LARGE AND MODERATE DEVIATION PRINCIPLES FOR RECURSIVE KERNEL DENSITY ESTIMATORS DEFINED BY STOCHASTIC APPROXIMATION METHOD

Yousri Slaoui
Communicated by N. M. Yanev

Abstract

In this paper we prove large and moderate deviations principles for the recursive kernel estimators of a probability density function defined by the stochastic approximation algorithm introduced by Mokkadem et al. ([10]. The stochastic approximation method for the estimation of a probability density. J. Statist. Plann. Inference 139 (2009), 2459-2478). We show that the estimator constructed using the stepsize which minimize the variance of the class of the recursive estimators defined in [10] gives the same pointwise LDP and MDP as the Rosenblatt kernel estimator. We provide results both for the pointwise and the uniform deviations.

1. Introduction. Let X_{1}, \ldots, X_{n} be independent, identically distributed \mathbb{R}^{d}-valued random vectors, and let f denote the probability density of X_{1}. To construct a stochastic algorithm, which approximates the function f at a given

[^0]point x, Mokkadem et al. [10] defined an algorithm of search of the zero of the function $h: y \mapsto f(x)-y$. They proceed as follows: (i) they set $f_{0}(x) \in \mathbb{R}$; (ii) for all $n \geq 1$, they set
$$
f_{n}(x)=f_{n-1}(x)+\gamma_{n} W_{n}(x)
$$
where $W_{n}(x)$ is an "observation" of the function h at the point $f_{n-1}(x)$ and $\left(\gamma_{n}\right)$ is a sequence of positive real numbers that goes to zero. To define $W_{n}(x)$, they follow the approach of Révész [13, 14] and of Tsybakov [16] , and introduced a kernel K (which is a function satisfying $\int_{\mathbb{R}^{d}} K(x) d x=1$) and a bandwidth $\left(h_{n}\right)$ (which is a sequence of positive real numbers that goes to zero), and they set $W_{n}(x)=h_{n}^{-d} K\left(h_{n}^{-1}\left[x-X_{n}\right]\right)-f_{n-1}(x)$. The stochastic approximation algorithm introduced in [10] which estimate recursively the density f at the point x is
\[

$$
\begin{equation*}
f_{n}(x)=\left(1-\gamma_{n}\right) f_{n-1}(x)+\gamma_{n} h_{n}^{-d} K\left(\frac{x-X_{n}}{h_{n}}\right) \tag{1}
\end{equation*}
$$

\]

Recently, large and moderate deviations results have been proved for the wellknown nonrecursive kernel density estimator introduced by Rosenblatt [15] (see also [11]). The large deviations principle has been studied by Louani [6] and Worms [18]. Gao [5] and Mokkadem et al. [7] extend these results and provide moderate deviations principles. The purpose of this paper is to establish large and moderate deviations principles for the recursive density estimator defined by the stochastic approximation algorithm (1).

Let us first recall that a \mathbb{R}^{m}-valued sequence $\left(Z_{n}\right)_{n \geq 1}$ satisfies a large deviations principle (LDP) with speed $\left(\nu_{n}\right)$ and good rate function I if :

1. $\left(\nu_{n}\right)$ is a positive sequence such that $\lim _{n \rightarrow \infty} \nu_{n}=\infty$;
2. $I: \mathbb{R}^{m} \rightarrow[0, \infty]$ has compact level sets;
3. for every borel set $B \subset \mathbb{R}^{m}$,

$$
\begin{aligned}
-\inf _{x \in B} I(x) & \leq \liminf _{n \rightarrow \infty} \nu_{n}^{-1} \log \mathbb{P}\left[Z_{n} \in B\right] \\
& \leq \limsup _{n \rightarrow \infty} \nu_{n}^{-1} \log \mathbb{P}\left[Z_{n} \in B\right] \leq-\inf _{x \in \bar{B}} I(x),
\end{aligned}
$$

where $\stackrel{\circ}{B}$ and \bar{B} denote the interior and the closure of B respectively. Moreover, let $\left(v_{n}\right)$ be a nonrandom sequence that goes to infinity; if ($v_{n} Z_{n}$) satisfies a LDP, then $\left(Z_{n}\right)$ is said to satisfy a moderate deviations principle (MDP).

The first aim of this paper is to establish pointwise LDP for the recursive kernel density estimators defined by the stochastic approximation algorithm (1). It turns out that the rate function depend on the choice of the stepsize $\left(\gamma_{n}\right)$; In the first part of this paper we focus on the following two special cases : (1) $\left(\gamma_{n}\right)=\left(n^{-1}\right)$ and $(2)\left(\gamma_{n}\right)=\left(h_{n}^{d}\left(\sum_{k=1}^{n} h_{k}^{d}\right)^{-1}\right)$, the first one belongs to the subclass of recursive kernel estimators which have a minimum MSE or MISE and the second choice belongs to the subclass of recursive kernel estimators which have a minimum variance (see [10]).

We show that using the stepsize $\left(\gamma_{n}\right)=\left(n^{-1}\right)$ and $\left(h_{n}\right) \equiv\left(c n^{-a}\right)$ with $c>0$ and $a \in] 0,1 / d\left[\right.$, the sequence $\left(f_{n}(x)-f(x)\right)$ satisfies a LDP with speed $\left(n h_{n}^{d}\right)$ and the rate function defined as follows:

$$
\begin{cases}\text { if } & f(x) \neq 0, \quad I_{a, x}: t \rightarrow f(x) I_{a}\left(1+\frac{t}{f(x)}\right) \tag{2}\\ \text { if } \quad f(x)=0, \quad I_{a, x}(0)=0 \quad \text { and } \quad I_{a, x}(t)=+\infty \quad \text { for } t \neq 0\end{cases}
$$

where

$$
\begin{aligned}
& I_{a}(t)=\sup _{u \in \mathbb{R}}\left\{u t-\psi_{a}(u)\right\} \\
& \psi_{a}(u)=\int_{[0,1] \times \mathbb{R}^{d}} s^{-a d}\left(e^{u s^{a d} K(z)}-1\right) d s d z
\end{aligned}
$$

which is the same rate function for the LDP of the Wolverton and Wagner [17] kernel estimator (see [8]).

$$
\text { Moreover, we show that using the stepsize }\left(\gamma_{n}\right)=\left(h_{n}^{d}\left(\sum_{k=1}^{n} h_{k}^{d}\right)^{-1}\right) \text { and }
$$ more general bandwiths defined as $h_{n}=h(n)$ for all n, where h is a regulary varing function with exponent $(-a), a \in] 0,1 / d[$. We prove that the sequence $\left(f_{n}(x)-f(x)\right)$ satisfies a LDP with speed $\left(n h_{n}^{d}\right)$ and the rate function defined as follows:

$$
\left\{\begin{array}{l}
\text { if } \quad f(x) \neq 0, \quad I_{x}: t \rightarrow f(x) I\left(1+\frac{t}{f(x)}\right) \tag{3}\\
\text { if } \quad f(x)=0, \quad I_{x}(0)=0 \quad \text { and } \quad I_{x}(t)=+\infty \quad \text { for } t \neq 0
\end{array}\right.
$$

where

$$
\begin{aligned}
& I(t)=\sup _{u \in \mathbb{R}}\{u t-\psi(u)\} \\
& \psi(u)=\int_{\mathbb{R}^{d}}\left(e^{u K(z)}-1\right) d z,
\end{aligned}
$$

which is the same rate function for the LDP of the Rosenblatt kernel estimator (see [7]).

Our second aim is to provide pointwise MDP for the density estimator defined by the stochastic approximation algorithm (1). In this case, we consider more general stepsizes defined as $\gamma_{n}=\gamma(n)$ for all n, where γ is a regulary function with exponent $(-\alpha), \alpha \in] 1 / 2,1]$. Throughout this paper we will use the following notation:

$$
\begin{equation*}
\xi=\lim _{n \rightarrow+\infty}\left(n \gamma_{n}\right)^{-1} \tag{4}
\end{equation*}
$$

For any positive sequence (v_{n}) satisfying

$$
\lim _{n \rightarrow \infty} v_{n}=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}}=0
$$

and general bandwidths $\left(h_{n}\right)$, we prove that the sequence

$$
v_{n}\left(f_{n}(x)-f(x)\right)
$$

satisfies a LDP of speed $\left(h_{n}^{d} /\left(\gamma_{n} v_{n}^{2}\right)\right)$ and rate function $J_{a, \alpha, x}($.$) defined by$

$$
\begin{cases}\text { if } & f(x) \neq 0, \quad J_{a, \alpha, x}: t \rightarrow \frac{t^{2}(2-(\alpha-a d) \xi)}{2 f(x) \int_{\mathbb{R}^{d}} K^{2}(z) d z} \tag{5}\\ \text { if } & f(x)=0, \quad J_{a, \alpha, x}(0)=0 \quad \text { and } \quad J_{a, \alpha, x}(t)=+\infty \quad \text { for } t \neq 0 .\end{cases}
$$

Let us point out that using the stepsize $\left(\gamma_{n}\right)=\left(h_{n}^{d}\left(\sum_{k=1}^{d} h_{k}^{d}\right)^{-1}\right)$ which minimize the variance of f_{n}, we obtain the same rate function for the pointwise LDP and MDP as the one obtained for the Rosenblatt kernel estimator.
Finally, we give a uniform version of the previous results. More precisely, let U be a subset of \mathbb{R}^{d}; we establish large and moderate deviations principles for the sequence $\left(\sup _{x \in U}\left|f_{n}(x)-f(x)\right|\right)$.
2. Assumptions and main results. We define the following class of regularly varying sequences.

