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Uy + v, =0 (MC) L ()
v =1 + uny on z = hg + n(x,t) (KBCs)
v = onz =20

on z = hg + n(x,t) (DBC)

l Delia lonescu-Kruse Small-amplitude capillary-gravity water waves: Exact solutions and particle motion beneath such waves — p.2/27



There are very few explicit solutions known for the
~ water-wave problems.

» for pure gravity water waves: Gerstner’s solution([1];
[2]; [3],[4]) and the edge wave solution related to it [5].

Beneath Gerstner’'s waves it is possible to have a
motion of the fluid where all particles describe circles
with a depth-dependent radius ([3], [4]).
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o for pure capillary water waves: Crapper’s solution
1] and its generalization in the case of finite depth [2].

In [4], by the use of Longuet-Higgins method [3], the
particle trajectories in Crapper’s waves are derived. It
IS found that the orbits of the steeper waves are
neither circular nor closed.

1] (1957) CRAPPER G. D., J. Fluid Mech.

2] (1976) KINNERSLEY W., J. Fluid Mech.
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o for capillary-gravity water waves no exact analytic
solution has yet been found.

Making use of numerical studies, in [1] the particle
trajectories in irrotational nonlinear capillary-gravity
waves on ideal fluids of infinite depth are investigated.

[1] (1985) HOGAN S. J., J. Fluid Mech.
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In what follows, we investigate the capillary-gravity
waves and the internal motion of the fluid under the
passage of such waves within the framework of

small-amplitude waves theory.

We simplify the full system of equations by a
linearization which is around still water.

We define the set of non-dimensional variables:

A
r— A, 2z hgz, n—an, tH\/ﬁt,
u— v/ ghou, v— hO—Vg\hOv

@ p = po + pgho(l — z) + pghop
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In non-dimensional scaled variables, the boundary
value problem (1) becomes

up + €(uty + vuy) = —py
62 [v + e(uvg + vvy)] = —p,
Uy +v, =0
v =1 + eung on z =14 en(x,t) )
p=1mn— 52W€(1+€27Z;;”‘;7%)3/2 on z =1+ en(x,t)
v =20 onz =20

e = ;- Is the amplitude parameter
0 = is the shallowness parameter

W, = g% is a \Weber number
0
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We suppose that the water flow is irrotational, thus,
In addition to the system (2) we also have the eq.:

Uy — Vg = 0 (3)
which writes in non-dimensional variables as:

2

Uy, — 07V, =0 (4)

By letting ¢ — 0, § and 1, being fixed, we obtain a linear
approximation of (2)+(4).
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The linearized problem:

( ut + py =0
6% +p, =0
Uy + v, =0
¢ Uy —06%v, =0 (5)
V=1 on z =1
p:n_52We77xa: on z =1
\ v=>0 onz =0

Solving this problem, we get a parameter ¢, by which
we can describe different background flows in the irro-
g*‘a"’%tational case.
Rt
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From the first four eqgs. of (5) and applying the method of
separation of variables we get:

u(x, z,t) = ‘}Sl(m) cosh(kdz)n, + F(t)

~ ksin

v(x,z,t) = m sinh(kdz)mn,

Mtxa + k277t =0

F(t) an arbitrary function, £ > 0 a constant that might depend on time.
For periodic travelling wave solutions, with k£ = 27w, we choose

n(x,t) = cos(2mw(x — ct))

c IS to be determined. From the first 2 egs. of (5) and the boundary
a conditions we find the expressions of the pressure p, of ¢ and

£

¢ &, F(t) = const = ¢
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Thus, a periodic solution of the linear system (5) Is:

n(x,t) = cos(2mw(x — ct))
u(x, z,t) = Sinﬁg;é) cosh(27wdz) cos(2m(x — ct))+cy
2 : - (6)
v(z, z,t) = sinhgwé) sinh(270z) sin(27(z — ct))
p(w, 2,1) = G2mC s cosh(2m07) cos(2m(x — ct))

with the non-dimensional speed of the linear wave

tanh (270 47T 2
2 - tanh(mo) ) 2y A <1+ i )mmh<lﬂg>

276 21ho gA2 A\
(7)

KA
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Let (x(t), z(t)) be the path of a particle in the fluid
domain, (x(0), z(0)) := (xg, 20) at time ¢ = 0.
The motion of the particles is described by:

?l_f = u(x, z,t) = Sif&g;& cosh(2m0z) cos(2m(x — ct)) + ¢
% = v(x,2,t) = Sinﬁ&cw& sinh(27dz) sin(27(z — ct))
| (8)
Notice that
co = I/ U(S,Z,t)ds, (9)

representing therefore the strength of the underlying
uniform current (see also [1]).

