1. An Aztec diamond bijection. This little program is meant to verify an algorithmic bijection, proposed by Frédéric Bosio, between on one hand families of certain lattice paths across a $n \times n$ square, and on the other hand triangular arrays of side length n of Boolean values (giving $\frac{n(n+1)}{2}$ bits in all). It also produces PostScript output for configurations obtained by this procedure, possibly generated at random
To fix ideas geometrically, we use swapped Cartesian coordinates: the first coordinate increases upwards and the second to the right. Therefore the first coordinate determines the "row" of a point, and the second coordinate its "column", as in matrices, but columns grow upwards. When producing PostScript output, we shall take care to inverse the order of coordinates.

[^0]2. A class for path families. Our lattice paths will come in families of n, path P_{i} for $0 \leq i<n$ going from $(0, i)$ on the vertical axis to $(i, 0)$, on the horizontal axis, with steps that either increase the first coordinate, or decrease the second, or both. Path P_{0} has no steps, but occupies the point (0,0); all paths in our family are supposed to be disjoint at the end of the construction. Path P_{i} is determined by i bits in $B[i]$ and $i+1$ natural numbers in $D[i]$: the former describe whether the step between columns j and $j+1$ is horizontal (value 0 , false) or diagonal (value 1 , true) for $0 \leq j<i$, while the latter count the number of vertical steps in column $j, 0 \leq j \leq i$. We provide $\operatorname{step}(i, j)$ as a read-only way to refer to $B[i][j]$ viewed as value in $\{0,1\}$; it is the level decrease in path P_{i} going from column j to $j+1$. The sum of all values in $B[i]$ and $D[i]$, which are associated to P_{i}, should be i (this is tested among other things by the valid method), so that along that path the second coordinate decreases for i to 0 .
We provide basic manipulators untangle, that (under specific conditions) modifies P_{i} and P_{i+1} in a special way that will ensure they become disjoint, and that the original paths can be recovered from the modified one, and its inverse operation cliffify (so called because it moves any vertical steps in column k from P_{i+1} to P_{i}, which when iterated down to $k=i$ will make P_{k} end with a sheer vertical drop). The latter requires and modifies the values of two additional quantities that it would otherwise need to laboriously calculate each time each time, namely the levels h_{0} and h_{1} where the paths P_{i} and P_{i+1} enter into column k.
To produce output from a family we provide the methods flex_points for display as a path family, which lists all points where paths start, end, or change direction, and Aztec_tiling for display as a tiling of the Aztec diamond, which lists the orientations of all dominoes listed according to their black squares.

```
#include <vector>
#include <iostream>
```

\langle Type definitions 2$\rangle \equiv$
typedef $s t d::$ vector \langle unsigned \rangle vec;
typedef $s t d::$ vector \langle bool \rangle bitvec;
typedef $s t d:$:vector \langle bitvec \rangle triangle;
class family
$\{$ unsigned n;
triangle $B ; \quad / / B[i][j]$ gives direction of P_{i} when leaving column j
std::vector $\langle\mathbf{v e c}\rangle D ; \quad / / D[i][j]$ counts vertical steps of P_{i} in column j
public:
family (unsigned $n n$); // $n n$ determines max_path()
family (const triangle \&tri); // set from triangle tri of bits
unsigned int n _paths () const $\{$ return n; \}
unsigned int max_path() const \{ return $n-1 ;\}$
unsigned int step (unsigned int i, unsigned int j) const
$\{\operatorname{assert}(i>j)$; return unsigned $(B[i][j]) ;$ \}
bool operator \neq (const family $\& y$) const;
bool valid() const;
bool disjoint (unsigned i) const; $/ /$ whether paths P_{i} and P_{i+1} are disjoint
bool untangle (unsigned i, unsigned k); // paths P_{i}, P_{i+1} up to column k; anything changed?
void cliffify (unsigned i, unsigned k, unsigned $\& h_{0}$, unsigned $\& h_{1}$); // inverse
std $::$ vector $\langle s t d::$ vector $\langle s t d::$ pair \langle unsigned, unsigned $\rangle\rangle\rangle$ flex_points () const;
std::vector $\langle\mathbf{v e c}\rangle$ Aztec_tiling () const; // convert to $(n-1) \times n$ matrix of domino orientations
\};

See also section 13 .
This code is used in section 1 .
3. When constructing a family value, the vectors $B[i]$ and $D[i]$ for path P_{i} are dimensioned to allow column indices form 0 to i, exclusive for B and inclusive for D. In practice one will always have $D[i][0]=0$ so that we could do with one entry less for each vector $D[i]$, but it is not worth the complications this causes to do so. More generally each path that reaches column j will decrease its second coordinate by at most j up to that column inclusive, so that all paths are Schröder paths. Externally we use as value to parameterise this class the size of the square across which the paths run (of which the end points of P_{n-1} span a diagonal, and which is the value of max_path ()), that is $n n=n-1$, and it is therefore that number that is passed to the constructor. The number $n n$ is also the order of the corresponding Aztec diamond.

```
\(\langle\) Function definitions 3\(\rangle \equiv\)
    family ::family (unsigned \(n n): n(n n+1), B(n), D(n)\)
    \{ for (unsigned \(i \Leftarrow 0 ; i<n ; i++\) )
            \(\{B[i]\).resize \((i\), true \() ; D[i] . \operatorname{resize}(i+1,0) ;\}\)
    \}
```