Definition 1. Let $\gamma \in \mathbb{R}$ and $\left(v_{n}\right)_{n \geq 1}$ be a nonrandom positive sequence. We say that $\left(v_{n}\right) \in \mathcal{G S}(\gamma)$ if

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} n\left[1-\frac{v_{n-1}}{v_{n}}\right]=\gamma \tag{6}
\end{equation*}
$$

Condition (6) was introduced by Galambos and Seneta [4] to define regularly varying sequences (see also [1]), and by Mokkadem and Pelletier [9] in the context of stochastic approximation algorithms. Typical sequences in $\mathcal{G S}(\gamma)$ are, for $b \in \mathbb{R}, n^{\gamma}(\log n)^{b}, n^{\gamma}(\log \log n)^{b}$, and so on.
2.1. Pointwise LDP for the density estimator defined by the stochastic approximation algorithm (1).
2.1.1. Choices of $\left(\gamma_{n}\right)$ minimizing the MISE of f_{n}. It was shown in [10] that to minimize the MISE of f_{n}, the stepsize $\left(\gamma_{n}\right)$ must be chosen in $\mathcal{G S}(-1)$ and must satisfy $\lim _{n \rightarrow \infty} n \gamma_{n}=1$. The most simple example of stepsize belonging to $\mathcal{G S}(-1)$ and such that $\lim _{n \rightarrow \infty} n \gamma_{n}=1$ is $\left(\gamma_{n}\right)=\left(n^{-1}\right)$. For this choice of stepsize, the estimator f_{n} defined by (1) equals the recursive kernel estimator introduced by Wolverton and Wagner [17].

To establish pointwise LDP for f_{n} in this case, we need the following assumptions.
(L1) $K: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a bounded and integrable function satisfying $\int_{\mathbb{R}^{d}} K(z) d z=$ 1 , and $\lim _{\|z\| \rightarrow \infty} K(z)=0$.
(L2) i) $\left(h_{n}\right)=\left(c n^{-a}\right)$ with $\left.a \in\right] 0,1 / d[$ and $c>0$.
ii) $\left(\gamma_{n}\right)=\left(n^{-1}\right)$.

The following Theorem gives the pointwise LDP for f_{n} in this case.
Theorem 1 (Pointwise LDP for Wolverton and Wagner estimator). Let Assumptions (L1) and (L2) hold and assume that f is continuous at x. Then, the sequence $\left(f_{n}(x)-f(x)\right)$ satisfies a LDP with speed $\left(n h_{n}^{d}\right)$ and rate function defined by (2).
2.1.2. Choices of $\left(\gamma_{n}\right)$ minimizing the variance of $f_{\boldsymbol{n}}$. It was shown in [10] that to minimize the asymptotic variance of f_{n}, the stepsize $\left(\gamma_{n}\right)$ must
be chosen in $\mathcal{G S}(-1)$ and must satisfy $\lim _{n \rightarrow \infty} n \gamma_{n}=1-a d$. The most simple example of stepsize belonging to $\mathcal{G S}(-1)$ and such that $\lim _{n \rightarrow \infty} n \gamma_{n}=1-a d$ is $\left(\gamma_{n}\right)=\left((1-a d) n^{-1}\right)$, an other stepsize satisfying this conditions is $\left(\gamma_{n}\right)=$ $\left(h_{n}^{d}\left(\sum_{k=1}^{n} h_{k}^{d}\right)^{-1}\right)$. For this last choice of stepsize, the estimator f_{n} defined by (1) produces the estimator considered by Deheuvels [2] and Duflo [3].

To establish pointwise LDP for f_{n} in this case, we assume that.
(L3) i) $\left(h_{n}\right) \in \mathcal{G S}(-a)$ with $\left.a \in\right] 0,1 / d[$.
ii) $\left(\gamma_{n}\right)=\left(h_{n}^{d}\left(\sum_{k=1}^{n} h_{k}^{d}\right)^{-1}\right)$.

The following Theorem gives the pointwise LDP for f_{n} in this case.
Theorem 2 (Pointwise LDP for Deheuvels estimator). Let Assumptions (L1) and (L3) hold and assume that f is continuous at x. Then, the sequence $\left(f_{n}(x)-f(x)\right)$ satisfies a LDP with speed $\left(n h_{n}^{d}\right)$ and rate function defined by (3).
2.2. Pointwise MDP for the density estimator defined by the stochastic approximation algorithm (1). Let (v_{n}) be a positive sequence; we assume that
(M1) $K: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a continuous, bounded function satisfying $\int_{\mathbb{R}^{d}} K(z) d z=1$, and, for all $j \in\{1, \ldots d\}, \int_{\mathbb{R}} z_{j} K(z) d z_{j}=0$ and $\int_{\mathbb{R}^{d}} z_{j}^{2}|K(z)| d z<\infty$.
(M2) i) $\left(\gamma_{n}\right) \in \mathcal{G S}(-\alpha)$ with $\left.\left.\alpha \in\right] 1 / 2,1\right]$.
ii) $\left(h_{n}\right) \in \mathcal{G S}(-a)$ with $\left.a \in\right] 0, \alpha / d[$.
iii) $\left.\left.\lim _{n \rightarrow \infty}\left(n \gamma_{n}\right) \in\right] \min \{2 a,(\alpha-a d) / 2\}, \infty\right]$.
(M3) f is bounded, twice differentiable, and, for all $i, j \in\{1, \ldots d\}, \partial^{2} f / \partial x_{i} \partial x_{j}$ is bounded.
(M4) $\lim _{n \rightarrow \infty} v_{n}=\infty$ and $\lim _{n \rightarrow \infty} \gamma_{n} v_{n}^{2} / h_{n}^{d}=0$.
The following Theorem gives the pointwise MDP for f_{n}.
Theorem 3 (Pointwise MDP for the recursive estimator defined by (1)). Let Assumptions (M1) - (M4) hold and assume that f is continuous at x. Then,
the sequence $\left(f_{n}(x)-f(x)\right)$ satisfies a MDP with speed $\left(h_{n}^{d} /\left(\gamma_{n} v_{n}^{2}\right)\right)$ and rate function $J_{a, \alpha, x}$ defined in (5).

2.3. Uniform LDP and MDP for the density estimator defined

 by the stochastic approximation algorithm (1). To establish uniform large deviations principles for the density estimator defined by the stochastic approximation algorithm (1) on a bounded set, we need the following assumptions:(U1) i) For all $j \in\{1, \ldots d\}, \int_{\mathbb{R}} z_{j} K(z) d z_{j}=0$ and $\int_{\mathbb{R}^{d}} z_{j}^{2}|K(z)| d z<\infty$.
ii) K is Hölder continuous.
(U2) f is bounded, twice differentiable, and, $\sup _{x \in \mathbb{R}^{d}}\left\|D^{2} f(x)\right\|<\infty$.
(U3) $\lim _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2} \log \left(1 / h_{n}\right)}{h_{n}^{d}}=0$ and $\lim _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2} \log v_{n}}{h_{n}^{d}}=0$.
Set $U \subseteq \mathbb{R}^{d}$; in order to state in a compact form the uniform large and moderate deviations principles for the density estimator defined by the stochastic approximation algorithm (1) on U, we set:
$g_{U}(\delta)=\left\{\begin{array}{llll}\|f\|_{U, \infty} I_{a}\left(1+\frac{\delta}{\|f\|_{U, \infty}}\right) & \text { when } \quad v_{n} \equiv 1, & (L 1) \text { and (L2) hold } \\ \|f\|_{U, \infty} I\left(1+\frac{\delta}{\|f\|_{U, \infty}}\right) & \text { when } \quad v_{n} \equiv 1, & (L 1) \text { and (L3) hold } \\ \frac{\delta^{2}(2-(\alpha-a d) \xi)}{2\|f\|_{U, \infty} \int_{\mathbb{R}^{d}} K^{2}(z) d z} & \text { when } \quad v_{n} \rightarrow \infty, & (M 1)-(M 4) \text { hold }\end{array}\right.$
$\tilde{g}_{U}(\delta)=\min \left\{g_{U}(\delta), g_{U}(-\delta)\right\}$
where $\|f\|_{U, \infty}=\sup _{x \in U}|f(x)|$.
Remark 1. The functions $g_{U}($.$) and \tilde{g}_{U}($.$) are non-negative, continuous,$ increasing on $] 0,+\infty[$ and decreasing on $]-\infty, 0[$, with a unique global minimum in $0\left(\tilde{g}_{U}(0)=g_{U}(0)=0\right)$. They are thus good rate functions (and $g_{U}($.$) is strictly$ convex).

Theorem 4 below states uniform LDP on U in the case U is bounded, and Theorem 5 in the case U is unbounded.

Theorem 4 (Uniform deviations on a bounded set for the recursive estimator defined by (1)). Let (U1) - (U3) hold. Then for any bounded subset U of
\mathbb{R}^{d} and for all $\delta>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P}\left[\sup _{x \in U} v_{n}\left|f_{n}(x)-f(x)\right| \geq \delta\right]=-\tilde{g}_{U}(\delta) \tag{7}
\end{equation*}
$$

To establish uniform large deviations principles for the density estimator defined by the stochastic approximation algorithm (1) on an unbounded set, we need the following additionnal assumptions:
(U4) i) There exists $\beta>0$ such that $\int_{\mathbb{R}^{d}}\|x\|^{\beta} f(x) d x<\infty$.
ii) f is uniformly continuous.
(U5) There exists $\tau>0$ such that $z \mapsto\|z\|^{\tau} K(z)$ is a bounded function.
(U6) i) There exists $\zeta>0$ such that $\int_{\mathbb{R}^{d}}\|z\|^{\zeta}|K(z)| d z<\infty$
ii) There exists $\eta>0$ such that $z \stackrel{\mathbb{R}}{\mapsto}\|z\|^{\eta} f(z)$ is a bounded function.

