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Abstract. In this paper we prove large deviations principles for the av-
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function introduced by Mokkadem et al. (2009). We show that the averaged
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which minimize the asymptotic variance gives the same pointwise LDP as
the Nadaraya-Watson kernel estimator. Moreover, we give a moderate devi-
ations principle for these estimators. It turns out that the rate function
obtained in the moderate deviations principle for the averaged stochas-
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1. Introduction. Let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be independent,
identically distributed pairs of random variables with joint density function
g(x, y), and let f denote the probability density of X. In order to construct
a stochastic algorithm for the estimation of the regression function r : x 7→
E (Y |X = x) at a point x such that f(x) 6= 0, Mokkadem et al. [9] defines an algo-
rithm, which approximates the zero of the function h : y 7→ f(x)r(x)−f(x)y. Fol-
lowing Robbins-Monro’s procedure, this algorithm is defined by setting r0(x) ∈ R

and, for n ≥ 1,

rn(x) = rn−1(x) + γnWn(x)

whereWn(x) is an “observation” of the function h at the point rn−1(x). To define
Wn(x), Mokkadem et al. [9] follow the approach of Révész [11, 12] and Tsybakov

[13], and introduces a kernel K (that is, a function satisfying

∫

R

K(x)dx = 1)

and a bandwidth (hn) (that is, a sequence of positive real numbers that goes to
zero), and sets

Wn(x) = h−1
n YnK(h−1

n [x−Xn])− h−1
n K(h−1

n [x−Xn])rn−1(x).

Then, the estimator rn can be rewritten as

rn(x) =

(
1− γnh

−1
n K

(
x−Xn

hn

))
rn−1(x) + γnh

−1
n YnK

(
x−Xn

hn

)
.(1)

Now, let the stepsize in (1) satisfy lim
n→∞

nγn = ∞, and let (qn) be a positive se-

quence such that
∑

qn = ∞. The averaged stochastic approximation algorithm

for the estimation of a regression function is defined by setting

(2) rn(x) =
1∑n

k=1 qk

n∑

k=1

qkrk(x)

(where the rk(x) are given by the algorithm (1)).
Recently, large and moderate deviations results have been proved for the

well-known nonrecursive Nadaraya-Watson’s kernel regression estimator, first by
Louani [5], and then by Joutard [4]. Mokkadem et al. [8] show that the rate
function obtained in the moderate deviations principle for the semi-recursive
estimator is larger than the one obtained for the Nadaraya-Watson estimator.

Let us first recall that a R
m-valued sequence (Zn)n≥1 satisfies a large

deviations principle (LDP) with speed (νn) and good rate function I if:

1. (νn) is a positive sequence such that lim
n→∞

νn = ∞;
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2. I : Rm → [0,∞] has compact level sets;

3. for every borel set B ⊂ R
m,

− inf
x∈

◦

B

I (x) ≤ lim inf
n→∞

ν−1
n logP [Zn ∈ B]

≤ lim sup
n→∞

ν−1
n logP [Zn ∈ B] ≤ − inf

x∈B
I (x) ,

where
◦
B and B denote the interior and the closure of B respectively. More-

over, let (vn) be a nonrandom sequence that goes to infinity; if (vnZn)
satisfies a LDP, then (Zn) is said to satisfy a moderate deviations principle
(MDP).

The first aim of this paper is to establish pointwise LDP for the aver-
aged stochastic approximation algorithm (2). It turns out that the rate function
depends on the bandwidth (hn) and on the weight (qn).

We show that using the bandwidths (hn) ≡
(
cn−a

)
with c > 0 and a ∈

(1− α, (4α− 3) /2) (with α ∈ (
3

4
, 1]), and the weight (qn) =

(
c′n−q

)
with c′ > 0

and q < min {1− 2a, (1 + a) /2}, the sequence (rn (x)− r (x)) satisfies a LDP
with speed (nhn) and the rate function defined as follows:

Ia,q,x (t) = sup
u∈R

{ut− ψa,q,x (u)} ,

which is the Fenchel-Legendre transform of the function ψa,q,x defined as follows:

(3) ψa,q,x (u) = (1− q)

∫

[0,1]×R2

s−a

(
e
usa−qK(z) (y−r(x))

f(x) − 1

)
g (x, y) dsdzdy.

Noting that, in the special case (qn) = (hn), which is the case when the weight
(qn) minimizes the asymptotic variance of rn (see Mokkadem et al. [9]), we
obtain the same rate function for the pointwise LDP as the one obtained for the
Nadaraya-Watson estimator (see [5]).

Our second aim is to provide pointwise MDP for the averaged stochastic
approximation algorithm (2). In this case, we consider a more general weight
sequence defined as qn = γ (n) for all n, where γ is a regularly varying function
with exponent (−q), q < min {1− 2a, (1 + a) /2}.

