x (—H,0), where M’ is the interface
atmosphere/ocean, M’ = (0,L;) x (0, Ly).

We introduce, componentwise, the differential operators
An = (An1, An2, Anz) operating on Uy = (Un, Vn, ¥n),

- 1
UoUnx — —¥nx,
An

- 1
AnUn = UoVnx — )\_¢ny, (8)
n

- N2
Uo¥nx — )\—(Unx + Vny)7

n

with Ug, N and )\, > 0 as above.
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Our first remark concerns the nature of the stationary (time
independent) equations in M’ :

AnUn = Fn = (Fun,Fun,Fyn), n> 1. 9)

Dropping the indices n we look for the characteristics of the
differential system AU = F; that is in matrix form:

EUyx +GUy =F. (10)

After an easy calculation we find the real characteristic

x = const for all modes and the two other characteristics are
imaginary for the subcritical modes and real for the supercritical
ones.

We infer from these remarks that the stationary system

AnUn = Fy, is fully elliptic for the zero mode, partly hyperbolic
and partly elliptic for the other subcritical modes (one real
characteristic) and fully hyperbolic in the supercritical case
(three real characteristics). This remark will be underlying the
studies in Sections 4 and 5, although we do not use it directly.
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b) A trace theorem

We consider the same differential operator A = (A3, A, A3),
as in (8) operating on U = (u, Vv, ¢), but the indices n are
dropped for the sake of simplicity:

_ 1 - N2
AU = (Uguy — wa’ Uovx — wyv Uowx - (Ux +Vy))T (11)

with Ug, N, A\ = A\, > 0 as above, and we consider the space.

X = {u € LA(M')3, AU € LZ(M')3}, (12)
endowed with its natural Hilbert norm

1
(‘U ‘EZ(M/)3 + ’AU ‘EZ(M’):”)Z .
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We have

Theorem 3.1. If U = (u,v, ) € X, the traces of v and v are
defined on all of 9M’, the trace of u is defined at x = 0 and L1,
and they belong to the respective spaces Hx‘l(o, L;) and
H;l(o, L,). Furthermore the trace operators are linear
continuous in the corresponding spaces, e.g. U € X — U|x—g iS
continuous from X into Hy (0, Ly).

The proof is based on a repeated use of the idea of Lax and
Phillips (1960).
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4. WELL POSEDNESS OF THE LINEARIZED EQUATION
Handled mode by mode and then globally for all modes.
Subcritical Modes (One Subcritical Mode, 1 < n < n¢)
We temporarily drop the indices n and consider (5) when the
mode is subcritical, that is A = Ay < N/Up.

We choose the following boundary conditions:

{ p=0atx =Ly, andy =0,L,, (13)

v=0andu=1/\Uyatx =0,

and we introduce the space

Dm):{ueL%Nﬂ%AUeL%Wﬂ%USmmmsaa},ag
and the operator!

AU = AU, VYU € D(A).

When needed we will write also An, Ay, D(An) to emphasize the
dependence on n (A = An).
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a) Regularity Result for D(A).

We now have a regularity result for U in D(A).

Theorem 4.1. If U = (u,v,v) € D(A), then v and ¢ belong to
HY(M') and uy belongs to L2(M)

b) Positivity of A and A*

We endow the space H = L?(M’)2 with the Hilbert scalar
product and norm

~ 1 < )
(U,U)H:/ri <uu+vv+mww> dA’,
Ul = {(U,U)u}"2.

To apply the Hille-Phillips-Yoshida theorem, we need to prove
that A and its adjoint A* are positive in the sense

{ (AU,U)y >0, YU € D(A), (15)

(A*U,U)y >0, YU e D(A").
This result is proven by approximation using the regularity

theorem.
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Supercritical Modes
a) The operator A and its adjoint A*
Here, for one supercritical mode we choose the following
boundary conditions:
{ u,v, andy =0atx =0, (17)
andy =0aty =0and L,.

In this case the operator A = A, is defined by AU = AU as in
(8), and

D(A) = {U € H = L2(M)?, AU € L(M'), U satisfies (17) }.
(18)
We can then prove (5).
Theorem 5.1. In the supercritical case, for every U € D(Ay), An
defined in (18), we have (AnU,U) 2(0¢)s > 0. Similarly, we
have (AjU,U)2rys > O, for every U in D(AR), Ay and D(Ag)
appropriately defined.