See also sections $4,5,6,7,8,9,12,14,15,16,17,18,25$, and 26 .
This code is used in section 1 .
4. When constructing from a triangular array of Boolean values, with array i having size i for $0 \leq i<n$, these values are used to determine the path from ($0, i$) in column 0 until reaching column i, taking horizontal steps and diagonal steps only; for each false value the step will be horizontal, and diagonal for a true value. A number of vertical steps equal to the number of horizontal steps remains at the end in column i.

```
\#include <algorithm>
\(\langle\) Function definitions 3\(\rangle+\equiv\)
    family::family (const triangle \&tri) : \(n(\) tri.size ( ) ), \(B(\) tri \(), D(n)\)
    \(\{\) for (unsigned \(i \Leftarrow 0 ; i<n ;++i\) )
        \(\{D[i] \cdot \operatorname{resize}(i+1) ;\) std:: fill \((D[i] . \operatorname{begin}(), D[i] . \operatorname{end}()-1,0) ; \quad / /\) set off-diagonal entries of \(D\) to 0
            unsigned \(s \Leftarrow i\);
                for (unsigned \(j \Leftarrow 0 ; j<i ;+j\) )
                    \(s-\Leftarrow \operatorname{step}(i, j) ; \quad / /\) count horizontal steps (total minus diagonal ones)
                \(D[i][i] \Leftarrow s ; \quad / /\) number of vertical steps at end of \(P_{i}\) matches that of horizontal ones
        \}
    \}
```

5. The method disjoint tells whether a pair of successive paths P_{i}, P_{i+1}, have no points in common. The method valid tells whether the whole family is valid, which means all paths are disjoint, and end at level 0 .
```
\(\langle\) Function definitions 3\(\rangle+\equiv\)
    bool family::disjoint (unsigned \(i\) ) const
    \{ unsigned \(s \Leftarrow 0, t \Leftarrow D[i+1][0] ; \quad / /\) in fact \(t=0\), but morally it is \(D[i+1][0]\)
            for (unsigned \(j \Leftarrow 0 ; j<i\) and \(t \leq s ;+j\) )
            \(\{t+\Leftarrow \operatorname{step}(i+1, j)+D[i+1][j+1] ; s+\Leftarrow D[i][j]+\operatorname{step}(i, j) ;\}\)
            return \(t \leq s ; \quad / /\) if at any point we have \(t>s\), we return false immediately
\}
bool family::valid () const
    \{ for (unsigned \(i \Leftarrow 0 ; i<n ;++i\) )
            \{ if ( \(i<n-1\) and not disjoint \((i))\) return false;
                unsigned \(s \Leftarrow D[i][0]\);
                for (unsigned \(j \Leftarrow 0 ; j<i ;+j\) ) \(s+\Leftarrow \operatorname{step}(i, j)+D[i][j+1]\);
                if \((s \neq i)\) return false;
            \}
            return true;
\}
```

6. The method untangle below is the first element used to define the bijection: it modifies a pair of successive paths P_{i}, P_{i+1}, such that afterwards $\operatorname{disjoint}(i)$ holds, provided P_{i} and P_{i+1} were already disjoint beyond column k (this explains the name untangle, but it must satisfy much more than this, in particular the method should be invertible). It is not intended to be used on paths of general form: it is assumed that no vertical steps are present in these paths in columns $j<k$, and for P_{i+1} none in column k either. Moreover, it is assumed that P_{i} has enough vertical steps in column k, namely at least the value of depth as computed at the end of the function below. Only columns up to column k are considered or altered in this method. After the method has operated some vertical steps of path P_{i} in column k will be transfered to path P_{i+1}, while remaining in column k; their number is the final value of depth, whence the mentioned condition is necessary to ensure that P_{i} remains a valid path.

If one considers the paths up to the point where they first enter column k, they only have horizontal and diagonal steps, and by taking the difference between the two paths, we classify the situation in three types based on the value of $\operatorname{step}(i+1, j)-\operatorname{step}(i, j) \in\{-1,0,+1\}$. When this value is equal to +1 the paths approach, or if already crossed increase their crossing: path i is horizontal and P_{i+1} diagonal. When this difference is 0 , the paths evolve in parallel: either both are horizontal or both are diagonal. And when the value is -1 the paths move apart or if currently crossed decrease their amount of crossing: P_{i} is diagonal and P_{i+1} horizontal. Define the "current crossing" in column j to be the sum of these differences step $\left(i+1, j^{\prime}\right)-\operatorname{step}\left(i, j^{\prime}\right)$ for $0 \leq j^{\prime}<j$. The variable depth records the maximal crossing level seen so far. Calling untangle (i, k) will interchange, only for those steps where depth increases (necessarily a situation where $\operatorname{step}(i+1, j)=1$ and $\operatorname{step}(i, j)=0$), the directions of the steps in both paths, so P_{i} becomes diagonal and P_{i+1} becomes horizontal at these places.

```
\#include <cassert>
\(\langle\) Function definitions 3\(\rangle+\equiv\)
    bool family:: untangle (unsigned \(i\), unsigned \(k\) )
    \(\{\operatorname{assert}(k \leq i)\);
        signed int cur \(\Leftarrow 0\); unsigned int depth \(\Leftarrow 0\);
        for (unsigned \(j \Leftarrow 0 ; j<k ;+j\) )
            \(\{\operatorname{cur}+\Leftarrow \operatorname{step}(i+1, j)-\operatorname{step}(i, j)\);
                if \((\) cur \(>\operatorname{signed}(\) depth \())\)
                \{ depth \(\Leftarrow\) cur; // increase depth whenever cur rises above it
                    \(B[i][j] \Leftarrow\) true \(; B[i+1][j] \Leftarrow\) false; \(\quad / / \quad P_{i}\) gets a diagonal step, \(P_{i+1}\) a horizontal step
            \}
        \}
        \(\operatorname{assert}(\) depth \(\leq D[i][k]) ; \quad / /\) we did not remove more vertical steps than were present in \(P_{i}\)
        \(\operatorname{assert}(D[i+1][k]=0) ; \quad / / \quad\) and none were present in \(P_{i+1}\)
        \(D[i][k]-\Leftarrow\) depth \(; D[i+1][k] \Leftarrow\) depth; \(\quad / /\) transfer depth vertical steps to \(P_{i+1}\)
        return depth \(>0\);
    \}
```

