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Motivation

• Theory of rods is a very old field of mechanics:
Galilei and Bernoulli (XVII century),
Euler and D’Alembert (XVIII century),
Clebsch and Kirchhoff (XIX century).

• The modern studies on the mechanics of
beams and rods are motivated by the new
technologies and advanced materials in rod
manufacturing.

• The necessity of elaborating adequate models
and to extend the existing theories.



Introduction Field Equations Uniqueness and Existence Straight Porous Rods Orthotropic Rods Conclusions

Classical approach
• Derivation from the three–dimensional theory
by application of various kinematical and / or
stress hypotheses.

• Examples : beam theories of Euler and
Timoshenko.

• Requires mathematical techniques like:
� formal asymptotical expansions

(Trabucho & Viaño, 1996);
� Γ–convergence analysis

(Freddi, Morassi & Paroni, 2007);
� other variational methods

(Sprekels & Tiba, 2009).
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Direct approach

• Based on the deformable curve model.

• First proposed by Cosserat (1909).

• Green and Naghdi developed the theory of
Cosserat curves (in 1970’s) :

� the rod model consists in a curve with
2 deformable directors in each point ;

� presented in the book of Rubin (2000).

• Another direct approach is the
theory of directed curves .
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Kinematical model of directed curves
• Proposed by ZHILIN (2006, 2007):

� the rod model consists in a deformable
curve with a triad of rigidly rotating orthonormal
vectors connected to each point.

O

r

C0

d3 = t

d1d2
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Features of any direct approach :

• It does not require hypotheses about the
through-the-thickness distributions of
displacement and stress fields.

• No need for mathematical manipulations with
three-dimensional equations.

• The basic laws of mechanics are applied
directly to a one-dimensional continuum.

• To formulate the constitutive equations, we
have to determine the structure of the elasticity
tensors and to identify the effective properties.

• Use of the effective stiffness concept.
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Basic field equations

The reference configuration C0 of the rod is
given by the vector fields:

r(s), di(s), i = 1, 2, 3,

where s is the arclength and the directors are:

d3 ≡ t = r ′(s),
d1 = n cos σ + b sin σ, d2 = −n sin σ + b cosσ,

and σ = �
(
d1, n

)
is the angle of natural twisting.
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The motion of the rod is defined by the functions

R = R(s, t), Di = Di(s, t), i = 1, 2, 3, s ∈ [0, l].

The displacement vector : u(s, t) = R(s, t)− r(s),

and the rotation tensor : P(s, t) = Dk(s, t)⊗ dk(s).

We denote by :

V the velocity vector : V(s, t) = Ṙ(s, t) ;

ω the angular velocity : Ṗ(s, t) = ω(s, t)×P(s, t).

We have ω = axial
(
Ṗ · PT

)
= −1

2

[
Ṗ · PT

]
× .
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Porosity

We use the Nunziato–Cowin theory for elastic
materials with voids (1979, 1983).
The mass density of the porous rod ρ = ρ(s, t)
is represented as the product :

ρ(s, t) = ν(s, t) γ(s, t) ,

where γ(s, t) is the mass density of the matrix
elastic material.
The porosity variable is:

the volume fraction field : ν = ν(s, t).

The field ν(s, t) describes the continuous
distribution of voids along the rod. (0 < ν ≤ 1)
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Temperature

The absolute temperature in the rod is :

θ = θ(s, t) > 0.

The basic laws of thermodynamics are applied
directly to the deformable curve.

For instance, the Clausius-Duhem inequality for
the entropy of the rod is∫ s2

s1

ρ0 η̇ ds ≥
∫ s2

s1

ρ0
S
θ

ds +
(q
θ

)∣∣∣s2

s1

, ∀ s1, s2 ∈ [0, l].
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Equations of motion

Equation of linear momentum :

N ′(s, t) + ρ0F = ρ0
d
dt

(V + Θ1 · ω).

Equation of moment of momentum :

M ′(s, t) + R ′ × N(s, t) + ρ0L =

= ρ0
[
V × Θ1 · ω +

d
dt

(V · Θ1 + Θ2 · ω)
]
.

Equation of equilibrated force :

h ′(s, t) − g(s, t) + ρ0 p = ρ0
d
dt

(κ ν̇) .
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Energy balance

Equation of energy balance :

ρ0U̇ = P + ρ0S + q ′ ,

with P = N ·(V′+R′×ω) + M ·ω′ + gν̇ + hν̇ ′.

