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Control of the motion of a boat

I We consider a rigid body S ⊂ R2 with one axis of
symmetry, surrounded by a fluid, and which is controlled
by two fluid flows, a longitudinal one and a transversal one.
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Aims

I We aim to control the position and velocity of the rigid body
by the control inputs. System of dimension 3+3 with a PDE
in the dynamics. Control living in R2. No control objective
for the fluid flow (exterior domain!!).

I Model for the motion of a boat with a longitudinal propeller,
and a transversal one (thruster) in the framework of the
theory of fluid-structure interaction problems. Rockets and
planes also concerned.



Bowthruster



Longitudinal thruster



What is a fluid-structure interaction problem?

I Consider a rigid (or flexible) structure in touch with a fluid.
I The velocity of the fluid obeys Navier-Stokes (or Euler)

equations in a variable domain
I The dynamics of the rigid structure is governed by Newton

laws. Great role played by the pressure.
I Questions of interest: existence of (weak, strong, global)

solutions of the system fluid+solid, uniqueness, long-time
behavior, control, inverse problems, optimal design, ...



Main difficulties

1. The systems describing the motions of the fluid and the
solid are nonlinear and strongly coupled; e.g., the
pressure of the fluid gives rise to a force and a torque
applied to the solid, and the fluid domain changes when
the solid is moving.

2. The fluid domain RN \ S(t) is an unknown function of time



Why to consider perfect fluids?

1. Euler equations provide a good model for the motion of
boats or submarines in a reasonable time-scale.

2. Explicit computations may be performed with the aid of
Complex Analysis when the flow is potential and 2D.

3. There is a natural choice for the boundary conditions
urel · n = 0 for Euler equations. For Navier-Stokes flows,
one often takes urel = 0

4. The control theory of Euler flows is well understood
(Coron, Glass).



System under investigation

Ω(t) = R2 \ S(t)

Euler ut + (u · ∇)u +∇p = 0, x ∈ Ω(t)
div u = 0, x ∈ Ω(t)
u · ~n = (h′ + r(x − h)⊥) · ~n + w(x , t), x ∈ ∂Ω(t)
lim|x |→∞ u(x , t) = 0

Newton m h′′(t) =

∫
∂Ω(t)

p ~n dσ

J r ′ =
∫

∂Ω(t)
(x − h)⊥ · p~n dσ

System supplemented with Initial Conditions, and with the value
of the vorticity at the incoming flow (in Ω(t)) for the uniqueness



System in a frame linked to the solid

After a change of variables and unknown functions, we obtain
in Ω := R2 \ S(0)

vt + (v − l − ry⊥) · ∇v + rv⊥ +∇q = 0, y ∈ Ω

div v = 0, y ∈ Ω

v · ~n = (h′ + ry⊥) · ~n +
∑

1≤j≤2

wj(t)χj(y), y ∈ ∂Ω

lim
|y |→∞

v(y , t) = 0

m h′′(t) =

∫
∂S(t)

q ~n dσ −mrl⊥

J r ′ =
∫

∂Ω
qn · y⊥ dσ



Potential flows

Assuming that the initial vorticity and circulation are null

ω0 := curl u0 ≡ 0, Γ0 :=

∫
∂Ω

u0 · n⊥dσ = 0

and that the vorticity at the inflow part of ∂Ω is null

ω(y , t) = 0 if wi(t)χi(y) < 0 for some i = 1,2

then the flow remains potential, i.e. v = ∇φ where φ solves
∆φ = 0 in Ω× [0,T ]
∂φ

∂n
= (l + ry⊥) · n +

∑
i=1,2

wi(t)χi(y) on ∂Ω× [0,T ]

lim|y |→∞∇φ(y) = 0 on [0,T ]



Potential flows (continued)

v = ∇φ decomposed as

∇φ =
∑

i=1,2

li(t)∇ψi(y) + r(t)∇ϕ(y) +
∑

i=1,2

wi(t)∇θi(y)

where the functions ϕ, ψi and θi are harmonic on Ω and fulfill
the following boundary conditions on ∂Ω

∂ϕ

∂n
= y⊥ · n, ∂ψi

∂n
= ni(y),

∂θi

∂n
= χi(y)

This gives the following expression for the pressure

q = −{
∑

i=1,2

l ′iψi + ṙϕ+
∑

i=1,2

ẇiθi +
|v |2

2
− l · v − ry⊥ · v}

Plugging this expression in Newton’s law yields a



Finite dimension control system

h′ = l
I l ′ = Cw ′ + B(l ,w)

where h = [h1,h2, θ]
T , l = [l1, l2, r ]T , w = [w1,w2]

T , and

I =

 m +
∫
ψ1n1 0 0

0 m +
∫
ψ2n2

∫
ϕn2

0
∫
ψ2y⊥ · n J +

∫
ϕy⊥ · n



C =

 −
∫
θ1n1 0

0 −
∫
θ2n2

0 −
∫
θ2y⊥ · n


where

∫
=

∫
∂Ω and B(l ,w) is bilinear in (l ,w)



Toy problem w2 = 0, h2 = l2 = 0

(∗)
{

h′1 = l1
l ′1 = αw ′

1 + βw1l1 + γw2
1

where

(α, β, γ) := (m +

∫
∂Ω
ψ1n1)

−1(

∫
∂Ω
θ1n1,

∫
∂Ω
χ1∂1ψ1,

∫
∂Ω
χ1∂1θ1)

Claims
I If we add the equation w1

′ = v1 to (∗), the system with
state (h1, l1,w1) and input v1 is NOT controllable!