7. The method cliffify is the inverse operation of untangle, whenever one of them is called with the necessary conditions satisfied (this implies in particular the conditions for the other operation will be satisfied whenever one operation has finished). Like for the call untangle (i, k), when calling cliffify $\left(i, k, h_{0}, h_{1}\right)$ it is assumed that any vertical steps that occur in paths P_{i} or P_{i+1} are in columns $j \geq k$ (but now vertical steps in column k can appear both in P_{i} and in P_{i+1}). Moreover P_{i} and P_{i+1} are assumed to be disjoint initially, up to column k inclusive. The call will not inspect of modify anything in columns $j>k$; after the call the vertical steps in column k appear only in P_{i} (while their total number does not change), but the paths P_{i} and in P_{i+1} may intersect in any of the columns $j \leq k$ (and they will intersect if any modification was made, which happens if and only if there were any vertical steps of P_{i+1} in column k).
The idea for defining cliffify is simple: the final value of depth in the call untangle (i, k) is saved as the number of vertical steps of P_{i+1} in column k, and if we can retrace the values of depth for all previous columns, then it will be easy to restore the paths P_{i} and P_{i+1} to their state before applying untangle (i, k). Every time depth was increased in untangle (i, k), say at column j, the positive quantity $\sum_{j^{\prime}<j}\left(\right.$ step $\left(i+1, j^{\prime}\right)-$ step $\left.\left(i, j^{\prime}\right)\right)$ rises when replacing j by $j+1$, and it will never descend to the value it had at j when further increasing j. This means that when scanning in the reverse direction, and assuming we have computed in cur and depth the values of this summation respectively of the variable depth as they were in the forward direction at $j+1$, we can easily spot when depth needs decreasing when advancing (downwards) to j, namely if cur $=$ depth and $\operatorname{step}(i+1, j)-\operatorname{step}(i, j)=-1$. If we decrease depth only in that case, and change cur by adding $\operatorname{step}(i+1, j)-\operatorname{step}(i, j)$ in all cases, then we shall find the correct values of cur and depth for each column, and moreover cur \geq depth after every iteration. Note that contrary to depth, the variable cur does not retrace the values of the variable of the same name in untangle; in particular we can take cur to be unsigned here, but not in untangle. Since cur becomes 0 at $j=0$, one is bound to find depth decreasing all the way down to 0 at some point. It is clear that nothing will change to the paths anymore once depth $=0$, so we return from this method immediately when that happens.
```
\(\langle\) Function definitions 3\(\rangle+\equiv\)
    void family::cliffify (unsigned \(i\), unsigned \(k\), unsigned \(\& h_{0}\), unsigned \(\& h_{1}\) )
    \(\{\operatorname{assert}(k \leq i)\);
        unsigned depth \(\Leftarrow D[i+1][k] ; \quad / /\) pick up final value of depth
        unsigned cur \(\Leftarrow h_{1}-h_{0}-1\);
        \(\operatorname{assert}\left(h_{1}>h_{0}\right.\) and depth \(\leq\) cur \() ; \quad / / P_{i}\) and \(P_{i+1}\) are initially disjoint in column \(k\)
        if \((\) depth \(=0)\) return; \(\quad / /\) nothing needs to be done in this case
        \(D[i+1][k] \Leftarrow 0 ; D[i][k]+\Leftarrow\) depth; \(\quad / /\) transfer depth vertical steps to \(P_{i}\)
        \(h_{1}-\Leftarrow\) depth; \(h_{0}+\Leftarrow\) depth; // and adapt the entry points into column \(k\) correspondingly
        for (unsigned \(j \Leftarrow k ; j-->0 ;\) )
        \(\{\) cur \(+\Leftarrow \operatorname{step}(i+1, j)-\operatorname{step}(i, j)\);
            if \((\) cur \(<\) depth \()\)
            \{ depth \(\Leftarrow\) cur; \(\quad / /\) decrease depth when cur first descends below it
                \(B[i][j] \Leftarrow\) false; \(B[i+1][j] \Leftarrow\) true; \(\quad / / P_{i}\) gets a horizontal step, \(P_{i+1}\) a diagonal step
                if (depth \(=0\) ) return; \(\quad / /\) and if it reaches 0 , nothing is left to do
            \}
        \}
        assert \((\) cur \(=0) ; \quad / /\) shouldn't be reached, since depth also descended to 0 , causing return
\}
```