For any positive sequence (vn) satisfying

lim
n→∞

vn = ∞, lim
n→∞

v2n
nhn

= 0 and lim
n→∞

vnh
2
n = 0(4)
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and general bandwidths (hn), we prove that the sequence

vn (rn (x)− r (x))

satisfies a LDP of speed
(
nhn/v

2
n

)
and good rate function Ja,q,x : R → R defined

by

Ja,q,x (t) =
1 + a− 2q

(1− q)2
f (x)

Var [Y |X = x]
∫
R
K2 (z) dz

t2

2
.(5)

Let us point out that when the weight (qn) is chosen to be a regularly vary-
ing function with exponent (−a) (e.g. (qn) = (hn)), which is the case when
the weight (qn) minimizes the asymptotic variance of rn (see [9]), the factor
(1 + a− 2q) / (1− q)2 which is present in (5) can be reduced to 1/(1 − a), and
then we can write

Ja,x (t) =
1

(1− a)

f (x)

Var [Y |X = x]
∫
R
K2 (z) dz

t2

2
.(6)

Moreover, Louani [5] establish the moderate deviations behaviour for the
Nadaraya-Watson ([6], [14]) estimator defined as

r̂n (x) =





m̂n (x)

f̂n (x)
if f̂n (x) 6= 0

0 otherwise,

(7)

where

m̂n (x) =
1

nhn

n∑

i=1

YiK

(
x−Xi

hn

)
and f̂n (x) =

1

nhn

n∑

i=1

K

(
x−Xi

hn

)
.

They prove that, for any positive sequence (vn) satisfying (4), the se-
quence vn (r̂n (x)− r (x)) satisfies a LDP with speed

(
nhn/v

2
n

)
and good rate

function Ĵx : R → R defined by

Ĵx (t) =
f (x)

Var [Y |X = x]
∫
R
K2 (z) dz

t2

2
.(8)

Recently, Mokkadem et al. [8] establish the moderate deviations be-
haviour for the semi-recursive version of the Nadaraya-Watson estimator defined
as

r̃n (x) =





m̃n (x)

f̃n (x)
if f̃n (x) 6= 0

0 otherwise,
(9)
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where

m̃n (x) =
1

n

n∑

i=1

Yi
hi
K

(
x−Xi

hi

)
and f̃n (x) =

1

n

n∑

i=1

1

hi
K

(
x−Xi

hi

)
.

They prove that, for any positive sequence (vn) satisfying (4), the se-
quence vn (r̃n (x)− r (x)) satisfies a LDP with speed

(
nhn/v

2
n

)
and good rate

function J̃a,x : R → R defined by

J̃a,x (t) = (1 + a)
f (x)

Var [Y |X = x]
∫
R
K2 (z) dz

t2

2
.(10)

Then, it follows from (6), (8) and (10), that the rate function obtained in
the MDP of rn defined with a weight (qn) minimizing the asymptotic variance of
rn (e.g. (qn) = (hn)) is larger than the one obtained for the Nadaraya-Watson
kernel estimator (7) and than the one obtained for the semi-recursive kernel
estimator (9); this means that the averaged stochastic approximation algorithm
rn(x) defined with a weight (qn), which is chosen to be a regularly varying function
with exponent (−a) (e.g. (qn) = (hn)) is more concentrated around r(x) than
the two others estimators (Nadaraya-Watson (7) and semi-recursive (9)).

2. Assumptions and main results. Let us first define the class of
positive sequences that will be used in the statement of our assumptions.

Definition 1. Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence.

We say that (vn) ∈ GS (γ), if

lim
n→∞

n

[
1−

vn−1

vn

]
= γ.(11)

Condition (11) was introduced by Galambos and Seneta [3] to define regu-
larly varying sequences (see also [1]); it was used in [7] in the context of stochastic
approximation algorithms. Typical sequences in GS (γ) are, for b ∈ R, nγ (log n)b,
nγ (log log n)b, and so on.

Let g (s, t) denote the density of the couple (X,Y ) (in particular f (x) =∫

R

g (x, t) dt), and set a (x) = r (x) f (x).

2.1. Pointwise LDP for the averaged stochastic approximation

algorithm. To establish pointwise LDP for rn, we need the following assump-
tions.
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(L1) K : R → R is a nonnegative, continuous, bounded function satisfying∫

R

K (z) dz = 1,

∫

R

zK (z) dz = 0 and

∫

R

z2K (z) dz <∞.

(L2) i) (γn) = GS (−α) with α ∈ (
3

4
, 1]; lim

n→∞
nγn

(
ln

(
n∑

k=1

γk

))−1

= ∞.

ii) (hn) =
(
cn−a

)
with a ∈ (1− α, (4α− 3) /2) and c > 0.

iii) (qn) =
(
c′n−q

)
with q < min {1− 2a, (1 + a) /2} and c′ > 0.

(L3) i) g (s, t) is twice continuously differentiable with respect to s.

ii) For q ∈ {0, 1, 2}, s 7→

∫

R

tqg (s, t) dt is a bounded function continuous at

s = x.

For q ∈ [2, 3], s 7→

∫

R

|t|q g (s, t) dt is a bounded function.

iii) For q ∈ {0, 1},

∫

R

|t|q
∣∣∣∣
∂g

∂x
(x, t)

∣∣∣∣ dt < ∞, and s 7→

∫

R

tq
∂2g

∂s2
(s, t) dt is a

bounded function continuous at s = x.

(L4) For any u ∈ R, t →

∫

R

exp (uy) g (t, y) dy is continuous at x and bounded.

The proof of the following comment is given in [8].

