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Control of the motion of a boat

» We consider a rigid body S ¢ R? with one axis of
symmetry, surrounded by a fluid, and which is controlled
by two fluid flows, a longitudinal one and a transversal one.




Aims

» We aim to control the position and velocity of the rigid body
by the control inputs. System of dimension 3+3 with a PDE
in the dynamics. Control living in R2. No control objective
for the fluid flow (exterior domain!!).

» Model for the motion of a boat with a longitudinal propeller,
and a transversal one (thruster) in the framework of the
theory of fluid-structure interaction problems. Rockets and
planes also concerned.



Bowthruster




Longitudinal thruster




What is a fluid-structure interaction problem?

» Consider a rigid (or flexible) structure in touch with a fluid.

» The velocity of the fluid obeys Navier-Stokes (or Euler)
equations in a variable domain

» The dynamics of the rigid structure is governed by Newton
laws. Great role played by the pressure.

» Questions of interest: existence of (weak, strong, global)

solutions of the system fluid+solid, uniqueness, long-time
behavior, control, inverse problems, optimal design, ...



Main difficulties

1. The systems describing the motions of the fluid and the
solid are nonlinear and strongly coupled; e.g., the
pressure of the fluid gives rise to a force and a torque
applied to the solid, and the fluid domain changes when
the solid is moving.

2. The fluid domain RN \ S(t) is an unknown function of time



Why to consider perfect fluids?

1. Euler equations provide a good model for the motion of
boats or submarines in a reasonable time-scale.

2. Explicit computations may be performed with the aid of
Complex Analysis when the flow is potential and 2D.

3. There is a natural choice for the boundary conditions
Ure - N = 0O for Euler equations. For Navier-Stokes flows,
one often takes U, = 0

4. The control theory of Euler flows is well understood
(Coron, Glass).



System under investigation

Q(t) = R?\ S(1)

Euler U+ (u-Viu+vVp=0, x € Q(t)
divu =0, x € Q(t)
u-n= (h’ r(x —h)t) - A4 w(x, 1), x € 0Q(t)
|Im‘x|_)OO ( ,t) 0

Newton mAh’(t) :/ pndo
o9(t)

Jr’:/ (x — h)* - prido
o9(1)

System supplemented with Initial Conditions, and with the value
of the vorticity at the incoming flow (in ©(t)) for the uniqueness



System in a frame linked to the solid

After a change of variables and unknown functions, we obtain
in Q:=R2\ S(0)

i+ (v—Il—ryt)-Vv+rwt4+vVg=0,ycQ

divv=0,yeQ

1<j<2
lim v(y,t)=0
ly|—o0

mh”(t):/ qrido — mrl*
aS(t)

Jr'=[ qgn-y‘do
o0



Potential flows
Assuming that the initial vorticity and circulation are null
wp = curl Uy =0, Mo ::/ Up-ntdo =0
o0

and that the vorticity at the inflow part of 92 is null
w(y,t)=0 if w;(t)xi(y) <0 forsomei=1,2
then the flow remains potential, i.e. v = V¢ where ¢ solves

Ap =0 ian[O,T]
gﬁ: I+ ryt) n+ZW, xi(y) ondQ x [0, T]
i=1,2

Iim|y|ﬂoo V(b(y) =0 on [07 T]



Potential flows (continued)

v = V¢ decomposed as

Vo= > L({t)Vei(y) + rt)Ve(y) + > wi(t)Voi(y)

i=1,2 i=1,2

where the functions ¢, v¢; and 6; are harmonic on Q and fulfill
the following boundary conditions on 9Q

dp | o 90
%—y - n, %—n/(}’): 8n_X'(y)

This gives the following expression for the pressure

2
. . v
g=—{>_ lpitio+ ) Wi9i+|2‘

i=1,2 i=1,2

—l-v—ryt.v}

Plugging this expression in Newton’s law yields a



Finite dimension control system

H =1
Il = ¢cw' + B(l,w)

where h = [hy, ho, 01", | = [y, b, 1", w = [wy, w,] ", and

m+f¢1n1 0 0
I{O m+ [onp [ onp ]
0 oyt -n J+ [eyt-n
—f91l71 0
C|:0 —f02n2 ]
0 —f@gyi-n

where [ = [, and B(/,w) is bilinear in (/, w)



Toy problem wo =0, ho =L =0

(] m="h
= aw+pBwih +yw?

where

(@, 6,7) = (m+/891#1”1)_1(/“291”17/8QX1317JJ1,/89X1<9191)

Claims
» If we add the equation wy’ = v4 to (x), the system with
state (hy, /1, wy) and input v4 is NOT controllable!
» In general we cannot impose the condition
w1(0) = wy(T) = 0 when /4(0) = /1(T) = 0 (i.e. fluid at rest
at t =0, T). Actually we can do that if and only if
v+ab=0.