8. The function to_disjoint takes a configuration as obtained after constructing from a triangle of bits, and transforms it into a disjoint family of paths; the main purpose of our program is to test that this is indeed the case, and that the original configuration can be recovered from it. Since it is known from a determinant evaluation that there are exactly $2\binom{n}{2}$ disjoint families of paths of the kind we consider, this one-sided verification shows that we do indeed have a bijection.
For integrating path P_{k} into the partial family $\left\{P_{k+1}, \ldots, P_{n-1}\right\}$, already made disjoint, it suffices to call untangle (k, k), untangle $(k+1, k), \ldots$, untangle $(n-1, k)$. All of these calls stop at column k, and the call untangle (i, k) may move some vertical steps in column k from path P_{i} to path P_{i+1}. The result of this call is certainly to make P_{i} and P_{i+1} disjoint; the one point to prove is that it cannot make P_{i-1} and P_{i} (which were disjoint at that point) intersecting again, which we shall do below.
The method to_cliffs is a straightforward inverse of to_disjoint. While in to_disjoint any further action in the inner loop serves to "repair" the effect of the previous action, so that we can stop once nothing happens, this is not the case with to_cliffs, where on the contrary action increases during the inner loop.
```
\(\langle\) Function definitions 3\(\rangle+\equiv\)
    void to_disjoint (family \& f)
    \(\{\) unsigned \(n \Leftarrow f\).n_paths ();
        for (unsigned \(k \Leftarrow n-1 ; k->0 ;\) ) \(\quad / /\) treat columns from the last down to first
            for (unsigned \(i \Leftarrow k ; i<n-1 ;++i\) )
                \(\{\) if (not f.untangle \((i, k)\) )
                    break; \(\quad / /\) separate \(P_{i}\) and \(P_{i+1}\) in column \(k\); stop if nothing changed
                if \((i>k) \operatorname{assert}(f . \operatorname{disjoint}(i-1)) ; \quad / /\) no ricochet of \(P_{i}\) into \(P_{i-1}\)
            \}
        assert(f.valid( ));
    \}
    void to_cliffs (family \&f)
    \{ assert(f.valid());
        unsigned \(n \Leftarrow\) f.n_paths (); vec \(h(n)\);
        for (unsigned \(k \Leftarrow 0 ; k<n-1 ;+k\) )
            for (unsigned \(i \Leftarrow n ; i->k\); )
            \(\{h[i] \Leftarrow k=0 ? i: h[i]-f . \operatorname{step}(i, k-1) ; \quad / /\) there should be no vertical steps in column \(k-1\)
                if \((i<n-1) f\).cliffify \((i, k, h[i], h[i+1])\); // move vertical steps in column \(k\) from \(P_{i+1}\) to \(P_{i}\)
            \}
    \}
```

9. Finally we shall need to test for inequality of families, which is easy.
\langle Function definitions 3$\rangle+\equiv$ bool family::operator \neq (const family \&y) const $\{$ return $B \neq y . B$ or $D \neq y . D ;\}$
10. A proof that disjointness is achieved. It is fairly obvious that calling untangle (i) achieves disjointness of P_{i} and P_{i+1} in all columns $j<k$, since in that method cur measures, at iteration j, the amount by which this condition is violated initially, and both paths are moved away from each other in that column by the value of depth \geq cur at that iteration (so the violation is doubly corrected). However the bijectivity (and well-definedness) of the construction requires that after calling untangle (k, k), untangle ($k+1$, k), \ldots, untangle $(n-1, k)$ in the inner loop of to_disjoint above (or an initial part of those, the last of which returns false to indicate that it changed nothing), the paths P_{k}, \ldots, P_{n-1} are disjoint. This proof has two parts, one that establishes a somewhat sharpened version of the disjointness property that the call untangle (i, k) obtains, and a second part that uses this to show that after the pair of calls untangle (i, k); untangle $(i+1$, k), the paths P_{i} and P_{i+1} are (still) disjoint up to column k inclusive.

Let numbers $i \geq k$ be fixed, and assume our family is in a state in which untangle (i, k) may be called, namely with $D[i][k] \geq \sum_{j^{\prime}<j}\left(\operatorname{step}\left(i+1, j^{\prime}\right)-\operatorname{step}(i, j)\right)$ for all $j \leq k$, and $D[i+1][k]=0$. Put

$$
a_{j}=i-\sum_{j^{\prime}<j} \operatorname{step}\left(i, j^{\prime}\right) \quad \text { and } \quad b_{j}=i+1-\sum_{j^{\prime}<j} \operatorname{step}\left(i+1, j^{\prime}\right) \quad \text { for } 0 \leq j \leq k
$$

the levels at which P_{i} and P_{i+1} initially enter column j, and let $a_{j}^{\prime}, b_{j}^{\prime}$ be the corresponding values after untangle (i, k) is called. Then one has

$$
a_{j}^{\prime}<b_{j} \leq b_{j}^{\prime} \quad \text { and } \quad a_{j}^{\prime} \leq a_{j}<b_{j}^{\prime} \quad \text { for } 0 \leq j \leq k
$$