Entropy inequality :

ρ0 θ η̇ ≥ ρ0S + q ′ − θ′

θ
q .

Introduce the Helmholtz free energy function :

Ψ = U − θ η .



Introduction Field Equations Uniqueness and Existence Straight Porous Rods Orthotropic Rods Conclusions

Vectors of deformation
Vector of extension–shear E :

E = R ′ − P · t .

Vector of bending–twisting Φ given by :

P ′ = Φ× P or Φ = axial
(
P ′ · PT

)
.

The energetic vectors of deformation E∗ , Φ∗ :

E∗ = PT · E , Φ∗ = PT · Φ .

Then the function P reduces to :

P = (N · P) · Ė∗ + (M · P) · Φ̇∗ + g ν̇ + h ν̇ ′ .
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Constitutive equations

The energy function Ψ depends on :

Ψ = Ψ
(E∗ , Φ∗ , ν , ν ′ , θ

)
.

We have: N =
∂(ρ0Ψ)

∂E∗
· PT , M =

∂(ρ0Ψ)

∂Φ∗
·PT ,

η = −∂Ψ

∂θ
, g =

∂(ρ0Ψ)

∂ ν
, h =

∂(ρ0Ψ)

∂(ν ′)
.

The heat flux :

q = q
( E∗ , Φ∗ , ν , ν ′ , θ , θ′

)
.



Introduction Field Equations Uniqueness and Existence Straight Porous Rods Orthotropic Rods Conclusions

The expression of the energy function Ψ :

ρ0Ψ = Ψ0 + N0 · E∗ + M0 · Φ∗ +
1
2

E∗· A · E∗

+E∗ · B · Φ∗ +
1
2
Φ∗ · C · Φ∗ + Φ∗ · (E∗ · D) · Φ∗

+
1
2

K1 ν
2 +

1
2

K2(ν
′)2 + K3 ν ν

′ + (K4 · E∗) ν

+(K5 · Φ∗) ν + (K6 · E∗) ν ′ + (K7 ·Φ∗) ν ′

−(G1 · E∗) θ − (G2 · Φ∗) θ − G3 ν θ − G4 ν
′ θ − 1

2
G θ2,

The elasticity tensors A , B , C and D have
been analysed by Zhilin (2006).
We have to determine the structure of the
tensors K1 , ... , K7 and G1,..., G4 , which
describe the poro-thermoelastic properties.
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Structure of constitutive tensors

We choose the directors d1 and d2 such that∫
Σ
ρ∗x dxdy =

∫
Σ
ρ∗y dxdy = 0,

∫
Σ
ρ∗xy dxdy = 0.

We assume the symmetry of the material
cross–section with respect to d1 and d2 .
We require that the following tensors belong to
the symmetry group of each constitutive tensor:

Q = 1 − 2 d1 ⊗ d1 and Q = 1 − 2 d2 ⊗ d2 .
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We express any constitutive tensor f as the
decomposition : f = f0(σ) + f 1(σ) · τ .
We find :

G1 = G1 t +
1
Rc

(
G1

1 cosσd1 + G2
1 sinσd2

)
,

G2 =
G2

Rt
t +

1
Rc

(
G1

2 sinσd1 + G2
2 cosσd2

)
,

K4 = K4 t +
1
Rc

(
K1

4 d1 cosσ + K2
4 d2 sinσ

)
,

K5 =
K5

Rt
t +

1
Rc

(
K1

5 d1 sinσ + K2
5 d2 cosσ

)
,

K6 = K6 t +
1
Rc

(
K1

6 d1 cosσ + K2
6 d2 sinσ

)
,

K7 =
K7

Rt
t +

1
Rc

(
K1

7 d1 sinσ + K2
7 d2 cosσ

)
.
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For rods without natural twisting (σ = const),
we consider that the symmetry groups include:

Q = 1−2 d1⊗d1, Q = 1−2 d2⊗d2, Q = 1−2 t⊗t.