Subsequent steps

The zeroth (barotropic) mode necessitates a whole analysis by
itself.

Then we consider the whole system, and obtain again
existence and uniqueness of solutions using the semigroup
theory.
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5. NUMERICAL IMPLEMENTATION FOR THE 3D-PEs

Ut + Uguy —fv + ¢ =0

vt + Ugvx + f(Ug +u) + ¢y =0

¢ + Ugthx + N?w =0 (19)
0z =7

ljx ‘f’\/y ‘f’VVZ = ()

Normal modes expansion (in vertical direction)

(u,v, 9) Zun )(Un, Vn, ¢n)(X, Y, )

n>0
W) =3 W@y, 0

n>1
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The modesn > 1

Unt  +Uolny — ﬁ¢nx —fvn =0,
Vit +UoVnx +fun — ﬁ¢ny =0, (21)
Yt +Uo¥nx — %Unx - %Vny =0,

Up = (Un7Vn7¢n)T

n_HLn

ou OUp O0Up
=0. 22
ot o + M, ay +NyUp =0 (22)

(51) is a symmetric hyperbolic system in two space variables
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=1

. - 1 - - 1
Ly has eigenvalues Ug + —,Ug and Ug — —
An An

. 1 1
My has eigenvalues 0, —, ——
An’ An
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Introduce ¥, = (Sn,Vn,Un)T

&n = *gun + §¢n Up = *ggn + gnn

Vn = Vn Vn = Vn

Th = @Un + gwn Y = Qﬁn + @nn
{:LJn == FD E:n

a(gn) <Do+/\lno )a(fn)
Vn + 0 Vi
ot - 15)4

7 Uo— ¢+ Un

+ otherterms =0.
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Boundary conditions B
For 1 < n < n¢ (subcritical modes, Uy — A—ln < 0)

§n(0,y,t) =0
Vn(O,y’t) = 0
Un(Ll,y,t) = 0.

B (23)
For n > n¢ (supercritical modes, Ug — Ain > 0)

'fn(O,y’t) :0
Vn(O,y,t) =0
nn(ovyvt) =0

(24)
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Introduce also 2, = (up, an, ﬂn)T

ljn - lJn Lln = LJn
on = fvn — Ly, Vo = *Z(0n + fn)
Bn = vn + f% P = *%an + %@1
(25)
{Un = QQn
l]n ljn
5, 1 0
a Qn + Q LnQG_X Qn +
Bn Bn
0 Un Un
1 9 -1
)\_n W Qn + Q NnQ Qn = O
_)\Ln On Bn
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Boundary Conditions

Foralln>1
Qn X () t — ()
(x,0,t) (26)
Bn(X,L2,t) =0
Y
Ly B,=0, n>1
&=0, n>1
v, =0, n>1 =0, 1<n<n,
N, =0, n>n.
0 a,=0, n>1 L z
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The zeroth mode
Uot + Uglox + ¢ox — fvo = 0,

Vot + UgVox + doy + fug + Fo = 0,Fg = /L5fUg,  (27)
Uox + Voy = 0.

Euler type equations

Y

vy =0

uy =10




Numerical scheme for the zero mode

Let At = T /K, vk ~ v(x, y, kAt), and vk+z represents an
intermediate value between vk and vk+1, etc.

First Step:

1
Vk"'i — vk
At

k41
\ +2‘X:0 - 07

B O
+ Ugvy 2 +fk x VK + VoK + GK =0, 28)

Here
ok _ < SO, B(uk, VK Wk uk) o (2) dz ) (29)
0 fBLsB(uk,vk,wk;vk)uo(z)dz+fL_Jo\/ﬁ ’
Second Step: (projection method)

1
VkHL kel

At
Vvt =0,

vktl.n =0 on oM.

