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Abstract

The method of coupling of reflecting Brownian motion is a useful technique for proving results
on various functionals associated to the reflecting Brownian motion.

In this talk, we will present two such couplings of reflecting Brownian motions: the scaling
coupling and the mirror coupling of reflecting Brownian motions.

As an application of the scaling coupling, we will prove a monotonicity of the lifetime of
reflecting Brownian motion with killing, which implies the validity of the Hot Spots conjecture
of J. Rauch for a certain class of domains.

As applications of the mirror coupling, we will present a proof of the Laugesen-Morpurgo
conjecture on the radial monotonicity of the diagonal of the Neumann heat kernel of the unit
ball in Rn, and a unifying proof of the results of I. Chavel and W. Kendall on Chavel’s
conjecture on the domain monotonicity of the Neumann heat kernel.
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Introduction

The coupling technique was introduced by Doeblin ([5], 1938), in order to prove the strong
ergodicity of a Markov chain with a finite state space.

The method did not get much attention until 1970’s, when it became one of the most powerful
technique in the developing theory of interacting particle systems. Nowadays, the coupling
method is a standard tool for probabilists, and it appears in standard graduate and
undergraduate textbooks.

Aside from probability, the coupling method has applications in the study of Markov chains,
renewal theory, diffusions, PDE, aso.

In general, a coupling is a construction of two processes X and Y on the same (or different)
probability space Ω, such that they are dependent in some useful way.

In the present talk we will restrict the attention to couplings of stochastic processes, more
precisely to the case of (reflecting or killed) Brownian motions.
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Preliminaries

Definition (Brownian motion)

A 1-dimensional Brownian motion starting at x ∈ R is a continuous stochastic process (Bt)t≥0
with B0 = x a.s for which Bt − Bs is a normal random variableN (0, t − s), independent of the
σ-algebra Fs = σ (Br : r ≤ s), for all 0 ≤ s < t.

If Bi
t are independent 1-dimensional Brownian motions starting at xi, 1 ≤ i ≤ d, then

Bt =
`
B1

t , . . . ,B
d
t
´

is a d-dimensional Brownian motion starting at x =
`
x1, . . . , xd´ ∈ Rd.

Definition (Reflecting Brownian motion)

Reflecting Brownian motion in a smooth domain D ⊂ Rd starting at x0 ∈ D is a solution of the
stochastic differential equation

Xt = x0 + Bt +

Z t

0
νD (Xs) dLX

s , t ≥ 0, (1)

where Bt is a d-dimensional Brownian motion starting at B0 = 0 on (Ω,F , (Ft)t≥0,P), νD is
the inward unit vector field on ∂D, LX

t is the local time of X on the boundary of D, Xt is
Ft-adapted and almost surely Xt ∈ D for all t ≥ 0.
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Preliminaries

Definition (Reflecting Brownian motion with killing)

If Xt is a reflecting Brownian motion in a smooth domain D ⊂ Rd starting at x0 ∈ D, S ⊂ ∂D
and τ = τS = inf{t > 0 : Xt ∈ S} is the hitting time of S, then

Yt =


Xt, t < τ
†, t ≥ τ , (2)

is a reflecting Brownian motion in D killed on hitting S ⊂ ∂D
(† /∈ D is the cemetery state and τ is the killing time).

Proposition (Invariance properties of Brownian motion)

Brownian motion is invariant under is translation, rotation and symmetry.
It is also (almost) invariant under scaling and composition with conformal maps.

This gives rise to the following couplings of Brownian motions:
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Scaling coupling and applications
Key of the construction: if Bt is a d-dimensional Brownian motion, then

1
sups≤t ‖Bs‖

Bt

is a time changed reflecting Brownian motion in the unit ball U ⊂ Rn.

Theorem ([1])

Let Xt be a reflecting Brownian motion in U starting at X0 = x0 ∈ U− {0} and a ∈ [‖x0‖, 1].
The process Yt defined by:

Yt =
1

Mαt

Xαt , t ≥ 0, (3)

where Mt = a ∨ sups≤t‖Xs‖ and α−1
t = At =

R t
0

1
M2

s
ds,

is a FX
αt -adapted reflecting Brownian motion in U starting at Y0 = 1

a x0.

Definition

The pair Xt, Yt constructed above is called a scaling coupling of reflecting Brownian motions in
U starting at x0 ∈ U− {0}, respectively y0 = 1

a x0 ∈ U.
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Monotonicity of lifetime of the killed RBM in U

Xt

Yt

X0

Y0

Figure: Mirror coupling of reflecting Brownian motions in the unit ball U.