We obtain :

G1 = G1 t , G2 =
G2

Rt
t +

1
Rc

(
G1

2 sinσ d1 + G2
2 cosσ d2

)
,

G4 = 0 , K3 = 0, K4 = K4 t, K7 = 0,

K5 =
K5

Rt
t +

1
Rc

(
K1

5 d1 sinσ + K2
5 d2 cosσ

)
,

K6 =
1
Rc

(
K1

6 d1 cosσ + K2
6 d2 sinσ

)
.
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The expressions of the elasticity tensors are

A = A1d1 ⊗ d1 + A2d2 ⊗ d2 + A3t ⊗ t ,

B =
1
Rt

(
B1d1 ⊗ d1 + B2d2 ⊗ d2 + B3t ⊗ t

)
+

1
Rc

[
(B23d2 ⊗ d3 + B32d3 ⊗ d2) cosσ

+(B13d1 ⊗ d3 + B31d3 ⊗ d1) sinσ
]
,

C = C1d1 ⊗ d1 + C2d2 ⊗ d2 + C3t ⊗ t .

The values Ai , Bi , Ci for the elastic stiffness
can be determined by solving problems in the
linear theory.
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Linear theory

In the linear theory, there exists the
vector of small rotations ψ(s, t) such that :

P(s, t) = 1 +ψ(s, t)× 1 ,

We have ω(s, t) = ψ̇(s, t) , Φ(s, t) = ψ ′(s, t).

Denote by T and ϕ the variations of
temperature and porosity fields :

T(s, t) = θ(s, t) − θ0 , ϕ(s, t) = ν(s, t) − ν0(s).

We assume that u , ψ , T , ϕ are infinitesimal.



Introduction Field Equations Uniqueness and Existence Straight Porous Rods Orthotropic Rods Conclusions

The vectors of deformation become :

e ≡ u ′ + t ×ψ = E = E∗ , κ ≡ ψ ′ = Φ = Φ∗ .

The constitutive equations :

N =
∂(ρ0Ψ)

∂e
, M =

∂(ρ0Ψ)

∂κ
,

η = −∂Ψ

∂T
, g =

∂(ρ0Ψ)

∂ ϕ
, h =

∂(ρ0Ψ)

∂(ϕ ′)
.

The heat flux is expressed by :

q = K T ′ ,
with K the thermal conductivity of the rod.
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The equations of motion become :

N′ + ρ0F = ρ0 (ü + Θ0
1 · ψ̈),

M′ + t × N + ρ0L = ρ0
(
ü · Θ0

1 + Θ0
2 · ψ̈

)
,

h′ − g + ρ0 p = ρ0 κ ϕ̈ .

The reduced energy balance equation :

q ′ + ρ0 S = ρ0 θ0 η̇ .

The entropy inequality reduces to :

K ≥ 0 .
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To formulate the boundary–initial–value problem
we adjoin boundary conditions :

u(̄s, t) = ū(t) or N(̄s, t) = N̄(t),

ψ(̄s, t) = ψ̄(t) or M(̄s, t) = M̄(t),

ϕ(̄s, t) = ϕ̄(t) or h(̄s, t) = h̄(t),

T (̄s, t) = T̄(t) or q(̄s, t) = q̄(t), for s ∈ {0, l}.

and initial conditions :
u(s, 0) = u0(s), u̇(s, 0) = V0(s),

ψ(s, 0) = ψ0(s), ψ̇(s, 0) = ω0(s),

ϕ(s, 0) = ϕ0(s), ϕ̇(s, 0) = λ0(s),

T(s, 0) = T0(s), for s ∈ [0, l].
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Uniqueness of Solution
Introduce the function :

U(t) =

∫
C0

ρ0
(
Ψ + ηT

)
ds

and the kinetic energy :

K(t) =
1
2

∫
C0

ρ0
(
u̇·u̇+2u̇·Θ0

1·ψ̇+ψ̇·Θ0
2·ψ̇+κ ϕ̇2

)
ds.

We prove :

d
dt

[
K(t)+U(t)

]
=

∫
C0

[
ρ0

(F ·u̇ + L·ψ̇ + p ϕ̇+
1
θ0

S T
)− K

θ0

(
T ′)2]

ds

+
(
N · u̇ + M · ψ̇ + h ϕ̇+

1
θ0

q T
)∣∣∣l

0
.