MION 5T,

“& [1] (2010) CONSTANTIN A. AND STRAUSS W., Comm. Pure Appl.
R Math.
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Thus,

co = 0 will correspond to a region of still water
with no underlying current

co > 0 will characterize a favorable unitform current

co < 0 will characterize an adverse uniform current

z
ks
k=]
£
m
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Analyzing the first-order approximation  of the
nonlinear ordinary differential equation system
which describes the particle motion below
small-amplitude waves, it was obtained that all
water particles trace closed, circular or elliptic, orbits

(see, for example, [1], [2], [3], [4]).

1] (1953) LAMB H., Hydrodynamics.

2] (1994) DEBNATH L., Nonlinear Water Waves.

3] (1997) JOHNSON R. S., A Modern Introduction to the
Mathematical Theory of Water Waves.

@ [4] (2001) LIGHTHILL J., Waves in Fluids.
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The classical picture:

A = In deep water.
The orbital motion of fluid particles

- decreases rapidly with increasing
/\C}/\O/I\L depth below the surface.
O O B = In shallow water.
- The elliptical movement of a fluid
O = | | _
= particle flattens with decreasing
O = depth.

1 = Propagation direction.

2 = Wave crest.

3 = Wave trough.

~MION ST,
O

&

K mar ¥

*The picture is taken from Wikipedia, Wave-Wikipedia, the free encyclopedia.
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In the moving frame
X =2n(x —ct), Z=2mz (10)

the system (8) becomes
{ il = dm’ ¢ cosh(Z) cos(X) + 27m(co — ¢)

sinh(279) (11)

2 . .
‘é—% = Sifg(g%) sinh(Z) sin(X)

In this case, differentiating (11) with respect to ¢t we get

2
% = —A%sin(2X)
5 = A*sinh(27)
@ where A2 ;= 8z ¢

Dol sinh?(27d)
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The system (12) integrates to:

2
{ (dg) = A% cos(2X) + ¢ (13)

(‘fl%) = A% cosh(27) + co

c1, c2 being the integration constants. For the first eq.
In (13) we use the substitution

L=y oy

tan(X) =y, cos(2X) = 72 T

dy (14)
for the second eq. in (13), we use the substitution

iy 1 1
& tanh(Z) = w, cosh(22) = tu? ,dZ = sdw  (15)

B 1 — w? I —w
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In the new variables, we obtain:
2
(%) = A1 —yh) +al+y°)?
2
(%) = A%(1 — wh) + (1 — w?)?
The solutions involve elliptic integrals of the first kind:

(16)

+ / 4y — 17
V(e — A2)yt + 2c19% + 1 + A2

+ / du 1 (18)
V (ca — A2)wt — 2cow? + o + A2

which may by reduced to their Legendre normal form.

. N 5T,

_,x‘d oy,
K %
F B

war ¥

KA
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Depending of the sign of ¢; — A2, ¢; + A2, we get:

sn (\/Cl + A2 ¢ kl) 9 A2
y(t) = + . 0<kE = - <1
cn (\/61+A2t;/€1) c1+ A
(19)
A2 _|_ C1 9 2 A2 —|_ C1
— ; < = <
y(t) i\/AZ_Clcn (\/QA t,kg), 0 < k3 VP <1
(20)

sn is the Jacobian elliptic function sine amplitude
cn iIs the Jacobian elliptic function cosine amplitude

g N 5T,
3‘0 .
K %
F B
war ¥

K2
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They arise from the inversion of the elliptic integral of
the first kind