Mt = a ∨ sups≤t‖Xs‖ ≤ 1 =⇒ At =

tZ
0

1
M2

s
ds ≥ t =⇒ αt = A−1

t ≤ t =⇒ τX = ατY≤ τ Y

(τX, τ Y denotes the lifetime of Xt, Yt killed on a hyperplane through origin).
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Scaling coupling and applications

Corollary

For any t > 0, P(τ x > t) is a radially increasing function
(τ x is the lifetime of RBM in U starting at x, killed on a hyperplane through origin).

Using the asymptotics P(τ x > t) ≈ e−λ1tψ2
1(x) = e−µ2tϕ2

2(x), we obtain:

Theorem

If ϕ is a second Neumann eigenfunction of the Laplacian on U which is antisymmetric with
respect to a hyperplane through the origin, then ϕ is a radially monotone function.
In particular, the maximum and the minimum of ϕ over U are attained only at the boundary of
U, that is the Hot Spots conjecture holds for ϕ.

Corollary

The Hot Spots conjecture holds for the unit ball U ⊂ Rn, that is

min
∂U

ϕ = min
U
ϕ < max

U
ϕ = max

∂U
ϕ,

for any second Neumann eigenfunction ϕ of U.
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An application to the Hots Spots conjecture

The above result is known (Kawohl, [6]).

Using conformal invariance of Brownian motion and the geometric characterization of a
convex map, the same arguments can be applied to any smooth bounded domain D ⊂ R2 in
order to obtain the following:

Theorem ([1])

If D ⊂ R2 is a convex C1,α domain (0 < α < 1), and at least one of the following hypothesis
hold,

i) D is symmetric with respect to both coordinate axes;

ii) D is symmetric with respect to the horizontal axis and the diameter to width ratio dD/lD

is larger than 4j0
π
≈ 3.06;

then Hot Spots conjecture holds for the domain D.

M. N. Pascu (Transilvania Univ) Couplings of RBM and applications 10/19 26.8.2010 10 / 19



An application to the Hots Spots conjecture

The above result is known (Kawohl, [6]).

Using conformal invariance of Brownian motion and the geometric characterization of a
convex map, the same arguments can be applied to any smooth bounded domain D ⊂ R2 in
order to obtain the following:

Theorem ([1])

If D ⊂ R2 is a convex C1,α domain (0 < α < 1), and at least one of the following hypothesis
hold,

i) D is symmetric with respect to both coordinate axes;

ii) D is symmetric with respect to the horizontal axis and the diameter to width ratio dD/lD

is larger than 4j0
π
≈ 3.06;

then Hot Spots conjecture holds for the domain D.

M. N. Pascu (Transilvania Univ) Couplings of RBM and applications 10/19 26.8.2010 10 / 19



An application to the Hots Spots conjecture

The above result is known (Kawohl, [6]).

Using conformal invariance of Brownian motion and the geometric characterization of a
convex map, the same arguments can be applied to any smooth bounded domain D ⊂ R2 in
order to obtain the following:

Theorem ([1])

If D ⊂ R2 is a convex C1,α domain (0 < α < 1), and at least one of the following hypothesis
hold,

i) D is symmetric with respect to both coordinate axes;

ii) D is symmetric with respect to the horizontal axis and the diameter to width ratio dD/lD

is larger than 4j0
π
≈ 3.06;

then Hot Spots conjecture holds for the domain D.

M. N. Pascu (Transilvania Univ) Couplings of RBM and applications 10/19 26.8.2010 10 / 19



Mirror coupling and applications
Mirror coupling was introduced by Kendall ([7]), and developed by Burdzy et. al ([1], [2], [3]).

For a smooth domain D ⊂ Rd and a BM Bt, they considered the following system of SDE:

Xt = x + Bt +

Z t

0
νD (Xs) dLX

s (4)

Yt = y + Zt +

Z t

0
νD (Xs) dLY

s (5)

Zt = Bt − 2
Z t

0

Xs − Ys

||Xs − Ys||2
(Xs − Ys) · dBs (6)

and proved pathwise uniqueness and strong uniqueness for t < τ = inf {s > 0 : Xs = Ys}.
We let Xt = Yt for t ≥ τ , and refer to Xt, Yt as a mirror coupling in D starting at x, y ∈ D.

