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Abstract

In this paper, we propose a bandwidth selection in deconvolution
recursive kernel estimators of a probability density function defined by
the stochastic approximation algorithm for Laplace errors. We show
that, using the proposed bandwidth selection and the stepsize which
minimize the MISE (Mean Integrated Squared Error), the recursive
estimator will be better than the nonrecursive one for small sample
setting and when the error variance is controlled by the noise to signal
ratio. We corroborate these theoretical results through simulations and
a real dataset.
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1 Introduction

Suppose we observe contamined data Y1, . . . , Yn which are independent, iden-

tically distributed random variables, and let fY denote the probability den-

sity of Y1, where

Yi = Xi + εi, i = 1, . . . , n
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and where X1, . . . , Xn are independent, identically distributed random vari-

ables, and fX denote the probability density of X1. We assume that X

and ε are mutually independent. The density function of ε is denoted by

fε, assumed known. Throught out this paper we suppose that ε is a cen-

tred double exponentielly distributed, also called Laplace distribution, and

denoted by ε ∼ Ed (σ), with σ is the scale parameter. Following Robbins-

Monro’s procedure, we construct a stochastic algorithm, which approximates

the function fX at a given point x, by defining an algorithm of search of the

zero of the function h : y → fX(x) − y. This algorithm can be defined by

setting f0,X(x) ∈ R, and, for all n ≥ 1,

fn,X (x) = fn−1,X (x) + γnWn,

where Wn(x) is an observation of the function h at the point fn−1,X(x), and

the stepsize (γn) is a sequence of positive real numbers that goes to zero.

To define Wn(x), we follow the approach of Révész (1973, 1977), Tsybakov

(1990), Mokkadem et al. (2009a, b) and of Slaoui (2014b, 2015a), and we

introduce a bandwidth (hn) (that is, a sequence of positive real numbers that

goes to zero), and a kernel K (that is, a function satisfying
∫

RK (x) dx = 1),

and a deconvoluting kernel Kε defined as follows:

Kε (u) =
1

2π

∫
R
e−itu

φK (t)

φε

(
t
hn

)dt,
with φL the Fourier transform of a function or a random variable L, and sets

Wn (x) = h−1
n Kε

(
h−1
n (x− Yn)

)
− fn−1,X (x). Then, the estimator fn,X to

recursively estimate the density function fX at the point x can be written

as

fn,X (x) = (1− γn) fn−1,X (x) + γnh
−1
n Kε

(
h−1
n (x− Yn)

)
. (1)

This estimator was introduced by Mokkadem et al. (2009a) in the error-free

context (i.e. when the data are observed without measurement errors) and
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whose large and moderate deviation principles were established by Slaoui

(2013).

In this paper we suppose that f0,X (x) = 0, and we let Πn =
∏n
j=1 (1− γj).

Then the proposed estimator (1) can be rewritten as:

fn,X (x) = Πn

n∑
k=1

Π−1
k γkh

−1
k Kε

(
x− Yk
hk

)
. (2)

The aim of this paper is to study the properties of the recursive decon-

volution kernel density estimator defined by the stochastic approximation

algorithm (1) for Laplace errors, and its comparison with the nonrecur-

sive deconvolution kernel density estimator introduced by Carroll and Hall

(1988); Stefanski and Carroll (1990), and defined as

f̃n,X (x) =
1
nhn

n∑
i=1

Kε

(
x− Yi
hn

)
. (3)

This estimator have been investigated by Carroll and Hall (1988); Stefanski

and Carroll (1990); Fan (1991a,b,c, 1992); among many others.

We first compute the bias and the variance of the recursive estimator

fn,X defined by (1). It turns out that they heavily depend on the choice of

the stepsize (γn). Moreover, we proposed a plug-in estimate which minimize

an estimate of the Mean Weighted Integrated Squared Error (MWISE),

using the density function as weight function to implement the bandwith

selection of the proposed estimator.

The remainder of the paper is organized as follows. In Section 2, we

state our main results. Section 3 is devoted to our application results, first

by simulations (Subsection 3.1) and second using real dataset through a plug-

in method (Subsection 3.2), we give our conclusion in Section 4, whereas the

technical details are deferred to Section 5.
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2 Assumptions and main results

We define the following class of regularly varying sequences.

Definition 1. Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence.

We say that (vn) ∈ GS (γ) if

lim
n→+∞

n

[
1− vn−1

vn

]
= γ. (4)

Condition (4) was introduced by Galambos and Seneta (1973) to define

regularly varying sequences (see also Bojanic and Seneta (1973), and by

Mokkadem and Pelletier (2007) in the context of stochastic approximation

algorithms. Noting that the acronym GS stand for (Galambos & Seneta).

Typical sequences in GS (γ) are, for b ∈ R, nγ (log n)b, nγ (log log n)b, and

so on.

The assumptions to which we shall refer are the following

(A1) ε ∼ Ed (σ), i.e. fε (x) = exp (− |x| /σ) / (2σ).

(A2) The function K equal to K (x) = (2π)−1/2 exp
(
−x2/2

)
.

(A3) i) (γn) ∈ GS (−α) with α ∈ (1/2, 1].

ii) (hn) ∈ GS (−a) with a ∈ (0, 1).

iii) limn→∞ (nγn) ∈ (min {2a, (α− 5a) /2} ,∞].