(1)



Introduction Field Equations Uniqueness and Existence Straight Porous Rods Orthotropic Rods Conclusions

Theorem 1. For any two moments t , z ≥ 0, let

Q(t, z)=

∫
C0

ρ0

(
F(t)·u̇(z) + L(t)·ψ̇(z) + p(t) ϕ̇(z) − 1

θ0
S(t)T(z)

)
ds

+
(

N(t)·u̇(z) + M(t)·ψ̇(z) + h(t) ϕ̇(z) − 1
θ0

q(t)T(z)
)∣∣∣l

0
,

Then, for any t ≥ 0, we have :

2
[
U(t) − K(t)

]
=

∫ t

0

[
Q(t+τ, t−τ) − Q(t−τ, t+τ)]dτ

+

∫
C0

[
N(0)·e(2t)+M(0)·κ(2t)+g(0)ϕ(2t)+h(0)ϕ′(2t)

+ρ0 η(2t) T(0)
]
ds −

∫
C0

ρ0

[
u̇(2t) · (u̇(0) + Θ0

1 · ψ̇(0)
)

+ψ̇(2t) · (u̇(0) · Θ0
1 + Θ0

2 · ψ̇(0)
)

+ κ ϕ̇(2t) ϕ̇(0)
]
ds.
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We show :

Theorem 2. (Uniqueness)
Assume that the mass density ρ0 , the inertia
coefficient κ and the constitutive coefficient G
are positive.
Then the boundary–initial–value problem for
porous thermoelastic rods has at most one
solution.

Proof : based on relation (1) and Theorem 1.
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Korn Inequality and Existence results

Theorem 3.
Assume that r(s) is of class C3[0, l] . For every
y =

(
ui(s), ψi(s)

) ∈ H1[0, l] we define the
components of the deformation vectors ei(y)
and κi(y) in the Frenet vector basis { t , n , b } .
Then, there exists a constant c1 > 0 such that∫

C

[
uiui + ψi ψi + ei(y) ei(y) + κi(y)κi(y)

]
ds ≥

≥ c1

∫
C

(
uiui + ψi ψi + u′i u

′
i + ψ′

i ψ
′
i

)
ds,

(2)
for any y =

(
ui, ψi

) ∈ H1[0, l] .
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Relation (2) is a Korn inequality “without
boundary conditions”.
The proof relies on a corollary of the closed
graph theorem.

To prove a Korn inequality “with boundary
conditions”, we consider the closed subspace

V =
{(

ui, ψi

) ∈ H1[0, l] | ui = 0 on Γu , ψi = 0 on Γψ
}
,

in the sense of traces.
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Theorem 4.
Assume that the hypotheses of Theorem 3 are
satisfied and that Γu and Γψ are nonempty sets.
Then, there exists a constant c2 > 0 such that∫

C

[
ei(y) ei(y) + κi(y)κi(y)

]
ds ≥

≥ c2

∫
C

(
ui ui + ψi ψi + u′i u

′
i + ψ′

i ψ
′
i

)
ds, ∀ y ∈ V.

Proof : based on Theorem 3 and the Lemma on
infinitesimal rigid displacements.
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The inequality of Korn type from Theorem 4 can
be used to prove existence results for the
equations of rods written in a weak variational
form :

Dynamical equations: we employ the
semigroup of linear operators theory

Equilibrium equations: we employ the
Lax–Milgram lemma
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Straight porous rods
We consider the case when the middle curve C0

is straight, but has natural twisting.

x1

x2

x3

O
e1

e2

e3

t

d1

d2s

O e1 = n

e2 = b

d1(s)
d2(s)

σ(s)
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The tensors of inertia become :

ρ0Θ
0
1 = 0, ρ0Θ

0
2 = I1 d1⊗d1+I2 d2⊗d2+(I1+I2) t⊗t,

where I1 =

∫
Σ
ρ∗y2dxdy, I2 =

∫
Σ
ρ∗x2dxdy.

We decompose by t and the normal plane

u = u t + w and ψ = ψ t + t × ϑ,
where u is the longitudinal displacement,
w is the vector of transversal displacement,
ψ is the torsion,
ϑ′ is the vector of bending deformation.
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The vector of transverse shear : γ = w′ −ϑ .
We decompose also the force vector N and
the moment vector M

N = F t + Q and M = H t + t × L,

where F is the longitudinal force,
Q is the vector of transversal force,
H is the torsion moment
L is the vector of bending moment.

The boundary–initial–value problem decouples
into 2 problems :
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Extension - torsion problem

Variables : u , ψ , T and ϕ .