Comment. Notice that (L4) implies that ∀m ≥ 0,∀ρ ≥ 0

the function t 7→

∫

R

|y|m exp (ρ |y|) g (t, y) dy is bounded.(12)

Before stating our results, we set

S+ = {x ∈ R;K (x) > 0} and S− = {x ∈ R;K (x) < 0}

and for fixed x ∈ R

T+ = {y ∈ R; y − r (x) > 0} and T− = {y ∈ R; y − r (x) < 0}

Moreover, we set

O+ = (S+ ∩ T+) ∪ (S− ∩ T−) and O− = (S+ ∩ T−) ∪ (S− ∩ T+)

The following proposition gives the properties of the functions ψa,q,x and
Ia,q,x; in particular, the behaviour of the rate function Ia,q,x.
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Proposition 1 (Properties of ψa,q,x and Ia,q,x). Let λ be the Lebesgue

measure on R and let Assumptions (L1) and (L4) hold.

(i) ψa,q,x is strictly convex, twice continuously differentiable on R, and Ia,q,x is

a good rate function on R.

(ii) If λ (O−) = 0, Ia,q,x (t) = +∞, when t < 0, and

Ia,q,x (0) =

{
(1− q) / (1− a)λ (S+) f (x) if λ (S+ ∩ T+) > 0
(1− q) / (1− a)λ (S−) f (x) if λ (S− ∩ T−) > 0

Ia,q,x is strictly convex on R and continuous on (0,+∞), and for any t > 0

Ia,q,x (t) = t
(
ψ′
a,q,x

)−1
(t)− ψa,q,x

((
ψ′
a,q,x

)−1
(t)
)
,(13)

(iii) If λ (O−) > 0, then Ia,q,x is finite and strictly convex on R and (13) holds

for any t ∈ R.

We can now state the LDP for the averaged stochastic approximation
algorithm (2).

Theorem 1 (Pointwise LDP for the averaged stochastic approximation
algorithm). Let Assumptions (L1)–(L4) hold. Then, the sequence (rn (x)− r (x))
satisfies a LDP with speed (nhn) and rate function defined as follows:

Ia,q,x (t) = t
(
ψ′
a,q,x

)−1
(t)− ψa,q,x

((
ψ′
a,q,x

)−1
(t)
)
,

where ψa,q,x is defined in (3).

2.2. Pointwise MDP for the averaged stochastic approximation

algorithm. Let (vn) be a positive sequence; we assume that

(M1) K : R → R is a nonnegative, continuous, bounded function satisfying∫

R

K (z) dz = 1,

∫

R

zK (z) dz = 0 and

∫

R

z2K (z) dz <∞.

(M2) i) (γn) = GS (−α) with α ∈ (
3

4
, 1]; lim

n→∞
nγn

(
ln

(
n∑

k=1

γk

))−1

= ∞.

ii) (hn) = GS (−a) with a ∈ (1− α, (4α − 3) /2).
iii) (qn) = GS (−q) with q < min {1− 2a, (1 + a) /2}.
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(M3) i) g (s, t) is twice continuously differentiable with respect to s.

ii) For q ∈ {0, 1, 2}, s 7→

∫

R

tqg (s, t) dt is a bounded function continuous at

s = x.

For q ∈ [2, 3], s 7→

∫

R

|t|q g (s, t) dt is a bounded function.

iii) For q ∈ {0, 1},

∫

R

|t|q
∣∣∣∣
∂g

∂x
(x, t)

∣∣∣∣ dt < ∞, and s 7→

∫

R

tq
∂2g

∂s2
(s, t) dt is a

bounded function continuous at s = x.

(M4) For any u ∈ R, t →

∫

R

exp (uy) g (t, y) dy is continuous at x and bounded.

(M5) i) lim
n→∞

vn = ∞ and lim
n→∞

v2n
nhn

= 0.

ii) lim
n→∞

vnh
2
n = 0

The following Theorem gives the pointwise MDP for the averaged stochas-
tic approximation algorithm (2).

Theorem 2 (Pointwise MDP for the averaged stochastic approximation
algorithm). Let Assumptions (M1)− (M5) hold. Then, the sequence (vn(rn(x)−
r(x))) satisfies a MDP with speed

(
nhn/v

2
n

)
and good rate function Ja,q,x defined

in (5).

3. Proofs. From now on, we set n0 ≥ 3 such that ∀k ≥ n0, γk ≤
(2‖f‖∞)−1 and γkh

−1
k ‖K‖∞ ≤ 1. Moreover, we introduce the following notations:

Zn (x) = h−1
n K

(
x−Xn

hn

)
,

Wn (x) = h−1
n YnK

(
x−Xn

hn

)
,

ηn (x) = (Yn − r (x))K

(
x−Xn

hn

)
,(14)

As explained in the introduction, we note that the stochastic approximation
algorithm (1) can be rewritten as:

rn(x) = (1− γnZn (x)) rn−1(x) + γnWn (x)

= (1− γnf (x)) rn−1(x) + γn (f (x)− Zn (x)) rn−1 (x) + γnWn (x) .
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To establish the asymptotic behaviour of (rn) and (rn), we introduce the auxiliary
stochastic approximation algorithm defined by setting ρn (x) = r (x) for all n ≤
n0 − 2, ρn0−1 (x) = rn0−1 (x), and, for n ≥ n0,

ρn(x) = (1− γnf (x)) ρn−1(x) + γn (f (x)− Zn (x)) r (x) + γnWn (x) .

It follows that, for n ≥ n0,

ρn (x)− ρn−1 (x) = −γnf (x) [ρn−1(x)− r (x)] + γn [Wn (x)− r (x)Zn (x)] ,

= −γnf (x) [ρn−1(x)− r (x)] + γnh
−1
n ηn (x) ,

and thus

ρn−1(x)− r (x) =
h−1
n

f (x)
ηn (x)−

1

γnf (x)
[ρn(x)− ρn−1(x)] .