(A4) fX is bounded, differentiable, and f
(2)
X is bounded.

Throughout this paper we shall use the following notations:

ξ = lim
n→∞

(nγn)−1 , (5)

I1 =
∫

R
f2
Y (x) dx, I2 =

∫
R

(
f

(2)
X (x)

)2
fY (x) dx,

R (K) =
∫

R
K2 (z) dz, µj (K) =

∫
R
zjK (z) dz.
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Our first result is the following proposition, which gives the bias and the

variance of fn,X .

Proposition 1 (Bias and variance of fn,X). Let Assumptions (A1) − (A4)

hold, and assume that f (2)
X is continuous at x, then we have

1. If a ∈ (0, α/9], then

E [fn,X (x)]− fX (x) =
1

2 (1− 2aξ)
h2
nf

(2)
X (x) + o

(
h2
n

)
. (6)

If a ∈ (α/9, 1), then

E [fn,X (x)]− fX (x) = o

(√
γnh

−5
n

)
.

2. If a ∈ [α/9, 1), then

V ar [fn,X (x)] =
3σ4

8
√
π

1
2− (α− 5a) ξ

γn
h5
n

fY (x) + o

(
γn
h5
n

)
. (7)

If a ∈ (0, α/9), then

V ar [fn,X (x)] = o
(
h4
n

)
.

3. If limn→∞ (nγn) > max {2a, (α− 5a) /2}, then (6) and (7) hold simul-

taneously.

The bias and the variance of the estimator fn,X defined by the stochas-

tic approximation algorithm (2) then heavily depend on the choice of the

stepsize (γn). Let us now state the following theorem, which gives the weak

convergence rate of the estimator fn,X defined in (2).

Theorem 1 (Weak pointwise convergence rate). Let Assumptions (A1) −
(A4) hold, and assume that f (2)

X is continuous at x.

1. If there exists c ≥ 0 such that γ−1
n h9

n → c, then√
γ−1
n h5

n (fn,X (x)− fX (x))
D→ N

( √
c

2(1−2aξ)f
(2)
X (x) , 3σ4

8
√
π

1
2−(α−5a)ξfY (x)

)
.
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2. If γ−1
n h9

n →∞, then

1
h2
n

(fn,X (x)− fX (x)) P→ 1
2 (1− 2aξ)

f
(2)
X (x) ,

where D→ denotes the convergence in distribution, N the Gaussian-distribution

and P→ the convergence in probability.

In order to measure the quality of our recursive estimator (2), we use

the following quantity,

MWISE [fn,X ] =
∫

R
(E (fn,X (x))− fX (x))2 fY (x) dx

+
∫

R
V ar (fn,X (x)) fY (x) dx.

Moreover, in the case a = α/9, it follows from the proposition 1 that

MWISE [fn,X ] ' 3σ4

8
√
π (2− (α− 5a) ξ)

γnh
−5
n I1 +

1
4 (1− 2aξ)2

h4
nI2.(8)

The first term in (8) can be much larger than the variance component of

the integrated mean squared error of an ordinary recursive kernel density

estimator Mokkadem et al. (2009a). This is the price paid for not measur-

ing {εi}ni=1 precisely. Corollary 1 gives the MWISE of the deconvolution

recursive kernel estimators (1) using the centred double exponentialle error

distribution fε (x) = exp (− |x| /σ) / (2σ). Throughout this paper, we used

standard normal kernel. The following corollary gives the bandwidth which

minimize the MWISE.

Corollary 1. Let Assumptions (A1)−(A4) hold. To minimize the MWISE

of fn,X , the stepsize (γn) must be chosen in GS (−1), the bandwidth (hn)

must equal ((
15σ4

8
√
π

)1/9 (1− 2aξ)2/9

(2− (α− 5a) ξ)1/9

{
I1
I2

}1/9

γ1/9
n

)
.

Then, the MWISE [fn,X ]

' 5
4

(
15σ4

8
√
π

)4/9
(1− 2aξ)−10/9 (2− (α− 5a) ξ)−4/9 I

4/9
1 I

5/9
2 γ

4/9
n .
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The following corollary shows that, for a special choice of the stepsize

(γn) =
(
γ0n
−1
)
, which fulfilled that limn→∞ nγn = γ0 and that (γn) ∈

GS (−1), the optimal value for hn depend on γ0 and then the corresponding

MWISE depend on γ0.

Corollary 2. Let Assumptions (A1)−(A4) hold. To minimize the MWISE

of fn,X , the stepsize (γn) must be chosen in GS (−1), limn→∞ nγn = γ0, and

the bandwidth (hn) must equal((
15σ4

16
√
π

)1/9

(γ0 − 2/9)1/9
{
I1
I2

}1/9

n−1/9

)
.

Then, the MWISE is

MWISE [fn,X ] ' 9
20

(
15σ4

16
√
π

)4/9
γ2

0

(γ0 − 2/9)16/9
I

4/9
1 I

5/9
2 n−4/9.