Proof of the claims

Introduce z; := I — awy From
lf = aw] + Bwyly +yw?

we derive
Zy = pwizy + (v + afB)wi

hence

t t
21(1) = [21(0) + (1 + aB) [ wh(r)e™ IS P (Skdirigl oo
0



Generic assumption

a ae

We shall assume that det [
azy a

apnn = —/ Oano
o0
app = —(m+/ ¢1n1)(/ X13292+/ X20201)
o0 o0 o0

—/ X20211 / 01m
09 o9

ay = —/ Oyt - n
00

oo = —(m+/ "Lﬁ1n1)(/ X1V6’2-yj'+/ x2 V4 -yL)
o0 o0 o0

+( Y1V92-T—/ xzw-yﬂ/ 6y
o0 o0 o0

} # 0 where



Main result

Thm If

det[a” a2 ] £0
as1  azp

then the system

H =1
Il = cw' + B(l,w)

with state (h, /) € R® and control w € R? is locally controllable
around O.

The local controllability also holds true in the presence of
vorticity and circulation.



Step 1. Loop-shaped trajectory

We consider a special trajectory of the toy problem (w, = 0)
constructed as in the flatness approach due to M. Fliess, J.
Levine, P. Martin, P. Rouchon

» We first define the trajectory

hi(t) = X1 —cos(2rt/T))
h(t) = X@2r/T))sin(2rt/T)

» We next solve the Cauchy problem

W =a 'l — W - gwih)
wi(0) =0
to design the control input.

» Then Wy exists on [0, T] for 0 < A << 1. (hy, /) = 0 at
t =0, T. Nothing can be said about wy(T).



Step 2. Return Method

We linearize along the above (non trivial) reference trajectory to
use the nonlinear terms. We obtain a system of the form

x'=A(t)x + B(t)u+ CU’

h,l




Linearization along the reference trajectory

Fact. The reachable set from the origin for the system

X' =A(t)x +B(t)u+ CU, xeR", ueR"

R =R7(A B+ AC) + CR" + &(T,0)CR™

where ®(t, ty) is the resolvent matrix associated with the
system x’ = A(t)x, and R (A, B) denotes the reachable set in
time T from 0 for x' = A(t)x + B(t)u, i.e.

R7(A,B) = {x(T); X = A(t)x + B(t)u, x(0) =0, u e L3(0, T,R™)}



Silverman-Meadows test of controllability

Consider a (smooth) time-varying control system
x = A(t)x + B(t)u, xeR" tel0,T], ueR™
Define a sequence (M;(-))i>o by

aM;_
at

Then forany f, € [0, T] and any i > 0

Mo(t) = B(t), Mi(t) = — A(t)M;(t) i>1,te[0,T]

q)(T to)M/(to)Rm C RT(A7 B)



Proof of the main result (continued)

To complete the proof of the theorem in the case of potential
flows, we use

» the generic assumption to prove that the linearized system
is controllable. (We use the term wqws to control r)

» the Implicit Function Theorem to conclude.



Proof of the main result (continued)

In the general case (vorticity + circulation), we prove/use

» a Global Well-Posedness result using an extension
argument (which enables to define the vorticity at the
incoming part of the flow), and Schauder Theorem in
Kikuchi’s spaces;

» Linear estimates for the difference of the velocities
corresponding to potential (resp. general) flows in terms of
the vorticity and circulation at time 0;

» a topological argument to conclude when the vorticity and
circulation are small;

» a scaling argument due to J.-M. Coron



Conclusion

» Local exact controllability result for a boat with a general
shape

» Two linearization arguments: in R® (for potential flows) and
next to deal with general flows

» Prospects:

» Motion planning
» 3D (submarine)
» Numerics??