Theorem 5 (Uniform deviations on an unbounded set for the recursive estimator defined by (1)). Let (U1) - (U6) hold. Then for any subset U of \mathbb{R}^{d} and for all $\delta>0$,

$$
\begin{aligned}
-\tilde{g}_{U}(\delta) & \leq \liminf _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P}\left[\sup _{x \in U} v_{n}\left|f_{n}(x)-f(x)\right| \geq \delta\right] \\
& \leq \limsup _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P}\left[\sup _{x \in U} v_{n}\left|f_{n}(x)-f(x)\right| \geq \delta\right] \leq-\frac{\beta}{\beta+d} \tilde{g}_{U}(\delta)
\end{aligned}
$$

The following corollary is a straightforward consequence of Theorem 5.
Corollary 1. Under the assumptions of Theorem 5, if $\int_{\mathbb{R}^{d}}\|x\|^{\xi} f(x) d x<$ ∞ for all ξ in \mathbb{R}, then for any subset U of \mathbb{R}^{d},

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P}\left[\sup _{x \in U} v_{n}\left|f_{n}(x)-f(x)\right| \geq \delta\right]=-\tilde{g}_{U}(\delta) \tag{8}
\end{equation*}
$$

Comment. Since the sequence $\left(\sup _{x \in U}\left|f_{n}(x)-f(x)\right|\right)$ is positive and since \tilde{g}_{U} is continuous on $[0,+\infty[$, increasing and goes to infinity as $\delta \rightarrow \infty$, the

Large and moderate deviation principles for recursive kernel ...
application of Lemma 5 in [18] allows to deduce from (7) or (8) that $\sup _{x \in U} \mid f_{n}(x)-$ $f(x) \mid$ satisfies a LDP with speed $\left(\gamma_{n}^{-1} h_{n}^{d}\right)$ and good rate function \tilde{g}_{U} on \mathbb{R}^{+}.
3. Proofs. Throught this section we use the following notation:

$$
\begin{align*}
& \Pi_{n}=\prod_{j=1}^{n}\left(1-\gamma_{j}\right), \\
& Z_{n}(x)=h_{n}^{-d} Y_{n}, \\
& Y_{n}=K\left(\frac{x-X_{n}}{h_{n}}\right) \tag{9}
\end{align*}
$$

Throughout the proofs, we repeatedly apply Lemma 2 in [10]. For the convenience of the reader, we state it now.

Lemma 1. Let $\left(v_{n}\right) \in \mathcal{G S}\left(v^{*}\right),\left(\gamma_{n}\right) \in \mathcal{G S}(-\alpha)$, and $m>0$ such that $m-v^{*} \xi>0$ where ξ is defined in (4). We have

$$
\lim _{n \rightarrow+\infty} v_{n} \Pi_{n}^{m} \sum_{k=1}^{n} \Pi_{k}^{-m} \frac{\gamma_{k}}{v_{k}}=\frac{1}{m-v^{*} \xi} .
$$

Moreover, for all positive sequence $\left(\alpha_{n}\right)$ such that $\lim _{n \rightarrow+\infty} \alpha_{n}=0$, and for all $\delta \in \mathbb{R}$,

$$
\lim _{n \rightarrow+\infty} v_{n} \Pi_{n}^{m}\left[\sum_{k=1}^{n} \Pi_{k}^{-m} \frac{\gamma_{k}}{v_{k}} \alpha_{k}+\delta\right]=0
$$

Noting that, in view of (1), we have

$$
\begin{aligned}
f_{n}(x)-f(x)= & \left(1-\gamma_{n}\right)\left(f_{n-1}(x)-f(x)\right)+\gamma_{n}\left(Z_{n}(x)-f(x)\right) \\
= & \sum_{k=1}^{n-1}\left[\prod_{j=k+1}^{n}\left(1-\gamma_{j}\right)\right] \gamma_{k}\left(Z_{k}(x)-f(x)\right)+\gamma_{n}\left(Z_{n}(x)-f(x)\right) \\
& +\left[\prod_{j=1}^{n}\left(1-\gamma_{j}\right)\right]\left(f_{0}(x)-f(x)\right) \\
= & \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k}\left(Z_{k}(x)-f(x)\right)+\Pi_{n}\left(f_{0}(x)-f(x)\right) .
\end{aligned}
$$

It follows that

$$
\mathbb{E}\left[f_{n}(x)\right]-f(x)=\Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k}\left(\mathbb{E}\left[Z_{k}(x)\right]-f(x)\right)+\Pi_{n}\left(f_{0}(x)-f(x)\right) .
$$

Then, we can write that

$$
\begin{aligned}
f_{n}(x)-\mathbb{E}\left[f_{n}(x)\right] & =\Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k}\left(Z_{k}(x)-\mathbb{E}\left[Z_{k}(x)\right]\right) \\
& =\Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-d}\left(Y_{k}-\mathbb{E}\left[Y_{k}\right]\right)
\end{aligned}
$$

Let $\left(\Psi_{n}\right)$ and $\left(B_{n}\right)$ be the sequences defined as

$$
\begin{aligned}
& \Psi_{n}(x)=\Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-d}\left(Y_{k}-\mathbb{E}\left[Y_{k}\right]\right) \\
& B_{n}(x)=\mathbb{E}\left[f_{n}(x)\right]-f(x)
\end{aligned}
$$

We have:

$$
\begin{equation*}
f_{n}(x)-f(x)=\Psi_{n}(x)+B_{n}(x) \tag{10}
\end{equation*}
$$

Theorems 1, 2, 3, 4 and 5 are consequences of (10) and the following propositions.
Proposition 1 (Pointwise LDP and MDP for $\left(\Psi_{n}\right)$).

1. Under the assumptions ($L 1$) and $(L 2)$, the sequence $\left(f_{n}(x)-\mathbb{E}\left(f_{n}(x)\right)\right)$ satisfies a LDP with speed $\left(n h_{n}^{d}\right)$ and rate function $I_{a, x}$.
2. Under the assumptions (L1) and (L3), the sequence $\left(f_{n}(x)-\mathbb{E}\left(f_{n}(x)\right)\right)$ satisfies a LDP with speed $\left(n h_{n}^{d}\right)$ and rate function I_{x}.
3. Under the assumptions $(M 1)-(M 4)$, the sequence $\left(v_{n} \Psi_{n}(x)\right)$ satisfies a LDP with speed $\left(h_{n}^{d} /\left(\gamma_{n} v_{n}^{2}\right)\right)$ and rate function $J_{a, \alpha, x}$.

Proposition 2 (Uniform LDP and MDP for $\left(\Psi_{n}\right)$).

1. Let $(U 1)-(U 3)$ hold. Then for any bounded subset U of \mathbb{R}^{d} and for all $\delta>0$,

$$
\lim _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P}\left[\sup _{x \in U} v_{n}\left|\Psi_{n}(x)\right| \geq \delta\right]=-\tilde{g}_{U}(
$$

Large and moderate deviation principles for recursive kernel ...
2. Let $(U 1)-(U 6)$ hold. Then for any subset U of \mathbb{R}^{d} and for all $\delta>0$,

$$
\begin{aligned}
-\tilde{g}_{U}(\delta) & \leq \liminf _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P}\left[\sup _{x \in U} v_{n}\left|\Psi_{n}(x)\right| \geq \delta\right] \\
& \leq \limsup _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P}\left[\sup _{x \in U} v_{n}\left|\Psi_{n}(x)\right| \geq \delta\right] \leq-\frac{\xi}{\xi+d} \tilde{g}_{U}(\delta)
\end{aligned}
$$

The proof of the following proposition is given [10].
Proposition 3 (Pointwise and uniform convergence rate of $\left(B_{n}\right)$). Let Assumptions (M1) - (M3) hold.

1. If for all $i, j \in\{1, \ldots d\}, \partial^{2} f / \partial x_{i} \partial x_{j}$ is continuous at x. We have

If $a \leq \alpha /(d+4)$, then

$$
B_{n}(x)=O\left(h_{n}^{2}\right)
$$

If $a>\alpha /(d+4)$, then

$$
B_{n}(x)=o\left(\sqrt{\gamma_{n} h_{n}^{-d}}\right)
$$

2. If (U2) holds, then:

If $a \leq \alpha /(d+4)$, then

$$
\sup _{x \in \mathbb{R}^{d}}\left|B_{n}(x)\right|=O\left(h_{n}^{2}\right)
$$

If $a>\alpha /(d+4)$, then

$$
\sup _{x \in \mathbb{R}^{d}}\left|B_{n}(x)\right|=o\left(\sqrt{\gamma_{n} h_{n}^{-d}}\right)
$$

Set $x \in \mathbb{R}^{d}$; since the assumptions of Theorems 1 and 2 guarantee that $\lim _{n \rightarrow \infty} B_{n}(x)=0$, Theorem 1 (respectively Theorem 2) is a straightforward consequence of the application of Part 1 (respectively of Part 2) of Proposition 1. Moreover, under the assumptions of Theorem 3, we have by application of Propostion $3, \lim _{n \rightarrow \infty} v_{n} B_{n}(x)=0$; Theorem 3 thus straightfully follows from the application of Part 3 of Proposition 1. Finaly, Theorem 4 and 5 follows from Proposition 2 and the second part of Proposition 3.

We now state a preliminary lemma, which will be used in the proof of Proposition 1.

For any $u \in \mathbb{R}$, Set

$$
\begin{aligned}
\Lambda_{n, x}(u) & =\frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{E}\left[\exp \left(u \frac{h_{n}^{d}}{\gamma_{n} v_{n}} \Psi_{n}(x)\right)\right] \\
\Lambda_{x}^{L, 1}(u) & =f(x)\left(\psi_{a}(u)-u\right) \\
\Lambda_{x}^{L, 2}(u) & =f(x)(\psi(u)-u) \\
\Lambda_{x}^{M}(u) & =\frac{u^{2}}{2(2-(\alpha-a d) \xi)} f(x) \int_{\mathbb{R}^{d}} K^{2}(z) d z
\end{aligned}
$$

Lemma 2. (Convergence of $\Lambda_{n, x}$)

1. (Pointwise convergence)

If f is continuous at x, then for all $u \in \mathbb{R}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Lambda_{n, x}(u)=\Lambda_{x}(u) \tag{11}
\end{equation*}
$$

where

$$
\Lambda_{x}(u)=\left\{\begin{array}{llll}
\Lambda_{x}^{L, 1}(u) & \text { when } & v_{n} \equiv 1, & (L 1) \text { and }(L 2) \text { hold } \\
\Lambda_{x}^{L, 2}(u) & \text { when } & v_{n} \equiv 1, & (L 1) \text { and }(L 3) \text { hold } \\
\Lambda_{x}^{M}(u) & \text { when } & v_{n} \rightarrow \infty, & (M 1)-(M 4) \text { hold }
\end{array}\right.
$$

2. (Uniform convergence)

If f is uniformly continuous, then the convergence (11) holds uniformly in $x \in U$.