Moreover, the minimum of γ2
0 (γ0 − 2/9)−16/9 is reached at γ0 = 1; then

the bandwidth (hn) must equal(
0.906σ4/9

{
I1
I2

}1/9

n−1/9

)
. (9)

Then, the MWISE is

MWISE [fn,X ] ' 0.530σ16/9I
4/9
1 I

5/9
2 n−4/9. (10)

In order to estimate the optimal bandwidth (9), we must estimate I1 and

I2. We followed the approach of Altman and Leger (1995), which is called

the plug-in estimate, and we use the following kernel estimator of I1 intro-

duced in Slaoui (2014a) to implement the bandwidth selection in recursive

kernel estimator of probability density function in the error-free context and

in Slaoui (2014b) to implement the bandwidth selection in recursive kernel

estimator of distribution function also in the error-free data context:

Î1 =
Πn

n

n∑
i,k=1

Π−1
k αkb

−1
k Kε

b

(
Yi − Yk
bk

)
, (11)
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where Kε
b is a deconvoluting kernel and b is the associated bandwidth, called

the pilot bandwidth and α the pilot stepsize. In practice, we take

bn = n−β min
{
ŝ,
Q3 −Q1

1.349

}
, β ∈ (0, 1) (12)

(see Silverman (1986)) with ŝ the sample standard deviation, and Q1, Q3

denoting the first and third quartiles, respectively. In order to estimate I1, we

need to estimate the optimal pilot bandwidth and the optimal pilot stepsize.

For this purpose, we should calculate the bias and variance of Î1, we followed

the same steps as in Slaoui (2014a) and we showed that in order to minimize

the MISE of Î1, the pilot bandwidth (bn) should belong to GS (−2/9), and

the pilot stepsize (αn) should be equal to
(
1.93n−1

)
. Then to estimate I1,

we use Î1, with bn equal to (12), and β = 2/9 and (αn) =
(
1.93n−1

)
.

Furthermore, to estimate I2, we followed the approach of Slaoui (2014a) and

we introduced the following kernel estimator:

Î2 =
Π2
n

n

n∑
i,j,k=1
j 6=k

Π−1
j Π−1

k α′jα
′
kb
′−3
j b′−3

k K
ε(2)
b′

(
Yi − Yj
b′j

)

×Kε(2)
b′

(
Yi − Yk
b′k

)
, (13)

where Kε(2)
b′ is the second order derivative of a deconvoluting kernel Kb′ , and

b′ the associated bandwidth and α′ the pilot stepsize. In order to estimate

I2, we need to estimate the optimal pilot bandwidth b′n and the optimal pilot

stepsize α′n. For this purpose, we should calculate the bias and variance of

Î2,we followed the same steps as in Slaoui (2014a) and we showed that in

order to minimize the MISE of Î2, the pilot bandwidth (b′n) should belong

to GS (−3/22), and the pilot stepsize (α′n) should be equal to
(
1.65n−1

)
.

Then to estimate I2, we use Î2, with b′n equal to (12), and β = 3/22 and

(α′n) =
(
1.65n−1

)
.

Finally, the plug-in estimator of the bandwidth (hn) using the recursive
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algorithm (2) must equal to0.906σ4/9

{
Î1

Î2

}1/9

n−1/9

 . (14)

Then, it follows from (10) that the MWISE can be estimated by

̂MWISE [fn,X ] ' 0.530σ16/9Î
4/9
1 Î

5/9
2 n−4/9.

Now, let us recall that under the assumptions (A1), (A2), (A3) ii) and

(A4), the MWISE of the nonrecursive deconvolution kernel density estima-

tor f̃n,X (see Stefanski and Carroll (1990)) is given by

MWISE
[
f̃n,X

]
' 3σ4

8
√
π

1
nh5

n

I1 +
1
4
h4
nI2.

Lemma 1 gives the MWISE of the deconvolution nonrecursive kernel den-

sity (3) estimator using the centred double exponentialle error distribution.

Lemma 1. Let Assumptions (A1), (A2), (A3) ii) and (A4) hold. To mini-

mize the MWISE of f̃n,X , the bandwidth (hn) must equal(
1.006σ4/9

{
I1
I2

}1/9

n−1/9

)
. (15)

Then, the MWISE is

MWISE
[
f̃n,X

]
' 0.461σ16/9I

4/9
1 I

5/9
2 n−4/9. (16)

To estimate the optimal bandwidth (15), we must estimate I1 and I2.

As suggested by Hall and Maron (1987), we we use the following two kernel

estimators to estimate respectively I1 and I2:

Ĩ1 =
1

n (n− 1) bn

n∑
i,j=1
i 6=j

Kε
b

(
Yi − Yj
bn

)
, (17)

Ĩ2 =
1

n3b′6n

n∑
i,j,k=1
j 6=k

K
ε(2)
b′

(
Yi − Yj
b′n

)
K
ε(2)
b′

(
Yi − Yk
b′n

)
. (18)
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The following Lemma gives the bias and variance of Ĩ2. We showed that in

order to minimize the MISE of Ĩ1 respectively of Ĩ2, the pilot bandwidth

(bn) respectively (b′n) must belong to GS (−2/9), respectively to GS (−3/22).

