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1 Motivations

Let W be the real Brownian motion equipped with its
canonical filtration (Ft). 〈W 〉t = t.

If h ∈ L2(Ω), the martingale representation theorem
states the existence of a predictable process
ξ ∈ L2(Ω × [0, T ]) such that

h = E[h] +

∫ T

0

ξsdWs
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If h ∈ D1,2 in the sense of Malliavin, Clark-Ocone
formula implies that ξs = E [Dmh|Fs], so that

h = E[h] +

∫ T

0

E [Dmh|Fs] dWs (1)

where Dm is the Malliavin gradient.
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We suppose that the law of X = W is not anymore the
Wiener measure but X is still a finite quadratic
variation process but not necessarily a semimartingale.

Are there reasonable classes of random variable which
can be represented in the form

h = H0 + ”

∫ T

0

ξsdXs”?

H0 ∈ R, ξ adapted?
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Examples of processes with finite quadratic variation

1) S is an (Ft)-semimartingale with decomposition
S = M + V , M (Ft)-local martingale and V bounded
variation process. So [S] = [M ].

2) D is a (Ft)-Dirichlet process with decomposition
D = M + A, M (Ft)-local martingale and A an
(Ft)-adapted zero quadratic variation process.
[D] = [M ]. Föllmer (1981).

3) D is a (Ft)-weak-Dirichlet process with decomposition
D = M + A, M (Ft)-local martingale and A such that
[A,N ] = 0 for any continuous (Ft)-local martingale N .
Errami-Russo (2003), Gozzi-Russo (2005).
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a) In general D does not have finite quadratic variation

b) If A is a finite quadratic variation process
[D] = [M ] + [A]

c) There are finite quadratic variation weak Dirichlet
processes which are not Dirichlet processes.
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4) (Houdré-Villa, Russo-Tudor)
BH,K bifractional Brownian motion with parameters
H ∈]0, 1[, K ∈]0, 1] such that HK ≥ 1/2

If HK > 1/2, [BH,K ] = 0.

If HK = 1/2, then
[BH,K ]t = 21−Kt

If K = 1 and if H = 1/2, BH,K is a Brownian
motion
If K 6= 1, BH,K is not a semimartingale (not even
a Dirichlet with respect to its own filtration).
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5) Skorohod integrals. If (ut) is in L1,2, under reasonable
conditions on Du, [

∫ t

0
usδWs]t =

∫ t

0
u2

sds.

6) For fixed k ≥ 1, Föllmer Wu Yor construct a weak
k-order Brownian motion X, which in general is not
even Gaussian.
X is a weak k-order Brownian motion if for every
0 ≤ t1 ≤ · · · ≤ tk < +∞, (Xt1, · · · , Xtk) is distributed as
(Wt1 , · · · ,Wtk). If k ≥ 4 then [X]t = t.
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Definition 1 Let T > 0 and X = (Xt)t∈[0,T ] be a real
continuous process prolongated by continuity.
Process X(·) defined by

X(·) = {Xt(u) := Xt+u;u ∈ [−T, 0]}

will be called window process .

X(·) is a C([−T, 0])-valued stochastic process.

C([−T, 0]) is a typical non-reflexive Banach space.
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The representation problem
We suppose X0 = 0 and [X]t = t.
Which are the classes of functionals

H : C([−T, 0]) −→ R

such that the r.v.
h := H(XT (·))

admits a representation of the type

h = H0 + ”

∫ T

0

ξsdXs”
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In that case we look for an explicit expressions for
H0 ∈ R

ξ adapted process with respect to the canonical
filtration of X
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Idea: Representation of h = H(XT (·))
We express h = H(XT (·)) as

h = H(XT (·)) = lim
t↑T

u(t,Xt(·))

where u ∈ C1,2 ([0, T [×C([−T, 0])) solves an infinite
dimensional PDE.
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We have

h = u(0, X0(·)) +

∫ T

0

Dδ0u(s,Xs(·))d
−Xs (2)

where Dδ0u(s, η) = D u(s, η)({0}). We recall that
D u : [0, T ] × C([−T, 0]) −→ C∗([−T, 0]) = M([−T, 0]).
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2 Finite dimensional calculus via

regularization

Definition 2 Let X (resp. Y ) be a continuous (resp. locally
integrable) process.
Suppose that the random variables

