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We propose an automatic selection of the bandwidth of the recursive kernel estimators of a probability density function defined by
the stochastic approximation algorithm introduced byMokkadem et al. (2009a).We showed that, using the selected bandwidth and
the stepsize whichminimize theMISE (mean integrated squared error) of the class of the recursive estimators defined inMokkadem
et al. (2009a), the recursive estimator will be better than the nonrecursive one for small sample setting in terms of estimation error
and computational costs. We corroborated these theoretical results through simulation study.

1. Introduction

The problem of automatic choice of smoothing parameters
has been widely studied. There are many reasons to use an
automatic choice of smoothing. One is in many situations
the smoothing which is used by nonexperts. In this paper
we focus only on one-dimensional kernel density estimation.
The main ideas are useful in all types of nonparametric
curve estimation, including regression, distribution, and time
series. The bandwidth selection methods studied in the
literature can be divided into two broad classes: the cross-
validation techniques and the plug-in ideas.

There are many varieties of the technique cross-
validation: pseudolikelihood cross-validation [1], least
squares cross-validation [2], and biased cross-validation [3].
Reviews of all these bandwidth selection methods can be
found in Marron [4].

Plug-in methods [5], also called “second generation
methods” [6], need to use a pilot bandwidth to estimate
the unknown quantities. For a choice of pilot bandwidth,
a number of approaches have been proposed; see Jones et
al. [7] for details and references. An interesting approach to
choose the pilot bandwidth is the smoothed bootstrap [8]. In
this paper, we developed a specific second generation band-
width selection method of the recursive kernel estimators

of a probability density function defined by the stochastic
approximation algorithm introduced byMokkadem et al. [9].

Let 𝑋
1
, . . . , 𝑋

𝑛
be independent, identically distributed

random variables and let 𝑓 denote the probability density of
𝑋
1
. To construct a stochastic algorithm, which approximates

the function 𝑓 at a given point 𝑥, Mokkadem et al. [9]
define an algorithm of search of the zero of the function
ℎ : 𝑦 → 𝑓(𝑥) − 𝑦. Following Robbins-Monro’s procedure,
this algorithm is defined by setting 𝑓

0
(𝑥) ∈ R, and, for all

𝑛 ≥ 1,

𝑓
𝑛
(𝑥) = 𝑓

𝑛−1
(𝑥) + 𝛾

𝑛
𝑊
𝑛
, (1)

where𝑊
𝑛
(𝑥) is an “observation” of the function ℎ at the point

𝑓
𝑛−1
(𝑥) and the stepsize (𝛾

𝑛
) is a sequence of positive real

numbers that goes to zero. To define 𝑊
𝑛
(𝑥), Mokkadem et

al. [9] follow the approach of Révész [10, 11] and of Tsybakov
[12] and introduce a kernel 𝐾 (i.e., a function satisfying
∫
R
𝐾(𝑥)𝑑𝑥 = 1), a bandwidth (ℎ

𝑛
) (i.e., a sequence of

positive real numbers that goes to zero), and set 𝑊
𝑛
(𝑥) =

ℎ
−1

𝑛
𝐾(ℎ
−1

𝑛
(𝑥 − 𝑋

𝑛
)) − 𝑓

𝑛−1
(𝑥). Then, the estimator 𝑓

𝑛
to

recursively estimate the density function 𝑓 at the point 𝑥 can
be written as

𝑓
𝑛
(𝑥) = (1 − 𝛾

𝑛
) 𝑓
𝑛−1
(𝑥) + 𝛾

𝑛
ℎ
−1

𝑛
𝐾(ℎ
−1

𝑛
[𝑥 − 𝑋

𝑛
]) . (2)
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This estimator was introduced byMokkadem et al. [9] whose
large and moderate deviation principles were established by
Slaoui [13].

Throughout this paper, we suppose that 𝑓
0
(𝑥) = 0 and we

let Π
𝑛
= ∏
𝑛

𝑗=1
(1 − 𝛾

𝑗
); then it follows from (2) that one can

estimate 𝑓 recursively at the point 𝑥 by

𝑓
𝑛
(𝑥) = Π

𝑛

𝑛

∑

𝑘=1

Π
−1

𝑘
𝛾
𝑘
ℎ
−1

𝑘
𝐾(

𝑥 − 𝑋
𝑘

ℎ
𝑘

) . (3)

Moreover, it was shown in Mokkadem et al. [9] that the
bandwidth which minimizes the MISE of 𝑓

𝑛
depends on

the choice of the stepsize (𝛾
𝑛
); they show in particular

that the sequence (𝛾
𝑛
) = (𝑛

−1
) belongs to this set, under

some conditions of regularity of 𝑓, and they show that the
bandwidth (ℎ

𝑛
)must equal

((
3

10
)

1/5{

{

{

∫
R
𝐾
2
(𝑧) 𝑑𝑧

(∫
R
𝑧2𝐾 (𝑧) 𝑑𝑧)

2

∫
R
(𝑓(2) (𝑥))

2

𝑑𝑥

}

}

}

1/5

𝑛
−1/5
).

(4)

The first aim of this paper is to propose an automatic selection
of such bandwidth through a plug-inmethod, and the second
aim is to give the conditions under which the recursive
estimator 𝑓

𝑛
will be better than the nonrecursive kernel

density estimator introduced by Rosenblatt [14] (see also
Parzen [15]) and defined as

𝑓
𝑛
(𝑥) =

1

𝑛ℎ
𝑛

𝑛

∑

𝑘=1

𝐾(
𝑥 − 𝑋

𝑘

ℎ
𝑛

) . (5)

The simulation results given in Section 3 are corroborating
these theoretical results. The remainder of the paper is
organized as follows. In Section 2, we state our main results.
Section 3 is devoted to our simulation results. We conclude
the paper in Section 4.

2. Assumptions and Main Results

We define the following class of regularly varying sequences.