Then, the plug-in estimator of the bandwidth (hn) using the nonrecursive

algorithm (3) must equal to1.006σ4/9

{
Ĩ1

Ĩ2

}1/9

n−1/9

 . (19)

Then, it follows from (16) that the MWISE can be estimated by

˜MWISE
[
f̃n,X

]
' 0.461σ16/9Ĩ

4/9
1 Ĩ

5/9
2 n−4/9.

The following Theorem gives the conditions under which the expectedMWISE

of the recursive estimator fn,X will be smaller than the expected MWISE

of the nonrecursive estimator f̃n,X .

Theorem 2. Let the assumptions (A1)-(A2) hold, and the bandwidth (hn)

equal to (19) and the stepsize (γn) =
(
n−1

)
. We have

E
[

̂MWISE [fn,X ]
]

E
[

˜MWISE
[
f̃n,X

]] < 1 for small sample setting and small error variance

Then, the expected MWISE of the recursive estimator defined by (2) is

smaller than the expected MWISE of the nonrecursive estimator defined

by (3) for small sample setting and when the error variance is controlled by

the noise to signal ratio.

Following similar step as in Slaoui (2014a), we can proof Theorem 2.

3 Applications

The aim of our applications is to compare the performance of the nonrecur-

sive deconvolution density kernel estimator defined in (3) with that of the

recursive deconvolution density kernel estimators defined in (1).
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3.1 Simulations

The aim of our simulation study is to compare the performance of the nonre-

cursive estimator defined in (3) with that of the recursive estimators defined

in (2).

When applying fn,X one need to choose three quantities:

• The function K, we choose the standard normal kernel.

• The stepsize (γn) =
(
[5/9 + c]n−1

)
, with c ∈ [0, 7/9].

• The bandwidth (hn) is chosen to be equal to (14). To estimate

I1, we use the estimator Î1 given in (11), with Kε
b is the standard

normal kernel, the pilot bandwidth (bn) is chosen to be equal

to (12), with β = 2/9, and the pilot stepsize (αn) =
(
1.93n−1

)
.

Moreover, to estimate I2, we use the estimator Î2 given in (13),

with Kε
b′ is the standard normal kernel, the pilot bandwidth (b′n)

is chosen to be equal to (12), with β = 3/22, and the pilot stepsize

(α′n) =
(
1.65n−1

)
.

When applying f̃n one need to choose two quantities:

• The function K, as in the recursive framework, we use the normal

kernel.

• The bandwidth (hn) is chosen to be equal to (19). To estimate I1,

we used the estimator Ĩ1 given in (17), with Kε
b is the standard

normal kernel, the pilot bandwidth (bn) is chosen to be equal

to (12), with β = 2/9. Moreover, to estimate I2, we used the

estimator Ĩ2 given in (18), with Kε
b′ is the standard normal kernel,

the pilot bandwidth (b′n) is chosen to be equal to (12), with β =

3/22.

In order to investigate the comparison between the two estimators, we con-

sider ε ∼ Ed (σ) (i.e. centred double exponentielle with the scale parameter
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σ). The error variance was controlled by the noise to signal ratio, denoted

by NSR and defined by NSR = V ar (ε) /V ar (X). We consider three sample

sizes: n = 50, n = 100 and 500, and four density functions: the normal

N (0, 2) distribution (see Table 1), the chi-squared distribution with four

degrees of freedom distribution χ2 (4) (see Table 2), the gamma mixture

distribution 0.4G (5) + 0.6G (13) (see Table 3). For each of these four cases,

500 samples of sizes n = 50, n = 100 and 500 were generated. For each

fixed NSR ∈ [5%, 30%], the number of simulations is 500. We denote by f∗i

the reference density, and by fi the test density, and then we compute the

following measures : Mean squared Error (MSE = n−1
∑

i (fi − f∗i )2) and

the linear Correlation (Cor = Cov (fi, f∗i )σ (fi)
−1 σ (f∗i )−1).

Figure 1: Qualitative comparison between the nonrecursive estimator (3)
and the proposed estimator (1) with the choice of the stepsize (γn) =

(
n−1

)
,

for 500 samples of size 200, with NSR equal respectively to 5% (in the top left
panel), equal to 10% (in the top right panel), equal to 20% (in the down left
panel) and equal to 30% (in the down right panel) for the normal distribution
X ∼ N (0, 2).
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Figure 2: Qualitative comparison between the nonrecursive estimator (3)
and the proposed estimator (1) with the choice of the stepsize (γn) =

(
n−1

)
,

for 500 samples of size 200, with NSR equal respectively to 5% (in the top
left panel), equal to 10% (in the top right panel), equal to 20% (in the down
left panel) and equal to 30% (in the down right panel) for the chi-squared
distribution with four degrees of freedom distribution X ∼ χ (4).

From Tables 1, 2 and 3, we conclude that

(i) in all the cases of the Table 1, the MSE of the proposed density

estimator (1), with the choice of the stepsize (γn) =
(
n−1

)
is smaller

than the nonrecursive deconvolution density estimator (3).

(ii) in all the cases of the Table 2, the MSE of the proposed density

estimator (1), with the choice of the stepsize (γn) =
(
n−1

)
is smaller

than the nonrecursive deconvolution density estimator (3), when the

NSR equal to 5% or 10%.