This follows from the fact that the value depth $_{j}$ of depth in untangle (i, k) after its possible adjustment in iteration j of the inner loop, satisfies depth ${ }_{j}>a_{j}-b_{j}$ as well as depth ${ }_{j} \geq 0$, and that the call untangle (i, k) sets $a_{j}^{\prime}=a_{j}-$ depth $_{j}$ and $b_{j}^{\prime}=b_{j}+$ depth $_{j}$.
11. The inequality $a_{j}^{\prime}<b_{j}^{\prime}$ shows that untangle (i, k) has succeeded in making P_{i} and P_{i+1} disjoint. We wish to prove that the next call untangle $(i+1, k)$, which may lower P_{i+1}, cannot cause them to be intersecting again. Let $c_{j}=i+2-\sum_{j^{\prime}<j} \operatorname{step}\left(i+2, j^{\prime}\right)$ be the level at which P_{i+2} initially enters column j, for $0 \leq j \leq k$. The assumption that P_{i+1} and P_{i+2} are disjoint in column j at that time gives $b_{j}+1 \leq c_{j}$. Let depth ${ }_{j}$ as above denote the value of this variable in column j during the call of untangle (i, k), and depth ${ }_{j}^{\prime}$ its corresponding value during the call of untangle $(i+1, k)$. One has $b_{j}^{\prime}=b_{j}+d e p t h{ }_{j}$, and the level $b_{j}^{\prime \prime}$ at which P_{i+1} enters column j after the call of untangle $(i+1, k)$ is given by $b_{j}^{\prime \prime}=b_{j}^{\prime}-\operatorname{depth}_{j}^{\prime}$. If we can prove $\operatorname{depth}_{j}^{\prime} \leq d e p t h h_{j}$ for $0 \leq j \leq k$, then it will follow that $a_{j}^{\prime}<b_{j} \leq b_{j}+d e p t h_{j}-d e p t h_{j}^{\prime}=b_{j}^{\prime \prime}$, which means that P_{i} and P_{i+1} are disjoint in columns $j<k$ after the call untangle $(i+1, k)$. One has depth $h_{0}=0=\operatorname{depth}_{0}^{\prime}$, so we may assume that $j>0$, and by induction on j that depth ${ }_{j-1}^{\prime} \leq$ depth $_{j-1}$. Now the algorithm of untangle $(i+1, k)$ sets depth ${ }_{j}^{\prime}=\max \left(\right.$ depth $\left._{j-1}^{\prime}, b_{j}^{\prime}+1-c_{j}\right)$, and by the induction hypothesis one has depth ${ }_{j-1}^{\prime} \leq$ depth $_{j-1} \leq$ depth $_{j}$, so it remains to prove that $b_{j}^{\prime}+1-c_{j} \leq d e p t h_{j}$. But since $b_{j}^{\prime}=b_{j}+d e p t h_{j}$ this is equivalent to $b_{j}+1 \leq c_{j}$, the initial disjointness of P_{i+1} and P_{i+2} mentioned above.

So P_{i} and P_{i+1} are disjoint in columns $j<k$ after the call untangle $(i+1, k)$, and will remain so after any further calls untangle (i^{\prime}, k) with $i^{\prime}>i+1$. In column k the concern is slightly different due to the presence of vertical steps. The level at which path P_{i+1} leaves this column is unchanged, so provided that untangle (i, k) makes P_{i} and P_{i+1} disjoint in column k and that untangle $(i+1, k)$ leaves P_{i+1} a valid path, the paths will remain disjoint. For the first point, $a_{k}^{\prime}<b_{k}$ shows that after untangle (i, k), path P_{i} enters column k below the level where P_{i+1} originally entered it, which is the level where it (still) leaves that column, by the initial condition $D[i+1][k]=0$ (no vertical steps in P_{i+1}). The call untangle (i, k) makes $D[i+1][k]=$ depth , and depth ${ }_{k}^{\prime} \leq$ depth $_{k}$ shows that the initial condition for untangle $(i+1, k)$ (at least as many vertical steps present as are to be removed) is satisfied: P_{i+1} remains a valid path. Finally this initial condition is also met for the first call untangle (k, k) of the sequence, because one has $D[k][k]=a_{k}=a_{k}^{\prime}+$ depth $_{k} \geq$ depth $_{k}$.
12. Exporting paths as sequences of vertices. For the purpose of producing graphic output, we generate lists of vertices from which the paths can be drawn. We need only starting and ending vertices, and intermediate vertices where the direction changes.

```
\(\langle\) Function definitions 3\(\rangle+\equiv\)
    std \(::\) vector \(\langle s t d::\) vector \(\langle s t d::\) pair \(\langle\) unsigned, unsigned \(\rangle\rangle\rangle\) family \(::\) flex_points () const
    \{ std::vector \(\langle s t d::\) vector \(\langle s t d::\) pair \(\langle\) unsigned, unsigned \(\rangle\rangle\rangle\) result \((n)\);
        for (unsigned \(i \Leftarrow 0 ; i<n ;+i\) )
        \(\{\operatorname{result}[i] . \operatorname{reserve}(i=0 ? 2: 2 * i+1) ; \quad / /\) maximum number needed
            result \([i]\).push_back \(\left(s t d::\right.\) make_pair \(\left.\left(i, 0_{\mathrm{u}}\right)\right)\); // starting point
            unsigned level \(\Leftarrow i\);
                for (unsigned \(j \Leftarrow 1 ; j \leq i ;+j\) )
                \(\{\) level \(-\Leftarrow \operatorname{step}(i, j-1)\);
                        if \((D[i][j]>0\) or \(j=i\) or \(B[i][j-1] \neq B[i][j]) \quad / /\) do nothing if continuing straight on
                        \{ result \([i]\). push_back \((\) std:: make_pair (level,\(j))\); // trace horizontal or diagonal segment
                        if \((D[i][j]>0)\) result \([i] \cdot\) push_back \((\) std \(::\) make_pair \((\) level \(-\Leftarrow D[i][j], j))\); // vertical
                    \}
                \}
                assert (level \(=0\) );
                if \((i=0) \quad / /\) add separate ending point, so drawing will give a dot
                    result \([i]\).push_back \(\left(\right.\) std: : make_pair \(\left.\left(0_{\mathrm{u}}, 0_{\mathrm{u}}\right)\right)\); // ending point
        \}
        return result;
    \}
```