Definition 1. Let 𝛾 ∈ R and let (V
𝑛
)
𝑛≥1

be a nonrandom
positive sequence. One says that (V

𝑛
) ∈ GS(𝛾) if

lim
𝑛→+∞

𝑛 [1 −
V
𝑛−1

V
𝑛

] = 𝛾. (6)

Condition (6) was introduced by Galambos and Seneta
[16] to define regularly varying sequences (see also Bojanic
and Seneta [17]) and by Mokkadem and Pelletier [18] in the
context of stochastic approximation algorithms. Note that the
acronymGS stands for [16]. Typical sequences inGS(𝛾) are,
for 𝑏 ∈ R, 𝑛𝛾(log 𝑛)𝑏, 𝑛𝛾(log log 𝑛)𝑏, and so on.

The assumptions to which we will refer are as follows.

(A1) 𝐾 : R → R is a continuous, bounded function
satisfying ∫

R
𝐾(𝑧)𝑑𝑧 = 1, ∫

R
𝑧𝐾(𝑧) = 0, and

∫
R
𝑧
2
𝐾(𝑧) < ∞.

(A2) (i) (𝛾
𝑛
) ∈ GS(−𝛼) with 𝛼 ∈ ]1/2, 1].

(ii) (ℎ
𝑛
) ∈ GS(−𝑎) with 𝑎 ∈ ]0, 1[.

(iii) lim
𝑛→∞

(𝑛𝛾
𝑛
) ∈ ]min{2𝑎, (𝛼 − 𝑎)/2},∞].

(A3) 𝑓 is bounded and differentiable and 𝑓(2) is bounded.

Assumption (A2)(iii) on the limit of (𝑛𝛾
𝑛
) as 𝑛 goes to

infinity is usual in the framework of stochastic approximation
algorithms. It implies in particular that the limit of ([𝑛𝛾

𝑛
]
−1
)

is finite. Throughout this paper we will use the following
notations:

𝜉 = lim
𝑛→∞

(𝑛𝛾
𝑛
)
−1

,

𝑅 (𝐾) = ∫
R

𝐾
2
(𝑧) 𝑑𝑧,

𝜇
𝑗
(𝐾) = ∫

R

𝑧
𝑗
𝐾 (𝑧) 𝑑𝑧,

Θ (𝐾) = 𝑅(𝐾)
4/5
𝜇
2
(𝐾)
2/5
,

Γ (𝐾) = 𝑅(𝐾
(2)
)
8/7

𝜇
2
(𝐾)
10/7
,

𝜁 (𝐾) = 𝑅(𝐾
(2)
)
8/7

𝜇
2
(𝐾)
−4/7
𝜇
4
(𝐾) ,

𝐼
1
= ∫

R

𝑓
2
(𝑥) 𝑑𝑥,

𝐼
2
= ∫

R

(𝑓
(2)
(𝑥))
2

𝑓 (𝑥) 𝑑𝑥.

(7)

In order to measure the quality of our recursive estimator (3),
we use the following quantity:

MISE∗ [𝑓
𝑛
] = E∫

R

[𝑓
𝑛
(𝑥) − 𝑓 (𝑥)]

2

𝑓 (𝑥) 𝑑𝑥

= ∫
R

(E (𝑓
𝑛
(𝑥)) − 𝑓 (𝑥))

2

𝑓 (𝑥) 𝑑𝑥

+ ∫
R

Var (𝑓
𝑛
(𝑥)) 𝑓 (𝑥) 𝑑𝑥.

(8)

Moreover, in the case 𝑎 = 𝛼/5, Proposition 1 inMokkadem et
al. [9] shows that

E [𝑓
𝑛
(𝑥)] − 𝑓 (𝑥) =

1

2 (1 − 2𝑎𝜉)
ℎ
2

𝑛
𝑓
(2)
(𝑥) 𝜇
2
(𝐾) + 𝑜 (ℎ

2

𝑛
)

(9)

and that

Var [𝑓
𝑛
(𝑥)] =

1

2 − (𝛼 − 𝑎) 𝜉
𝛾
𝑛
ℎ
−1

𝑛
𝑓 (𝑥) 𝑅 (𝐾) + 𝑜 (𝛾

𝑛
ℎ
−1

𝑛
) .

(10)

Then

MISE∗ [𝑓
𝑛
] =

1

2 − (𝛼 − 𝑎) 𝜉
𝛾
𝑛
ℎ
−1

𝑛
𝑅 (𝐾) 𝐼

1

+
1

4(1 − 2𝑎𝜉)
2
ℎ
4

𝑛
𝜇
2

2
(𝐾) 𝐼
2
+ 𝑜 (𝛾

𝑛
ℎ
−1

𝑛
+ ℎ
4

𝑛
) .

(11)
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The following corollary ensures that the bandwidth which
minimizes the MISE∗ depends on the stepsize (𝛾

𝑛
) and then

the corresponding MISE∗ depends also on the stepsize (𝛾
𝑛
).

Corollary 2. Let assumptions (A1)–(A3) hold. To minimize
the MISE∗ of 𝑓

𝑛
, the stepsize (𝛾

𝑛
) must be chosen in GS(−1)

and the bandwidth (ℎ
𝑛
)must equal

(
(1 − 2𝑎𝜉)

2/5

(2 − (𝛼 − 𝑎) 𝜉)
1/5
{
𝑅 (𝐾)

𝜇
2

2
(𝐾)

𝐼
1

𝐼
2

}

1/5

𝛾
1/5

𝑛
) . (12)

Then, one has

MISE∗ [𝑓
𝑛
] =

5

4
(1 − 2𝑎𝜉)

−2/5
(2 − (𝛼 − 𝑎) 𝜉)

−4/5

× Θ (𝐾) 𝐼
4/5

1
𝐼
1/5

2
𝛾
4/5

𝑛
+ 𝑜 (𝛾

4/5

𝑛
) .

(13)

The following corollary shows that, for a special choice of
the stepsize (𝛾

𝑛
) = (𝛾

0
𝑛
−1
), which fulfilled that lim

𝑛→∞
𝑛𝛾
𝑛
=

𝛾
0
and that (𝛾

𝑛
) ∈ GS(−1), the optimal value for ℎ

𝑛
depends

on 𝛾
0
and then the corresponding MISE∗ depends on 𝛾

0
.

