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1Faculty of Mathematics, Al. I. Cuza University of Iaşi
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Introduction
Flavin and Knops 1987 (Some spatial decay estimates in continuum
dynamics, J. Elasticity, 17, 249–264) considered the following
initial–boundary value problem

Cijrsur,sj − ηu̇i = ρüi, in B× [0,∞),
ui = 0, on (π ∪ D(L))× [0,∞),
ui = ũi(x1, x2) exp(iωt), on D(0)× [0,∞),

ui = u0
i , u̇i = u̇0

i , in B at t = 0,

(2.1)

where η is a positive element simulating damping, ω is the frequency of
vibrations and i =

√
−1.

It was established that

ui = Ui(x1, x2, x3, t) + vi(x1, x2, x3) exp(iωt), (2.2)

where the amplitude of vibrations vi satisfies the boundary value problem:

Cijrsvr,sj + iηωvi = −ρω2vi, in B,

vi = 0, on (π ∪ D(L)),
vi = ũi(x1, x2), on D(0).

(2.3)
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In order to investigate the spatial behavior of the amplitude of harmonic
vibrations, Flavin and Knops 1987 considered the following measure

H(x3) =
∫

D(x3)

(T3ivi + T3ivi)dA =
∫

B(x3)

2Cijrsvi,jvr,sdV ≥ 0, (2.4)

where T3i = C3jrsvr,s and B(l) is the cylinder slice bounded by the plane
ends x3 = l and x3 = L.
In the HYPOTHESES

ω is slower than a critical frequency,
Cijrs is a positive definite tensor,

(2.5)

the authors proved the following exponential estimate

0 ≤ H(x3) ≤ H(0) exp
(
− x3 − h
ν(ω, h)

)
, h ≤ x3 ≤ L, (2.6)

where ν(ω, h) is a constant.
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This result was followed by other works:
1. J.N. Flavin, R.J. Knops and L.E. Payne, Decay Estimates for the Constained
Elastic Cylinder of Variable Cross Section, Quart. Appl. Math., 47, 325–350, 1989.
2. R.J. Knops, Spatial Decay Estimates in the Vibrating Anisotropic Elastic Beam,
[in:] Waves and Stability in Continuous Media, (S. Rionero eds.), World Scientific,
Singapore, 192–203, 1991.
3. S. Chiriţă, Spatial Decay Estimates for Solutions Describing Harmonic Vibrations
in a Thermoelastic Cylinder, J. Thermal Stresses, 18, 421–436, 1995.
4. C. Galeş, Spatial Decay Estimates for Solutions Describing Harmonic Vibrations
in the Theory of Swelling Porous Elastic Soils, Acta Mech., 161, 151-164, 2003.
5. F. Passarella and V. Zampoli, Some Exponential Decay Estimates for
Thermoelastic Mixtures, J. Thermal Stresses, 30, 25–41, 2007.
In all these papers there are used the following assumptions:

a) ω is slower than a critical frequency;

b) the internal energy density is a positive definite quadratic form.
(2.7)

Questions:
1. Can we improve the above results?
2. What does viscoelasticity bring new into the problem of spatial behavior of
harmonic vibrations?
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Formulation of the problem
Let us suppose that a homogeneous and anisotropic linear viscoelastic
material fills B. According to the linearized theory of isothermal
viscoelasticity, the fundamental system of field equations, in the absence of
the body force, consists of the strain–displacement relations

erl =
1
2

(ur,l + ul,r), in B× (−∞,∞), (3.1)

the constitutive equations

trl = Grlmn(0)emn +
∫ ∞

0
Ġrlmn(s)et

mn(s)ds, in B× [0,∞), (3.2)

and the equations of motion

trl,r = ρ0ül, in B× (0,∞), (3.3)

where ul are the components of the displacement vector, erl are the
components of the strain tensor, trl are the components of the stress tensor
and et

rl represent the history up to time t, namely et
rl(s) = erl(t − s), s ≥ 0.
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ρ0 is the constant mass density and Grlmn(t), 0 ≤ t <∞, are the components
of the relaxation tensor satisfying

Grlmn(t) = Glrmn(t) = Grlnm(t), t ≥ 0. (3.4)

The tensor Grtmn(0) is called the instantaneous elastic modulus. We suppose
that the relaxation tensor Grlmn(·) has a continuous derivative Ġrlmn(·) and
that the equilibrium elastic modulus