+ V(o5 — ¢5) =0,



Neumann Problem

From the Second Step, we can find ¢(I§+l by solving the
Neumann problem

k+1 _ VENAM:
A¢stt = Al + ——,
k+3 At (31)
k+1 vie /
Vet on =T, oM.

and imposing the compatibility condition

/ psttdx dy = 0.
M/



Stability Issue

Given the mesh size h = (Ax, Ay), we have the following
stability result:

Lemma 1
If At and S(h) satisfy the conditions

1 1 1 1
AtS*(h) < ——, At < Z, where S?(h) = + ,
C2Ky4 8 (Ax)2 * (Ay)?
(32)
then, for 0 < n < Nt, we have
Nt
VRl < Kay (A1) [ Vhehlh < Ka. (33)

k=1



The subcritical and supercritical modes

We rewrite (6) in the matrix form as follows:

0Up oUp oUp
E F Gh =0. 34
It +En—— ox +Fn—/— dy + Gn (34)
Here,
-1 0 0 0
U 0o —
un 0 )\n O ;1
Up = Vn yEn = 0 Up O yFn= An
¥n ~N? - ~N?
0 U 0 0
)\n 0 )\n
(35)
and

—fvn + ffH B(u,v,w;u)ln(z)dz
Gn=| fun+ [ B(U,V,W;V)Un(z)dz |.  (36)
J24 B(U,V, W) Wh(2)dz



Change of Variables

Change of variables:
¥n

&n Un — N
vy, | = Vi
Tn wn

Un+ 1

{

Un
Qan

fn

)

Vph —

zZ|5

(37)



Boundary Conditions for the subcritical modes

Boundary conditions for the subcritical modes:

0’ ’t :Oa
&n(0.y.1) an(x,L2,t) =0,
Vn(O,y,t) = Oa (38)
ﬁn(X,O,t):O.
Un(Ll,y,t) =0.
a, =0
§n:0
M = 0
v, =0
(3n =0 *

FIGURE 1: Boundary conditions for the subcritical modes
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Boundary conditions for the supercritical modes

Boundary conditions for the supercritical modes:

0,y,t) =0,
&n(0.y.1) an(x,Lz,t) =0,
Vn(O,y,t) = 0’ (39)
ﬁn(X,O,t):O.
nn(O,y,t) = 0
a, =0
gn:O
v, =0
=0
gn:O !

FIGURE 2: Boundary conditions for the supercritical modes



Numerical Schemes for the subcritical modes

Splitting method:
The First Step:

k+31 k+3
Up 2 — UK au 2 "
AL +E X + G, =0.
The Second Step:
k+1
r|§+l —u, 2 F aUthl 0
At " dy '

Remark

» This is a partly implicit scheme.

(40)

(41)
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Numerical scheme for the subcritical modes

The First Step:

k4,; K k4,; k4,;
gni.zfg.. _ N &:2—& 2.
)l n,, n,i,j n,i—1, k.1 -
—_— U — ) e G =2 ... |+ 1
ar TR nipt =&t
Vk+% vk Vk+% k+3
n7i7j B n=i7j w n7i7j B n7i717j k 2 .
—r ol L Yg———— " =S =2 .- | +1
At + Yo AX n,i,j’ 3 I+ 1
k+3 k+3 k+1
Mnij — i gy Nyt =i gk g L
At An AX STt Y
andj=1,---,J 4+ 1inall cases,
(42)
where

S,fi’lj, S,'j’izj and S,f’izj are nonlinear terms.
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Numerical scheme for the subcritical modes

" k+1 k+i k+1
The boundary conditions for &, 2,v,, % andn, 2 are
k+: k+3 k+3 .
5n707j_ » Vnof = 0, Maf = =0, for0<j<,
The Second Step
( k4,l
urlj‘i".l —u.'2
i 7] n7|7J — O
At ’
kel  k+3 k+1 k41
n7i7j n7i7j _ N an |7J+l n7i7j _ 0
At An Ay '
k+1 k+3 k+1 k+1
Onij = nig N Onij = Pnij-1
At An Ay

The boundary conditions for ak*t, gk+1 are

n7I7J

Betl foro<i<lI.

{a“4zq foro<j <J,
n,i,0 —

(43)

(44)

(45)
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Numerical schemes for the supercritical modes

Splitting method:
The First Step:

(k+3 k+1  _k+i
fni?_f.. _ N & :2—& 2%
77] n7'7] n7'7] n7|717J k 1.
B (O —) e =gt i =2, 1+ 1
77]7 ) 7 )
k+lAt K k+)%n k+%AX
Vnism ~Vnis g Vil " Vnicli _gke o g
lAt 0 AX ] ln’I’V ) ) )
nitz ko NS
n,ij N n,i,j + (0 — —) n,ij Axm_ i _ Srliﬁ_’i =11,
n 1.
andi=1,---,J+1inall cases,