{— / dy (21)
V1 — k2sin? ¢

0 < k% < 1is the elliptic modulus and ¢ is the Jacobi
amplitude

sn (t; k) :=sin(yp), cn (1; k) = cos(p) (22)
sn?(t;k)+cen?(t k) =1
—1<sn(t;k) <1, -1<ecn(t;k) <1
sn (¢;0) = sin(t), cn (¢;0) = cos(t)

sn (t;1) = tanh(¢), cn (¢;1) = sech (¢)

The graphs of sn(t;1/3) and cn(t;1/3).
. Delia lonescu-Kruse Small-amplitude capillary-gravity water waves: Exact solutions and particle motion beneath such waves — p.20/27



Depending of the sign of c; — A%, co + A%, we get:

_ A2
(t) = =+ sn (\/cQ+A2t;/<3), 03k§:2§+A2§1 (23)
A2—02
w(t) = + cn (\/2A2t;k4), DSk =50l @4
_ A
A% —cg —
(25)
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hus, the solution of system (8) has the expression:

(26)

{ z(t) = ct + 5=arctan [y(t)]
2(t) = %arctanh (w(t)]

with y(t) given by (20), (21) and w(¢) by (24), (25),
(26)(see [1], [2]).

The curves in (26) are not closed curves.

[1] (2009) IoNEScuU-KRUSE D., Wave Motion.
[2] (2010) loNEscu-KRUSE D.,Nonlinear Anal. Real World

cMMON ST
O, Appl.
= B
Ey %
8 2
2 &
Mar ¥

KA
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[5]
[6]
[7]

This result I1s In the line with the results obtained In

[1]-[11].
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Analyzing in more detail the explicit solution (26) we get ([2],[3])
new kind of particle paths (see also [1]):

() >0 | 2/(t) <0 | 2/(t) <0 | 2/(t) >0
Z(t)>0 1] 2(t)>0| 2 () <0 | 2(t) <0
z'(t) >0 | 2'(t) >0
/\_/\/\_/\/\)/ Z/(t) <0 z’(t) > 0
' (t) <0 | 2/(t) <0
/\—/\/\/\—/\/ Z'(t) <0 | 2'(t) >0

M—L lim z(t) = finite := &, lim 2(t) = oo
t—t t—t

[1] (2010) CONSTANTIN A. AND STRAUSS W., Comm. Pure Appl. Math.

iaa [2] (2009) IONESCU-KRUSE D., Wave Motion.

m
)

@,, < [3] (2010) IoNEscu-KRUSE D.,Nonlinear Anal. Real World Appl.
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Differentiating system (11) with respect to ¢, we get:

2
X
ddT); + bta,n(X)cil—t + A%sin(2X) —b*tan(X) =0  (27)

where b := 27 (cy — ¢). By the substitution tan(X) = y, we get

d*y 20 (dy\’ dy
—5 = 5 (—dt> +by— +24% — b*y(1+y%) =0
(28)

This eq. can be written as an Abel differential equation of
the second kind. It is solvable and its solution has the
. parametric form (see [1]):

&§ [1] (2009) IONESCU-KRUSE D., Wave Motion.
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2 _2A2
y(r) = + L S 1, (29)

\ (C’—bln T+ VT2 — 2A2|)

C 1S a constant, and the relation between + and 7 Is:

1

t:/
VT2 — 2A2\/7'2 —2A2 — (C —bln |1 + V72 — 2A2|)?
(30)

dT

The solution of system (8) is written now as

1 72 -2A2

z(7) = cl(7) £ 5-arctan \/(C—blnr+\/72—W|)2 —1

e %"%’% L
é — + Larctanh |,/T=V24
A 2(7) —sarcta VoA
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Conclusions

# We provide explicit solutions to the nonlinear ODEs
which give the particle paths below small-amplitude
waves.

# In the case , the solution of the system is
represented by Jacobian elliptic functions.
# In the case the system is governed by a

solvable Abel differential equation of second kind.

# \We give an accurate description of the shapes of
the particle paths within the fluid.

DN 575,

Y %
& %
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