∫ t

0

Ysd
−Xs := lim

ǫ→0

∫ t

0

Ys

Xs+ǫ − Xs

ǫ
ds

exists in probability for every t ∈ [0, T ].
If the limiting random function admits a continuous
modification, it is denoted by

∫ ·

0
Y d−X and called

(proper) forward integral of Y with respect to X.
(Russo-Vallois 1991-1993)
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Covariation of real valued processes

Definition 3 The covariation of X and Y is defined by

[X,Y ]t = lim
ǫ→0+

1

ǫ

∫ t

0

(Xs+ǫ − Xs)(Ys+ǫ − Ys)ds

if the limit exists in the ucp sense with respect to t.
Obviously [X,Y ] = [Y,X].
If X = Y, X is said to be finite quadratic variation
process and [X] := [X,X].
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Connections with semimartingales

1. Let S1, S2 be (Ft)-semimartingales with decomposition
Si = M i + V i, i = 1, 2 where M i (Ft)-local continuous
martingale and V i continuous bounded variation
processes. Then

[Si] classical bracket and [Si] = 〈M i〉.

[S1, S2] classical bracket and [S1, S2] = 〈M 1,M 2〉.

If S semimartingale and Y cadlag and predictable
∫ ·

0

Y d−S =

∫ ·

0

Y dS (Itô)
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Itô formula for finite quadratic variation processes

Theorem 4 Let F : [0, T ] × R −→ R such that
F ∈ C1,2 ([0, T [×R) and X be a finite quadratic variation
process. Then ∫ t

0

∂xF (s,Xs)d
−Xs

exists and equals

F (t,Xt)−F (0, X0)−

∫ t

0

∂sF (s,Xs)ds−
1

2

∫ t

0

∂x xF (s,Xs)d[X]s
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Stochastic calculus via regularization

A theory for non-semimartingales.

Integrands may be anticipative.

A simple formulation.

Close to pathwise approach (as rough paths) but still
probabilistic.

An efficient formulation when the integrator is a finite
quadratic variation, but it extends to more general
cases.
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3 About infinite dimensional

classical stochastic calculus

We fix now in a general (infinite dimensional) framework.
Let

B general Banach space

X a B-valued process

F : B −→ R be of class C2 in Fréchet sense.
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An Ito formula for B-valued processes .

Aim: An Itô type expansion of F (X),
available also for B = C([−T, 0])-valued processes,
as window processes, i.e. when X = X(·).
The literature does not apply: several problems appear
even in the simple case W (·)!
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Fréchet derivative and tensor product of Banach spaces
F : B −→ R be of class C2 in Fréchet sense, then

DF : B −→ L(B; R) := B∗;

D2F : B −→ L(B;B∗) ∼= B(B × B) ∼= (B⊗̂πB)∗

where

B(B,B) Banach space of real valued bounded bilinear
forms on B × B

(B⊗̂πB)∗ dual of the tensor projective tensor product of
B with B.

B⊗̂πB fails to be Hilbert even if B is a Hilbert space (is
not even a reflexive space).
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A first attempt to an Itô type expansion of F (X)

F (Xt) = F (X0) +′′

∫ t

0
B∗〈DF (Xs), dXs〉B

′′

+
1

2

′′
∫ t

0
(B⊗̂πB)∗〈D

2F (Xs), d[X]s〉B⊗̂πB
′′
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A formal proof

∫ t

0

F (Xs+ǫ) − F (Xs)

ǫ
ds

ucp
−−→
ǫ→0

F (Xt) − F (X0)

By a Taylor’s expansion the left-hand side equals the sum
of

∫ t

0
B∗〈DF (Xs),

Xs+ǫ − Xs

ǫ
〉Bds +

∫ t

0
(B⊗̂πB)∗〈D

2F (Xs),
(Xs+ǫ − Xs)⊗

2

ǫ
〉B⊗̂πBds + R(ǫ, t)
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Problems related to integration in Banach space

Let B be a Banach space and X a B-valued process.