Our proofs are now organized as follows: Lemma 2 is proved in Section 3.1, Proposition 1 in Section 3.4 and Proposition 2 in Section 3.3.
3.1. Proof of Lemma 2. Set $u \in \mathbb{R}, u_{n}=u / v_{n}$ and $a_{n}=h_{n}^{d} \gamma_{n}^{-1}$. We have:

$$
\begin{aligned}
\Lambda_{n, x}(u) & =\frac{v_{n}^{2}}{a_{n}} \log \mathbb{E}\left[\exp \left(u_{n} a_{n} \Psi_{n}(x)\right)\right] \\
& =\frac{v_{n}^{2}}{a_{n}} \log \mathbb{E}\left[\exp \left(u_{n} a_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} a_{k}^{-1}\left(Y_{k}-\mathbb{E}\left[Y_{k}\right]\right)\right)\right]
\end{aligned}
$$

Large and moderate deviation principles for recursive kernel ...

$$
=\frac{v_{n}^{2}}{a_{n}} \sum_{k=1}^{n} \log \mathbb{E}\left[\exp \left(u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}\right)\right]-u v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} a_{k}^{-1} \mathbb{E}\left[Y_{k}\right]
$$

By Taylor expansion, there exists $c_{k, n}$ between 1 and $\mathbb{E}\left[\exp \left(u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}\right)\right]$ such that

$$
\begin{aligned}
& \log \mathbb{E}\left[\exp \left(u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}\right)\right] \\
& \quad=\mathbb{E}\left[\exp \left(u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}\right)-1\right]-\frac{1}{2 c_{k, n}^{2}}\left(\mathbb{E}\left[\exp \left(u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}\right)-1\right]\right)^{2}
\end{aligned}
$$

and $\Lambda_{n, x}$ can be rewriten as

$$
\begin{align*}
\Lambda_{n, x}(u)= & \frac{v_{n}^{2}}{a_{n}} \sum_{k=1}^{n} \mathbb{E}\left[\exp \left(u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}\right)-1\right] \\
& -\frac{v_{n}^{2}}{2 a_{n}} \sum_{k=1}^{n} \frac{1}{c_{k, n}^{2}}\left(\mathbb{E}\left[\exp \left(u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}\right)-1\right]\right)^{2} \\
& -u v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} a_{k}^{-1} \mathbb{E}\left[Y_{k}\right] \tag{12}
\end{align*}
$$

First case: $v_{n} \rightarrow \infty$. A Taylor's expansion implies the existence of $c_{k, n}^{\prime}$ between 0 and $u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}$ such that

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}\right)-1\right] \\
& \quad=u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} \mathbb{E}\left[Y_{k}\right]+\frac{1}{2}\left(u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}}\right)^{2} \mathbb{E}\left[Y_{k}^{2}\right]+\frac{1}{6}\left(u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}}\right)^{3} \mathbb{E}\left[Y_{k}^{3} e^{c_{k, n}^{\prime}}\right]
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\Lambda_{n, x}(u)= & \frac{1}{2} u^{2} a_{n} \Pi_{n}^{2} \sum_{k=1}^{n} \Pi_{k}^{-2} a_{k}^{-2} \mathbb{E}\left[Y_{k}^{2}\right]+\frac{1}{6} u^{2} u_{n} a_{n}^{2} \Pi_{n}^{3} \sum_{k=1}^{n} \Pi_{k}^{-3} a_{k}^{-3} \mathbb{E}\left[Y_{k}^{3} e^{c_{k, n}^{\prime}}\right] \\
& -\frac{v_{n}^{2}}{2 a_{n}} \sum_{k=1}^{n} \frac{1}{c_{k, n}^{2}}\left(\mathbb{E}\left[\exp \left(u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}\right)-1\right]\right)^{2}
\end{aligned}
$$

$$
\begin{equation*}
=\frac{1}{2} f(x) u^{2} a_{n} \Pi_{n}^{2} \sum_{k=1}^{n} \Pi_{k}^{-2} a_{k}^{-1} \gamma_{k} \int_{\mathbb{R}^{d}} K^{2}(z) d z+R_{n, x}^{(1)}(u)+R_{n, x}^{(2)}(u) \tag{13}
\end{equation*}
$$

with

$$
\begin{aligned}
R_{n, x}^{(1)}(u)= & \frac{1}{2} u^{2} a_{n} \Pi_{n}^{2} \sum_{k=1}^{n} \Pi_{k}^{-2} a_{k}^{-1} \gamma_{k} \int_{\mathbb{R}^{d}} K^{2}(z)\left[f\left(x-z h_{k}\right)-f(x)\right] d z \\
R_{n, x}^{(2)}(u)= & \frac{1}{6} \frac{u^{3}}{v_{n}} a_{n}^{2} \Pi_{n}^{3} \sum_{k=1}^{n} \Pi_{k}^{-3} a_{k}^{-3} \mathbb{E}\left[Y_{k}^{3} e^{c_{k, n}^{\prime}}\right] \\
& -\frac{v_{n}^{2}}{2 a_{n}} \sum_{k=1}^{n} \frac{1}{c_{k, n}^{2}}\left(\mathbb{E}\left[\exp \left(u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}\right)-1\right]\right)^{2}
\end{aligned}
$$

Since f is continuous, we have $\lim _{k \rightarrow \infty}\left|f\left(x-z h_{k}\right)-f(x)\right|=0$, and thus, by the dominated convergence theorem, (M1) implies that

$$
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{d}} K^{2}(z)\left|f\left(x-z h_{k}\right)-f(x)\right| d z=0
$$

Since $\left(a_{n}\right) \in \mathcal{G S}(\alpha-a d)$, and $\lim _{n \rightarrow \infty}\left(n \gamma_{n}\right)>(\alpha-a d) / 2$. Lemma 1 then ensures that

$$
\begin{equation*}
a_{n} \Pi_{n}^{2} \sum_{k=1}^{n} \Pi_{k}^{-2} a_{k}^{-1} \gamma_{k}=\frac{1}{(2-(\alpha-a d) \xi)}+o(1), \tag{14}
\end{equation*}
$$

it follows that $\lim _{n \rightarrow \infty}\left|R_{n, x}^{(1)}(u)\right|=0$.
Moreover, in view of (9), we have $\left|Y_{k}\right| \leq\|K\|_{\infty}$, then

$$
\begin{align*}
c_{k, n}^{\prime} & \leq\left|u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}\right| \\
& \leq\left|u_{n}\right|\|K\|_{\infty} \tag{15}
\end{align*}
$$

Noting that $\mathbb{E}\left|Y_{k}\right|^{3} \leq h_{k}^{d}\|f\|_{\infty} \int_{\mathbb{R}^{d}}\left|K^{3}(z)\right| d z$. Hence, using Lemma 1 and (15), there exists a positive constant c_{1} such that, for n large enough,

$$
\begin{equation*}
\left|\frac{u^{3}}{v_{n}} a_{n}^{2} \Pi_{n}^{3} \sum_{k=1}^{n} \Pi_{k}^{-3} a_{k}^{-3} \mathbb{E}\left[Y_{k}^{3} e^{c_{k, n}^{\prime}}\right]\right| \leq c_{1} e^{\mid u_{n} \|}\|K\|_{\infty} \frac{u^{3}}{v_{n}}\|f\|_{\infty} \int_{\mathbb{R}^{d}}\left|K^{3}(z)\right| d z \tag{16}
\end{equation*}
$$

which goes to 0 as $n \rightarrow \infty$ since $v_{n} \rightarrow \infty$.
Moreover, Lemma 1 ensures that

$$
\begin{align*}
& \left|\frac{v_{n}^{2}}{2 a_{n}} \sum_{k=1}^{n} \frac{1}{c_{k, n}^{2}}\left(\mathbb{E}\left[\exp \left(u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}\right)-1\right]\right)^{2}\right| \\
& \quad \leq \frac{v_{n}^{2}}{2 a_{n}} \sum_{k=1}^{n}\left(\mathbb{E}\left[\exp \left(u_{n} \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}\right)-1\right]\right)^{2} \\
& \quad \leq \frac{u^{2}}{2}\|f\|_{\infty}^{2} a_{n} \Pi_{n}^{2} \sum_{k=1}^{n} \Pi_{k}^{-2} a_{k}^{-1} \gamma_{k} h_{k}^{d}+o\left(a_{n} \Pi_{n}^{2} \sum_{k=1}^{n} \Pi_{k}^{-2} a_{k}^{-1} \gamma_{k} h_{k}^{d}\right) \\
& \quad=o(1) \tag{17}
\end{align*}
$$

The combination of (16) and (17) ensures that $\lim _{n \rightarrow \infty}\left|R_{n, x}^{(2)}(u)\right|=0$. Then, we obtain from (13) and (14), $\lim _{n \rightarrow \infty} \Lambda_{n, x}(u)=\Lambda_{x}^{M}(u)$.