Equations of motion and energy equation :

F ′ + ρ0Ft = ρ0 ü , H ′ + ρ0Lt = (I1 + I2) ψ̈ ,

h ′ − g + ρ0p = ρ0κ ϕ̈, q ′ + ρ0S = ρ0 θ0 η̇ .

Constitutive equations :

F = A3 u ′ + σ ′B0 ψ
′ + K4 ϕ + K6 ϕ

′ + G1 T,
H = σ ′B0 u ′ + C3 ψ

′ , q = K T ′ ,
g = K1 ϕ+ K3 ϕ

′ + K4 u ′ + G3 T,
h = K2 ϕ

′ + K3 ϕ+ K6 u ′ + G4 T ,
ρ0η = −G T − G1 u′ − G3 ϕ− G4 ϕ

′ .
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Bending - shear problem

Variables : w and ϑ .

Equations of motion :

Q ′ + ρ0Fn = ρ0 ẅ ,

L ′ + Q − ρ0 t × Ln =
(
I2 d1 ⊗ d1 + I1 d2 ⊗ d2

) · ϑ̈.
Constitutive equations :

Q =
(
A1 d1 ⊗ d1 + A2 d2 ⊗ d2

) · (w ′ − ϑ)
,

L =
(
C2 d1 ⊗ d1 + C1 d2 ⊗ d2

) · ϑ ′ .



Introduction Field Equations Uniqueness and Existence Straight Porous Rods Orthotropic Rods Conclusions

Straight rods without natural twisting

In this case : σ(s) = 0, dα(s) = eα , t = e3.
The constitutive tensors simplify in the form :

G1 = G1 t, G2 = 0, G4 = 0,
K3 = 0, K5 = K6 = K7 = 0,

K4 = K4 t, A = A1d1⊗d1 + A2d2⊗d2 + A3t⊗t,
B = 0, C = C1d1⊗d1 + C2d2⊗d2 + C3t⊗t,

and the extension - torsion problem decouples.

For homogeneous materials, we can solve
analytically the problems of extension, torsion
and bending–shear, which reduce to ODEs.
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Equations for 3D orthotropic rods

Consider a 3D rod which occupies the domain

B = { (x1, x2, x3) | (x1, x2) ∈ Σ, x3 ∈ [0, l] } .
The 3D equations of motion are :

t∗ji,j + ρ∗ f ∗i = ρ∗ ü∗i , h∗i,i − g∗ + ρ∗ p∗ = ρ∗ κ
∗ ϕ̈∗,

q∗i,i + ρ∗S∗ = ρ∗ θ∗0 η̇
∗ .

Denote the integration over the cross-section :

〈 f 〉 =

∫
Σ

f dx1dx2 , ∀ f .

The constitutive equations for orthotropic
thermoelastic materials with voids are :
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t∗11 = c11e∗11 + c12e∗22 + c13e∗33 + β1ϕ
∗ − b1T∗,

t∗22 = c12e∗11 + c22e∗22 + c23e∗33 + β2ϕ
∗ − b2T∗,

t∗33 = c13e∗11 +c23e∗22 +c33e∗33 +β3ϕ
∗ − b3T∗,

t∗12 = 2c66e∗12 , t∗23 = 2c44e∗23 , t∗31 =2c55e∗31 ,

h∗1 = α1ϕ
∗
,1 , h∗2 = α2ϕ

∗
,2 , h∗3 = α3ϕ

∗
,3 ,

g∗ = β1e∗11 + β2e∗22 + β3e∗33 + ξ ϕ∗ − mT∗,

ρ∗η∗ = aT∗ + b1e∗11 + b2e∗22 + b3e∗33 + mϕ∗ ,

q∗i = K∗
i T∗

,i,

where e∗i j = 1
2 (u∗i, j + u∗j, i) is the 3D strain tensor.
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Determination of constitutive coefficients

Consider straight porous rods made of an
orthotropic and homogeneous material.

We determine the constitutive coefficients:

Ai , Ci , K1 , K2, K4, G1, G3 and G

by comparison of simple exact solutions for
directed curves with the results from 3D theory.

Use the notations : E0 =
det(cij)3×3

c11c22 − c2
12

,

ν1 =
c13c22 − c23c12

c11c22 − c2
12

, ν2 =
c23c11 − c13c12

c11c22 − c2
12

.
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Bending and extension of orthotropic rods

Consider the end boundary conditions :∫
Σ1

t∗33 dx1dx2 = F,
∫

Σ1

x2t
∗
33 dx1dx2 = L2 .

