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Nonlinear stochastic differential equations in Banach spaces

Let H be a real Hilbert separable space with H’ the dual and V a reflexive
Banach space such that

VCcCH=H cV

with dense and compact injections, and \ (z,v),, = (z,v), forall z € H
and v € V.
Let the stochastic differential equation in H of the type

dX (t) = A(t, X (t))dt+ B (t, X (t)) dW (t) (1)

where W (t), with t € [0, T] is a Q Wiener process with Q =/ on
another Hilbert space (U, (,)) and for T € [0, co[ fixed

B:[0,T]x V — Ly (U H),
A0, T]xV —V

progressively measurable.
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Definition. An (F;) — adapted stochastic process (X (t)),cio,7). H -
valued continuous, is called solution for the equation (1) if for the
equivalence class X with respect to dt ® IP we have

XelP(0,T]xQ,dt@P;V)NL2([0, T] x Q,dt @ P; H)
with p from the coercivity and we have

X (1) :X(O)—i—/OtA(s,)_((s))ds—i—/OtB(s,)_((s))dW(s)

P—a.s. where X is a dt ® IP— version of X, progressively measurable and
V — valued.
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Convergence of solutions for nonlinear stochastic
differential equation in variational formulation

Consider the stochastic basis (Q F, {Ff}tZO ,]P) and a H - valued
cylindrical Wiener process W.
Let the stochastic differential equation

{ dX (t) + A(X (1)) dt = V/QdW (t)
X (0) =x

where the operator Q € L (H) is symmetric, nonnegative, of trace class
and such that Ker Q = {0}.
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Assume that the nonlinear operator A: V — V' satisfy the conditions
below

(1) (Hemicontinuity) For all u, v, x € V the map
6 +—yv (A(u+06v),x), is continue from R to R.

(i) (Monotonicity) We have
v (A(u) —A(v),u—v), >0,

for all u,v € V.

(i) (Coercivity) There exist 4y > 0, # > 0 and p > 2 such that
v (A ). u)y >y lullg — g [uff,, for all u e V.
If p = 2 then there exists v > 0 such that

v (A(u),u)y, > |ull},, forallue V.
(iv) (Boundedness) There exist B; > 0, B, € R such that
AWy, < By llully + By, forall ue V.
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(v) A=V® where @ : V — R is convex and Gateaux differentiable with
®>0on Vand ®(0)=0.

(vi) The operator A is differentiable from V to V' and
T [QA (x)] = 2 (Qei A" (x) &) < C ([IxII5 > +1),

where {e;} C V is a complete orthonormal system in H such that
A (x)ei € Hforalli € N, x € V and A is the Frechet differential of
A.
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We consider the nonlinear operators A: V — V/ and A*: V — V’ that
satisfy the conditions above with all constants independents of & and we
define the operators

An(y) =A(y), yeD(An), D(An) ={yeV:A(y)cH}

A (y) =A(y). yeD(Ah), D(AY) ={yeV:A"(y) e H},

and equations

ax* t) AL (X*(t)) dt =/ QdW (t), t>0
{ “(t)= on 0 t >0, (2)
X*(0)

{ X (
(t
X (0
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and

t) A (X (1)) dt =+/QdW (t), t>0
) = ono0O t>0, (3)
)



Theorem. Let A and A* satisfying Hypotheses above with «y, 7, B;, B,
and C independent of a. Assume also that, for all y € H and all ¢ > 0
fixed, we have

(1+eA%) 'y — (1+eAy) 'y, stronglyin H, fora — 0.  (4)
Then the following convergence holds
E |X* (t,x) — X (t,x)[, = 0, forall x € V

uniformly in t on compact subsets of [0, ), as « — 0.
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Proof (sketch)
Consider the following approximating equations

{ dX% (t,x) +A“ (X2 (t,x)) dt +eX¥ (t,x) dt = /QdW (t),
X (0,x) =

and

{ dXe (t,x) + Ae (Xe (t,x)) dt + eXe (t, x) dt = /QdW (t),
X (0,x) = x.

where A? and A, are the Yosida approximations of the operators Af; and
resp. Ay.
We have

E[X = X“[} < ¢ (E|X = X} + B X = X3+ E|XE = x“J3)
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By the Ito formula with ¢ = ||,

E[X¢ (60 )7 (X (s,)|[ s

< ¢ (]xﬁ_, + TrQ) ., t>0.