1. Stochastic integration with respect to an integrator X.

2. Quadratic variation of X.
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Among the principal references about the subject there
are:

1. Da Prato G. and Zabczyk J. Stochastic Equations in
Infinite Dimensions. Cambridge University Press,
1992.

2. Métivier M. and Pellaumail J. Stochastic Integration.
New York, 1980.

3. Dinculeanu N. Vector Integration and Stochastic
Integration in Banach spaces. Wiley-Interscience, New
York, 2000.
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Da Prato - Zabczyk

B separable Hilbert space.

X B-valued Itô process.

but...

C([−T, 0]) is not a Hilbert space.

W (·) is not a a C([−T, 0])-valued semimartingale.
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Metivier-Pellaumail and Dinculeanu

B is a general Banach space.

X essentially semimartingale.

The natural generalization concept of quadratic
variation for Banach valued processes X is a
(B⊗̂πB)-valued process denoted by [X]⊗ and called
tensor quadratic variation.

but... W (·) does not admit a tensor quadratic variation. In
fact the limit for ǫ going to zero of

1

ǫ

∫ t

0

‖Ws+ǫ(·) − Ws(·)‖
2
C([−T,0]) ds.
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4 Stochastic calculus via

regularization in Banach spaces

A stochastic integral for B∗-valued integrand with
respect to B-valued integrators, which are not
necessarily semimartingales.

χ-quadratic variation of X
A new concept of quadratic variation which generalizes
the tensor quadratic variation and which involves a
Banach subspace χ of (B⊗̂πB)∗.
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Definition 5 Let X (resp. Y) be a B-valued (resp. a
B∗-valued) continuous stochastic process.
Suppose that the random function defined for every fixed
t ∈ [0, T ] by

∫ t

0
B∗〈Ys, d

−Xs〉B := lim
ǫ→0

∫ t

0
B∗〈Y(s),

Xs+ǫ − Xs

ǫ
〉Bds

in probability exists and admits a continuous version.
Then, the corresponding process will be called forward
stochastic integral of Y with respect to X.
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Connection with Da Prato-Zabczyk integral

Let B = H is separable Hilbert space.
Theorem 6 Let W be a H-valued Q-Brownian motion with
Q ∈ L1(H) and Y be H∗-valued process such that∫ t

0
‖Ys‖

2
H∗ds < ∞ a.s. Then, for every t ∈ [0, T ],

∫ t

0
H∗〈Ys, d

−Ws〉H =

∫ t

0

Ys · dWdz
s

(Da Prato-Zabczyk integral)
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Notion of Chi-subspace

Definition 7 A Banach subspace χ continuously injected
into (B⊗̂πB)∗ will be called Chi-subspace (of (B⊗̂πB)∗).
In particular it holds

‖ · ‖χ ≥ ‖ · ‖(B⊗̂πB)∗.
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Notion of Chi-quadratic variation
Let

X be a B-valued continuous process,

χ a Chi-subspace of (B⊗̂πB)∗,

C([0, T ]) space of real continuous processes equipped
with the ucp topology.
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Let [X]ǫ be the application

[X]ǫ : χ −→ C([0, T ])

defined by

φ 7→

(∫ t

0
χ〈φ,

J ((Xs+ǫ − Xs)⊗
2)

ǫ
〉χ∗ ds

)

t∈[0,T ]

,
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where J : B⊗̂πB → (B⊗̂πB)∗∗ is the canonical injection
between a Banach space and its bidual (omitted in the
sequel).
Let E be a Banach space and J : E → E∗∗:

J is an isometry with respect to the strong topology,

J(E) is weak star dense in E∗∗,

If E is not reflexive, J(E) ( E∗∗.
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Definition 8 X admits a χ-quadratic variation if

H1 For all (ǫn) ↓ 0 it exists a subsequence (ǫnk
) such that

sup
k

∫ T

0

∥∥(Xs+ǫnk
− Xs)⊗

2
∥∥

χ∗

ǫnk

ds < ∞ a.s.