Corollary 3. Let assumptions (A1)–(A3) hold. To minimize
the MISE∗ of 𝑓

𝑛
, the stepsize (𝛾

𝑛
) must be chosen in GS(−1),

lim
𝑛→∞

𝑛𝛾
𝑛
= 𝛾
0
, and the bandwidth (ℎ

𝑛
)must equal

(2
−1/5
(𝛾
0
−
2

5
)

1/5

{
𝑅 (𝐾)

𝜇
2

2
(𝐾)

𝐼
1

𝐼
2

}

1/5

𝑛
−1/5
) , (14)

and one then has

MISE∗ [𝑓
𝑛
] =

5

4

1

24/5

𝛾
2

0

(𝛾
0
− 2/5)

6/5
Θ (𝐾) 𝐼

4/5

1
𝐼
1/5

2
𝑛
−4/5

+ 𝑜 (𝑛
−4/5
) .

(15)

Moreover, the minimum of 𝛾2
0
(𝛾
0
− 2/5)

−6/5 is reached at 𝛾
0
=

1; then the bandwidth (ℎ
𝑛
)must equal

((
3

10
)

1/5

{
𝑅 (𝐾)

𝜇
2

2
(𝐾)

𝐼
1

𝐼
2

}

1/5

𝑛
−1/5
) , (16)

and one then has

MISE∗ [𝑓
𝑛
] =

5

4
2
2/5
(
5

6
)

6/5

Θ (𝐾) 𝐼
4/5

1
𝐼
1/5

2
𝑛
−4/5

+ 𝑜 (𝑛
−4/5
) .

(17)

In order to estimate the optimal bandwidth (16), we must
estimate 𝐼

1
and 𝐼
2
. We followed the approach of Altman and

Léger [19], which is called the plug-in estimate, and we use
the following kernel estimator of 𝐼

1
:

𝐼
1
=
Π
𝑛

𝑛

𝑛

∑

𝑖,𝑘=1

Π
−1

𝑘
𝛾
𝑘
𝑏
−1

𝑘
𝐾
𝑏
(
𝑋
𝑖
− 𝑋
𝑘

𝑏
𝑘

) , (18)

where𝐾
𝑏
is a kernel and 𝑏 is the associated bandwidth.

In practice, we take

𝑏
𝑛
= 𝑛
−𝛽min {𝑠,

𝑄
3
− 𝑄
1

1.349
} , 𝛽 ∈ ]0, 1[ (19)

(see Silverman [20]) with 𝑠 the sample standard deviation and
𝑄
1
, 𝑄
3
denoting the first and third quartiles, respectively.

The following theorem gives the bias and variance of 𝐼
1
.

Theorem4. Let assumptions (A2)-(A3) hold and suppose that
the kernel 𝐾

𝑏
satisfies assumption (A1) and (𝑏

𝑛
) ∈ GS(−𝛽),

with 𝛽 ∈]0, 1[; one has

Bias [𝐼
1
] =

1

2 (1 − 2𝑎𝜉)
𝑏
2

𝑛
𝜇
2
(𝐾
𝑏
)

× ∫
R

𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥 + 𝑜 (𝑏

2

𝑛
) ,

Var [𝐼
1
] =

1

2 − (𝛼 − 𝑎) 𝜉

𝛾
𝑛

𝑛𝑏
𝑛

𝑅 (𝐾
𝑏
) 𝐼
1

+
1

𝑛
(∫

R

𝑓
3
(𝑥) 𝑑𝑥 − 𝐼

2

1
) + 𝑜(

1

𝑛
+
𝛾
𝑛

𝑛𝑏
𝑛

) .

(20)

The following corollary shows that the bandwidth which
minimizes the MISE of 𝐼

1
depends on the stepsize (𝛾

𝑛
) and

then the corresponding MISE depends also on the stepsize
(𝛾
𝑛
).

Corollary 5. Let the assumptions of Theorem 4 hold. To
minimize the MISE of 𝐼

1
, the stepsize (𝛾

𝑛
) must be chosen in

GS(−1) and the bandwidth (𝑏
𝑛
)must equal

(
(1 − 2𝑎𝜉)

2/5

(2 − (1 − 𝑎) 𝜉)
1/5

×

{

{

{

𝑅 (𝐾
𝑏
)

𝜇
2

2
(𝐾
𝑏
)

𝐼
1

(∫
R
𝑓(2) (𝑥) 𝑓 (𝑥) 𝑑𝑥)

2

}

}

}

1/5

(
𝛾
𝑛

𝑛
)

1/5

).

(21)

Then, one has

MISE [𝐼
1
] =

5

4
(1 − 2𝜉)

−2/5
(2 − (1 − 𝑎) 𝜉)

−4/5
Θ(𝐾
𝑏
) 𝐼
4/5

1

× (∫
R

𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

2/5

(
𝛾
𝑛

𝑛
)

4/5

+
1

𝑛
(∫

R

𝑓
3
(𝑥) 𝑑𝑥 − 𝐼

2

1
) + 𝑜((

𝛾
𝑛

𝑛
)

4/5

) .

(22)

The following corollary shows that, for a special choice of
the stepsize (𝛾

𝑛
) = (𝛾

0
𝑛
−1
), which fulfilled that lim

𝑛→∞
𝑛𝛾
𝑛
=

𝛾
0
and that (𝛾

𝑛
) ∈ GS(−1), the optimal value for 𝑏

𝑛
depends

on 𝛾
0
and the corresponding MISE depends on 𝛾

0
.
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Corollary 6. Let the assumptions of Theorem 4 hold. To
minimize the MISE of 𝐼

1
, the stepsize (𝛾

𝑛
) must be chosen in

GS(−1), lim
𝑛→∞

𝑛𝛾
𝑛
= 𝛾
0
, and the bandwidth (𝑏

𝑛
)must equal

(
(𝛾
0
− 4/5)

2/5

(2𝛾
0
− 3/5)

1/5

×

{

{

{

𝑅 (𝐾
𝑏
)

𝜇
2

2
(𝐾
𝑏
)

𝐼
1

(∫
R
𝑓(2) (𝑥) 𝑓 (𝑥) 𝑑𝑥)

2

}

}

}

1/5

𝑛
−2/5
).