O

Σ1

x2

x1

x3

F

L

F

L

Σ2
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The solutions in the two approaches (direct and
3D) coincide if and only if : ( A = area(Σ) )

A3 = A E0 , C1 = E0

∫
Σ
x2

2 dx1dx2 .

If we consider the end boundary conditions :∫
Σ1

x1t
∗
33 dx1dx2 = L1

and compare the two solutions we get :

C2 = E0

∫
Σ
x2

1 dx1dx2 .
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Torsion of orthotropic rods

Consider the end boundary conditions :∫
Σ1

(x1t
∗
23 − x2t

∗
13) dx1dx2 = H .

O

Σ1

x2

x1

x3H

H

Σ2
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Comparing the solutions in the two approaches
(direct and 3D) we deduce that :

C3 =
8(c44 c55)

3/2

(c44 + c55)2

∫
Σ∗
φ∗(ξ1, ξ2) dξ1dξ2 ,

where φ∗(ξ1, ξ2) is the solution of the problem :

Δφ∗(ξ1, ξ2) = −2 in Σ∗,

φ∗(ξ1, ξ2) = 0 on ∂Σ∗,

and
Σ∗ = { (ξ1, ξ2) | ξ1 = x1

√
c44+c55

2c55
, ξ2 = x2

√
c44+c55

2c44
}.
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Shear vibrations of orthotropic rods
Consider a rectangular straight rod with zero
body forces, the lateral surface free of traction
and the end boundary conditions :

u∗1 = u∗2 = 0 and t∗33 = 0 for x3 = 0, l .

To determine the shear vibrations, we search :

u∗= W e iω t sin
((2k + 1)π

a
x1

)
e3 , k = 0, 1, 2, ...

The lowest natural frequency of shear vibrations

ω =
π

a

√
c55

ρ∗
.
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Considering the same problem in the theory of
rods we find the natural frequency :

ω̂ =
1
a

√
12 A1

ρ∗ A
.

If we identify ω and ω̂ , we find :

A1 = k A c55 , with k =
π2

12
,

Analogously ,

A2 = k A c44 , with k =
π2

12
.
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Extension of porous thermoelastic rods

Consider the resultant axial force F and
temperature T̄ at both ends :∫

Σα

t∗33 dx1dx2 = F ,
∫

Σα

T∗ dx1dx2 = A T̄ .

x2

x1

x3

F
T̄

F
T̄
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The solutions in the two approaches (direct and
3D) coincide if and only if :

G1 = A(b3 − b1ν1 − b2ν2) ,

G3 = A
(

m − c11b2β2 + c22b1β1 − c12(b1β2 + b2β1)

δ1

)
,

K1 = A
(
ξ − β2

1c22 + β2
2c11 − 2β1β2c12

δ1

)
,

K4 = A
(
β3 − β1ν1 − β2ν2

)
.
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By comparison of constitutive equations we also
identify :

K2 = Aα3 , G = A a .

In the case of isotropic and homogeneous
materials, the constitutive coefficients become

c11 = c22 = c33 = λ+ 2μ , c12 = c13 = c23 = λ ,
c44 = c55 = c66 = μ , αi = α , βi = β , bi = b,

E0 = E, ν1 = ν2 = ν

We obtain by particularization the values :



Introduction Field Equations Uniqueness and Existence Straight Porous Rods Orthotropic Rods Conclusions

A1 = A2 = k μA (k =
π2

12
), A3 = E A,

C1 = E
∫

Σ
x2

2 dx1dx2, C2 = E
∫

Σ
x2

1 dx1dx2,

C3 = 2μ
∫

Σ
φ∗(x1, x2) dx1dx2 with

Δφ∗ = −2 in Σ, φ∗ = 0 on ∂Σ,

G1 = A
μ b
λ+ μ

, G3 = A
(

m − bβ
λ+ μ

)
, G = A a ,

K1 = A
(
ξ − β2

λ+ μ

)
, K4 = A

β μ

λ+ μ
, K2 = Aα.
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Conclusions

General nonlinear theory for thermoelastic
rods

Structure of constitutive tensors

Uniqueness of solution in the linear theory

Decoupling of problems for straight rods

Determination of effective stiffness values for
thermoelastic orthotropic rods

Future plans :

to consider inhomogeneous materials

effective stiffness for functionally graded rods
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