H2 There exists [X] : χ −→ C([0, T ]) such that

[X]ǫ(φ)
ucp
−−→
ǫ→0

[X](φ) ∀ φ ∈ χ
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H3 There is a χ∗-valued bounded variation process [̃X],

such that [̃X]t(φ) = [X](φ)t a.s. for all φ ∈ χ.

For every fixed φ ∈ χ, processes [̃X]t(φ) and [X](φ)t are
indistinguishable.

Stochastic calculus via regularization in Banach spaces with financial motivations. – p. 39/71



Definition 9 When X admits a χ-quadratic variation, the

χ∗-valued process [̃X] (and even the application [X]) will be
called χ-quadratic variation of X
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Remark 10 1. [̃X] is the quadratic variation intervening in
the second order derivative term of Itô’s formula.

2. For every fixed φ ∈ χ, processes [̃X]t(φ) and [X](φ)t

are indistinguishable.

3. The χ∗-valued process [̃X] is weakly star continuous,

i.e. [̃X](φ) is continuous for every fixed φ ∈ χ.
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Definition 11 We say that X admits a global quadratic
variation (g.q.v.) if it admits a χ-quadratic variation with
χ = (B⊗̂πB)∗.
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When χ = (B⊗̂πB)∗

H2 requires a weak∗ convergence in (B⊗̂πB)∗∗, i.e.

[̃X]
ǫ w∗

−−→
ǫ→0

[̃X],

where [̃X]
ǫ

is a χ∗-valued bounded variation process
associated to [X]ǫ, defined by

[̃X]
ǫ

t(φ) := [X]ǫ(φ)t a.s.

The g.q.v. [̃X] is (B⊗̂πB)∗∗-valued.
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Connection with other concepts of quadratic variation
Global quadratic variation permit us to recover quadratic
variation concepts in literature.

1. B = Rn. X = (X1, . . . , Xn) admits a covariations matrix
[X∗, X] = ([X i, Xj ])1≤i,j≤n if and only if X admits g.q.v.

[̃X] = [X∗, X].

2. B = H Hilbert separable. If X has L1(H)-valued
quadratic variation [X]dz then X admits g.q.v.

[̃X] = [X]dz.

3. B general. If X admits tensor quadratic variation [X]⊗

then X admits g.q.v. [̃X] = [X]⊗.
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In all the recovered cases we have a strong convergence, so th e

g.q.v. [̃X] is always B⊗̂πB-valued.

We recall B⊗̂πB ⊆ (B⊗̂πB)∗∗.
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Infinite dimensional Itô’s formula

Let B a separable Banach space
Theorem 12 Let X a B-valued continuous process
admitting a χ-quadratic variation.
Let F : [0, T ] × B −→ R be C1,2 Fréchet such that

D2F : [0, T ] × B −→ χ ⊂ (B⊗̂πB)∗ continuously

Then for every t ∈ [0, T ] the forward integral

∫ t

0
B∗〈DF (s, Xs), d

−Xs〉B

exists and the following formula holds.
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F (t, Xt) = F (0, X0) +

∫ t

0

∂sF (s, Xs)ds+

+

∫ t

0
B∗〈DF (s, Xs), d

−Xs〉B+

+
1

2

∫ t

0
χ〈D

2F (s, Xs), d[̃X]s〉χ∗
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5 Window processes

We fix attention now on B = C([−T, 0])-valued window
processes.