13. Converting to tilings of the Aztec diamond. So far everything we have done is in terms of paths. There is however a straightforward correspondence between disjoint families of paths and tilings of the Aztec diamond by dominoes. The Aztec diamond of order m (we shall take $m=n-1$) is the union of 4 (rectangular) "triangles" of $\frac{m+1}{2}$ squares each, touching each other along their straight sides. To efficiently encode domino tilings, we view the squares as coloured in checkerboard fashion, and tell for each black square with which of its four white neighbours it is paired up. The set of black squares forms a $m \times(m+1)$ rectangular grid tilted 45°. We shall imagine the Aztec diamond itself rotated so that the rectangle has it longer side horizontal, in which case the dominoes go in diagonal directions. It turns out that the 4 possible directions of dominoes correspond in the path family setting to the following four possible statuses of a grid point (not on the arrival line) with respect to the path family: (0) no path runs through the point, (1) a path goes through the point, parting in horizontal direction, (2) a path passes parting in vertical direction, and (3) a path passes parting in diagonal direction. This explains our following definition.
\langle Type definitions 2$\rangle+\equiv$
enum $\{$ empty, horizontal, vertical, diagonal $\} ; \quad / /$ possible domino directions: NW, NE, SW, SE
14. With this encoding we can convert a disjoint family into a tiling of the Aztec diamond of order $n-1=$ max_path () in a straightforward way. The main work needed is tracking the (vertical) level of the path in column j, which descends from i to 0 as j goes from 0 to i. The current path direction is assigned as domino orientation to result $[$ level $][j]$.
```
\(\langle\) Function definitions 3\(\rangle+\equiv\)
    std::vector \(\langle\) vec \(\rangle\) family::Aztec_tiling () const
    \(\{\operatorname{assert}(\operatorname{valid}()) ; \quad / /\) this ensures no overwriting and level \(\geq 0\) below
        std \(:\) :vector \(\langle\mathbf{v e c}\rangle\) result \((n)\);
        if \((n=0)\) return result; \(/ /\) you never know
        std::fill(result.begin () +1 , result.end (), vec(n, empty)); // result[0] remains empty
        for (unsigned \(i \Leftarrow 0 ; i<n ;++i\) )
        \(\{\operatorname{assert}(i=n-1\) or \(\operatorname{disjoint}(i))\);
            unsigned level \(\Leftarrow i\);
            for (unsigned \(j \Leftarrow 0 ; j<i ;+j\) )
            \(\{\) result \([\) level \(][j] \Leftarrow B[i][j]\) ? diagonal : horizontal; level \(-\Leftarrow\) step \((i, j)\);
                for (unsigned \(k \Leftarrow 0 ; k<D[i][j+1] ;+k)\) result \([\) level --\(][j+1] \Leftarrow\) vertical;
            \}
            assert \((\) level \(=0) ; \quad / /\) double-check that \(P_{i}\) reached the bottom level
        \}
        return result;
    \}
```

15. PostScript producing functions. To illustrate the family of paths constructed, we provide output in PostScript format. The following simple function provide necessary starting and ending code for pages.
```
\(\langle\) Function definitions 3\(\rangle+\equiv\)
    void ps_start_page (std::ostream \(\& f\), unsigned no)
```



```
    void ps_end_page (std::ostream \& f)
    \(\{f \ll " \backslash n r e s t o r e \backslash n s h o w p a g e \backslash n \backslash n " ;\}\)
```

16. Drawing a path is straightforward, using a vector of coordinate pairs as provided by the flex_points method. It is at the point where we switch to the Cartesian coordinate ordering (column coordinate first) used in PostScript.
\langle Function definitions 3$\rangle+\equiv$
void ps_output_path (const std::vector $\langle s t d::$ pair \langle unsigned, unsigned $\rangle\rangle \& p$, std::ostream \&f)