(23)

Then, one has

MISE [𝐼
1
] =

1

𝑛
(∫

R

𝑓
3
(𝑥) 𝑑𝑥 − 𝐼

2

1
) +

5

4
𝛾
2

0

× (𝛾
0
−
4

5
)

−2/5

(2𝛾
0
−
3

5
)

−4/5

Θ(𝐾
𝑏
) 𝐼
4/5

1

× (∫
R

𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

2/5

𝑛
−8/5

+ 𝑜 (𝑛
−8/5
) .

(24)

Moreover, the minimum of 𝛾
2

0
(𝛾
0
− 4/5)

−2/5

(2𝛾
0
− 3/5)

−4/5 is reached at 𝛾
0
= (9 + √21)/10; then

the bandwidth (𝑏
𝑛
)must equal

(0.6817256

×

{

{

{

𝑅 (𝐾
𝑏
)

𝜇
2

2
(𝐾
𝑏
)

𝐼
1

(∫
R
𝑓(2) (𝑥) 𝑓 (𝑥) 𝑑𝑥)

2

}

}

}

1/5

𝑛
−2/5
).

(25)

Then

Bias [𝐼
1
] ≃ 0.5653751 × Θ(𝐾

𝑏
)
1/2

𝐼
2/5

1

×(∫
R

𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

1/5

𝑛
−4/5

+ 𝑜 (𝑛
−4/5
) ,

Var [𝐼
1
] ≃

1

𝑛
(∫

R

𝑓
3
(𝑥) 𝑑𝑥 − 𝐼

2

1
) + 1.278596

× Θ (𝐾
𝑏
) 𝐼
4/5

1
(∫

R

𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

2/5

× 𝑛
−8/5

+ 𝑜 (𝑛
−8/5
) .

(26)

It follows that

MISE [𝐼
1
] ≃

1

𝑛
(∫

R

𝑓
3
(𝑥) 𝑑𝑥 − 𝐼

2

1
) + 1.598245

× Θ (𝐾
𝑏
) 𝐼
4/5

1
(∫

R

𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

2/5

𝑛
−8/5

+ 𝑜 (𝑛
−8/5
) .

(27)

Furthermore, to estimate 𝐼
2
, we introduce the following

kernel estimator:

𝐼
2
=
Π
2

𝑛

𝑛

𝑛

∑

𝑖,𝑗,𝑘=1

𝑗 ̸= 𝑘

Π
−1

𝑗
Π
−1

𝑘
𝛾
𝑗
𝛾
𝑘
𝑏
−3

𝑗
𝑏
−3

𝑘

× 𝐾
(2)

𝑏

(

𝑋
𝑖
− 𝑋
𝑗

𝑏


𝑗

)𝐾
(2)

𝑏

(
𝑋
𝑖
− 𝑋
𝑘

𝑏


𝑘

) ,

(28)

where 𝐾(2)
𝑏

is the second order derivative of a kernel 𝐾

𝑏
 .

The bias and variance of 𝐼
2
are computed in the following

theorem.

Theorem7. Let assumptions (A2)-(A3)hold, and suppose that
the kernel 𝐾

𝑏
satisfies assumption (A1) and (𝑏

𝑛
) ∈ GS(−𝛽),

with 𝛽 ∈]0, 1[; one has

Bias [𝐼
2
] =

1

(1 − 2𝑎𝜉)
𝑏
2

𝑛
𝜇
2
(𝐾
𝑏
)

× ∫
R

𝑓
(4)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥

+
1

4(1 − 2𝑎𝜉)
2
𝑏
4

𝑛
𝜇
2

2
(𝐾
𝑏
)

× ∫
R

(𝑓
(4)
(𝑥))
2

𝑓 (𝑥) 𝑑𝑥

+
1

12 (1 − 4𝑎𝜉)
𝑏
4

𝑛
𝜇
4
(𝐾
𝑏
)

× ∫
R

𝑓
(6)
(𝑥) 𝑓
(4)
(𝑥) 𝑓 (𝑥) 𝑑𝑥

−
1

2 − 𝜉
𝐼
2
𝛾
𝑛
+ 𝑜 (𝑏

4

𝑛
+ 𝛾
𝑛
) ,

Var [𝐼
2
] = (

1

2 − (𝛼 − 5𝑎) 𝜉
)

2
𝛾
2

𝑛

𝑛𝑏10
𝑛

𝑅(𝐾
(2)

𝑏

)
4

× ∫
R

𝑓
3
(𝑥) 𝑑𝑥

+
1

𝑛
(∫

R

(𝑓
(2)
(𝑥))
4

𝑓 (𝑥) 𝑑𝑥 − 𝐼
2

2
)

+ 𝑜(
1

𝑛
+
𝛾
2

𝑛

𝑛𝑏10
𝑛

) .

(29)

The following corollary ensures that the bandwidthwhich
minimizes the MISE of 𝐼

2
depends on the stepsize (𝛾

𝑛
) and

then the corresponding MISE depends also on the stepsize
(𝛾
𝑛
).
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Corollary 8. Let the assumptions of Theorem 7 hold. To
minimize the MISE of 𝐼

2
, the stepsize (𝛾

𝑛
) must be chosen in

GS(−1) and the bandwidth (𝑏
𝑛
)must equal

((
5

2
)

1/14
(1 − 2𝑎𝜉)

1/7

(2 − (1 − 5𝑎) 𝜉)
1/7

×

{

{

{

𝑅(𝐾
(2)

𝑏

)
4

∫
R
𝑓
3
(𝑥) 𝑑𝑥

𝜇
2

2
(𝐾
𝑏
) (∫

R
𝑓(4) (𝑥) 𝑓

(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

2

}

}

}

1/14

× (
𝛾
2

𝑛

𝑛
)

1/14

);

(30)

then one has

MISE [𝐼
2
] =

7

5
(
5

2
)

2/7

(1 − 2𝑎𝜉)
−10/7

× (2 − (1 − 5𝑎) 𝜉)
−4/7
Γ (𝐾
𝑏
)

× (∫
R

𝑓
3
(𝑥) 𝑑𝑥)

2/7

× (∫
R

𝑓
(4)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

10/7

(
𝛾
2

𝑛

𝑛
)

2/7

+
1

𝑛
(∫

R

(𝑓
(2)
(𝑥))
4

𝑓 (𝑥) 𝑑𝑥 − 𝐼
2

2
) + 𝑜 (𝑛

−1
) .