X continuous real valued process and X(·) its window
process.

X = X(·)
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If X has Hölder continuous paths of parameter
γ > 1/2, then X(·) has a zero g.q.v.
For instance:

X = BH fractional Brownian motion with parameter
H > 1/2.

X = BH,K bifractional Brownian motion with
parameters H ∈]0, 1[, K ∈]0, 1] s.t. HK > 1/2.

W (·) does not admit a g.q.v.
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Some examples of Chi-subspaces

χ Chi-subspace of (B⊗̂πB)∗. For instance:

M([−T, 0]2) equipped with the total variation norm.

L2([−T, 0]2).

D0,0 = {µ(dx, dy) = λ δ0(dx) ⊗ δ0(dy)}.

(D0 ⊕ L2) ⊗̂
2
h = D0,0 ⊕ L2([−T, 0])⊗̂hD0 ⊕

D0⊗̂hL
2([−T, 0]) ⊕ L2([−T, 0]2).

Diag :=
{µ(dx, dy) = g(x)δy(dx)dy; g ∈ L∞([−T, 0])}.
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Evaluations of χ-quadratic variation for

window processes

W (·) does not admit a M([−T, 0]2)-quadratic variation.

If X is a real finite quadratic variation process, then
X(·) has zero L2([−T, 0]2)-quadratic variation.

X(·) has D0,0-quadratic variation

[X(·)] : D0,0 −→ C[0, T ] , [X(·)]t(µ) = µ({0, 0})[X

X(·) has (D0 ⊕ L2) ⊗̂
2
h-quadratic variation

[X(·)] :
(
D0 ⊕ L2

)
⊗̂

2
h −→ C[0, T ] , [X(·)]t(µ) = µ(

X(·) has Diag-quadratic variation

[X(·)] : Diag −→ C[0, T ] , [X(·)] (µ) =

∫ t

g(−x)[X
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6 About robustness of Black-Scholes

formula

Let (St) be the price of a financial asset of the type

St = exp(σWt −
σ2

2
t) , σ > 0 .

Let h = f̃(ST ) = f(WT ) where f(y) = f̃
(
exp(σy − σ2

2
T )

)
.
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Let ũ : [0, T ] × R −→ R solving

{
∂tũ(t, x) + 1

2
∂xxũ(t, x) = 0

ũ(T, x) = f̃(x) x ∈ R.

Applying classical Itô formula we obtain

h = ũ(0, S0) +

∫ T

0

∂xũ(s, Ss)dSs

= u(0,W0) +

∫ T

0

∂xu(s,Ws)dWs

for a suitable u : [0, T ] × R −→ R.
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Does one have a similar formula if W is replaced by a finite quadratic
variation X such that [X]t = t? The answer is YES!
Let X such that [X]t = t

A1 f : R −→ R continuous and polynomial growth

A2 v ∈ C1,2([0, T [×R) ∩ C0([0, T ] × R) such that

{
∂tv(t, x) + 1

2
∂xxv(t, x) = 0

v(T, x) = f(x)
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Then

h := f(XT ) = v(0, X0) +

∫ T

0

∂xv(s,Xs)d
−Xs

︸ ︷︷ ︸
improper forward integral

Schoenmakers-Kloeden (1999) Coviello-Russo (2006)
Bender-Sottinen-Valkeila (2008)
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Natural question

Generalization to the case of path dependent option?

As first step we revisit the toy model.
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The toy model revisited

Proposition 13 We set B = C([−T, 0]) and η ∈ B and we
define

H : B −→ R, by H(η) := f(η(0))

u : [0, T ] × B −→ R, by u(t, η) := v(t, η(0))

Then

u ∈ C1,2 ([0, T [×B; R) ∩ C0 ([0, T ] × B; R)

and solves
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{
∂tu(t, η) + 1

2
〈D2u (t, η) , 1D〉 = 0

u(T, η) = H(η)
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Proof.

u(T, η) = v(T, η(0)) = f(η(0)) = H(η)

∂tu (t, η) = ∂tv (t, η(0))

Du (t, η) = ∂xv (t, η(0)) δ0

D2u (t, η) = ∂2
x xv (t, η(0)) δ0 ⊗ δ0

∂tu (t, η) + 1
2
D2u (t, η)({0, 0}) = 0.
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7 A generalized Clark-Ocone type

formula

We set B = C([−T, 0]).