(46)
1 1 1

The boundary conditions for 5,'§+2, v,|f+2 and n,'ﬁ+2 are, for
0<j<,

k+3 k+1 k+1
o) =0 Vaof =0, o) =0 (47)



Numerical schemes for the supercritical modes

The second Step:

1
un7i7j B un7i7j R O
At ’
1
k+1 k+3 k+1 k+1
nij —%ij N %nijr1 ™ Xnij
At A Ay
kil  qk+3 K+l kel
Baii “hnif N N Buii = Baijoa
At An Ay
The boundary conditions for ak*?, gk+1 are
{ak+j1:0, foro<j<J,
k+1 ,
bnio =0, for0 <i<I.

—0, (48)

=0

(49)
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Treatment of the integral of the nonlinear term

In our study, we only need to consider a small number of
modes (< 10), and it is then appropriate to transform these
integrals into the sums of the Fourier coefficients.
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Numerical Simulations in a nested domain

Consider two domains as follows:
The larger domain:

M =(0,L1) x (0,L2) x (—Ls,0)
The middle-half domain:

My = (L1/4,3L1/4) x (L2/4,3L2/4) x (~L3,0)

M larger domain with homogeneous BC's

M, middle half domain with non-homog BC’s

FIGURE 3: The larger domain M and the middle half domain M.
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Numerical simulations in a nested domain
Objectives:

» Given the initial and boundary conditions, we perform
simulations on the larger domain.
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Numerical simulations in a nested domain

Objectives:
» Given the initial and boundary conditions, we perform
simulations on the larger domain.

» We perform simulations on the middle-half domain using
the initial and boundary conditions provided from Step 1.
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Numerical simulations in a nested domain
Objectives:
» Given the initial and boundary conditions, we perform
simulations on the larger domain.

» We perform simulations on the middle-half domain using
the initial and boundary conditions provided from Step 1.

» We consider the data from Step 1 as the true solution, and
compare these two data from Step 1 and Step 2 in the
middle-half domain and compute relative errors.
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Numerical Experiments

In the simulation, the initial conditions are given by these scalar
functions:
( 27 . 2 2 .4 4
u(x,y,z,0) = X 2T sin (Lx)cos(iy) + sin (Lx)cos(iy
Ly LE Ly L, Ly Lo
T
cos ().
-1/ . 27X 27X 27X . 2my
v(x,y,z,0) = T (sm (L—l) + T, COS(L—1)> sin (L—z)
Lo 5 ATX . Arx, . Amy Tz
+L1 (sn ( » ) + sin ( ™ )sin ( » )cos(|_| )),
— . 4mXx 47X Ay, . 7wz
W(X,y,Z’O)_ Ll (S;n(L—l)—;COS(I_—:L))COS(L—Z)ZSII’](F)7
#(x,y,z,0) = Ugsin (22 sin (22 )(cos (22 ) — cos (Z22)),
_ Ly Lo H H
~wlUp . 2wx, . 271y . 27Z N 4
¥(X,y,2,0) = o sin ( L ) sin ( L )(2sin ( o ) sm(H ).
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Numerical Experiments

Boundary conditions: homogeneous conditions
for the zero mode,

Vo(0,y,t) =0, vp(x,0,t) =0, vp(x,Lp,t)=0;

for the subcritical modes, i.e. when 1 < n < ng,

§n(0,y,t) = 07 Vn(o Y, t) = 7 nn(leyvt) = 07 (52)
Oén(X,Lz,t): ) 5”()(70 t)

and for the supercritical modes, i.e. when n > nc,
gn(oayat)zoa (O y t):0 n(O,y,t):O, (53)
an(X,Lz,t) =0, f(n(x,0,t) =
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Numerical Experiments
The physical parameters:
The length of the domain in x — direction L; = 10° km,

The length of the domain iny — direction L, = 500 km,
The length of the domain in z — direction Lz = 10 km

The constant reference velocity Uy = 20m/s,
The Coriolis parameter f =104,
The Brunt-Vaisala (buoyancy) frequency N = 1072,
The final time T=5x10%s,

The number of modes Nmax = 5.
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Numerical Experiments

The numerical parameters:

The number of time steps Nt = 1600,
The number of mesh grids in x Ny = 400,
The number of mesh gridsiny Ny = 200,
The number of mesh gridsinz N, = 40.
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FIGURE 4: Top row: evolution of the solution u in the L2 and L> norms. Bottom row:
evolution of the relative errors for u in the L2 and L> norms.
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Volume normalized L2 norm L™ norm
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FIGURE 5: Top row: evolution of the solution v in the L2 and L> norms. Bottom row:
evolution of the relative errors for v in the L2 and L> norms.
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Volume normalized L2 norm L™ norm
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FIGURE 6: Top row: evolution of the solution w in the L2 and L norms. Bottom
row: evolution of the relative errors for w in the L2 and L® norms.
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x 10 Volume normalized 12 norm L™ norm
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FIGURE 7: Top row: evolution of the solution + in the L2 and L> norms. Bottom
row: evolution of the relative errors for 1 in the L? and L norms.
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Volume normalized L2 norm L™ norm
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FIGURE 8: Top row: evolution of the solution ¢ in L2 and L> norms. Bottom row:
evolution of the relative errors for ¢ in L2 and L norms.
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FIGURE 9: The exact velocity u, v and pressure ¢ att = 0 (on the left); the
approximated velocity u, v and pressure ¢ att = T (on the right).
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FIGURE 10: The initial state of velocity field in the larger domain M
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FIGURE 11: The initial state of v in the larger domain M
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FIGURE 12: The initial state of ¢ in the larger domain M
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FIGURE 13: Contour plot of u at z = —2500m, att = 0.

FIGURE 14: Contour plot of v at z = —2500m, att = 0.
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FIGURE 15: Contour plot of w at z = —2500m, att = 0.
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FIGURE 16: Contour plot of ¢ at z
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FIGURE 20: The state of ¢ in the larger domain M att =T.
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FIGURE 21: Contour plot ofu at z = —2500m, att =T.



5 T —
.5 © 002—
C Y
4 o b —— 8
o
351 1
od
L N
3 S S
> 250 — 4
e
2F ] ( {”) o
o |\ o
150 S :
e 4
oy
L ° 4
05 . 2, ”-h?
0 . , . . ° . 1 . T
0 1 2 3 4 5 6 7 8 9 10
x x 10°
T T T T
-006 -005 -0.04 -003 002 -0.01 0 001 002 003 004
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FIGURE 25: Contour plot of ¢ at z = —2500m, att =T.
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FIGURE 26: The velocity field with cone plot in the middle half domain M att =T
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FIGURE 30: Contour plot of v at z = —2500m, att =T.
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Volume normalized L2 norm L™ norm

0.5 15
0.4
1
03
0.2
0.5
0.1
0 0
0 1 2 3 4 5 0 1 2 3 4 5
t © 10" t x10°
Relative errors in L2 norm Relative errors in L™ norm
0.01 0.02
0.008 0.015
0.006
0.01
0.004
0.002 0.005
0 0
0 1 2 3 4 5 0 1 2 3 4 5
t x10° t x10°

FIGURE 34: Top row: evolution of the solution u in L2 and L> norms. Bottom row:
evolution of the relative errors for u in L? and L> norms.
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Volume normalized L2 norm L™ norm
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FIGURE 35: Top row: evolution of the solution v in L2 and L> norms. Bottom row:
evolution of the relative errors for v in L2 and L* norms.
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Volume normalized L2 norm L™ norm
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FIGURE 36: Top row: evolution of the solution w in L2 and L> norms. Bottom row:
evolution of the relative errors for w in L2 and L* norms.
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x 10 Volume normalized 12 norm L™ norm
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FIGURE 37: Top row: evolution of the solution 1 in L2 and L> norms. Bottom row:
evolution of the relative errors for + in L2 and L* norms.
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Volume normalized L2 norm L™ norm
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FIGURE 38: Top row: evolution of the solution ¢ in L2 and L> norms. Bottom row:
evolution of the relative errors for ¢ in L2 and L norms.

82/84



Numerical Experiments

Remark The relative errors for u, v,?, and ¢ in both the L2 and
L> norms, are of the order of O(10~2), and the relative errors
for w are of the order of O(1071).



SUMMARY

» A new set of nonlocal boundary conditions has been
implemented.

» We numerically verify that the proposed boundary
conditions, proven suitable for the linearized equations, are
also suitable for the nonlinear case.

» We numerically verify the transparency property of the
proposed boundary conditions.
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