(31)

The following corollary shows that, for a special choice of
the stepsize (𝛾

𝑛
) = (𝛾

0
𝑛
−1
), which fulfilled that lim

𝑛→∞
𝑛𝛾
𝑛
=

𝛾
0
and that (𝛾

𝑛
) ∈ GS(−1), the optimal value for 𝑏

𝑛
depends

on 𝛾
0
and the corresponding MISE depends on 𝛾

0
.

Corollary 9. Let the assumptions of Theorem 7 hold. To
minimize the MISE of 𝐼

2
, the stepsize (𝛾

𝑛
) must be chosen in

GS(−1), lim
𝑛→∞

𝑛𝛾
𝑛
= 𝛾
0
, and the bandwidth (𝑏

𝑛
)must equal

((
5

2
)

1/14 𝛾
1/7

0
(𝛾
0
− 3/7)

1/7

(2𝛾
0
+ 1/14)

1/7

×

{

{

{

𝑅(𝐾
(2)

𝑏

)
4

∫
R
𝑓
3
(𝑥) 𝑑𝑥

𝜇
2

2
(𝐾
𝑏
) (∫

R
𝑓(4) (𝑥) 𝑓

(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

2

}

}

}

1/14

×𝑛
−3/14

);

(32)

then one has

MISE [𝐼
2
] =

7

5
(
5

2
)

2/7 𝛾
18/7

0

(𝛾
0
− 3/7)

10/7

(2𝛾
0
+ 1/14)

4/7

× Γ (𝐾
𝑏
) (∫

R

𝑓
3
(𝑥) 𝑑𝑥)

2/7

× (∫
R

𝑓
(4)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

10/7

𝑛
−6/7

+
1

𝑛
(∫

R

(𝑓
(2)
(𝑥))
4

𝑓 (𝑥) 𝑑𝑥 − 𝐼
2

2
) + 𝑜 (𝑛

−1
) .

(33)

Moreover, the minimum of 𝛾
18/7

0
(𝛾
0
− 3/7)

−10/7

(2𝛾
0
+ 1/14)

−4/7 is reached at 𝛾
0
= (10 + √227/2)/14;

then the bandwidth (𝑏
𝑛
)must equal

(0.9699894

×

{

{

{

𝑅(𝐾
(2)

𝑏

)
4

∫
R
𝑓
3
(𝑥) 𝑑𝑥

𝜇
2

2
(𝐾
𝑏
) (∫

R
𝑓(4) (𝑥) 𝑓

(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

2

}

}

}

1/14

× 𝑛
−3/14

);

(34)

then we have

Bias [𝐼
2
] ≃ 1.326127 × Γ(𝐾

𝑏
)
1/2

(∫
R

𝑓
3
(𝑥) 𝑑𝑥)

1/7

× (∫
R

𝑓
(4)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

5/7

𝑛
−3/7

+ {0.4396531 × Γ (𝐾
𝑏
) ∫

R

(𝑓
(4)
(𝑥))
2

𝑓 (𝑥) 𝑑𝑥

+ 0.1760697 × 𝜁 (𝐾
𝑏
)

× ∫
R

𝑓
(6)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥}

× (∫
R

𝑓
3
(𝑥) 𝑑𝑥)

2/7

× (∫
R

𝑓
(4)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

−4/7

𝑛
−6/7

− 1.115801 × 𝐼
2
𝑛
−1
+ 𝑜 (𝑛

−1
) ,
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Var [𝐼
2
] ≃ 0.703445 × Γ (𝐾

𝑏
) (∫

R

𝑓
3
(𝑥) 𝑑𝑥)

2/7

× (∫
R

𝑓
(4)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

10/7

𝑛
−6/7

+
1

𝑛
(∫

R

(𝑓
(2)
(𝑥))
4

𝑓 (𝑥) 𝑑𝑥 − 𝐼
2

2
) + 𝑜 (𝑛

−1
) .

(35)
It follows that

MISE [𝐼
2
] ≃ 2.462058 × Γ (𝐾

𝑏
) (∫

R

𝑓
3
(𝑥) 𝑑𝑥)

2/7

× (∫
R

𝑓
(4)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

10/7

𝑛
−6/7

+
1

𝑛
(∫

R

(𝑓
(2)
(𝑥))
4

𝑓 (𝑥) 𝑑𝑥 − 𝐼
2

2
) + 𝑜 (𝑛

−1
) .

(36)
Finally, the plug-in estimator of the bandwidth (ℎ

𝑛
) using the

recursive algorithm (3) must equal

((
3

10
)

1/5

(
𝑅 (𝐾)

𝜇
2

2
(𝐾)
)

1/5

(
𝐼
1

𝐼
2

)

1/5

𝑛
−1/5
) , (37)

MISE∗ [𝑓
𝑛
] =

5

4
2
2/5
(
5

6
)

6/5

Θ (𝐾) 𝐼
4/5

1
𝐼
1/5

2
𝑛
−4/5

+ 𝑜 (𝑛
−4/5
) .

(38)

Now, let us recall that the bias and variance of Rosenblatt’s
estimator 𝑓

𝑛
are given by

E [𝑓
𝑛
(𝑥)] − 𝑓 (𝑥) =

1

2
ℎ
2

𝑛
𝑓
(2)
(𝑥) 𝜇
2
(𝐾) + 𝑜 (ℎ

2

𝑛
) ,

Var [𝑓
𝑛
(𝑥)] =

1

𝑛ℎ
𝑛

𝑓 (𝑥) 𝑅 (𝐾) + 𝑜(
1

𝑛ℎ
𝑛

) .

(39)

It follows that

MISE∗ [𝑓
𝑛
] =

1

𝑛ℎ
𝑛

𝐼
1
𝑅 (𝐾) +

1

4
ℎ
4

𝑛
𝐼
2
𝜇
2

2
(𝐾)

+ 𝑜 (ℎ
4

𝑛
+
1

𝑛ℎ
𝑛

) .