Applying again the Ito formula with ¢ = ®f where

« _ |y ’H o
<1>s(y)—z'gf/{ - +<I><>} yeH
and A7 = V@I we obtain

t
E [@F (X ()] +E || A2 (X (s.))[7 ds

< +c]E/ (1 eag) ™ (X2 (s.0)||) +1) 0s
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On the other hand we have
E X2 (t,x) — X3 (t,x)[3,
t
2 2
< B[ (A 0K (s )l + A IAS O (5.))f5) s
t « 2 Q 2 =
FE | (X (£0[ 4+ A 1XE (60[7) ds < Cele+A)
and consequently
E | X* (¢, x) — X (t,x)|3; — 0

for € — 0, uniformly in t on compact sets of [0, o) as & — 0.
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For each ¢ > 0, fixed, we have
E | X% (t,x) = Xe (t,x)|% — 0

for &« — 0, uniformly in t on compact sets of [0, c0).
By the Ito formula and using the monotonicity of A} we get that

t
E X (£, %) — Xe (£, %)% + s]E/ X2 (5, %) — Xe (5, x)|% ds
0

< |E t(A? (Xe (5,%x)) —Ae (Xe (5,x)), X' (5,x) — Xe (s,%))y ds| .
0

We have

B [ 104 (X (5,20) = A (X (5,50) X8 (5.%) = X (5,) ] s
t 1/2
< (B 1 O 0) = A0 )y )
t 1/2
><<1E/0 |XS"‘(5,X)—X5(5,X)|$_,ds> .
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Now, it suffices to show that

(]E/Ot LAY (X (5,X)) = Ac (Xe (5.3))[2 ds> SN

for & — 0, with ¢ fixed.
From (4) it follows that

1 -~ -~ 2
AL (X) = A ()} = 5 |(1+A%) 7 X = (1+eAn) X =0

for & — 0, for € fixed and a.e. [0, t) x Q).
On the other hand we have

A (Xe) — A (X) |3 < C X3,

a.e. in [0, t) x Q, with C independent of «, t, x.
Now, via the Lebesgue dominated convergence theorem we can conclude
the proof.
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The convergence of the invariant measures

In this section we shall assume, in addition to Hypotheses 0.1, that there
exists a real nonnegative continuous increasing function ¥ such that

@ the initial value problem

Z'(r) = =2¥(z(r)), z(0) =z,
has a unique solution z (., zg) on [0, +00). Moreover, ¢ (t) =

supz (t,zy) < +oo forall t >0 and limc(t)=0.
2020 t—oo
@ we assume that

(A(x) = A(y) x — y) 2‘F(|x—y|$_,>, X,y € V.
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For the solution X of equation above, we consider the transition semigroup
Pip (x) =E[p (X (t,x))], x€H, t>0,

for all ¢ € Cp (H) (where Cp (H) is the space of all continuous and
bounded functions on H).

Under our assumptions, P; has an unique invariant measure j, i.e. a Borel
probability measure on H such that

Pt n(a0) = [ ¢0u(d)
H H
forall ¢ € Cp (H), t > 0. We know also that y is ergotic and strongly

mixing.
We denote by A the set of all invariant measures of Pyf.
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Theorem. Let A and A satisfying Hypotheses above with 7y, 7, B, B,
and C independent of «.

Then the set A is tight and then weakly compact.

If we assume also that, for all y € H and all € > 0 fixed, we have

(1+eA%) 'y — (1+eAy) 1y, stronglyin H, for a — 0,

then {u*}, is weakly convergent on a subsequence to i, the invariant
measure of P;.
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Proof (sketch)
The main part of the proof is to show that the family of probability
measures Alis tight, i.e. for all € > 0 there exists K. C H, compact, such
that u (KS) <e, VYueA.
To this propose we apply the Ité6 formula for
p() =it = —PlH 5o
T IY

We get

o 2 ¢ w p
E( M(nmm2>+mﬁt/ IX* =0l
146X (2, )] 0 (1—1—(5|X"‘ (sx)|i,>

2 t Xa 2
LI / Xeh 4| 4 i,
1+0[x[y 0 <1+5\X"‘(5,X)|$_,)
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For each a we integrate with respect to an arbitrary invariant measure pu*

on H and by the invariance property, i.e.

[ Pros G () = [ gy () (o)

and letting 6 — 0 we get that
2y [ X1t () < [ Ixlf i (o) + TrQ

and consequently that

0> 1 [ akP
[t @0 < B L (2 1) T

for 8 > 0 sufficiently large.
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We define
Bo = {x eV [|xll, <6}

which is compact in H since V C H compactly.Since

1
n c — w < - p
H(8) = [, 169 < g [ Il m ()

1 (%60 1 1
< = X4+ = P +
-6 < 2y 2y <“k U 1> TrQ)

<

gP—2

where ¢ is independent of «. It follows that A is tight and, by Prokhorov's
theorem, we get that the set of probability measures A is relatively
compact (see [4]). Consequently, all sequence from A contains a
subsequence weakly convergent.
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In order to conclude the proof we have to show that, {u"}, is weakly
convergent as &« — 0, on a subsequence, to the invariant measure of the
transition semigroup P; .