SECOND CASE: $\left(v_{n}\right) \equiv 1$. It follows from (12) that

$$
\begin{align*}
\Lambda_{n, x}(u)= & \frac{1}{a_{n}} \sum_{k=1}^{n} \mathbb{E}\left[\exp \left(u \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}\right)-1\right] \\
& -\frac{1}{2 a_{n}} \sum_{k=1}^{n} \frac{1}{c_{k, n}^{2}}\left(\mathbb{E}\left[\exp \left(u \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}\right)-1\right]\right)^{2}-u \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} a_{k}^{-1} \mathbb{E}\left[Y_{k}\right] \\
= & \frac{1}{a_{n}} \sum_{k=1}^{n} h_{k}^{d} \int_{\mathbb{R}^{d}}\left[\exp \left(u \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} K(z)\right)-1\right] f(x) d z \\
& -u \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} \int_{\mathbb{R}^{d}} K(z) f(x) d z-R_{n, x}^{(3)}(u)+R_{n, x}^{(4)}(u) \\
= & f(x) \frac{1}{a_{n}} \sum_{k=1}^{n} h_{k}^{d}\left[\int_{\mathbb{R}^{d}}\left(\exp \left(u V_{n, k} K(z)\right)-1\right)-u V_{n, k} K(z)\right] d z \\
& -R_{n, x}^{(3)}(u)+R_{n, x}^{(4)}(u) \tag{18}
\end{align*}
$$

$$
V_{n, k}=\frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}}
$$

$$
\begin{aligned}
R_{n, x}^{(3)}(u)= & \frac{1}{2 a_{n}} \sum_{k=1}^{n} \frac{1}{c_{k, n}^{2}}\left(\mathbb{E}\left[\exp \left(u \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} Y_{k}\right)-1\right]\right)^{2} \\
R_{n, x}^{(4)}(u)= & \frac{1}{a_{n}} \sum_{k=1}^{n} h_{k}^{d} \int_{\mathbb{R}^{d}}\left[\exp \left(u \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} K(z)\right)-1\right]\left[f\left(x-z h_{k}\right)-f(x)\right] d z \\
& -u \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} \int_{\mathbb{R}^{d}} K(z)\left[f\left(x-z h_{k}\right)-f(x)\right] d z
\end{aligned}
$$

It follows from (17), that $\lim _{n \rightarrow \infty}\left|R_{n, x}^{(3)}(u)\right|=0$.
Since $\left|e^{t}-1\right| \leq|t| e^{|t|}$, we have

$$
\begin{aligned}
& \left|R_{n, x}^{(4)}(u)\right| \leq \frac{1}{a_{n}} \sum_{k=1}^{n} h_{k}^{d} \int_{\mathbb{R}^{d}}\left|\left[\exp \left(u \frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} K(z)\right)-1\right]\left[f\left(x-z h_{k}\right)-f(x)\right]\right| d z \\
& +|u| \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} \int_{\mathbb{R}^{d}}|K(z)|\left|f\left(x-z h_{k}\right)-f(x)\right| d z \\
& \leq|u| e^{|u|| | K \|_{\infty} \Pi_{n}} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} \int_{\mathbb{R}^{d}}|K(z)|\left|f\left(x-z h_{k}\right)-f(x)\right| d z \\
& +|u| \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} \int_{\mathbb{R}^{d}}|K(z)|\left|f\left(x-z h_{k}\right)-f(x)\right| d z \\
& \leq|u|\left(e^{|u|\|K\|_{\infty}}+1\right) \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} \int_{\mathbb{R}^{d}}|K(z)|\left|f\left(x-z h_{k}\right)-f(x)\right| d z
\end{aligned}
$$

In view of Lemma 1 the sequence $\left(\Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k}\right)$ is bounded, then, the dominated convergence theorem ensures that $\lim _{n \rightarrow \infty} R_{n, x}^{(4)}(u)=0$.
In the case f is uniformly continuous, set $\varepsilon>0$ and let $M>0$ such that $2\|f\|_{\infty} \int_{\|z\| \leq M}|K(z)| d z \leq \varepsilon / 2$. We need to prove that for n sufficiently large

$$
\sup _{x \in \mathbb{R}^{d}} \int_{\|z\| \leq M}|K(z)|\left|f\left(x-z h_{k}\right)-f(x)\right| d z \leq \varepsilon / 2
$$

which is a straightforward consequence of the uniform continuity of f.

Then, it follows from (18), that
(19) $\lim _{n \rightarrow \infty} \Lambda_{n, x}(u)$

$$
=\lim _{n \rightarrow \infty} f(x) \frac{\gamma_{n}}{h_{n}^{d}} \sum_{k=1}^{n} h_{k}^{d} \int_{\mathbb{R}^{d}}\left[\left(\exp \left(u V_{n, k} K(z)\right)-1\right)-u V_{n, k} K(z)\right] d z
$$

In the case when $\left(v_{n}\right) \equiv 1$, ($L 1$) AND ($L 2$) HOLD

$$
\begin{aligned}
\frac{\Pi_{n}}{\Pi_{k}} & =\prod_{j=k+1}^{n}\left(1-\gamma_{j}\right) \\
& =\frac{k}{n}
\end{aligned}
$$

then,

$$
\begin{aligned}
V_{n, k} & =\frac{a_{n} \Pi_{n}}{a_{k} \Pi_{k}} \\
& =\left(\frac{k}{n}\right)^{a d}
\end{aligned}
$$

Consequently, it follows from (19) and from some analysis considerations that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \Lambda_{n, x}(u) & =f(x) \int_{\mathbb{R}^{d}}\left[\int_{0}^{1} s^{-a d}\left(\exp \left(u s^{a d} K(z)\right)-1\right)-u s^{a d} K(z)\right] d s d z \\
& =\Lambda_{x}^{L, 1}(u)
\end{aligned}
$$

In the case when $\left(v_{n}\right) \equiv 1,(L 1)$ And $(L 3)$ HOLD. We have

$$
\begin{aligned}
\frac{\Pi_{n}}{\Pi_{k}} & =\prod_{j=k+1}^{n}\left(1-\gamma_{j}\right) \\
& =\prod_{j=k+1}^{n}\left(1-\frac{h_{j}^{d}}{\sum_{l=1}^{j} h_{l}^{d}}\right) \\
& =\prod_{j=k+1}^{n} \frac{\sum_{l=1}^{j-1} h_{l}^{d}}{\sum_{l=1}^{j} h_{l}^{d}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sum_{l=1}^{k} h_{l}^{d}}{\sum_{l=1}^{n} h_{l}^{d}} \\
& =\frac{\sum_{l=1}^{k} h_{l}^{d}}{h_{k}^{d}} \frac{h_{k}^{d}}{h_{n}^{d}} \frac{h_{n}^{d}}{\sum_{l=1}^{n} h_{l}^{d}} \\
& =\frac{\gamma_{n}}{\gamma_{k}} \frac{h_{k}^{d}}{h_{n}^{d}},
\end{aligned}
$$

then,

$$
V_{n, k}=1
$$

Consequently, it follows from (19) that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \Lambda_{n, x}(u) & =f(x) \int_{\mathbb{R}^{d}}[(\exp (u K(z))-1)-u K(z)] d z \\
& =\Lambda_{x}^{L, 2}(u)
\end{aligned}
$$

and thus Lemma 1 is proved.
3.2. Proof of Proposition 1. To prove Proposition 1, we apply Proposition 1 in [8], Lemma 2 and the following result (see [12]).

Lemma 3. Let $\left(Z_{n}\right)$ be a sequence of real random variables, $\left(\nu_{n}\right)$ a positive sequence satisfying $\lim _{n \rightarrow \infty} \nu_{n}=+\infty$, and suppose that there exists some convex non-negative function Γ defined on \mathbb{R} such that

$$
\forall u \in \mathbb{R}, \lim _{n \rightarrow \infty} \frac{1}{\nu_{n}} \log \mathbb{E}\left[\exp \left(u \nu_{n} Z_{n}\right)\right]=\Gamma(u) .
$$

If the Legendre function Γ^{*} of Γ is a strictly convex function, then the sequence $\left(Z_{n}\right)$ satisfies a LDP of speed $\left(\nu_{n}\right)$ and good rate fonction Γ^{*}.

In our framework, when $v_{n} \equiv 1$ and $\gamma_{n}=n^{-1}$, we take $Z_{n}=f_{n}(x)-$ $\mathbb{E}\left(f_{n}(x)\right), \nu_{n}=n h_{n}^{d}$ with $h_{n}=c n^{-a}$ where $\left.a \in\right] 0,1 / d\left[\right.$ and $\Gamma=\Lambda_{x}^{L, 1}$. In this case, the Legendre transform of $\Gamma=\Lambda_{x}^{L, 1}$ is the rate function $I_{a, x}: t \rightarrow$ $f(x) I_{a}\left(\frac{t}{f(x)}+1\right)$ which is strictly convex by Proposition 1 in [8]. Farther, when $v_{n} \equiv 1$ and $\gamma_{n}=h_{n}^{d}\left(\sum_{k=1}^{n} h_{k}^{d}\right)^{-1}$, we take $Z_{n}=f_{n}(x)-\mathbb{E}\left(f_{n}(x)\right), \nu_{n}=n h_{n}^{d}$ with $h_{n} \in \mathcal{G S}(-a)$ where $\left.a \in\right] 0,1 / d\left[\right.$ and $\Gamma=\Lambda_{x}^{L, 2}$. In this case, the Legendre
transform of $\Gamma=\Lambda_{x}^{L, 2}$ is the rate function $I_{x}: t \rightarrow f(x) I\left(\frac{t}{f(x)}+1\right)$ which is strictly convex by Proposition 1 in [7]. Otherwise, when, $v_{n} \rightarrow \infty$, we take $Z_{n}=v_{n}\left(f_{n}(x)-\mathbb{E}\left(f_{n}(x)\right)\right), \nu_{n}=h_{n}^{d} /\left(\gamma_{n} v_{n}^{2}\right)$ and $\Gamma=\Lambda_{x}^{M} ; \Gamma^{*}$ is then the quadratic rate function $J_{a, \alpha, x}$ defined in (5) and thus Proposition 1 follows.
3.3. Proof of Proposition 2. In order to prove Proposition 2, we first establish some lemmas.

Lemma 4. Let $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be the function defined for $\delta>0$ as
$\phi(\delta)=\left\{\begin{array}{llll}\left(\psi_{a}^{\prime}\right)^{-1}\left(1+\frac{\delta}{\|f\|_{U, \infty}}\right) & \text { when } & v_{n} \equiv 1, & \text { (L1) and (L2) hold } \\ \left(\psi^{\prime}\right)^{-1}\left(1+\frac{\delta}{\|f\|_{U, \infty}}\right) & \text { when } & v_{n} \equiv 1, & \text { (L1) and (L3) hold } \\ \frac{\delta(2-(\alpha-a d) \xi)}{\|f\|_{U, \infty} \int_{\mathbb{R}^{d}} K^{2}(z) d z} & \text { when } & v_{n} \rightarrow \infty, & (M 1)-(M 4) \text { hold }\end{array}\right.$

1. $\sup _{u \in \mathbb{R}}\left\{u \delta-\sup _{x \in U} \Lambda_{x}(u)\right\}$ equals $g_{U}(\delta)$ and is achieved for $u=\phi(\delta)>0$.
2. $\sup _{u \in \mathbb{R}}\left\{-u \delta-\sup _{x \in U} \Lambda_{x}(u)\right\}$ equals $g_{U}(\delta)$ and is achieved for $u=\phi(-\delta)<0$.