(40)

Tominimize theMISE∗ of𝑓
𝑛
, the bandwidth (ℎ

𝑛
)must equal

({
𝑅 (𝐾)

𝜇
2

2
(𝐾)

𝐼
1

𝐼
2

}

1/5

𝑛
−1/5
) , (41)

and then we have

MISE∗ [𝑓
𝑛
] =

5

4
Θ (𝐾) 𝐼

4/5

1
𝐼
1/5

2
𝑛
−4/5

+ 𝑜 (𝑛
−4/5
) . (42)

To estimate the optimal bandwidth (41), we must estimate
𝐼
1
and 𝐼
2
. As suggested by Hall and Marron [21], we use the

following kernel estimator of 𝐼
1
:

𝐼
1
=

1

𝑛 (𝑛 − 1) 𝑏
𝑛

𝑛

∑

𝑖,𝑗=1

𝑖 ̸= 𝑗

𝐾
𝑏
(

𝑋
𝑖
− 𝑋
𝑗

𝑏
𝑛

) . (43)

The following lemma gives the bias and variance of 𝐼
1
.

Lemma 10. Suppose that the kernel 𝐾
𝑏
satisfies assumption

(A1), (𝑏
𝑛
), and assumption (A2)(ii) and 𝑓 satisfies assumption

(A3)

Bias [𝐼
1
] =

1

2
𝑏
2

𝑛
𝜇
2
(𝐾
𝑏
) ∫

R

𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥 + 𝑜 (𝑏

2

𝑛
) ,

Var [𝐼
1
] =

1

𝑛 (𝑛 − 1) 𝑏
𝑛

𝑅 (𝐾
𝑏
) 𝐼
1

+
1

𝑛 − 1
(∫

R

𝑓
3
(𝑥) 𝑑𝑥 − 𝐼

2

1
)

+ 𝑜(
1

𝑛
+
1

𝑛2𝑏
𝑛

) .

(44)

To minimize the MISE of 𝐼
1
, the bandwidth (𝑏

𝑛
)must equal

(

{

{

{

𝑅(𝐾
𝑏
) 𝐼
1

𝜇
2

2
(𝐾
𝑏
) (∫

R
𝑓(2) (𝑥) 𝑓 (𝑥) 𝑑𝑥)

2

}

}

}

1/5

𝑛
−2/5
); (45)

then one has

Bias [𝐼
1
] =

1

2
Θ(𝐾
𝑏
)
1/2

𝐼
2/5

1
(∫

R

𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

1/5

× 𝑛
−4/5

+ 𝑜 (𝑛
−4/5
) ,

Var [𝐼
1
] =

1

𝑛
(∫

R

𝑓
3
(𝑥) 𝑑𝑥 − 𝐼

2

1
)

+ Θ (𝐾
𝑏
) 𝐼
4/5

1
(∫

R

𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

2/5

× 𝑛
−8/5

+ 𝑜 (𝑛
−8/5
) ,

MISE [𝐼
1
] =

1

𝑛
(∫

R

𝑓
3
(𝑥) 𝑑𝑥 − 𝐼

2

1
)

+
5

4
Θ (𝐾
𝑏
) 𝐼
4/5

1
(∫

R

𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

2/5

× 𝑛
−8/5

+ 𝑜 (𝑛
−8/5
) .

(46)

Furthermore, to estimate 𝐼
2
, we use the following kernel

estimator introduced in Hall and Marron [21]:

𝐼
2
=

1

𝑛3𝑏6
𝑛

𝑛

∑

𝑖,𝑗,𝑘=1

𝑗 ̸= 𝑘

𝐾
(2)

𝑏

(

𝑋
𝑖
− 𝑋
𝑗

𝑏
𝑛

)𝐾
(2)

𝑏

(
𝑋
𝑖
− 𝑋
𝑘

𝑏
𝑛

) . (47)

The following lemma gives the bias and variance of 𝐼
2
.
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Lemma 11. Suppose that the kernel 𝐾
𝑏
 satisfies assumption

(A1), (𝑏
𝑛
), and assumption (A2)(ii) and 𝑓 satisfies assumption

(A3)

Bias [𝐼
2
] = 𝑏
2

𝑛
𝜇
2
(𝐾
𝑏
) ∫

R

𝑓
(4)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥

+
1

4
𝑏
4

𝑛
𝜇
2

2
(𝐾
𝑏
) ∫

R

(𝑓
(4)
(𝑥))
2

𝑓 (𝑥) 𝑑𝑥

+
1

12
𝑏
4

𝑛
𝜇
4
(𝐾
𝑏
) ∫

R

𝑓
(6)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥

+ 𝑜 (𝑏
4

𝑛
) ,

Var [𝐼
2
] =

1

𝑛3𝑏10
𝑛

𝑅(𝐾
(2)

𝑏

)
4

∫
R

𝑓
3
(𝑥) 𝑑𝑥

+
1

𝑛
(∫

R

(𝑓
(2)
(𝑥))
4

𝑓 (𝑥) 𝑑𝑥 − 𝐼
2

2
)

+ 𝑜(
1

𝑛
+

1

𝑛3𝑏10
𝑛

) .

(48)

To minimize the MISE of 𝐼
2
, the bandwidth (𝑏

𝑛
)must equal

(

{

{

{

5

2

𝑅(𝐾
(2)

𝑏

)
4

∫
R
𝑓
3
(𝑥) 𝑑𝑥

𝜇
2

2
(𝐾
𝑏
) (∫

R
𝑓(4) (𝑥) 𝑓

(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

2

}

}

}

1/14

× 𝑛
−3/14

);

(49)

then one has

Bias [𝐼
2
] ≃ 1.139852 × Γ(𝐾

𝑏
)
1/2

(∫
R

𝑓
3
(𝑥) 𝑑𝑥)

1/7

× (∫
R

𝑓
(4)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

5/7

𝑛
−3/7

+ {0.3248158 × Γ (𝐾
𝑏
) ∫

R

(𝑓
(4)
(𝑥))
2

𝑓 (𝑥) 𝑑𝑥

+ 0.1082719 × 𝜁 (𝐾
𝑏
)

× ∫
R

𝑓
(6)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥}

× (∫
R

𝑓
3
(𝑥) 𝑑𝑥)

2/7

× (∫
R

𝑓
(4)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

−4/7

𝑛
−6/7

+ 𝑜 (𝑛
−6/7
) ,

Var [𝐼
2
] ≃ 0.5197053 × Γ (𝐾

𝑏
) (∫

R

𝑓
3
(𝑥) 𝑑𝑥)

2/7

× (∫
R

𝑓
(4)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

10/7

𝑛
−6/7

+
1

𝑛
(∫

R

(𝑓
(2)
(𝑥))
4

𝑓 (𝑥) 𝑑𝑥 − 𝐼
2

2
) + 𝑜 (𝑛

−1
) .