Then, we can write that

ρn (x)− r (x) =
1∑n

k=1 qk

n∑

k=1

qk [ρk (x)− r (x)]

=
1

f (x)
Tn (x)−

1

f (x)
R(0)

n (x)(15)

with

Tn (x) =
1∑n

k=1 qk

n∑

k=n0−1

qkh
−1
k ηk (x) ,

R(0)
n (x) =

1∑n
k=n0−1 qk

n∑

k=1

qk
γk+1

[ρk+1(x)− ρk(x)] .

Moreover, it was shown in [9], that under the assumptions (M1)–(M3), we have

∣∣∣R(0)
n (x)

∣∣∣ = o

(√
n−1h−1

n + h−2
n

)
a.s.,(16)

then, it follows from (15) and (16) that

ρn (x)− E [ρn (x)] =
1

f (x)

1∑n
k=1 qk

n∑

k=n0−1

qkh
−1
k (ηk (x)− E [ηk (x)]) .

Let (Ψn), (Bn) and
(
∆n

)
be the sequences defined as

Ψn (x) =
1

f (x)

1∑n
k=1 qk

n∑

k=n0−1

qkh
−1
k (ηk (x)− E [ηk (x)]) ,
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Bn (x) = E [ρn (x)]− r (x) ,

∆n (x) = rn (x)− ρn (x) .

We have:

rn (x)− r (x) = Ψn (x) +Bn (x) + ∆n (x) .(17)

Moreover, it was shown in [9], that ∆n (x) is negligible in front of ρn. Then, it
follows from (17), that the deviation behaviour of the sequence (rn (x)− r (x))
can be deduced from that of the sequence (ρn (x)− ρ (x)) which is equal to
(Ψn (x) +Bn (x)). Theorems 1 and 2 are then consequences of the following
propositions.

Proposition 2 (Pointwise LDP and MDP for (Ψn)).

1. Under the assumptions (L1)–(L4), the sequence ρn (x)− E [ρn (x)] satisfies
a LDP with speed (nhn) and rate function Ia,q,x.

2. Under the assumptions (M1)–(M5), the sequence (vnΨn (x)) satisfies a LDP

with speed
(
nhn/v

2
n

)
and rate function Ja,q,x.

Proposition 3 (Convergence rate of (Bn)). Let Assumptions (M1)–(M3)
hold. Then

Bn (x) = O
(
h2n
)
.

Set x ∈ R; since the assumptions of Theorems 1 guarantee that
lim
n→∞

Bn (x) = 0, then Theorem 1 is a straightforward consequence of the ap-

plication of Proposition 2. Moreover, under the assumptions of Theorem 2, we
have by application of Propostion 3, lim

n→∞
vnBn (x) = 0; Theorem 2 thus straight-

fully follows from the application of Part 2 of Proposition 2.

We now state a preliminary lemmas, which will be used in the proof of
Proposition 2. For any u ∈ R, set

Λn,x (u) =
v2n
nhn

logE

[
exp

(
unhnΨn (x)

vn

)]
,

ΛL
x (u) = ψa,q,x (u) ,

ΛM
x (u) =

u2

2

(1− q)2

1 + a− 2q

Var [Y |X = x]

f (x)

∫

R

K2 (z) dz.
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Lemma 1 (Pointwise convergence of Λn,x when vn ≡ 1). Let Assumptions

(L1)–(L4) hold. Then, for all u ∈ R

lim
n→∞

Λn,x (u) = ΛL
x (u) .

Lemma 2 (Pointwise convergence of Λn,x when vn → ∞). Let Assump-

tions (M1–(M4) hold. Then, for all u ∈ R

lim
n→∞

Λn,x (u) = ΛM
x (u) .

Our proofs are now organized as follows: Lemmas 1 and 2 are proved in
Section 3.1, Proposition 2 in Section 3.2 and Proposition 3 in Section 3.3.

3.1. Proof of Lemmas 1 and 2. Set u ∈ R, un = u/vn and an = nhn.
We have:

Λn,x (u) =
v2n
an

logE [exp (unanΨn (x))]

=
v2n
an

logE


exp


 un
f (x)

an∑n
k=1 qk

n∑

k=n0−1

qk
hk

(ηk (x)− E [ηk (x)])






=
v2n
an

n∑

k=n0−1

logE

[
exp

(
un

an∑n
k=1 qk

qk
hk

ηk (x)

f (x)

)]

−
u

f (x)

vn∑n
k=1 qk

n∑

k=n0−1

qk
hk

E [ηk (x)] .