(iii) in all the cases of the Table 3, the MSE of the proposed density

estimator (1), with the choice of the stepsize (γn) =
(
n−1

)
is smaller

than the nonrecursive deconvolution density estimator (3), when the



206 Journal of the Indian Statistical Association

Figure 3: Qualitative comparison between the nonrecursive estimator (3)
and the proposed estimator (1) with the choice of the stepsize (γn) =

(
n−1

)
,

for 500 samples of size 200, with NSR equal respectively to 5% (in the top left
panel), equal to 10% (in the top right panel), equal to 20% (in the down left
panel) and equal to 30% (in the down right panel) for the gamma mixture
distribution X ∼ 0.4G (5) + 0.6G (13).

NSR equal to 5% and n = 50 or n = 100.

(iv) the MSE decrease as the sample size increase.

(v) the MSE increase as the value of NSR increase.

(vi) the Cor increase as the sample size increase.

(vii) the Cor decrease as the value of NSR increase.

3.2 Real dataset

We use Salvister data which appears in the R package kerdiest (Quintela-

del-Ŕıo and Estévez-Pérez (2012)). These data contains the annual peak

instantaneous flow levels of the Salt River near Roosevelt, AZ, USA, for the
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period 1924-2009, obtained from the National Water Information System.

In order to investigate the comparison between the two estimators, we con-

sider the annual peak : for 500 samples of Laplacian errors ε ∼ Ed (σ), with

NSR ∈ [5%, 30%]. For each fixed NSR, we computed the mean (over the 500

samples) of I1, I2, hn and MWISE. The plug-in estimators (14), (19) re-

quires two kernels to estimate I1 and I2. In both cases we use the normal

kernel with bn and b′n are given in (12), with β equal respectively to 2/9 and

3/22.

Figure 4: Qualitative comparison between the nonrecursive estimator (3)
and the proposed estimator (1) with the choice of the stepsize (γn) =

(
n−1

)
,

for 500 samples of Laplacian errors with NSR equal respectively to 5% (in
the top left panel), equal to 10% (in the top right panel), equal to 20% (in
the down left panel) and equal to 30% (in the down right panel) for the
Salvister data of the package kerdiest and through a plug-in method.

From the table 4, we conclude that, the ̂MWISE of proposed estimator

is quite similar to the ˜MWISE of the nonrecursive estimator. From the

Figures 1, 2, 3 and 4, we conclude that the two estimators present a quite

similar behavior for all the fixed NSR.
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4 Conclusion

This paper propose an automatic selection of the bandwidth of a probabil-

ity density function in the case of deconvolution recursive kernel estimators.

The estimators are compared to the nonrecursive deconvolution density es-

timator (3). We showed that using the selected bandwidth and the stepsizes

(γn) =
(
n−1

)
, the recursive estimator will be better than the nonrecursive

one for small sample setting and when the error variance is controlled by the

noise to signal ratio. The simulation study corroborated these theoretical re-

sults. Moreover, the simulation results indicate that the proposed recursive

estimator was more computing efficiency than the nonrecursive estimator.

In conclusion, the proposed estimators allowed us to obtain quite better

results then the nonrecursive estimator proposed by Carroll and Hall (1988);

Stefanski and Carroll (1990). Moreover, we plan to make an extensions of

our method in future and to consider the case of a regression function (see

Mokkadem et al. (2009b) and Slaoui (2015a,b,c, 2016)) in the error-free

context.

5 Technical proofs

Throughout this section we use the following notation:

Zn (x) = h−1
n K

(
x−Xn

hn

)
,

and

Zεn (x) = h−1
n Kε

(
x− Yn
hn

)
. (20)

Let us first state the following technical lemma.
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Lemma 2. Let (vn) ∈ GS (v∗), (γn) ∈ GS (−α), and m > 0 such that

m− v∗ξ > 0 where ξ is defined in (5). We have

lim
n→+∞

vnΠm
n

n∑
k=1

Π−mk
γk
vk

=
1

m− v∗ξ
.

Moreover, for all positive sequence (αn) such that limn→+∞ αn = 0, and all

δ ∈ R,

lim
n→+∞

vnΠm
n

[
n∑
k=1

Π−mk
γk
vk
αk + δ

]
= 0.

Lemma 2 is widely applied throughout the proofs. Let us underline that

it is its application, which requires Assumption (A3)(iii) on the limit of

(nγn) as n goes to infinity.

Our proofs are organized as follows. Proposition 1 in Section 5.1, Theo-

rem 1 in Section 5.2.

5.1 Proof of Proposition 1

Proof. In view of (2) and (20), we have

fn,X (x)− fX (x) = Πn

n∑
k=1

Π−1
k γk (Zεk (x)− fX (x))

+Πn (f0,X (x)− fX (x)) . (21)

Then, it follows that

E (fn,X (x))− fX (x) = Πn

n∑
k=1

Π−1
k γk (E (Zεk (x))− fX (x)) + Πn (f0,X (x)− fX (x)) .