Grlmn(∞) = lim
t→∞

Grlmn(t) (3.5)

exists. We take Grlmn(∞) to be a positive definite tensor so that the body is a
solid. Moreover, we assume that the relaxation tensor is symmetric, that is

Grlmn(t) = Gmnrl(t), t ≥ 0. (3.6)

We suppose that the material is compatible with thermodynamics. This
problem has been discussed in various papers (Day 1972, Fabrizio and
Morro 1992, Wilkes 1977 and references therein). According to Fabrizio and
Morro [1992, pp. 47], it follows that the half–range Fourier sine transform

Ġs
rlmn(ω) =

∫ ∞
0

Ġrlmn(s) sin(ωs)ds, ω > 0, (3.7)

of the function Ġrlmn ∈ L1([0,∞)) is negative definite.
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Since the above assumptions upon Ġs
rlmn(ω) there seem to be not so

transparent, we illustrate the relationship between the relaxation tensor
Grlmn(t) and the half–range Fourier sine transform Ġs

rlmn(ω) of Ġrlmn(t) by a
simple example. Thus, let us consider the case of decay exponential memory
with

Grlmn(t) = G∞rlmn + e−αtHrlmn, α > 0, Hrlmn and G∞rlmnindependent of t

and G∞rlmn positive definite (the body is a solid). Then, the half–range
Fourier sine transform is Ġs

rlmn(ω) = − αω
α2+ω2 Hrlmn. Therefore, Ġs

rlmn(ω) is
negative definite if and only if Hrlmn is positive definite.
The situation is better when Grlmn(t) is a sum of exponential functions, that
is

Grlmn(t) = G∞rlmn+
N∑

P=1

e−αP tHP
rlmn, α > 0, HP

rlmn and G∞rlmnindependent of t

and G∞rlmn positive definite. Clearly, we have
Ġs

rlmn(ω) = −
∑N

P=1
αP

α2
P
+ω2 HP

rlmn. So that, it is not necessary that all tensors

HP
rlmn to be positive definite such that −Ġs

rlmn(ω) to be positive definite but
just a linear combination of the tensors HP

rlmn.
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Let us consider the Cauchy’s problem expressed by the relations (3.1), (3.2),
(3.3), the lateral boundary conditions

ul = 0 , on π × [0,∞) (3.8)

together with the end boundary conditions

ul = ũl(x1, x2) exp(iωt), on D(0)× (0,∞) (3.9)

ul = 0, on D(L)× (0,∞) (3.10)

and the initial history condition of the displacement

ul = al(x1, x2, x3, t) , in B× (−∞, 0]. (3.11)

In the above relations ω is a positive constant (frequency of vibration),
i =
√
−1 is the unit complex and ũl, al are prescribed functions.

It is easy to see that

ul = Ul(x1, x2, x3, t) + vl(x1, x2, x3) exp(iωt) , (3.12)

where Ul (transient solution) absorbs the initial history and satisfies the null
boundary conditions and the equations (3.1),(3.2) and (3.3), while vl

(amplitude of steady-state solution) satisfies the boundary value problem
consisting of the field equations
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Trl,r = −ρ0ω
2vl ,

Trl = Grlmn(0)εmn +
(∫ ∞

0
Ġrlmn(s)e−iωsds

)
εmn,

εrl =
1
2

(vr,l + vl,r), in B,

(3.13)

subject to
vl = 0 , on π (3.14)

and
vl = ũl(x1, x2) , on D(0) (3.15)

vl = 0, on D(L). (3.16)
If we introduce the notation

Crlmn(ω) = Grlmn(0) + Ġc
rlmn(ω), (3.17)

where Ġc
rlmn(ω) is the half–range Fourier cosine transform of the function

Ġrlmn ∈ L1([0,∞)), i.e.

Ġc
rlmn(ω) =

∫ ∞
0

Ġrlmn(s) cos(ωs)ds, (3.18)
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then from (3.7) and (3.13) we deduce the following system of partial
differential equations(

Crlmn(ω)− iĠs
rlmn(ω)

)
vn,mr + ρ0ω

2vl = 0. (3.19)

For later convenience, we note that Trl may be written in the form

Trl =
(

Crlmn(ω)− iĠs
rlmn(ω)

)
εmn. (3.20)

Ul represents essentially the transient and vl exp(iωt) is the forced
oscillation.
It is easy to prove that Ul → 0 when t→∞, so the cylinder has a vibratory
motion.
In what follows we will study the spatial behavior of the amplitude of the
steady-state vibration satisfying (3.13) (or (3.19)) under the boundary
conditions (3.14), (3.15) and (3.16).
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Spatial behaviour
Let us introduce the following cross-sectional functional