By Taylor expansion, there exists ck,n between 1 and E

[
exp

(
un
qk
hk

ηk (x)

f (x)

)]
such

that

logE

[
exp

(
un

an∑n
k=1 qk

qk
hk

ηk (x)

f (x)

)]

= E

[
exp

(
un

an∑n
k=1 qk

qk
hk

ηk (x)

f (x)

)
− 1

]

−
1

2c2k,n

(
E

[
exp

(
un

an∑n
k=1 qk

qk
hk

ηk (x)

f (x)

)
− 1

])2

and Λn,x can be rewriten as

Λn,x (u) =
v2n
an

n∑

k=n0−1

E

[
exp

(
un

an∑n
k=1 qk

qk
hk

ηk (x)

f (x)

)
− 1

]
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−
1

2

v2n
an

n∑

k=n0−1

1

c2k,n

(
E

[
exp

(
un

an∑n
k=1 qk

qk
hk

ηk (x)

f (x)

)
− 1

])2

−
u

f (x)

vn∑n
k=1 qk

n∑

k=n0−1

qk
hk

E [ηk (x)] .(18)

Now, let us recall that, if (bn) ∈ GS (−b∗) with b∗ < 1, then we have, for any
fixed k0 ≥ 1,

lim
n→∞

nbn∑n
k=k0

bk
= 1− b∗,(19)

and

sup
k≤n

bn
bk

<∞.(20)

Moreover, since
(
qkh

−1
k

)
∈ GS (− (q − a)), it follows from (19) that

∣∣∣∣un
an∑n
k=1 qk

qk
hk

∣∣∣∣ = O

(
u

vn

hn
hk

qk
qn

)
,

and from (20) that
∣∣∣∣un

an∑n
k=1 qk

qk
hk

∣∣∣∣ =
{
O (1) when vn ≡ 1
o (1) when vn → ∞

and thus, in the both cases, there exists c > 0 such that
∣∣∣∣un

an∑n
k=1 qk

qk
hk

∣∣∣∣ ≤ c.(21)

P r o o f o f L emma 2. A Taylor’s expansion implies the existence of c′k,n

between 0 and un
an∑n
k=1 qk

qk
hk

ηk (x)

f (x)
such that

E

[
exp

(
un

an∑n
k=1 qk

qk
hk

ηk (x)

f (x)

)
− 1

]

=
un
f (x)

an∑n
k=1 qk

qk
hk

E [ηk (x)] +
1

2

(
un
f (x)

an∑n
k=1 qk

qk
hk

)2

E
[
η2k (x)

]

+
1

6

(
un
f (x)

an∑n
k=1 qk

qk
hk

)3

E

[
η3k (x) e

c′
k,n

]
.
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Therefore,

Λn,x (u) =
u2

2 (f (x))2
an

(
∑n

k=1 qk)
2

n∑

k=n0−1

q2k
h2k

E
[
η2k (x)

]

+
1

6

u2un

(f (x))3
a2n

(
∑n

k=1 qk)
3

n∑

k=n0−1

q3k
h3k

E
[
η3k (x) exp

(
c′k,n

)]

−
1

2

v2n
an

n∑

k=n0−1

1

c2k,n

(
E

[
exp

(
un

an∑n
k=1 qk

qk
hk

ηk (x)

f (x)

)
− 1

])2

.

Let us note that under the assumption (M3), we have

E
[
η2k (x)

]
= hkV ar [Y |X = x] f (x)

∫

R

K2 (z) dz [1 + o (1)] .

Then, it follows that

Λn,x (u) =
u2

2

an

(
∑n

k=1 qk)
2

n∑

k=n0−1

q2k
hk

Var [Y |X = x]

f (x)

∫

R

K2 (z) dz [1 + o (1)]

+R(1)
n,x (u)−R(2)

n,x (u) ,(22)

with

R(1)
n,x (u) =

1

6

u2un

(f (x))3
a2n

(
∑n

k=1 qk)
3

n∑

k=n0−1

q3k
h3k

E
[
η3k (x) exp

(
c′k,n

)]
,

R(2)
n,x (u) =

1

2

v2n
an

n∑

k=n0−1

1

c2k,n

(
E

[
exp

(
un

an∑n
k=1 qk

qk
hk

ηk (x)

f (x)

)
− 1

])2

.

Let us first show that

lim
n→∞

∣∣∣R(1)
n,x (u)

∣∣∣ = 0.

In view of (M4) and (21), and since |a− b|3 ≤ 4
(
|a|3 + |b|3

)
, we have

E

∣∣∣ηk (x)3 exp
(
c′k,n

)∣∣∣

≤ hk

∫

R2

|y − r(x)|3K3(z) exp

(
c

f(x)
|y − r(x)| |K(z)|

)
g(x− zhk, y)dydz

≤ 4hk

∫

R

exp

(
c

f (x)
|r (x)| ‖K‖∞

)
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×

{∫

R

|y|3 exp

(
c

f (x)
|y| ‖K‖∞

)
g (x− zhk, y) dy

+ |r (x)|3
∫

R

exp

(
c

f (x)
|y| ‖K‖∞

)
g (x− zhk, y) dy

}
K3 (z) dz

=O (hk) .(23)

Hence, it follows from (23) and (19), that
∣∣∣∣∣∣
u2un

(f (x))2
a2n

(
∑n

k=1 qk)
3

n∑

k=n0−1

q3k
h3k

E

[
η3k (x) e

c′
k,n

]
∣∣∣∣∣∣

= O


 1

vn

a2n

(
∑n

k=1 qk)
3

n∑

k=n0−1

q3k
h2k




= O

(
1

vn

(
nqn∑n
k=1 qk

)3
∑n

k=n0−1 q
3
kh

−2
k

nq3nh
−2
n

)

= O

(
1

vn

)

which ensures that lim
n→∞

∣∣∣R(1)
n,x (u)

∣∣∣ = 0.

Let us now prove that

lim
n→∞

∣∣∣R(2)
n,x (u)

∣∣∣ = 0.