X real continuous stochastic process with values in B.

X0 = 0,

[X]t = t.

Stochastic calculus via regularization in Banach spaces with financial motivations. – p. 60/71



Main task: to look for classes of functionals

H : B −→ R

such that the r.v.
h := H(XT (·))

admits representation

h = H0 +

∫ T

0

ξsd
−Xs
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Moreover we look for an explicit expression for
H0 ∈ R

ξ (adapted) process with respect to the canonical
filtration of X
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Idea

Obtain the representation formula by expressing
h = H(XT (·)) as

h = H(XT (·)) = lim
t↑T

u(t,Xt(·))

where u ∈ C1,2 ([0, T [×B) solves an infinite dimensional
PDE, if previous limit exists.
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8 An infinite dimensional PDE

Let H : B −→ R, we will show the existence of a function
u : [0, T ]×B −→ R of class C1,2 ([0, T [×B)∩C0 ([0, T ] × B)
solving Infinite dimensional PDE





∂tu(t, η) +′′
∫ 0

−t
Dacu (t, η) dη ′′ + 1

2
〈D2u (t, η) , 1D〉 = 0

u(T, η) = H(η)
(3)
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where

1D(x, y) :=

{
1 if x = y, x, y ∈ [−T, 0]

0 otherwise

Dacu (t, η) absolute continuous part of measure
Du (t, η)

If x 7→ Dac
x u (t, η) has bounded variation, previous

integral is defined by an integration by parts.
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Then

h = H0 +

∫ T

0

ξsd
−Xs (4)

with

H0 = u(0, X0(·))

ξs = Dδ0u(s,Xs(·))
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Methodology: two steps

We will choose a functional u : [0, T ] × B −→ R which
solves the infinite dimensional PDE (3) with final
condition H.

Using Itô formula we establish a representation form
(4).
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Particular cases

1. H(η) = f(η(0)) where f : R → R continuous and
polynomial growth ⇒ u such that D2u(t, η) ∈ D0,0

2. H(η) =
(∫ 0

−T
η(s)ds

)2

⇒ u such that

D2u(t, η) ∈ (D0 ⊕ L2)⊗̂
2
h

3. H(η) =
∫ 0

−T
η(s)2ds ⇒ u such that

D2u(t, η) ∈ (Diag ⊕D0,0)
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A general representation theorem

Theorem 14 H : B −→ R

u ∈ C1,2 ([0, T [×B) ∩ C0 ([0, T ] × B)

x 7→ Dac
x u (t, η) has bounded variation

D2u (t, η) ∈ (D0 ⊕ L2)⊗̂
2
h
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u solves
{

∂tu(t, η) +
∫

]−t,0]
Dacu(t, η) dη + 1

2
D2u (t, η)({0, 0}) =

u(T, η) = H(η), η ∈ B.

(5)

Then h has representation (4).
Proof. Application of Itô’s formula.
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Sufficient conditions to solve (5)

1. When X general process such that [X]t = t.

H has a smooth Fréchet dependence on
L2([−T, 0]).

h := H(XT (·)) =

f
(∫ T

0
ϕ1(s)d

−Xs, . . . ,
∫ T

0
ϕn(s)d−Xs

)
,

f : Rn → R measurable and with linear growth
(ϕi) ∈ C2([0, T ]; R)

2. When X = W if Clark-Ocone formula does not apply.
For instance when h /∈ D1,2, or h /∈ L2(Ω)
(even not in L1(Ω)).
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