Proof of Lemma 4. We just prove the first part, the prrof of the second part one being similar.

- First case : $v_{n} \equiv 1,(L 1)$ and ($L 2$) hold.

Since $e^{t} \geq 1+t$, for all t, we have $\psi_{a}(u) \geq u$ and therefore,

$$
\begin{aligned}
u \delta-\sup _{x \in U} \Lambda_{x}(u) & =u \delta-\|f\|_{U, \infty}\left(\psi_{a}(u)-u\right) \\
& =\|f\|_{U, \infty}\left[u\left(1+\frac{\delta}{\|f\|_{U, \infty}}\right)-\psi_{a}(u)\right]
\end{aligned}
$$

The function $u \mapsto u \delta-\sup _{x \in U} \Lambda_{x}(u)$ has second derivative $-\|f\|_{U, \infty} \psi_{a}^{\prime \prime}(u)<0$ and thus it has a unique maximum achieved for

$$
u_{0}=\left(\psi_{a}^{\prime}\right)^{-1}\left(1+\frac{\delta}{\|f\|_{U, \infty}}\right)
$$

Now, since ψ_{a}^{\prime} is increasing and since $\psi_{a}^{\prime}(0)=1$, we deduce that $u_{0}>0$.

- Second case : $v_{n} \equiv 1,(L 1)$ and (L3) hold.

Since $e^{t} \geq 1+t$, for all t, we have $\psi(u) \geq u$ and therefore,

$$
\begin{aligned}
u \delta-\sup _{x \in U} \Lambda_{x}(u) & =u \delta-\|f\|_{U, \infty}(\psi(u)-u) \\
& =\|f\|_{U, \infty}\left[u\left(1+\frac{\delta}{\|f\|_{U, \infty}}\right)-\psi(u)\right]
\end{aligned}
$$

The function $u \mapsto u \delta-\sup _{x \in U} \Lambda_{x}(u)$ has second derivative $-\|f\|_{U, \infty} \psi^{\prime \prime}(u)<0$ and thus it has a unique maximum achieved for

$$
u_{0}=\left(\psi^{\prime}\right)^{-1}\left(1+\frac{\delta}{\|f\|_{U, \infty}}\right)
$$

Now, since ψ^{\prime} is increasing and since $\psi^{\prime}(0)=1$, we deduce that $u_{0}>0$.

- Third case $v_{n} \rightarrow \infty$ and (M2) holds. In this case, we have

$$
u \delta-\sup _{x \in U} \Lambda_{x}(u)=u \delta-\frac{u^{2}}{2(2-(\alpha-a d) \xi)}\|f\|_{U, \infty} \int_{\mathbb{R}^{d}} K^{2}(z) d z
$$

In view of the assumption (M2), we have $\xi^{-1}>(\alpha-a d) / 2$, then the function $u \mapsto u \delta-\sup _{x \in U} \Lambda_{x}(u)$ has second derivative

$$
-\frac{1}{(2-(\alpha-a d) \xi)}\|f\|_{U, \infty} \int_{\mathbb{R}^{d}} K^{2}(z) d z<0
$$

and thus it has a unique maximum achieved for

$$
u_{0}=\frac{\delta(2-(\alpha-a d) \xi)}{\|f\|_{U, \infty} \int_{\mathbb{R}^{d}} K^{2}(z) d z}>0
$$

Lemma 5.

- In the case when $\left(v_{n}\right) \equiv 1$ and $\left(\gamma_{n}\right)=\left(n^{-1}\right)$, let (L1) and (L2) hold;
- In the case when $\left(v_{n}\right) \equiv 1$ and $\left(\gamma_{n}\right)=\left(h_{n}^{d}\left(\sum_{k=1}^{n} h_{k}^{d}\right)^{-1}\right)$, let (L1) and (L3) hold;

Large and moderate deviation principles for recursive kernel ...

- In the case when $v_{n} \rightarrow \infty$, let (M1) - (M4) hold.

Then for any $\delta>0$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \sup _{x \in U} \mathbb{P}\left[v_{n} \Psi_{n}(x) \geq \delta\right] & =-g_{U}(\delta) \\
\lim _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \sup _{x \in U} \mathbb{P}\left[v_{n} \Psi_{n}(x) \leq-\delta\right] & =-g_{U}(-\delta) \\
\lim _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \sup _{x \in U} \mathbb{P}\left[v_{n}\left|\Psi_{n}(x)\right| \leq-\delta\right] & =-\tilde{g}_{U}(-\delta)
\end{aligned}
$$

Proof of Lemma 5. The proof of Lemma 5 is similar to the proof of Lemma 4 in [8].

Lemma 6. Let Assumptions $(U 1)-(U 3)$ hold and assume that either $\left(v_{n}\right) \equiv 1$ or (U4) holds.

1. If U is a bounded set, then for any $\delta>0$, we have

$$
\lim _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P}\left[\sup _{x \in U} v_{n}\left|\Psi_{n}(x)\right|\right] \leq-\tilde{g}_{U}(\delta)
$$

2. If U is an unbounded set, then, for any $b>0$ and $\delta>0$,

$$
\limsup _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P}\left[\sup _{x \in U,\|x\| \leq w_{n}} v_{n}\left|\Psi_{n}(x)\right|\right] \leq d b-\tilde{g}_{U}(\delta)
$$

where $w_{n}=\exp \left(\frac{b h_{n}^{d}}{\gamma_{n} v_{n}^{2}}\right)$.
Proof of Lemma 6. Set $\rho \in] 0, \delta[$, let β denote the Hölder order of K, and $\|K\|_{H}$ its corresponding Hölder norm. Set $w_{n}=\exp \left(\frac{b h_{n}^{d}}{\gamma_{n} v_{n}^{2}}\right)$ and

$$
R_{n}=\left(\frac{\rho}{2\|K\|_{H} v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-(d+\beta)}}\right)^{\frac{1}{\beta}}
$$

We begin with the proof of the second part of Lemma 6. There exist $N^{\prime}(n)$ points of $\mathbb{R}^{d}, y_{1}^{(n)}, y_{2}^{(n)}, \ldots, y_{N^{\prime}(n)}^{(n)}$ such that the ball $\left\{x \in \mathbb{R}^{d} ;\|x\| \leq w_{n}\right\}$ can covered
by the $N^{\prime}(n)$ balls $B_{i}^{(n)}=\left\{x \in \mathbb{R}^{d} ;\left\|x-y_{i}^{(n)}\right\| \leq R_{n}\right\}$ and such that $N^{\prime}(n) \leq$ $2\left(\frac{2 w_{n}}{R_{n}}\right)^{d}$. Considering only the $N(n)$ balls that intersect $\left\{x \in U ;\|x\| \leq w_{n}\right\}$, we can write

$$
\left\{x \in U ;\|x\| \leq w_{n}\right\} \subset \cup_{i=1}^{N(n)} B_{i}^{(n)}
$$

For each $i \in\{1, \ldots, N(n)\}$, set $x_{i}^{(n)} \in B_{i}^{(n)} \cap U$. We then have:

$$
\begin{aligned}
\mathbb{P}\left[\sup _{x \in U,\|x\| \leq w_{n}} v_{n}\left|\Psi_{n}(x)\right| \geq \delta\right] & \leq \sum_{i=1}^{N(n)} \mathbb{P}\left[\sup _{x \in B_{i}^{(n)}} v_{n}\left|\Psi_{n}(x)\right| \geq \delta\right] \\
& \leq N(n) \max _{1 \leq i \leq N(n)} \mathbb{P}\left[\sup _{x \in B_{i}^{(n)}} v_{n}\left|\Psi_{n}(x)\right| \geq \delta\right]
\end{aligned}
$$

Now, for any $i \in\{1, \ldots, N(n)\}$ and any $x \in B_{i}^{(n)}$,

$$
\begin{aligned}
v_{n}\left|\Psi_{n}\right| \leq & v_{n}\left|\Psi_{n}\left(x_{i}^{(n)}\right)\right| \\
& +v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-d}\left|K\left(\frac{x-X_{k}}{h_{k}}\right)-K\left(\frac{x_{i}^{(n)}-X_{k}}{h_{k}}\right)\right| \\
& +v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-d} \mathbb{E}\left|K\left(\frac{x-X_{k}}{h_{k}}\right)-K\left(\frac{x_{i}^{(n)}-X_{k}}{h_{k}}\right)\right| \\
\leq & v_{n}\left|\Psi_{n}\left(x_{i}^{(n)}\right)\right|+2 v_{n}\|K\|_{H} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-d}\left(\frac{\left\|x-x_{i}^{(n)}\right\|}{h_{k}}\right)^{\beta} \\
\leq & v_{n}\left|\Psi_{n}\left(x_{i}^{(n)}\right)\right|+2 v_{n}\|K\|_{H} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-(d+\beta)} R_{n}^{\beta} \\
\leq & v_{n}\left|\Psi_{n}\left(x_{i}^{(n)}\right)\right|+\rho
\end{aligned}
$$

Hence, we deduce that

$$
\begin{aligned}
\mathbb{P}\left[\sup _{x \in U,\|x\| \leq w_{n}} v_{n}\left|\Psi_{n}(x)\right| \geq \delta\right] & \leq N(n) \max _{1 \leq i \leq N(n)} \mathbb{P}\left[v_{n}\left|\Psi_{n}\left(x_{i}^{(n)}\right)\right| \geq \delta-\rho\right] \\
& \leq N(n) \sup _{x \in U} \mathbb{P}\left[v_{n}\left|\Psi_{n}\left(x_{i}^{(n)}\right)\right| \geq \delta-\rho\right]
\end{aligned}
$$

Further, by definition of $N(n)$ and w_{n}, we have

$$
\log N(n) \leq \log N^{\prime}(n) \leq d b \frac{h_{n}^{d}}{\gamma_{n} v_{n}^{2}}+(d+1) \log 2-d \log R_{n}
$$

and
$\frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log R_{n}=\frac{\gamma_{n} v_{n}^{2}}{\beta h_{n}^{d}}\left[\log \rho-\log \left(2\|K\|_{H}\right)-\log v_{n}-\log \left(\Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-(d+\beta)}\right)\right]$.
Moreover, we have $\left(h_{n}^{(d+\beta)}\right) \in \mathcal{G S}(-a(d+\beta))$. Lemma 1 ensures that

$$
\Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-(d+\beta)}=O\left(h_{n}^{-(d+\beta)}\right)
$$

then, in view of $(U 3)$, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log N(n) \leq d b \tag{20}
\end{equation*}
$$

The application of Lemma 5 then yiels

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P} & {\left[\sup _{x \in U,\|x\| \leq w_{n}} v_{n}\left|\Psi_{n}(x)\right| \geq \delta\right] } \\
& \leq \limsup _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log N(n)-\tilde{g}_{U}(\delta-\rho) \\
& \leq d b-\tilde{g}_{U}(\delta-\rho)
\end{aligned}
$$

Since the inequality holds for any $\rho \in] 0, \delta[$, part 2 of Lemma 6 thus follows from the continuity of \tilde{g}_{U}.