$f \ll$ "stroke\n";
\}
17. We make a complete Postscript page, and do worry a bit about scale: we make the page 500 big-points wide, which is about 17.5 cm . We also allow some variation in the display format, to take into account the column k up to which the paths have been made disjoint: the paths with index less than k, which may intersect mutually and with the others, are printed in light gray. When $k=0$, all paths will therefore print black. If in addition the optional argument highlight is set, then paths with index less than k are not printed at all, and path highlight is made red to highlight it.
```
\(\langle\) Function definitions 3\(\rangle+\equiv\)
    void ps_output_family_as_page
            (const family \(\& p\), std::ostream \(\& f\), unsigned \(k\), unsigned pageno, unsigned highlight \(\Leftarrow\)
                        \(\sim 0\) u)
    \{ ps_start_page ( \(f\), pageno \()\);
        float scale \(\Leftarrow 500.0 /(\) p.max_path ()\(+2)\);
```



```
        std::vector \(\langle s t d::\) vector \(\langle s t d::\) pair \(\langle\) unsigned, unsigned \(\rangle\rangle\rangle\) points \(\Leftarrow\) p.flex_points ();
        if (highlight \(=\sim 0_{\mathrm{u}}\) and \(k>0\) )
        \(\left\{f \ll\right.\) "gsave \(\cup 0.75_{\llcorner }\)setgray \(\backslash\) n"; // set to light gray
                for (unsigned \(i \Leftarrow 0 ; i<k ;+i\) ) ps_output_path(points[i], \(f\) );
                \(f \ll\) "grestore\n";
        \}
        for (unsigned \(i \Leftarrow k ; i<\) points.size (); + \(+i\) )
            if ( \(i \neq\) highlight \()\) ps_output_path(points \([i], f)\);
        if \((k \leq\) highlight and highlight < points.size()) // highlighted path last, so on top
```



```
            ps_output_path(points[highlight], \(f\) ); f<<"grestore\n";
        \}
        \(p s \_e n d \_p a g e(f)\);
\}
```

18. The Aztec_tiling method to produces a $(n-1) \times n$ matrix of domino orientations, used below to draw each domino in its correct place. The Aztec diamond is tilted, so that its black squares form a non-tilted $(n-1) \times n$ rectangular grid; it corresponds to the grid points traversed by the path family, excluding the points of arrival of the paths. More precisely for a titled black square b, we shall place such a grid point on the midpoint M_{b} of its northwest edge. The midpoints of the other three sides of b are not grid points, but by reflecting M in each of them give rise to grid points situated east, southeast or south of M. The orientations horizontal, diagonal and vertical at M describe the domino containing the segment from M_{b} to its reflected image, formed by b and its white neighbour in the corresponding direction; the final orientation empty corresponds to the domino formed by the two squares separated by the edge on which M_{b} itself lies.
The function below outputs the coordinates $\left(i-\frac{1}{4}, j+\frac{1}{4}\right)$ of the centre of the black square b (with diagonal of length 1) of which $M_{b}=(i, j)$ lies on the northwest edge, followed by an indication of the direction of the domino with respect to this square, which will actually name a PostScript operator defined appropriately.
```
\(\langle\) Function definitions 3\(\rangle+\equiv\)
    void ps_write_dominoes (std::ostream \&f, const std::vector \(\langle\mathbf{v e c}\rangle\) \&orient, unsigned no)
    \{ unsigned \(n \Leftarrow\) orient.size (); static char compass []\([3] \Leftarrow\{\) "NW", "NE", "SW", "SE" \};
        \(p s \_\)start_page ( \(f\), no \()\);
        float scale \(\Leftarrow 500.0 /(n+1)\);
```



```
        for (unsigned \(i \Leftarrow n ; i-->1\); )
            for (unsigned \(j \Leftarrow 0 ; j<n ;+j\) )
            \(f \ll j \ll " .25\) ப" \(\ll i-1 \ll " .75\) ப" \(\ll \operatorname{compass}[\) orient \([i][j]] \ll>n^{\prime} ;\)
        \(p s \_e n d \_p a g e(f)\);
    \}
```

19. The following code will be executed by the main program whenever PostScript output is
\langle Write preamble of PostScript file to out_stream 19$\rangle \equiv$

"\%\%DocumentPaperSizes: $\mathrm{a} 4 \backslash \mathrm{n} \% \%$ EndComments $\backslash \mathrm{n} \backslash \mathrm{n} 1$ Setlinecap $\backslash \mathrm{n}$ ";

"\{rotate ${ }_{\sqcup} .5_{\sqcup}$ Sqrt $_{\sqcup}$ dup $\left._{\sqcup} s c a l e\right\}_{\sqcup}$ bind $_{\sqcup} \operatorname{def} \backslash n$ "; out_stream <<"/domino\n" "\{பgsave $\cup_{\sqcup} 0_{ப}$ setlinewidth $\backslash n "$

 out_stream $\ll " / N W_{\sqcup}\left\{\right.$ gsave $_{\sqcup}$ translate ${ }_{\sqcup} 135_{\sqcup}$ orient $_{\sqcup} /$ yellow $_{\sqcup} /$ green $_{\lrcorner} /$blue $_{\sqcup}$ domino" $^{\prime}$

"/SW \{gsave $_{\sqcup}$ translate ${ }_{\sqcup} 225_{\sqcup}$ orient $_{\sqcup} /$ green $_{\sqcup} /$ red $_{\sqcup} /$ yellow $_{\lrcorner}$domino" $^{\prime}$