Noting that, under the assumption (M3) we have

E (Wk (x)) = a (x) +
1

2
h2k

∫

R

y
∂2g

∂x2
(x, y) dy

∫

R

z2K (z) dz [1 + o (1)] ,

E (Zk (x)) = f (x) +
1

2
h2k

∫

R

∂2g

∂x2
(x, y) dy

∫

R

z2K (z) dz [1 + o (1)] .

Then, it follows from (14) that

E [ηk (x)] = hk [E (Wk (x))− r (x)E (Zk (x))]

=
1

2
h3k

[∫

R

y
∂2g

∂x2
(x, y) dy − r (x)

∫

R

∂2g

∂x2
(x, y) dy

]

×

∫

R

z2K (z) dz [1 + o (1)]

= h3km
(2) (x) f (x) [1 + o (1)] ,(24)
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where,

m(2) (x) =
1

2f (x)

[∫

R

t
∂2g

∂x2
(x, t) dt− r (x)

∫

R

∂2g

∂x2
(x, t) dt

] ∫

R

z2K (z) dz.

Moreover, in view of (19) and (24), we have
∣∣∣∣∣∣
v2n
an

n∑

k=n0−1

1

c2k,n

(
E

[
exp

(
un

an∑n
k=1 qk

qk
hk

ηk (x)

f (x)

)
− 1

])2
∣∣∣∣∣∣

≤
v2n
an

n∑

k=n0−1

(
E

[
exp

(
un

an∑n
k=1 qk

qk
hk

ηk (x)

f (x)

)
− 1

])2

=
v2n
an

n∑

k=n0−1

(
E

[
un

an∑n
k=1 qk

qk
hk

ηk (x)

f (x)

])2

(1 + o (1))

=
u2

(f (x))2
an

n∑

k=n0−1

(
qkh

−1
k∑n

k=1 qk
E [ηk (x)]

)2

(1 + o (1))

= O

(
an

∑n
k=n0−1 q

2
kh

4
k

(
∑n

k=1 qk)
2

)

= O

(
h5n

∑n
k=n0−1 q

2
kh

4
k

nq2nh
4
n

(
nqn∑n
k=1 qk

)2
)

= O
(
h5n
)

(25)

which goes to 0 as n → ∞. This proves that lim
n→∞

∣∣∣R(2)
n,x (u)

∣∣∣ = 0. Then, we

obtain from (22) and (19), lim
n→∞

Λn,x (u) = ΛM
x (u). Which concludes the proof

Lemma 2. �

P r o o f o f L emma 1. It follows from (18) that

Λn,x (u) =
1

an

n∑

k=n0−1

E

[
exp

(
u

an∑n
k=1 qk

qk
hk

ηk (x)

f (x)

)
− 1

]

−
1

2an

n∑

k=n0−1

1

c2k,n

(
E

[
exp

(
u

an∑n
k=1 qk

qk
hk

ηk (x)

f (x)

)
− 1

])2

−
u

f (x)

1∑n
k=1 qk

n∑

k=n0−1

qk
hk

E [ηk (x)]
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=
1

an

n∑

k=n0−1

hk

∫

R2

[
exp

(
u

f (x)

an∑n
k=1 qk

qk
hk

(y − r (x))K (z)

)
− 1

]

×g (x, y) dzdy

−R(3)
n,x (u)−R(4)

n,x (u) +R(5)
n,x (u)(26)

with

R(3)
n,x (u) =

1

2an

n∑

k=n0−1

1

c2k,n

(
E

[
exp

(
u

an∑n
k=1 qk

qk
hk

ηk (x)

f (x)

)
− 1

])2

,

R(4)
n,x (u) =

u

f (x)

1∑n
k=1 qk

n∑

k=n0−1

qk
hk

E [ηk (x)] ,

R(5)
n,x (u) =

1

an

n∑

k=n0−1

hk

∫

R2

[
exp

(
u

f (x)

an∑n
k=1 qk

qk
hk

(y − r (x))K (z)

)
− 1

]

× [g (x− zhk, y)− g (x, y)] dzdy.

It follows from (25), that lim
n→∞

∣∣∣R(3)
n,x (u)

∣∣∣ = 0.

Moreover, in view of (19) and (24), we have

∣∣∣R(4)
n,x (u)

∣∣∣ = O

(
1∑n

k=1 qk

n∑

k=1

qkh
2
k

)

= O

(
nqn∑n
k=1 qk

∑n
k=1 qkh

2
k

nqnh2n
h2n

)

= O
(
h2n
)

which goes to 0 as n→ ∞.
Let us now prove that

lim
n→∞

∣∣∣R(5)
n,x (u)

∣∣∣ = 0.

Set M > 0 and ε > 0; we then have

R(5)
n,x (u) =

1

an

n∑

k=n0−1

hk

∫

{|z|≤M}×R

[
exp

(
u

f(x)

an∑n
k=1 qk

qk
hk

(y − r(x))K(z)

)
− 1

]

× [g (x− zhk, y)− g (x, y)] dzdy

+
1

an

n∑

k=n0−1

hk

∫

{|z|>M}×R

[
exp

(
u

f(x)

an∑n
k=1 qk

qk
hk

(y − r(x))K(z)

)
− 1

]
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× [g (x− zhk, y)− g (x, y)] dzdy

= I + II.