I In general we cannot impose the condition
w1(0) = w1(T ) = 0 when l1(0) = l1(T ) = 0 (i.e. fluid at rest
at t = 0,T ). Actually we can do that if and only if
γ + αβ = 0.



Proof of the claims

Introduce z1 := l1 − αw1 From

l ′1 = αw ′
1 + βw1l1 + γw2

1

we derive
z ′1 = βw1z1 + (γ + αβ)w2

1

hence

z1(t) = [z1(0) + (γ + αβ)

∫ t

0
w2

1 (τ)e−
R τ

0 βw1(s)dsdτ ]e
R t

0 βw1(s)ds



Generic assumption

We shall assume that det
[

a11 a12
a21 a22

]
6= 0 where

a11 = −
∫

∂Ω
θ2n2

a12 = −(m +

∫
∂Ω
ψ1n1)(

∫
∂Ω
χ1∂2θ2 +

∫
∂Ω
χ2∂2θ1)

−
∫

∂Ω
χ2∂2ψ1 ·

∫
∂Ω
θ1n1

a21 = −
∫

∂Ω
θ2y⊥ · n

a22 = −(m +

∫
∂Ω
ψ1n1)(

∫
∂Ω
χ1∇θ2 · y⊥ +

∫
∂Ω
χ2∇θ1 · y⊥)

+(

∫
∂Ω

y1∇θ2 · τ −
∫

∂Ω
χ2∇ψ1 · y⊥)

∫
∂Ω
θ1n1



Main result

Thm If

det
[

a11 a12
a21 a22

]
6= 0

then the system

h′ = l
I l ′ = Cw ′ + B(l ,w)

with state (h, l) ∈ R6 and control w ∈ R2 is locally controllable
around 0.
The local controllability also holds true in the presence of
vorticity and circulation.



Step 1. Loop-shaped trajectory

We consider a special trajectory of the toy problem (w2 ≡ 0)
constructed as in the flatness approach due to M. Fliess, J.
Levine, P. Martin, P. Rouchon

I We first define the trajectory

h1(t) = λ(1− cos(2πt/T ))

l1(t) = λ(2π/T )) sin(2πt/T )

I We next solve the Cauchy problem{
w1

′ = α−1{l1
′ − γw1

2 − βw1l1}
w1(0) = 0

to design the control input.
I Then w1 exists on [0,T ] for 0 < λ << 1. (h1, l1) = 0 at

t = 0,T . Nothing can be said about w1(T ).



Step 2. Return Method
We linearize along the above (non trivial) reference trajectory to
use the nonlinear terms. We obtain a system of the form

x ′ = A(t)x + B(t)u + Cu′

t

t

T

T

h,l

w



Linearization along the reference trajectory

Fact. The reachable set from the origin for the system

x ′ = A(t)x + B(t)u + Cu′, x ∈ Rn, u ∈ Rm

is
R = RT (A,B + AC) + CRm + Φ(T ,0)CRm

where Φ(t , t0) is the resolvent matrix associated with the
system x ′ = A(t)x , and RT (A,B) denotes the reachable set in
time T from 0 for x ′ = A(t)x + B(t)u, i.e.

RT (A,B) = {x(T ); x ′ = A(t)x + B(t)u, x(0) = 0, u ∈ L2(0,T ,Rm)}



Silverman-Meadows test of controllability

Consider a (smooth) time-varying control system

x = A(t)x + B(t)u, x ∈ Rn, t ∈ [0,T ], u ∈ Rm.

Define a sequence (Mi(·))i≥0 by

M0(t) = B(t), Mi(t) =
dMi−1

dt
− A(t)Mi(t) i ≥ 1, t ∈ [0,T ]

Then for any t0 ∈ [0,T ] and any i ≥ 0

Φ(T , t0)Mi(t0)Rm ⊂ RT (A,B)



Proof of the main result (continued)

To complete the proof of the theorem in the case of potential
flows, we use

I the generic assumption to prove that the linearized system
is controllable. (We use the term w1w2 to control r )

I the Implicit Function Theorem to conclude.



Proof of the main result (continued)

In the general case (vorticity + circulation), we prove/use
I a Global Well-Posedness result using an extension

argument (which enables to define the vorticity at the
incoming part of the flow), and Schauder Theorem in
Kikuchi’s spaces;

I Linear estimates for the difference of the velocities
corresponding to potential (resp. general) flows in terms of
the vorticity and circulation at time 0;

I a topological argument to conclude when the vorticity and
circulation are small;

I a scaling argument due to J.-M. Coron



Conclusion

I Local exact controllability result for a boat with a general
shape

I Two linearization arguments: in R6 (for potential flows) and
next to deal with general flows

I Prospects:
I Motion planning
I 3D (submarine)
I Numerics??