Moreover, an interchange of expectation and integration, justified by Fu-

bini’s Theorem and assumptions (A1) and (A2), shows that E {Zεk (x) |Xk} =

Zk (x), which ensure that E [Zεk (x)] = E [Zk (x)]. Taylor’s expansion with
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integral remainder implies that

E [Zk (x)]− fX (x) =
∫

R
K (z) [fX (x− zhk)− fX (x)] dz

=
h2
k

2
µ2 (K) f (2)

X (x) + h2
kδk (x)

with

δk (x) = h−2
k

∫
R
K (z)

[
fX (x− zhk)− fX (x)− z2h

2
k

2
f

(2)
X (x)

]
dz,

and, since f (2)
X is bounded and continuous at x, we have limk→∞ δk (x) = 0.

In the case a ≤ α/9, we have limn→∞ (nγn) > 2a; the application of Lemma

2 then gives

E [fn,X (x)]− fX (x)

= 1
2µ2 (K) f (2)

X (x) Πn
∑n

k=1 Π−1
k γkh

2
k[1+o(1)]+Πn (f0,X (x)− fX (x))

= 1
2(1−2aξ)µ2 (K) f (2)

X (x)
[
h2
n + o(1)

]
,

(6) follows. In the case a > α/9, we have h2
n = o

(√
γnh

−5
n

)
; since

limn→∞ (nγn) > (α− 5a) /2, Lemma 2 then ensures that

E [fn,X (x)]− fX (x) = Πn

n∑
k=1

Π−1
k γko

(√
γkh

−5
k

)
+O (Πn)

= o

(√
γnh

−5
n

)
,

which gives (7). Now, we have

V ar [fn,X (x)] = Π2
n

n∑
k=1

Π−2
k γ2

kV ar [Zεk (x)]

= Π2
n

n∑
k=1

Π−2
k γ2

k

hk
[fY (x)R (Kε) + νk (x)− hkν̃k (x)]

with νk (x) =
∫

R (Kε (z))2 [fY (x− zhk)− fY (x)] dz, and

ν̃k (x) =
(∫

RK (z) fX (x− zhk) dz
)2. In view of (A2) and (A4) i), we have
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limk→∞ νk (x) = 0 and limk→∞ hkν̃k (x) = 0. Then, we have

V ar [fn,X (x)] =
1

2π
Π2
n

n∑
k=1

Π−2
k γ2

kh
−1
k R (Kε) [fY (x) + o (1)] .

Let us now state the following Lemma:

Lemma 3.

R (Kε) =
1

2
√
π

(
1 +

(
σ

hk

)2

+
3
4

(
σ

hk

)4
)
.

Proof of Lemma 3

Proof. First, we have

R (Kε) =
1

2π

∫
R
φ2
K (t) |φε (t/hn)|−2 dt. (22)

Moreover, since ε follows Laplace errors L (0, σ), we have φε (t) = 1
(1+σ2t2)

,

and since K ∼ N (0, 1), we have φK (t) = exp
(
−t2/2

)
. Then, it follows that

from (22), that

R (Kε) =
1

2π

{∫
R

exp
(
−t2
)
dt+ 2h−2

n σ2

∫
R
t2 exp

(
−t2
)
dt

+h−4
n σ4

∫
R
t4 exp

(
−t2
)
dt

}
Moreover, we have

∫
R exp

(
−t2
)
dt =

√
π,
∫

R t
2 exp

(
−t2
)
dt =

√
π/4 and∫

R t
4 exp

(
−t2
)
dt = 3

√
π/8, which concludes the proof of Lemma 3.

Now, when a ≥ α/9, we have limn→∞ (nγn) > (α− 5a) /2, and the

application of Lemma 2 gives

V ar [fn,X (x)] =
3σ4

8
√
π

1
2π (2− (α− 5a) ξ)

γn
h5
n

[fY (x) + o (1)]

which proves (7). In the case a < α/9, we have γnh
−5
n = o

(
h4
n

)
; since

limn→∞ (nγn) > 2a, Lemma 2 then ensures that V ar [fn,X (x)] = o
(
h4
n

)
,

which gives (8).
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5.2 Proof of Theorem 1

Proof. Let us at first assume that, if a ≥ α/9, then

√
γ−1
n h5

n (fn,X (x)− E [fn,X (x)])

D→ N
(

0,
3σ4

8
√
π

1
2
√
π (2− (α− 5a) ξ)

fY (x)
)
, (23)

In the case when a > α/9, Part 1 of Theorem 1 follows from the combination

of (7) and (23). In the case when a = α/9, Parts 1 and 2 of Theorem 1 follow

from the combination of (6) and (23). In the case a < α/5, we have

h−2
n (fn,X (x)− fX (x)) =

1√
γ−1
n h9

n

√
γ−1
n h5

n (fn,X (x)− E [fn,X (x)])

+h−2
n (E [fn,X (x)]− fX (x))

and the application of (6) gives Part 2 of Theorem 1.

We now prove (23). In view of (2), we have

fn,X (x)− E [fn,X (x)]

= (1− γn) (fn−1,X (x)− E [fn−1,X (x)]) + γn (Zεn (x)− E [Zεn (x)])

=Πn
∑n

k=1 Π−1
k γk (Zεk (x)− E [Zεk (x)]) .