Let us now consider part 1 of Lemma 6. This part is proved by following the same steps as for part 2, except that the number $N(n)$ of balls covering U is at most the integer part of $\left(\Delta / R_{n}\right)^{d}$, where Δ denotes the diameter of \bar{U}. Relation (20) then becomes

$$
\limsup _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log R_{n} \leq 0
$$

and Lemma 6 is proved.

Lemma 7. Let (U1)i), (M2) and (U6)i) hold. Assume that either $\left(v_{n}\right) \equiv 1$ or (U3) and (U6) ii) hold. Moreover assume that f is continuous. For any $b>0$ if we set $w_{n}=\exp \left(\frac{b h_{n}^{d}}{\gamma_{n} v_{n}^{2}}\right)$ then, for any $\rho>0$, we have, for n large enough,

$$
\sup _{x \in U,\|x\| \geq w_{n}} v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-d}\left|\mathbb{E}\left[K\left(\frac{x-X_{k}}{h_{k}}\right)\right]\right| \leq \rho
$$

Proof of Lemma 7. We have

$$
\begin{align*}
& v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-d} \mathbb{E}\left[K\left(\frac{x-X_{k}}{h_{k}}\right)\right] \tag{21}\\
&=v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} \int_{\mathbb{R}^{d}} K(z) f\left(x-z h_{k}\right) d z
\end{align*}
$$

First, Lemma 1, ensures that

$$
\begin{equation*}
\Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k}=1+o(1) \tag{22}
\end{equation*}
$$

Set $\rho>0$. In the case $\left(v_{n}\right) \equiv 1$, we set M such that $\left\|f_{\infty}\right\| \int_{\|z\|>M}|K(z)| d z \leq \rho / 2$; it follows from (22) that

$$
\begin{aligned}
& v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-d}\left|\mathbb{E}\left[K\left(\frac{x-X_{k}}{h_{k}}\right)\right]\right| \\
& \quad \leq \frac{\rho}{2}+f(x) \int_{\|z\| \leq M}|K(z)| d z \\
& \quad+\Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} \int_{\|z\|>M}|K(z)|\left|f\left(x-z h_{k}\right)-f(x)\right| d z
\end{aligned}
$$

Lemma 7 then follows from the fact that f fulfills (U6) ii). As matter of fact, this conditions implies that $\lim _{\|x\| \rightarrow \infty, x \in \bar{U}} f(x)=0$ and that the third term in the right-hand-side of the previous inequality goes to 0 as $n \rightarrow \infty$ (by the dominated convergence).

Large and moderate deviation principles for recursive kernel ...

Let us now assume that $\lim _{n \rightarrow \infty} v_{n}=\infty$; relation (21) can be rewritten as

$$
\begin{aligned}
v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-d} \mathbb{E} & {\left[K\left(\frac{x-X_{k}}{h_{k}}\right)\right] } \\
= & v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} \int_{\|z\| \leq w_{n} / 2} K(z) f\left(x-z h_{k}\right) d z \\
& +v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} \int_{\|z\| \geq w_{n} / 2} K(z) f\left(x-z h_{k}\right) d z
\end{aligned}
$$

First, since $\|x\| \geq w_{n}$ and $\|z\| \leq w_{n} / 2$, we have

$$
\begin{aligned}
\left\|x-z h_{k}\right\| & \geq w_{n}\left(1-h_{i} / 2\right) \\
& \geq w_{n} / 2 \text { for } n \text { large enough. }
\end{aligned}
$$

Moreover, in view of assumptions (U3), for all $\xi>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{v_{n}}{w_{n}^{\xi}}=\lim _{n \rightarrow \infty} \exp \left\{-\xi b \frac{h_{n}^{d}}{\gamma_{n} v_{n}^{2}}\left(1-\frac{v_{n}^{2} \log v_{n}}{\xi b h_{n}^{d}}\right)\right\}=0 \tag{23}
\end{equation*}
$$

Set $M_{f}=\sup _{x \in \mathbb{R}^{d}}\|x\|^{\eta} f(x)$. Assumption (U6)ii) and equations (22), (23) implie that, for n sufficiently large,

$$
\begin{aligned}
& \sup _{\|x\| \geq w_{n}} v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} \int_{\|z\| \leq w_{n} / 2}\left|K(z) f\left(x-z h_{k}\right)\right| d z \\
& \quad \leq M_{f} \sup _{\|x\| \geq w_{n}} v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} \int_{\|z\| \leq w_{n} / 2}|K(z)|\left\|x-z h_{k}\right\|^{-\eta} d z \\
& \quad \leq 2^{\eta} M_{f} \frac{v_{n}}{w_{n}^{\eta}} \int_{\mathbb{R}^{d}}|K(z)| d z \\
& \quad \leq \frac{\rho}{2}
\end{aligned}
$$

Moreover, in view of $(U 3),(U 6) i)$ and (22), (23), for n sufficiently large,

$$
\sup _{\|x\| \geq w_{n}} v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} \int_{\|z\|>w_{n} / 2}\left|K(z) f\left(x-z h_{k}\right)\right| d z
$$

$$
\begin{aligned}
& \leq 2^{\zeta} M_{f} \frac{v_{n}}{w_{n}^{\zeta}} \int_{\|z\|>w_{n} / 2}\|z\|^{\zeta}|K(z)| d z \\
& \leq \frac{\rho}{2} .
\end{aligned}
$$

This concludes the proof of Lemma 7. Since K is a bounded function that vanishes at infinity, we have $\lim _{\|x\| \rightarrow \infty}\left|\Psi_{n}(x)\right|=0$ for every $n \geq 1$. Moreover, since K is assumed to be continuous, Ψ_{n} is continuous, and this ensures the existence of a random variable s_{n} such that

$$
\left|\Psi_{n}\left(s_{n}\right)\right|=\sup _{x \in U}\left|\Psi_{n}(x)\right| .
$$

Lemma 8. Let Assumptions (U1) - (U3), (U4)ii) and (U5) hold. Suppose either $\left(v_{n}\right) \equiv 1$ or (H6) hold. For any $b>0$, set $w_{n}=\exp \left(b \frac{h_{n}^{d}}{\gamma_{n} v_{n}^{2}}\right)$; for any $\delta>0$, we have
(24) $\quad \underset{n \rightarrow \infty}{\limsup } \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P}\left[\left\|s_{n}\right\| \geq w_{n} \quad\right.$ and $\left.\quad\left|\Psi_{n}\left(s_{n}\right)\right| \geq \delta\right] \quad \leq \quad-b \beta$

Proof of Lemma 8. We first note that $s_{n} \in \bar{U}$ and therefore

$$
\begin{aligned}
& \left\|s_{n}\right\| \geq w_{n} \quad \text { and } \quad v_{n}\left|\Psi_{n}\left(s_{n}\right)\right| \geq \delta \\
& \Rightarrow\left\|s_{n}\right\| \geq w_{n} \quad \text { and } \quad v_{n}\left|\Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-d} K\left(\frac{s_{n}-X_{k}}{h_{k}}\right)\right| \\
& \quad+v_{n} \mathbb{E}\left|\Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-d} K\left(\frac{s_{n}-X_{k}}{h_{k}}\right)\right| \geq \delta \\
& \Rightarrow \\
& \quad\left\|s_{n}\right\| \geq w_{n} \quad \text { and } \quad v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-d}\left|K\left(\frac{s_{n}-X_{k}}{h_{k}}\right)\right| \\
& \quad-\sup _{\|x\| \geq w_{n}, x \in \bar{U}} v_{n} \Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-d} \mathbb{E}\left|K\left(\frac{s_{n}-X_{k}}{h_{k}}\right)\right| \geq \delta .
\end{aligned}
$$

Set $\rho \in] 0, \delta[$; the application of Lemma 7 ensures that, for n large enough,

$$
\left\|s_{n}\right\| \geq w_{n} \quad \text { and } \quad v_{n}\left|\Psi_{n}\left(s_{n}\right)\right| \geq \delta
$$

$$
\Rightarrow\left\|s_{n}\right\| \geq w_{n} \quad \text { and } \quad v_{n}\left|\Pi_{n} \sum_{k=1}^{n} \Pi_{k}^{-1} \gamma_{k} h_{k}^{-d} K\left(\frac{s_{n}-X_{k}}{h_{k}}\right)\right| \geq \delta-\rho
$$