(50)

It follows then that

MISE [𝐼
2
] ≃ 1.81189 × Γ (𝐾

𝑏
) (∫

R

𝑓
3
(𝑥) 𝑑𝑥)

2/7

× (∫
R

𝑓
(4)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

10/7

𝑛
−6/7

+
1

𝑛
(∫

R

(𝑓
(2)
(𝑥))
4

𝑓 (𝑥) 𝑑𝑥 − 𝐼
2

2
) + 𝑜 (𝑛

−1
) .

(51)

Then the plug-in estimator of the bandwidth (ℎ
𝑛
) using

the nonrecursive estimator (5) must equal

((
𝑅 (𝐾)

𝜇
2

2
(𝐾)
)

1/5

(
𝐼
1

𝐼
2

)

1/5

𝑛
−1/5
) , (52)

MISE∗ [𝑓
𝑛
] =

5

4
Θ (𝐾) 𝐼

4/5

1
𝐼
1/5

2
𝑛
−4/5

+ 𝑜 (𝑛
−4/5
) . (53)

The following corollary gives the expected MISE∗ of the
recursive estimator 𝑓

𝑛
and the nonrecursive estimator 𝑓

𝑛
.

Corollary 12. Let the assumptions of Theorem 7 hold. Then

E [MISE∗ [𝑓
𝑛
]]

=
5

4
2
2/5
(
5

6
)

6/5

Θ (𝐾) 𝐼
4/5

1
𝐼
1/5

2

× [(1 + 0.26522 × 𝐶
1
𝐼
−1

2
𝑛
−3/7

+ (0.08793 × 𝐶
2
+ 0.03521 × 𝐶

3
)

× 𝐼
−1

2
𝑛
−6/7

− 0.22316 × 𝑛
−1
) + 𝑜 (𝑛

−1
)]

× 𝑛
−4/5
(1 + 𝑜 (1)) ,

E [MISE∗ [𝑓
𝑛
]]

=
5

4
Θ (𝐾) 𝐼

4/5

1
𝐼
1/5

2

× [(1 + 0.22797 × 𝐶
1
𝐼
−1

2
𝑛
−3/7

+ (0.06496 × 𝐶
2
+ 0.02165 × 𝐶

3
)

× 𝐼
−1

2
𝑛
−6/7
)] 𝑛
−4/5
(1 + 𝑜 (1)) ,

(54)
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Table 1:𝑋 N(0, 1).

𝑛 = 50 𝑛 = 100

Rosenblatt Recursive Rosenblatt Recursive
Ref. Mean sd Mean sd Mean sd Mean sd

𝐼
1

0.2821 0.2780 0.0357 0.2864 0.0358 0.2788 0.0255 0.2866 0.0257

𝐼
2

0.0612 0.0994 0.2744 0.0690 0.1697 0.0749 0.1908 0.0575 0.1078

ℎ
𝑛

0.4801 0.1435 0.4408 0.1399 0.4347 0.1169 0.3894 0.1197

MISE∗ 0.0801 0.0288 0.0746 0.0280 0.0649 0.0203 0.0621 0.0195

Table 2:𝑋  E(1/2).

𝑛 = 50 𝑛 = 100

Rosenblatt Recursive Rosenblatt Recursive
Ref. Mean sd Mean sd Mean sd Mean sd

𝐼
1

0.25 0.1930 0.0331 0.1768 0.0303 0.1957 0.0232 0.1839 0.0221

𝐼
2

0.0078 0.0353 0.0598 0.0196 0.0327 0.0369 0.0336 0.0206 0.0199

ℎ
𝑛

0.5825 0.1203 0.5049 0.0989 0.4611 0.0598 0.4032 0.0525

MISE∗ 0.0435 0.0166 0.0381 0.0144 0.0407 0.0100 0.0363 0.0091

where

𝐶
1
= Γ(𝐾

𝑏
)
1/2

(∫
R

𝑓
3
(𝑥) 𝑑𝑥)

1/7

× (∫
R

𝑓
(4)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

5/7

𝐶
2
= Γ (𝐾

𝑏
) ∫

R

(𝑓
(4)
(𝑥))
2

𝑓 (𝑥) 𝑑𝑥

× (∫
R

𝑓
3
(𝑥) 𝑑𝑥)

2/7

× (∫
R

𝑓
(4)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

−4/7

𝐶
3
= 𝜁 (𝐾

𝑏
) ∫

R

𝑓
(6)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥

× (∫
R

𝑓
3
(𝑥) 𝑑𝑥)

2/7

× (∫
R

𝑓
(4)
(𝑥) 𝑓
(2)
(𝑥) 𝑓 (𝑥) 𝑑𝑥)

−4/7

.

(55)

The following theorem gives the conditions under which
the expected MISE∗ of the recursive estimator 𝑓

𝑛
will be

smaller than the expectedMISE∗ of the nonrecursive estima-
tor 𝑓
𝑛
.

Theorem 13. Let the assumptions of Theorem 7 hold and let
the bandwidth (ℎ

𝑛
) equal (37) and the stepsize (𝛾

𝑛
) = (𝑛

−1
).

One has
E [MISE∗ [𝑓

𝑛
]]

E [MISE∗ [𝑓
𝑛
]]

< 1 𝑓𝑜𝑟 𝑠𝑚𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑒𝑡𝑡𝑖𝑛𝑔. (56)

Then, the expected MISE∗ of the recursive estimator
defined by (3) is smaller than the expected MISE∗ of the

nonrecursive estimator defined by (5) for small sample
setting.