Using (21), and since for any t ∈ R,
∣∣et − 1

∣∣ ≤ |t| e|t|, we have

|II| ≤
|u|

f (x)

n∑

k=n0−1

qk∑n
k=1 qk

∫

{|z|>M}×R

|y − r (x)| |K (z)|

× exp

(
c

f (x)
|y − r (x)| |K (z)|

)
|g (x− zhk, y)− g (x, y)| dzdy

≤
|u|

f (x)

n∑

k=n0−1

qk∑n
k=1 qk

∫

{|z|>M}
|K (z)|

×

[∫

R

|y − r (x)| exp

(
c

f (x)
|y − r (x)| |K (z)|

)
g (x− zhk, y) dy

]
dz

+
|u|

f (x)

n∑

k=n0−1

qk∑n
k=1 qk

∫

{|z|>M}
|K (z)|

×

[∫

R

|y − r (x)| exp

(
c

f (x)
|y − r (x)| |K (z)|

)
g (x, y) dy

]
dz

≤ A

∫

{|z|>M}
|K (z)| dz,

where A is a constant; this last inequality follows from (12) and from the fact
that K is bounded.
Now, since K is integrable, we can choose M such that

|II| ≤
ε

2
.

Now, for I, we write

I =
1

an

n∑

k=n0−1

hk

∫

{|z|≤M}×R

exp

(
u

f (x)

an∑n
k=1 qk

qk
hk

(y − r (x))K (z)

)

× [g (x− zhk, y)− g (x, y)] dzdy

−
1

an

n∑

k=n0−1

hk

∫

{|z|≤M}×R

[g (x− zhk, y)− g (x, y)] dzdy

In view of (M4), (12), (19), the dominated convergence theorem ensure that both
integrals converge to 0. We deduce that for n large enough,

|I| ≤
ε

2
,
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which ensures that lim
n→∞

∣∣∣R(5)
n,x (u)

∣∣∣ = 0.

Then, it follows from (26), and (19) and from some analysis considerations that

lim
n→∞

Λn,x (u)

= lim
n→∞

1

n

n∑

k=n0−1

(
k

n

)−a

×

∫

R2

[
exp

(
(1− q)

(
k

n

)a−q u

f (x)
(y − r (x))K (z)

)
− 1

]
g (x, y) dzdy

= (1− q)

∫

[0,1]×R2

s−a

(
exp

(
usa−qK (z)

(y − r (x))

f (x)

)
− 1

)
g (x, y) dsdzdy

= ΛL
x (u)

and thus Lemma 1 is proved. �

3.2. Proof of Proposition 2. To prove Proposition 2, we apply Propo-
sition 1, Lemmas 1 and 2 and the following result (see [10]).

Lemma 3. Let (Zn) be a sequence of real random variables, (νn) a positive

sequence satisfying lim
n→∞

νn = +∞, and suppose that there exists some convex

non-negative function Γ defined on R such that

Γ (u) = lim
n→∞

1

νn
logE [exp (uνnZn)] , ∀u ∈ R,

If the Legendre function Γ∗ of Γ is a strictly convex function, then the sequence

(Zn) satisfies a LDP of speed (νn) and good rate fonction Γ∗.

In our framework, when vn ≡ 1, we take Zn = ρn (x)−E (ρn (x)), νn = nhn
with hn = cn−a where c > 0 and a ∈ (1− α, (4α− 3) /2) (with α ∈ (3/4, 1]), and
the weight (qn) =

(
c′n−q

)
with c′ > 0 and q < min {1− 2a, (1 + a) /2}, and

Γ = ΛL
x . In this case, the Legendre transform of Γ = ΛL

x is the rate function
Ia,q,x (t) which is strictly convex by Proposition 1. Otherwise, when, vn → ∞,
we take Zn = vn (ρn (x)− E [ρn (x)]), νn = nhn/v

2
n and Γ = ΛM

x ; Γ∗ is then the
quadratic rate function Ja,q,x defined in (5) and thus Proposition 2 follows.

3.3. Proof of Proposition 3. It follows from (15), (16), (19) and (24),
that

E [ρn (x)]− r (x) =
1

f (x)
E [Tn (x)]
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=
1

f (x)

1∑n
k=1 qk

n∑

k=n0−1

qk
hk

E [ηk (x)]

=
1

f (x)

∑n
k=n0−1 qkh

2
k∑n

k=1 qk
m(2) (x) f (x) [1 + o (1)]

= h2n
1− q

1− q − 2a
m(2) (x) [1 + o (1)]

= O
(
h2n
)
.

3.4. Proof of Proposition 1.

• Since
∣∣et − 1

∣∣ ≤ |t| e|t| ∀t ∈ R, it follows from (12) and (L1), that

|ψa,q,x(u)| ≤ (1− q)

∫

[0,1]×R2

s−a

∣∣∣∣exp
(
usa−qK(z)

(y − r(x))

f(x)

)
− 1

∣∣∣∣
×g (x, y) dsdzdy

≤ (1− q)
|u|

f (x)

∫

[0,1]×R2

s−q |y − r (x)| |K (z)|

× exp

(
|u|

|y − r (x)|

f (x)
‖K‖∞

)
g (x, y) dsdzdy

≤
|u|

f (x)

∫

R2

|y − r (x)| |K (z)|

× exp

(
|u|

|y − r (x)|

f (x)
‖K‖∞

)
g (x, y) dzdy

=
|u|

f (x)

∫

R

|K (z)| dz

∫

R

|y − r (x)|

× exp

(
|u|

|y − r (x)|

f (x)
‖K‖∞

)
g (x, y) dy

< ∞

which ensures the existence of ψa,q,x. It is straightforward to check that
ψa,q,x is twice differentiable, with

ψ′
a,q,x (u) = (1− q)

∫

[0,1]×R2

s−qK (z)
(y − r (x))

f (x)

× exp

(
usa−qK (z)

(y − r (x))

f (x)

)
g (x, y) dsdzdy

ψ′′
a,q,x (u) = (1− q)

∫

[0,1]×R2

sa−2q (K (z))2
(
(y − r (x))

f (x)

)2
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× exp

(
usa−qK (z)

(y − r (x))

f (x)

)
g (x, y) dsdzdy.