Set $\kappa=\sup _{x \in \mathbb{R}^{d}}\|x\|^{\gamma}|K(x)|$ (see Assumption (U5)). We obtain, for n sufficiently large,
$\left\|s_{n}\right\| \geq w_{n} \quad$ and $\quad v_{n}\left|\Psi_{n}\left(s_{n}\right)\right| \geq \delta$
$\Rightarrow\left\|s_{n}\right\| \geq w_{n} \quad$ and $\quad \exists k \in\{1, \ldots, n\} \quad$ such that $\quad \frac{v_{n}}{h_{k}^{d}}\left|K\left(\frac{s_{n}-X_{k}}{h_{k}}\right)\right| \geq \delta-\rho$
$\Rightarrow\left\|s_{n}\right\| \geq w_{n} \quad$ and $\quad \exists k \in\{1, \ldots, n\} \quad$ such that $\quad \kappa h_{k}^{\gamma} \geq \frac{h_{k}^{d}}{v_{n}}\left\|s_{n}-X_{k}\right\|^{\gamma}(\delta-\rho)$
$\Rightarrow\left\|s_{n}\right\| \geq w_{n} \quad$ and $\quad \exists k \in\{1, \ldots, n\} \quad$ such that $\quad\left|\left\|s_{n}\right\|-\left\|X_{k}\right\|\right| \leq\left[\frac{\kappa v_{n} h_{k}^{\gamma-d}}{\delta-\rho}\right]^{\frac{1}{\gamma}}$
$\Rightarrow\left\|s_{n}\right\| \geq w_{n} \quad$ and $\quad \exists k \in\{1, \ldots, n\} \quad$ such that $\quad\left\|X_{k}\right\| \leq\left\|s_{n}\right\|-\left[\frac{\kappa v_{n} h_{k}^{\gamma-d}}{\delta-\rho}\right]^{\frac{1}{\gamma}}$
$\Rightarrow\left\|s_{n}\right\| \geq w_{n} \quad$ and $\quad \exists k \in\{1, \ldots, n\} \quad$ such that $\quad\left\|X_{k}\right\| \leq w_{n}\left(1-u_{n, k}\right) \quad$ with

$$
u_{n, k}=w_{n}^{-1} v_{n}^{\frac{1}{\gamma}} h_{k}^{\frac{\gamma-d}{\gamma}}\left(\frac{\kappa}{\delta-\rho}\right)^{\frac{1}{\gamma}}
$$

Moreover, we can write $u_{n, k}$ as
$u_{n, k}=\exp \left(-b \frac{h_{n}^{d}}{\gamma_{n} v_{n}^{2}}\left[1-\frac{1}{b \gamma} \frac{\gamma_{n} v_{n}^{2} \log v_{n}}{h_{n}^{d}}-\frac{\gamma-d}{b \gamma} \frac{\gamma_{n} v_{n}^{2} \log \left(h_{k}\right)}{h_{n}^{d}}\right]\right)\left(\frac{\kappa}{\delta-\rho}\right)^{\frac{1}{\gamma}}$
and assumption $(U 3)$ ensure that $\lim _{n \rightarrow \infty} u_{n, k}=0$, it then follows that $1-u_{n, k}>0$ for n sufficiently large; therefore we can deduce that (see Assumption (U4) i)):

$$
\begin{aligned}
\mathbb{P}\left[\left\|s_{n}\right\| \geq w_{n} \quad \text { and } \quad v_{n}\left|\Psi_{n}\left(s_{n}\right)\right| \geq \delta\right] & \leq \sum_{i=1}^{n} \mathbb{P}\left[\left\|X_{k}\right\|^{\beta} \geq w_{n}^{\beta}\left(1-u_{n, k}\right)^{\beta}\right] \\
& \leq \sum_{i=1}^{n} \mathbb{E}\left(\left\|X_{k}\right\|^{\beta}\right) w_{n}^{-\beta}\left(1-u_{n, k}\right)^{-\beta} \\
& \leq n \mathbb{E}\left(\left\|X_{1}\right\|^{\beta}\right) w_{n}^{-\beta} \max _{1 \leq k \leq n}\left(1-u_{n, k}\right)^{-\beta}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P}\left[\left\|s_{n}\right\| \geq w_{n} \quad \text { and } \quad v_{n}\left|\Psi_{n}\left(s_{n}\right)\right| \geq \delta\right] \\
& \quad \leq \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}}\left[\log n+\log \mathbb{E}\left(\left\|X_{1}\right\|^{\beta}\right)-b \beta \frac{h_{n}^{d}}{\gamma_{n} v_{n}^{2}}-\beta \log \max _{1 \leq k \leq n}\left(1-u_{n, k}\right)\right]
\end{aligned}
$$

and, thanks to assumptions ($U 3$), it follows that

$$
\limsup _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P}\left[\left\|s_{n}\right\| \geq w_{n} \quad \text { and } \quad v_{n}\left|\Psi_{n}\left(s_{n}\right)\right| \geq \delta\right] \quad \leq \quad-b \beta,
$$

which concludes the proof of Lemma 8.
3.4. Proof of Proposition 2. Let us at first note that the lower bound

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P}\left[\sup _{x \in U} v_{n}\left|\Psi_{n}(x)\right| \geq \delta\right] \geq-\tilde{g}_{U}(\delta) \tag{25}
\end{equation*}
$$

follows from the application of Proposition 1 at a point $x_{0} \in \bar{U}$ such that $f\left(x_{0}\right)=$ $\|f\|_{U, \infty}$.

In the case U is bounded, Proposition 2 is thus a straightforward consequence of (25) and the first part of Lemma 6. Let us now consider the case U is unbounded.

Set $\delta>0$ and, for any $b>0$ set $w_{n}=\exp \left(b \frac{h_{n}^{d}}{\gamma_{n} v_{n}^{2}}\right)$. Since, by definition of s_{n},

$$
\begin{aligned}
& \mathbb{P}\left[\sup _{x \in U} v_{n}\left|\Psi_{n}(x)\right| \geq \delta\right] \\
& \quad \leq \mathbb{P}\left[\sup _{x \in U,\|x\| \leq w_{n}} v_{n}\left|\Psi_{n}(x)\right| \geq \delta\right]+\mathbb{P}\left[\left\|s_{n}\right\| \geq w_{n} \text { and } v_{n}\left|\Psi_{n}(x)\right| \geq \delta\right],
\end{aligned}
$$

it follows from Lemmas 6 and 8 that

$$
\limsup _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P}\left[\sup _{x \in U} v_{n}\left|\Psi_{n}(x)\right| \geq \delta\right] \leq \max \left\{-b \beta ; d b-\tilde{g}_{U}(\delta)\right\}
$$

and consequently

$$
\limsup _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P}\left[\sup _{x \in U} v_{n}\left|\Psi_{n}(x)\right| \geq \delta\right] \leq \inf _{b>0} \max \left\{-b \beta ; d b-\tilde{g}_{U}(\delta)\right\} .
$$

Since the infimum in the right-hand-side of the previous bound is achieved for $b=\tilde{g}_{U}(\delta) /(\beta+b)$ and equals $-\beta \tilde{g}_{U} /(\beta+d)$, we obtain the upper bound

$$
\limsup _{n \rightarrow \infty} \frac{\gamma_{n} v_{n}^{2}}{h_{n}^{d}} \log \mathbb{P}\left[\sup _{x \in U} v_{n}\left|\Psi_{n}(x)\right| \geq \delta\right] \leq-\frac{\beta}{\beta+d} \tilde{g}_{U}(\delta)
$$

which concludes the proof of Proposition 2.

REFERENCES

[1] R. Bojanic, E. Seneta. A unified theory of regularly varying sequences. Math. Z., 134 (1973), 91-106.
[2] P. Deheuvels. Sur l'estimation séquentielle de la densité. C.R. Acad. Sci. Paris Ser. A-B., 276 (1973), 1119-1121.
[3] M. Duflo. Random Iterative Models. Transl. from the French by Stephen S. Wilson. Applications of Mathematics, vol. 34, Berlin, Springer, 1997.
[4] J. Galambos, E. Seneta. Regularly varying sequences, Proc. Amer. Math. Soc., 41 (1973), 110-116.
[5] F. Gao. Moderate deviations and large deviations for kernel density estimators. J. Theoret. Probab. 16 (2003), 401-418.
[6] D. Louani. Large deviations limit theorems for the kernel density estimator. Scand. J. Statist. 25 (1998), 243-253.
[7] A. Mokkadem, M. Pelletier, J. Worms. Large and moderate deviations principles for kernel estimation of a multivariate density and its partial derivatives. Austral. J. Statist. 4 (2005), 489-502.
[8] A. Mokkadem, M. Pelletier, B. Thiam. Large and moderate deviations principles for recursive kernel estimation of a multivariate density and its partial derivatives. Serdica Math. J. 32 (2006), 323-354.
[9] A. Mokkadem, M. Pelletier. A companion for the Kiefer-WolfowitzBlum stochastic approximation algorithm. Ann. Statist. 35 (2007), 17491772.
[10] A. Mokkadem, M. Pelletier, Y. Slaoui. The stochastic approximation method for the estimation of a multivariate probability density. J. Statist. Plann. Inference. 139 (2009), 2459-2478.
[11] E. Parzen. On estimation of a probability density and mode. Ann. Math. Statist. 33 (1962), 1065-1076.
[12] A. A. Puhalskir. The method of stochastic exponentials for large deviations. Stochastic Process. Appl. 54 (1994), 45-70.
[13] P. RÉVÉSz. Robbins-Monro procedure in a Hilbert space and its application in the theory of learning processes I. Studia Sci. Math. Hung. 8 (1973), 391398.
[14] P. RÉvÉSz. How to apply the method of stochastic approximation in the non-parametric estimation of a regression function. Math. Operationsforsch. Statist., Ser. Statistics 8 (1977), 119-126.
[15] M. Rosenblatt. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956), 832-837.
[16] A. B. Tsybakov. Recurrent estimation of the mode of a multidimensional distribution. Problems Inform. Transmission. 26 (1990), 31-37.
[17] C. T. Wolverton, T. J. Wagner. Asymptotically optimal discriminant functions for pattern classification. IEEE Trans. Inform. Theory 15 (1969), 258-265.
[18] J. Worms. Moderate and large deviations of some dependent variables, Part II: Some kernel estimators. Math. Methods Statist. 10 (2001), 161-193.

University of Poitiers
Laboratoire de Mathematiques et Applications
UMR 7348 du CNRS
Teleport 2- BP 30179
11 Boulevard Marie et Pierre Curie
86962 Futuroscope Chasseneuil, France
e-mail: Yousri.Slaoui@math.univ-poitiers.fr

[^0]: 2010 Mathematics Subject Classification: 62G07, 62L20, 60F10.
 Key words: Density estimation, stochastic approximation algorithm, large and moderate deviations principles.