From the Krylov - Bogoliubov theorem, we have for each ay and for
{T,} T +oo that

[LoGous (@) = jim—+ / Pitg (x

n—oo T

Letting k — oo we get that [, ¢ (x) = [, (x ) for all
¢ € Cp(H). Then 71 = p where i is the unlque |nvar|ant measure
corresponding to the transition semigroup P;.
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Homogenization

We shall present now an homogenization results for the equation

&u
X*(0) = x, on 90

dX* (t) —diva <C’ VX”‘) dt = /QdW (t), on O
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Let O be a bounded open subset of R? and Y = [0, s]¢ such that
Y C O. Consider the following assumptions

(h1) The function j : RY x RY — Ry, (&, z) — j (&, z) is Y- periodic in
¢, convex and twice continuous differentiable with respect to z and
there exist 0 < A; < Ay < oo, independent of ¢, such that

Arlz]® <(&2) < A2 (J2° +1),

for. ¢ € RY a.e. forall z € RY.
(hy) Let a: R x RY — RY, a (&, z) = V,j (&, z) satisfying a(&,0) =0
for all & € R? and

(a(¢z1)—a(l2) 21— )
1a (8, z1) —a(G 2)|

A |z —22\2,
A2‘Zl_22‘, Y z1, ZQE]Rd.

IN IV
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9
(h3) Denote by a;; (G, z) = =—ai ({,z) . Then there exist C;, C; >0,

0z;
independent of ¢ and z, such that

d
G \x]z < Z ajj (¢, z) xix; < G |x\2, for all x € RY.
ij=1
(ha) Consider Q for equation (1) of the form Q = B™7, o >2+ 7,

where By— Ay yeD(B).
{ D (B) = Hy (0) N H?*(0).
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Step |
For each & > 0 we define

@ :RYxRY — RY, a"‘(C,z),-:a<C,Z>‘,

forall z€RY and a.e. Z€ERY, i =1,d.
Consider the operator A* : H} (O) — H™1 (O) defined by

(A (). v) = [ (& (@ Vu (@), v (@) e,
for all u,v € H} (O) and ®* : H} (O) — R such that A* = V", e,

D (u) :/Oj"‘ (&, Vu (&) dé forallue H (0O),

where a* (¢,z) = V,j* (¢, z) .
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We observe that Aj, satisfies the assumptions of the Trotter type result for
H (O) C L2(O) C H1(O) and p = 2.
Consider the stochastic differential equation

dX"‘(t)+A"‘( “(t))dt = /QdW (t), t>0,
X (t) = on 00 t >0, (5)
X" (0) =

Consequently equation (5) has a unique solution

X" €Ly (€ ([0, T];L2(0))NL> (0, T; Hy (0))).
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Step Il
We define

ghom (2) = /Y 2 (2,2 +grad w, (¢)) dé
for all z € R? and w, € H' (Y), Y- periodic and satisfying
—diva(g gradw, (§)+z)=0onY.

We have the operator A"™™ : H} (O) — H™1 (O)
(A ()., v) = [ (= (Tu(@), Vv (@), d.

for all u,v € H} (O) and @™ : H} (O) — Ry

Phom () = /oj'wm (&, Vu () dE, forallue H: (O).
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Consider the equation

dxhom (t) + Aem (X"om (£)) dt = /QdW (t)
XPom (¢) =0, on 90 t >0, (6)
xhom (0) = x.

The hypotheses from the Trotter result are satisfied for
H} (O) C L2(O) C H 1 (O) and p =2, and consequently, equation
above has a unique solution

xhom e 12, (Q; C ([0, T]; L2 (0)) N L2 (0, T; H§ (0))) .
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Theorem. Assume that hypotheses (h;), i = 1,3, and define Af, and
Af,‘_,Om as above. Then solution X* to equation (5) is convergent to X"°™,
the solution of equation (6) as follows

2

E |X* (t,x) — X"™™ (¢, x) o)

— 0,

uniformly in t on compact sets of [0,00), as @ — 0.

The sequence of invariant measures {y*}  corresponding to equations (5)
is weakly convergent on a subsequence to the invariant measure ]/th°m
corresponding to equation (6).
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Proof (sketch)
From [[1], Theorem 1.2 from Chapter 3] we have for all x € H} (O) and
all e > 0 that

-1
(I +eVdY) 1 x — (I +8V¢h°m> x, strongly in % (0),

-1
(I + eAY) T x — </ + 8Ah°m> x, strongly in [%(O).
Using the Trotter type theorem we get that
2
E ‘x“ (t,x) — X"om (t,x>‘L2

uniformly in t on compact sets of [0,00), as @« — 0.We can now apply the
first part and get that

o hom

w—=u
weakly on a subsequence, as & — 0.
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