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Consider a linear elasticity problem in a domain @ C R" (n > 2).
The physical state of the body is described by the solution u of the
problem
( u e HY(Q,R™)
—div(Ce(u)) = f InQ
u=up Oonlp
. Ce(uin=g only

Consider a functional J, for instance

J(u):/QCe(u)e(u)

(many other examples can be considered).



The goal of topology optimization is to describe the behaviour of an
objective function J(u) when the domain €2 is perturbed by
Introducing a microscopic hole at a specific location.

Consider a point xg in 2, assume f = 0 in a neighbourhood of x.

Consider a small parameter p > 0 and denote by (2, the perforated
domain 2\ B(xg, p).




Denote by u, the solution of the problem :

( u, € H(92,,R"™)
—div(Ce(u,)) = f InQ,
9 u, =up Onlp
Ce(up)n=g only
 Ce(up)n =0 on dB(xo, p)

Define

Jp(up) :/ Ce(up)e(up)

P

In topology optimization, the main issue is to study the variation of
the objective functional J,(u,) — J(u).



The topological derivative X\ of the functional .J is defined by

\ = lim JP(“P) B J(u)
p—0 pr

In several papers (see Masmoudi & al. 2001, Lewinski &

Sokotowski 2003, etc.), an asymptotic development is deduced for
J, In the form

Jp(up) = J(u) + Ap"™ + o(p")

where n is the space dimension.
It turns out that the topological derivative \ depends on the
(unperturbed) state « and on the location z of the hole.



It is meaningful to study the difference u, — u. It satisfies

( u, —u € H(Q,),
—div(Ce(u, —u)) =01in £,
u,—u=0o0onlp

. Ce(u, —u)n=00nTy

Ce(u, —u)n = —Ce(u)n on 0B (xo, p)




Recall that f = 0 in some fixed neighbourhood of xy. Then the
forces —C'e(u)n appearing at the interface 90B(xq, p) have zero
resultant and zero momentum:

/ Ce(u)n = / div(Ce(u)) = / f=0
aB<$0,p) B(CU()ap) B<$Oap)

/ C’e(u)n/\x:/ fAz=0
9B(z0,p) B(z0,p)
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equivalent to zero force and zero couple, are of negligible
magnitude at distances which are large compared with the
linear dimensions of the part.
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SAINT VENANT’S PRINCIPLE IN MATHEMATICAL FORM

Let 2 C R™ be a domain having Lipschitz boundary, and x( a fixed
arbitrary pointin 2. Let a € L*°(€2, [, 5]) be a function such that a
IS constant in a ball B,,(xg, R) of fixed radius R. Let p > 0 be a
small parameter and consider a function U, € H'(Q,) verifying

—div(aVU,) =0 in Q,=Q\ B,(zo, p)

U,=0 on Ip
aVUn=0 on Iy

where 9Q =Tp UT'y and T'p N Ty = (. Suppose U, satisfies

/ aVU,n =0
aB(CBCNP)



For each r € [p, R], define the energy in 2, = Q \ B, (zg,7)

E(r,U,) = /Q o VU,

Then the following estimate holds, for fixed R, where ¢ =2/(n — 1),

E(R,U,) < E(p,U,) R=p°.




e in two dimensions ¢ = 2 and

E(R,U,) < E(p,U,) R%p?,
e in three dimensions ¢ =1 and

E(R,U,) < E(p,U,) R™'p,

Provided E(p,U,) is bounded, the energy E(R,U,) is small (of
order p©) outside a fixed ball B,,(zg, R). Therefore \|VU,)H%2<QR) is of
order p°.

In the case when I'p is not negligible in 02, Poincaré inequality
implies that HUPH%Q(QR) is also small (of order p°).



The assumption that E(p, U,) is bounded must be checked

separately for each particular case. For instace, U, bounded in
HY(Q) is sufficient.

Note that U, may be defined in the entire domain 2. In this case,
the equilibrium condition

/ aVU,n =0
aB(CBCNP)

IS equivalent to

/ div(aVU,) = 0
B(zo,p)



Proof ingredients :
Poincar é-Wirtinger inequality Let 2 be a bounded and connected
domain in R"™. Then there exists a constant C' > 0 such that, for any

u € H'(Q) with / u = 0, one has
Q

[ullL2() < ClIVul| 20

Poincar é-Wirtinger inequality for functions on a sphere Let u be a
function in H1(S,_1(0,7)), where S,,_1(0,r) is the sphere centered
at 0 and of radius r. If / uw = 0, then

Sn—1(0,1)

lullr2(s, 100 <7 (n=1) [Vullr2(s, . (0,r))-



Suppose that in Saint-Venant’s principle we obtained an
exponential decay of the energy.

Note that the difference v, — u satisfies all hypothesis in our
statement of Saint-Venant's principle.

This means that, for a fixed radius R, the norm of u, — u Iin

L?(\ B,(z0, R)) goes to zero exponentially as p — 0 (in particular,
It goes to zero faster than any power of p). Consider now the case
when f = 0 in some neighbourhood of x( (e.g. in the ball

B, (x9, R)). Recall that

Tylp) = Tw) = [ =) = [ B

This value goes to zero (as p — 0) faster than any power of p, which
Implies that the topological derivative, denoted by X in the
asymptotic expansion, must be zero. Thus, the topological



This contradicts mechanical common sense — there are many
meaningful examples with forces applied only on small parts of the
body — and also contradicts results obtained in the literature.

This means that exponential decay of the energy is not to be
expected in Saint Venant’s principle for domains of arbitrary shape.
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e Saint Venant’s principle proven for an arbitrarily shaped body,
scalar PDE

e power-law decay found (not exponential)
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Thank you !