I(x3) = −
∫

D(x3)

(
Tr3ivr + Tr3ivr

)
dA

=
∫

D(x3)

[
iCr3ml(ω)

(
vl,mvr − vl,mvr

)
+ Ġs

r3ml(ω)
(

vl,mvr + vl,mvr

)]
dA ,

(4.1)

where the superposed bar denotes complex conjugate. By using the
symmetry assumption of Grlmn and negative definiteness property of the
tensor Ġs

rlmn(ω) we prove that I(·) is an acceptable measure of the amplitude
of steady-state vibrations that decays more rapidly than an exponential of the
distance from the excited end of the cylinder.
Thus, from (4.1) by direct differentiation, and by using of the equations
(3.19), the boundary conditions (3.14), and the divergence theorem, after a
short calculation we obtain

dI
dx3

(x3) = 2
∫

D(x3)

Ġs
rnml(ω)vl,mvr,ndA . (4.2)
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Now, since the fourth–order tensor −Ġs(ω) is symmetric and positive
definite then there exist two positive constants depending on ω, denoted by
νm and νM such that

νm(ω)ζlrζ lr ≤ −Ġs
lrnp(ω)ζlrζnp ≤ νM(ω)ζlrζ lr, (4.3)

for every symmetric second order tensor ζlr. From (4.2) and ( 4.3) we
deduce

dI
dx3

(x3) ≤ −2νm(ω)
∫

D(x3)

εlrεlrdA ≤ 0 , (4.4)

where εlr is defined by (3.13)3, so that I(·) is a non–increasing function.
We also note that I(L) = 0, so that I(x3) ≥ 0 for all x3 ∈ [0,L].
Now, integrating the above equation between x3 and x3 + h, where
x3 + h ≤ L, we deduce

I(x3 + h)− I(x3) ≤ −2νm(ω)
∫

B(x3,h)
εlrεlrdA ≤ 0 , (4.5)

where B(l, h) is the cylinder slice bounded by the planes x3 = l and
x3 = l + h. Setting x3 + h = L, we obtain

I(x3) ≥ 2νm(ω)
∫

B(x3)

εlrεlrdA ≥ 0 . (4.6)
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On the other hand, letting σ be a positive parameter and using Schwarz and
arithmetic-geometric mean inequalities one deduces

I(x3) ≤
∫

D(x3)

|Tr3ivr + Tr3ivr|dA ≤ σ
∫

D(x3)

TrlTrldA +
1
σ

∫
D(x3)

vrvrdA .

(4.7)

Let us denote by c2
M
(ω) the largest eigenvalue of the symmetric and positive

semi–definite tensor Bsnpq(ω) = Crlsn(ω)Crlpq(ω), then using the relation

Trl =
(

Crlmn(ω)− iĠs
rlmn(ω)

)
εmn.

it may be established that

TrlTrl = T ′rlT
′
rl + T ′′rl T

′′
rl ≤

(
cM (ω) + νM(ω)

)2
εrlεrl. (4.8)
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Further, using the boundary condition vl = 0 on π and following a result
established by Toupin 1965 concerning the Saint-Venant’s principle one
deduces the following inequalities

−
∫

B(x3,h)
Ġs

rnml(ω)ε′rnε
′
mldV ≥ ρ0w2

0(h)
∫

B(x3,h)
v′rv
′
rdV,

−
∫

B(x3,h)
Ġs

rnml(ω)ε′′rnε
′′
mldV ≥ ρ0w2

0(h)
∫

B(x3,h)
v′′r v′′r dV,

(4.9)

where Υ′ and Υ′′ the real and imaginary parts of the complex quantity Υ,
and w0(h)

2π is the lowest frequency of vibration of the cylinder B(x3, h) filled
by an elastic material whose components of the constant elasticity tensor are
−Ġs

rnml(ω) and whose lateral surface is clamped and plane ends are free.
From (4.9) we deduce the following Poincaré type inequality

ρ0w2
0(h)

∫
B(x3,h)

vrvrdV ≤ −
∫

B(x3,h)
Ġs

rnml(ω)εrnεmldV. (4.10)
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The relations (4.3), (4.7), (4.8), (4.10) assure that the function