Set

Yk (x) = Π−1
k γk (Zεk (x)− E (Zεk (x))) .
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The application of Lemma 2 ensures that

v2
n =

n∑
k=1

V ar (Yk (x))

=
n∑
k=1

Π−2
k γ2

kV ar (Zεk (x))

=
n∑
k=1

Π−2
k γ2

k

hk
[fY (x)R (Kε) + o (1)]

=
3σ4

8
√
π

1
2
√
π (2− (α− 5a) ξ)

1
Π2
n

γn
h5
n

[fY (x) + o (1)] .

On the other hand, we have, for all p > 0,

E
[
|Zεk (x)|2+p

]
= O

(
1

h
(1+p)
k

)
,

and, since limn→∞ (nγn) > (α− 5a) /2, there exists p > 0 such that

limn→∞ (nγn) > 1+p
2+p (α− 5a). Applying Lemma 2, we get

n∑
k=1

E
[
|Yk (x)|2+p

]
= O

(
n∑
k=1

Π−2−p
k γ2+p

k E
[
|Zεk (x)|2+p

])

= O

(
n∑
k=1

Π−2−p
k γ2+p

k

h
(1+p)
k

)

= O

(
γ1+p
n

Π2+p
n h

(1+p)
n

)
,

and we thus obtain

1
v2+p
n

n∑
k=1

E
[
|Yk (x)|2+p

]
= O

([
γp/2n h4+3/2p

n

])
= o (1) .

The convergence in (23) then follows from the application of Lyapounov’s

Theorem.
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nonrecursive estimator 1 estimator 2 estimator 3 estimator 4
n = 50 NSR = 5%
MSE 4.18e−05 1.20e−04 3.68e−05 2.36e−05 2.11e−05

Cor 0.99833 0.99887 0.99899 0.99904 0.99911
n = 100
MSE 3.12e−05 6.90e−05 2.38e−05 1.80e−05 1.79e−05

Cor 0.99864 0.99913 0.99918 0.99916 0.99912
n = 500
MSE 2.13e−05 2.93e−05 1.51e−05 1.32e−05 1.29e−05

Cor 0.99913 0.99937 0.99944 0.99946 0.99946
n = 50 NSR = 10%
MSE 6.89e−05 1.70e−04 7.10e−05 5.36e−05 5.13e−05

Cor 0.99727 0.99780 0.99790 0.99789 0.99784
n = 100
MSE 6.61e−05 1.26e−04 6.45e−05 5.35e−05 5.11e−05

Cor 0.99725 0.99753 0.99771 0.99777 0.99781
n = 500
MSE 4.06e−05 5.80e−05 3.71e−05 3.35e−05 3.25e−05

Cor 0.99844 0.99847 0.99865 0.99873 0.99877
n = 50 NSR = 20%
MSE 1.14e−03 2.44e−03 1.31e−03 1.10e−03 1.09e−03

Cor 0.99586 0.99615 0.99616 0.99601 0.99581
n = 100
MSE 1.05e−04 1.93e−04 1.17e−04 1.02e−04 9.98e−05

Cor 0.99591 0.99564 0.99595 0.99604 0.99607
n = 500
MSE 8.48e−05 1.17e−04 8.82e−05 8.33e−05 8.27e−05

Cor 0.99692 0.99665 0.99691 0.99698 0.99700

Table 1: Quantitative comparison between the nonrecursive estimator (3)
and four estimators; estimator 1 correspond to the estimator (1) with the
choice of (γn) =

(
[5/9]n−1

)
, estimator 2 correspond to the estimator (1) with

the choice of (γn) =
(
[7/9]n−1

)
, estimator 3 correspond to the estimator (1)

with the choice of (γn) =
(
n−1

)
and estimator 4 correspond to the estima-

tor (1) with the choice of (γn) =
(
[4/3]n−1

)
. Here we consider the normal

distribution X ∼ N (0, 2) with NSR = 5% in the first block, NSR = 10% in
the second block and NSR = 20% in the last block, we consider three sample
sizes n = 50, n = 100 and n = 500, the number of simulations is 500, and we
compute the Mean squared error (MSE) and the linear correlation (Cor).
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nonrecursive estimator 1 estimator 2 estimator 3 estimator 4
n = 50 NSR = 5%
MSE 1.07e−04 1.71e−04 1.01e−04 8.58e−05 8.23e−05

Cor 0.98876 0.99014 0.99075 0.99094 0.99106
n = 100
MSE 8.80e−05 1.18e−04 7.789e−05 7.12e−05 7.15e−05

Cor 0.99080 0.99218 0.99246 0.99243 0.99229
n = 500
MSE 6.16e−05 6.96e−05 5.32e−05 5.03e−05 4.97e−05

Cor 0.99384 0.99444 0.99483 0.99493 0.99497
n = 50 NSR = 10%
MSE 0.000141 0.000235 0.000154 0.000136 0.000131
Cor 0.98571 0.98546 0.98613 0.98629 0.98640
n = 100
MSE 0.000128 0.000186 0.000135 0.000125 0.000124
Cor 0.98736 0.98706 0.98760 0.98769 0.98772
n = 500
MSE 1.00e−04 1.24e−04 1.01e−04 9.78e−05 9.70e−05