3. Simulation

The aim of our simulation study is to compare the perfor-
mance of the nonrecursive Rosenblatt’s estimator defined in
(5) with that of the recursive estimators defined in (3).

When applying 𝑓
𝑛
one needs to choose three quantities.

(i) For the function𝐾, we choose the normal kernel.

(ii) The stepsize (𝛾
𝑛
) = (𝑛

−1
).

(iii) The bandwidth (ℎ
𝑛
) is chosen to be equal to (37).

When applying 𝑓
𝑛
one needs to choose two quantities.

(i) For the function𝐾, as in the recursive framework, we
use the normal kernel.

(ii) The bandwidth (ℎ
𝑛
) is chosen to be equal to (52).

In order to investigate the comparison between the two
estimators, we consider two densities of 𝑓: the standard
normalN(0, 1) distribution (see Table 1) and the exponential
E(1/2) distribution (see Table 2). For each of these two cases,
500 samples of sizes 𝑛 = 50 and 100 were generated. For each
fixed bandwidth ℎ, we computed the mean and the standard
deviation (over the 500 samples) of 𝐼

1
, 𝐼
2
, ℎ
𝑛
, and MISE∗.

The plug-in estimators (37) and (52) require two kernels to
estimate 𝐼

1
and 𝐼
2
. In both cases we use the normal kernel

with 𝑏
𝑛
and 𝑏

𝑛
given in (19), with 𝛽 equal, respectively, to

2/5 and 3/14. Both tables show that (1) the bias, respectively,
and the standard deviation of 𝐼

1
using the recursive algorithm

(3) are very similar to the bias, respectively, and the standard
deviation of 𝐼

1
using the nonrecursive estimator (5), (2) the

bias, respectively, and the standard deviation of 𝐼
2
using

the recursive algorithm (3) are always smaller than the
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Figure 1: The bandwidths minimizing the MISE∗ of the nonrecursive estimator (5) and the recursive estimator (3) for 500 samples,
respectively, of size 𝑛 = 50 (a) and of size 𝑛 = 100 (b) from a normal distribution.
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Figure 2: The bandwidths minimizing the MISE∗ of the nonrecursive estimator (5) and the recursive estimator (3) for 500 samples,
respectively, of size 𝑛 = 50 (a) and of size 𝑛 = 100 (b) from an exponential distribution of rate 1/2.

bias, respectively, and the standard deviation of 𝐼
2
using

the nonrecursive estimator (5), (3) the mean, respectively,
and the standard deviation of the bandwidths selected by
the recursive estimator (3) are always smaller than the bias,
respectively, and the standard deviation of the bandwidths
selected by the nonrecursive estimator (5), and (4) the mean,
respectively, and the standard deviation of the MISE∗ of the
bandwidths selected by the recursive estimator (3) are always
smaller than the bias, respectively, and the standard deviation
of MISE∗ of the bandwidths selected by the nonrecursive

estimator (5). In Tables 1 and 2 the Ref. column could be used
as a reference for the mean of 𝐼

1
and 𝐼
2
.

Figures 1 and 2 show boxplots of the selected bandwidths
by the two algorithms (3) and (5), respectively. For samples
of size 50 and 100, the bandwidths selected by the recursive
estimator (3) are always smaller than the bandwidths selected
by the nonrecursive estimator (5).

Figures 3 and 4 show boxplots of the expected MISE∗
by the two algorithms (3) and (5), respectively. For samples
of size 50 and 100, the expected MISE∗ of the selected
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Figure 3:TheMISE∗ of the optimal bandwidth of the nonrecursive estimator (5) and the recursive estimator (3) for 500 samples, respectively,
of size 𝑛 = 50 (a) and of size 𝑛 = 100 (b) from a normal distribution.
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Figure 4:TheMISE∗ of the optimal bandwidth of the nonrecursive estimator (5) and the recursive estimator (3) for 500 samples, respectively,
of size 𝑛 = 50 (a) and of size 𝑛 = 100 (b) from an exponential distribution of rate 1/2.

bandwidths by the recursive estimator (3) are always smaller
than the expected MISE∗ of the selected bandwidths by the
nonrecursive estimator (5).

In order to give some comparative elements with non-
recursive estimator (5), including computational costs, we
consider 500 samples of size 50 generated from a standard
normal distribution N(0, 1); moreover, we suppose that we
receive an additional 500 samples of size 50 generated also
from a standard normal distributionN(0, 1). Performing the
two methods, the running time using the recursive estimator

defined by algorithm (2) with stepsize (𝛾
𝑛
) = (𝑛

−1
) and

the bandwidth (ℎ
𝑛
) given in (37) was roughly 6880 s on

the author’s workstation, while the running time using the
nonrecursive estimator defined by algorithm (5) with the
bandwidth (ℎ

𝑛
) given in (52) was roughly 14080 s on the

author’s workstation.
This simulation study shows the good performance of the

recursive estimator defined by algorithm (3) with stepsize
(𝛾
𝑛
) = (𝑛

−1
) and the bandwidth (ℎ

𝑛
) given in (37) for small

sample setting.
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4. Conclusion

In this paper we proposed an automatic selection of the
bandwidth of the recursive kernel estimators of a probability
density function defined by the stochastic approximation
algorithm (2). We showed that, using the selected bandwidth
and the stepsize (𝛾

𝑛
) = (𝑛

−1
) (the stepsize which minimizes

the MISE of the class of the recursive estimators defined
in Mokkadem et al. [9]), the recursive estimator will be
better than the nonrecursive one for small sample setting.
The simulation study corroborated these theoretical results.
Moreover, the simulation results indicate that the proposed
recursive estimator has more computing efficiency than the
nonrecursive estimator.

In conclusion, the proposed method allowed us to obtain
better results than the nonrecursive estimator proposed by
Rosenblatt [14] for small sample setting. Moreover, we plan
to make an extension of our method in the future and to
consider the case of a regression function as in Härdle and
Marron [22] in recursive way (see Mokkadem et al. [23]) and
the case of time series as in Hart and Vieu [24] in recursive
way.
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