Remark

G (u) v = v− 2 (u · v) u is the mirror image of v wrt hyperplane through 0 perpendicular to u.

(6)⇐⇒ dZt = G
„

Xt − Yt

||Xt − Yt||

«
dWt,

(the increments of Zt and Bt are mirror images wrt hyperplane of symmetryMt of Xt and Yt).
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Lemma (“MirrorMt moves towards origin”, [3])

Let Xt, Yt be a mirror coupling of RBM in U starting at x, y ∈ U, and let
τ = inf{t > 0 : Xt = Yt} and τ1 = inf{t > 0 : 0 ∈Mt}.

For all times t < τ ∧ τ1, the mirrorMt moves towards the origin, in such a way that if a point
P ∈ U and the origin are separated byMt1 for t1 ∈ [0, τ ∧ τ1), then the point P and the origin

are separated byMt2 for all t2 ∈ [t1, τ ∧ τ1).

0

Yt

Xt

x
y

Mt M0

At

Bt

P

Figure: Mirror coupling of reflecting Brownian motions in the unit disk (d = 2).
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Inequalities for the Neumann heat kernel of the unit ball

Let pU(t, x, y) denote the Neumann heat kernel of the unit ball U ⊂ Rd (d ≥ 1).

Theorem ([3])

For any points x, y, z ∈ U such that ‖y‖ ≤ ‖x‖ and ‖x− z‖ ≤ ‖y− z‖, and any t > 0 we have:

pU (t, y, z) ≤ pU (t, x, z) . (7)

Theorem ([3])

For any x ∈ U− {0}, r ∈ (0,min {‖x‖, 1− ‖x‖}) and t > 0 we have:Z
∂U

pU (t, x + ru, x) dσ(u) ≤ pU(t, x + r x
‖x‖ , x) ≤ pU(t, x + r x

‖x‖ , x + r x
‖x‖ ), (8)

where σ is the normalized surface measure on ∂U.
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Resolution of the Laugesen-Morpurgo conjecture

Theorem (Resolution of the Laugesen-Morpurgo conjecture)

For any t > 0, pU (t, x, x) is a strictly increasing radial function in U, that is

pU(t, x, x) < pU(t, y, y), (9)

for all x, y ∈ U with ‖x‖ < ‖y‖.

Proof.

d
d‖x‖pU (t, x, x) = lim

r↘0

pU(t, x + r x
‖x‖ , x + r x

‖x‖ )− pU (t, x, x)

r

≥ lim
r↘0

R
∂U pU (t, x + ru, x) dσ(u)− pU (t, x, x)

r

=

Z
∂U

lim
r↘0

pU (t, x + ru, x)− pU (t, x, x)

r
dσ(u)

=

Z
∂U
∇pU (t, x, x) · u dσ(u)

= 0.
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Extension of the mirror coupling and applications

Recently ([3]), the author extended the construction of the mirror coupling to the case when the
two RBM live in different domains D1,D2 ⊂ Rn such that D1 ∩ D2 is a convex domain and
D1,2 have non-tangential boundaries.

D1

D2

Figure: Typical domains for the extended mirror coupling.
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A unifying proof of Chavel’s conjecture

Conjecture (Chavel’s conjecture on domain monotonicity of Neumann heat kernel, 1986)

If D1 ⊂ D2 are convex domains then for all t > 0 and x, y ∈ D1 we have

pD1 (t, x, y) ≥ pD2 (t, x, y) .

I. Chavel proved the conjecture in the case D2 is a ball centered at x (or y) and D1 is convex
(integration by parts).
W. Kendall proved the conjecture in the case when D1 is a ball centered at x (or y) and D2 is
convex (coupling arguments).
When combined, the above results show the following:

Theorem

If D1 ⊂ D2 are convex domains then for all t > 0 and x, y ∈ D1 we have

pD1 (t, x, y) ≥ pD2 (t, x, y) ,

whenever there exists a ball B centered at either x or y such that D1 ⊂ B ⊂ D2.
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Sketch of the proof

Consider a mirror coupling of RBM Xt, Yt in D2,D1, starting at X0 = Y0 = x.

For all times t > 0, the mirrorMt of the coupling cannot separate the points Yt and y.

y

D1 D2

B(y, r)

M˙t

Xt

Yt

‖Yt − y‖ ≤ ‖Xt − y‖, t > 0 =⇒ pD1 (t, x, y) > pD2 (t, x, y) .
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