Since ψ′′
a,q,x (u) > 0 ∀u ∈ R, ψ′

a,q,x is increasing on R, and ψa,q,x is strictly
convex on R. It follows that its Cramer transform Ia,q,x is a good rate
function on R (see [2]) and (i) of Proposition 1 is proved.

• Let us now assume that λ (O−) = 0. We then have

lim
u→−∞

ψ′
a,q,x (u) = 0 and lim

u→+∞
ψ′
a,q,x (u) = +∞

so that the range of ψ′
a,q,x is (0,+∞). Moreover

lim
u→−∞

ψa,q,x (u) =

{
− (1− q) / (1− a)λ (S+) f (x) if λ (S+ ∩ T+) > 0
− (1− q) / (1− a)λ (S−) f (x) if λ (S− ∩ T−) > 0

(which can be −∞). This implies in particular that

Ia,q,x (0) =

{
(1− q) / (1− a)λ (S+) f (x) if λ (S+ ∩ T+) > 0
(1− q) / (1− a)λ (S−) f (x) if λ (S− ∩ T−) > 0

Now, when t < 0, lim
u→−∞

(ut− ψa,q,x (u)) = +∞ and Ia,q,x (t) = +∞. Since

ψ′
a,q,x is increasing with range (0,+∞), when t > 0, sup

u
(ut− ψa,q,x (u)) is

reached for u0 (t) such that ψa,q,x (u0 (t)) = t, i.e. for u0 (t) =
(
ψ′
a,q,x

)−1
(t);

this prove (13). (Note that, since ψ′′
a,q,x (t) > 0, the function t 7→ u0 (t) is

differentiable on (0,+∞)). Now, differentiating (13), we have

I ′a,q,x (t) = u0 (t) + tu′0 (t)− ψ′
a,q,x (u0 (t)) u

′
0 (t)

=
(
ψ′
a,q,x

)−1
(t) + tu′0 (t)− tu′0 (t)

=
(
ψ′
a,q,x

)−1
(t) .

Since
(
ψ′
a,q,x

)−1
is an increasing function on (0,+∞), it follows that Ia,q,x

is strictly convex on (0,+∞) (and differentiable). Thus (ii) is proved.

• We Assume that λ (O−) > 0. In this case, ψ′
a,q,x can be rewritten as

ψ′
a,q,x (u) = (1− q)

∫

[0,1]×(R2∩O+)
s−qK (z)

(y − r (x))

f (x)
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× exp

(
usa−qK (z)

(y − r (x))

f (x)

)
g (x, y) dsdzdy

+(1− q)

∫

[0,1]×(R2∩O−)
s−qK (z)

(y − r (x))

f (x)

× exp

(
usa−qK (z)

(y − r (x))

f (x)

)
g (x, y) dsdzdy

and we have

lim
u→−∞

ψ′
a,q,x (u) = −∞ and lim

u→+∞
ψ′
a,q,x (u) = +∞

so that the range of ψ′
a,q,x is R in this case. The proof of (iii) follows

the same lines as previously, except that, in the present case,
(
ψ′
a,q,x

)−1
is

defined on R, and not only on (0,+∞).

REFERENCES

[1] R. Bojanic, E. Seneta. A unified theory of regularly varying sequences.
Math. Z. 134 (1973), 91–106.

[2] A. Dembo, O. Zeitouni. Large Deviations Techniques and Applications.
Applications of mathematics (New-York) vol. 38. Springer-Verlag, New
York, 1998

[3] J. Galambos, E. Seneta. Regularly varying sequences. Proc. Amer. Math.

Soc. 41 (1973), 110–116.

[4] C. Joutard. Sharp large deviations in nonparametric estimation. J. Non-
parametr. Stat. 18, 3 (2006), 293–306.

[5] D. Louani. Some large deviations limit theorems in conditionnal nonpara-
metric statistics. Statistics 33, 2 (1999), 171–196.

[6] E. A. Nadaraya. On estimating regression. Teor. Veroyatn. Primen. 9

(1964), 157–159 (in Russian); English translation in: Theor. Probab. Appl. 9
(1964), 141–142.

[7] A. Mokkadem, M. Pelletier. A companion for the Kiefer-Wolfowitz-
Blum stochastic approximation algorithm. Ann. Stat. 35, 4 (2007),
1749–1772.



328 Yousri Slaoui

[8] A. Mokkadem, M. Pelletier, B. Thiam. Large and moderate deviations
principles for kernel estimators of the multivariate regression. Math. Methods

Stat. 17, 2 (2008), 146–172.

[9] A. Mokkadem, M. Pelletier, Y. Slaoui. Revisiting Révész’s stochastic
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