Cor 0.99048 0.98991 0.99053 0.99071 0.99079
n = 50 NSR = 20%
MSE 0.000235 0.000380 0.000280 0.000255 0.000249
Cor 0.97731 0.97398 0.97515 0.97547 0.97559
n = 100
MSE 0.000190 0.000288 0.000222 0.000208 0.000206
Cor 0.98223 0.97943 0.98039 0.98062 0.98066
n = 500
MSE 0.000169 0.000217 0.000188 0.000183 0.000183
Cor 0.98483 0.98288 0.98350 0.98358 0.98354

Table 2: Quantitative comparison between the nonrecursive estimator (3)
and four estimators; estimator 1 correspond to the estimator (1) with the
choice of (γn) =

(
[5/9]n−1

)
, estimator 2 correspond to the estimator (1)

with the choice of (γn) =
(
[7/9]n−1

)
, estimator 3 correspond to the estima-

tor (1) with the choice of (γn) =
(
n−1

)
and estimator 4 correspond to the

estimator (1) with the choice of (γn) =
(
[4/3]n−1

)
. Here we consider the

chi-squared distribution with four degrees of freedom distribution X ∼ χ (4)
with NSR = 5% in the first block, NSR = 10% in the second block and
NSR = 20% in the last block, we consider three sample sizes n = 50, n = 100
and n = 500, the number of simulations is 500, and we compute the Mean
squared error (MSE) and the linear correlation (Cor).
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nonrecursive estimator 1 estimator 2 estimator 3 estimator 4
n = 50 NSR = 5%
MSE 1.85e−05 4.04e−05 2.24e−05 1.92e−05 1.83e−05

Cor 0.99067 0.98930 0.98998 0.99030 0.99063
n = 100
MSE 1.83e−05 3.19e−05 2.10e−05 1.90e−05 1.83e−05

Cor 0.99044 0.98909 0.98976 0.99005 0.99031
n = 500
MSE 1.41e−05 1.88e−05 1.53e−05 1.48e−05 1.47e−05

Cor 0.99278 0.99188 0.99232 0.99244 0.99247
n = 50 NSR = 10%
MSE 3.06e−05 5.66e−05 3.74e−05 3.42e−05 3.37e−05

Cor 0.98376 0.98136 0.98174 0.98174 0.98176
n = 100
MSE 2.84e−05 4.64e−05 3.39e−05 3.17e−05 3.13e−05

Cor 0.98561 0.98323 0.98374 0.98379 0.98374
n = 500
MSE 2.74e−05 3.50e−05 3.05e−05 2.98e−05 2.98e−05

Cor 0.98609 0.98425 0.98470 0.98475 0.98471
n = 50 NSR = 20%
MSE 5.39e−05 9.02e−05 6.62e−05 6.08e−05 5.91e−05

Cor 0.97311 0.96760 0.96878 0.96936 0.96996
n = 100
MSE 5.27e−05 7.62e−05 6.16e−05 5.88e−05 5.84e−05

Cor 0.97295 0.96818 0.96925 0.96959 0.96963
n = 500
MSE 4.82e−05 6.00e−05 5.40e−05 5.29e−05 5.27e−05

Cor 0.97603 0.97252 0.97326 0.97342 0.97345

Table 3: Quantitative comparison between the nonrecursive estimator (3)
and four estimators; estimator 1 correspond to the estimator (1) with the
choice of (γn) =

(
[5/9]n−1

)
, estimator 2 correspond to the estimator (1)

with the choice of (γn) =
(
[7/9]n−1

)
, estimator 3 correspond to the estima-

tor (1) with the choice of (γn) =
(
n−1

)
and estimator 4 correspond to the

estimator (1) with the choice of (γn) =
(
[4/3]n−1

)
. Here we consider the

gamma mixture distribution X ∼ 0.4G (5) + 0.6G (13) with NSR = 5% in the
first block, NSR = 10% in the second block and NSR = 20% in the last block,
we consider three sample sizes n = 50, n = 100 and n = 500, the number
of simulations is 500, and we compute the Mean squared error (MSE) and
the linear correlation (Cor).
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I1 I2 hn MWISE

NSR = 5%
Nonrecursive 1.9286e−2 1.1327e−8 6.0943 7.2029e−6

Recursive 1.8140e−2 8.2467e−9 6.0633 7.2020e−6

NSR = 10%
Nonrecursive 1.9286e−2 1.1339e−8 7.1083 1.3346e−5

Recursive 1.8143e−2 8.2668e−9 7.0712 1.3355e−5

NSR = 20%
Nonrecursive 1.9291e−2 1.1338e−8 8.2924 2.4714e−5

Recursive 1.8147e−2 8.2666e−9 8.2490 2.4733e−5

NSR = 30%
Nonrecursive 1.9291e−2 1.1342e−8 9.0739 3.5446e−5

Recursive 1.8145e−2 8.2626e−9 9.0271 3.5453e−5

Table 4: The comparison between the MWISE of the Nadaraya’s distri-
bution estimator (3) and the MWISE of the proposed distribution estima-
tor (1) with the choice of the stepsize (γn) =

(
n−1

)
via the Salvister data

of the package kerdiest and through a plug-in method, with NSR equal to
5% in the first block, 10% in the second block, 20% in the third block and
30% in the last block the number of simulations is 500.