Q(x3, h) =
1
h

∫ x3+h

x3

I(y)dy, (4.11)

satisfies the inequality

Q(x3, h) ≤

(
σ
(

cM (ω) + νM(ω)
)2

h
+

νM(ω)
σhρ0w2

0(h)

)∫
B(x3,h)

εrlεrldV. (4.12)

On the other hand, from (4.4) and (4.5) we deduce
∂Q
∂x3

(x3, h) =
1
h

(
I(x3 + h)− I(x3)

)
≤ −2νm

h

∫
B(x3,h)

εrlεrldV. (4.13)

Thus, from (4.12) and (4.13 ) one obtains

γ(σ, h, ω)
∂Q
∂x3

(x3, h) + Q(x3, h) ≤ 0, (4.14)

where

γ(σ, h, ω) =
σ
(

cM (ω) + νM(ω)
)2

2νm(ω)
+

νM(ω)
2σρ0w2

0(h)νm(ω)
. (4.15)
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Setting the parameter σ such that the above quantity to be minimum, that is

σ0 =
1

cM (ω) + νM(ω)

√
νM(ω)
ρ0w2

0(h)
,

γm(h, ω) = γ(σ0, h, ω) =
cM (ω) + νM(ω)

νm(ω)

√
νM(ω)
ρ0w2

0(h)
,

(4.16)

from (4.14), we deduce

Q(x3, h) ≤ Q(0, h) exp
(
− x3

γm(h, ω)

)
. (4.17)

Moreover, since I(·) is a non–increasing function on [0,L], we have

I(x3 + h) ≤ Q(x3, h) ≤ I(x3). (4.18)

The above relations lead to the following:
Theorem. The cross–sectional function I(x3) defined by (4.1) in connection
with the boundary value problem (3.13)-(3.16) is an acceptable measure of
solution and satisfies the following decay estimate

0 ≤ I(x3) ≤ I(0) exp
(
− x3 − h
γm(h, ω)

)
, h ≤ x3 ≤ L. (4.19)



1. Title 2. Introduction 3. Formulation of the problem 4. Spatial behaviour 5. Concluding remarks 6. References

The results may be easily extended to a semi–infinite cylinder, namely the
case when L→∞. Then there are possible the only two possibilities:
a) I(x3) ≥ 0 for all x3 ∈ [0,∞); or
b) there exists x∗3 ∈ [0,∞) such that I(x∗3) < 0.
In the case a), since I(·) is non–negative, we deduce the same estimate.
Let us consider the case b). Since I(·) is a non–increasing function it follows
that

I(x3) < 0, x∗3 ≤ x3 <∞, (4.20)

so that, on [x∗3 ,∞), we must change the sign of I(x3) in the relation (4.7).
Repeating the reasoning one deduces the following estimate

−I(x3) ≥ −I(x∗3) exp
(x3 − h− x∗3

γm(h, ω)

)
> 0, x3 ∈ [x∗3 + h,∞). (4.21)

Thus, we have the following Phragmèn–Lindelöf alternative.
Theorem. In the context of a semi–infinite viscoelastic cylinder for which
−Ġs

rlmn(ω) is positive definite the following alternative holds: a) either I(·)
is a non–negative function on [0,∞) which decays spatially faster than the

exponential exp
(
− x3−h
γm(h,ω)

)
; or b) there exists x∗3 ∈ [0,∞) such that

I(x∗3) < 0, and then −I(x3) grows spatially faster than the exponential

exp
(

x3−h−x∗3
γm(h,ω)

)
.
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Concluding remarks

i) Within the framework of linear viscoelasticity, we studied the spatial
behavior of solutions describing harmonic vibrations in a right cylinder.
Thus, for a cylinder of finite extent, an exponential decay estimate in terms
of the distance from the excited end of the cylinder was obtained. In the case
of a semi–infinite cylinder, an alternative of Phragmén–Lindelöf type was
established.
ii) The dissipative mechanism guarantees the validity of result for every
value of the frequency of vibration and for the class of viscoelastic materials
compatible with thermodynamics. We utilized the fact that half–range
Fourier sine transform Ġs

rlmn(ω) is negative definite.
iii) By relaxing the above condition, namely assuming that −Ġs

rlmn(ω) is
strongly elliptic, we obtained results addressing to a large class of materials
including those new materials with extreme and unusual physical properties
like negative Poisson’s ratio (that is, so called auxetic materials). These are
materials with heterogeneous structure, including natural viscoelastic
composites such as bone, ligament, and wood, as well as synthetic
composites, biomaterials, and cellular solids with structural hierarchy.
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