"பgrestore\} bind $_{\sqcup}$ def $\backslash n$ ";
\}
This code is used in section 21.
20. The following code will be executed at the end by the main program whenever PostScript output is generated. The variable cur_page, used to number pages, at the end contains the numbers of pages produced.
\langle Write trailer of PostScript file to out_stream 20$\rangle \equiv$
\{ out_stream < "\n\%\%Trailer \backslash n\%\%Pages: \quad " \ll cur_page $\ll " \backslash n \% \%$ EOF $\backslash n " ;\}$
This code is used in section 21.
```
21. The main program. The main program reads the command line to find out what needs to be done.
\#include <fstream>
\#include <sstream>
\#include <ctime>
    int main (int argc, char **argv)
    \{ bool do_family \(\Leftarrow\) true, do_dominoes \(\Leftarrow\) false, exhaustive \(\Leftarrow\) false, do_ps \(\Leftarrow\) true, seed_set \(\Leftarrow\) false;
        int \(c\); unsigned int order, snapshots \(\Leftarrow 0\), column_detail \(\Leftarrow \sim 0\), random_seed \(\Leftarrow 0\);
        std::string file_name_base; 〈Process options 24\(\rangle\)
        std::ofstream out_file;
        triangle tri (order +1 );
        for (unsigned \(i \Leftarrow 0 ; i \leq\) order \(;++i\) ) tri \([i]\).resize ( \(i\),true);
        if (not exhaustive)
        \{ std::srand(seed_set ? random_seed : std \(::\) time \((\odot))\); // intialise random generator
            randomize(tri);
        \}
        if (not file_name_base.empty ())
        \{ std::ostringstream os; os << file_name_base <<' _' < order;
            if (snapshots \(>0\) ) os \(\ll{ }^{\prime}{ }^{\prime} \ll\) snapshots;
            os \(\ll " \cdot p s " ;\) out_file.open(os.str().c_str(), std::ios_base::out);
            if (not out_file.is_open())
```



```
        \}
        std::ostream \&out_stream(out_file.is_open() ? out_file : std::cout);
        if (do_ps) 〈Write preamble of PostScript file to out_stream 19〉
        unsigned cur_page \(\Leftarrow 0\);
        if (exhaustive)
        \(\{\) unsigned long long count \(\Leftarrow 0\);
            do
            \(\left\{\right.\) std \(::\) cout \(\ll \gg r^{\prime} \ll\) count \(++;\langle\) Perform conversion of tri to disjoint family and back 22\(\rangle\)
            \} while ( \(n \operatorname{ext}(t r i)\) );
        \}
        else 〈Perform conversion of tri to disjoint family and back 22\(\rangle\)
        if (do_ps) 〈Write trailer of PostScript file to out_stream 20〉
        if (out_file.is_open ())
        \{ out_file.close (); std::cout < "\nSucces! \n"; // If we get here, things went well
        \}
        return 0; // success
    \}
```

22. The test initialises p from tri, converts to disjoint form and test for validity, converts back again and tests against the initial configuration. In case snapshots and/or column_detail have been set, we shall need to interrupt our algorithm at various points to produce output, which we shall detail below.
\langle Perform conversion of tri to disjoint family and back 22$\rangle \equiv$
\{ family $p($ tri $) ; \quad / /$ encode tri as probably intersecting family family $q \Leftarrow p ; \quad / /$ keep a copy for comparison if (snapshots >0 or column_detail $\neq \sim 0_{\mathrm{u}}$) 〈Perform untangling of p with intermediate output at snapshots different steps, and maybe at column column_detail 23\rangle else to_disjoint (p); // transform into disjoint family if (not p.valid ()$)$ \{ std::cout $\ll " \sqcup$ Mapping \lrcorner problem $\lrcorner f o u n d " \ll s t d:: e n d l ;$ return $1 ;\}$ if (do_ps) \{ if (do_family) ps_output_family_as_page (p,out_stream, $0,++$ cur_page);
if (do_dominoes) ps_write_dominoes(out_stream,p.Aztec_tiling(),++cur_page); \} to_cliffs (p); // decode it again

\}
This code is used in section 21.
23. If we want to be able to show intermediate stages of the untangling process, then we cannot call to_disjoint. Instead we call the method untangle a number of times, interrupting the output loop for output snapshots times, including at the very beginning. We must deal with the possibility that snapshots $=0$ though (in case column_detail has been set); since we cannot divide into 0 chunk, we set a boolean and then snapshots $\Leftarrow 1$ to handle this case.
<Perform untangling of p with intermediate output at snapshots different steps, and maybe at column column_detail 23$\rangle \equiv$
$\{$ bool chunk_output \Leftarrow snapshots >0; if (not chunk_output) snapshots $\Leftarrow 1$; unsigned $k \Leftarrow$ order; for (unsigned group \Leftarrow snapshots; group $-->0 ;$) // group counts chunks, backwards \{ if (chunk_output) ps_output_family_as_page(p,out_stream, $k,++$ cur_page); // partial output
unsigned next_stop $\Leftarrow($ group $*$ order + snapshots -1$) /$ snapshots; $\quad / /$ round up
while ($k-->$ next_stop) $/ /$ decrease until next stop
\{ unsigned i; // declare outside next loop for final test
for $(i \Leftarrow k ; i<$ order $;+i)$
\{ if ($k=$ column_detail)
ps_output_family_as_page (p,out_stream, $k,++$ cur_page, i); // partial output
if (not p.untangle (i, k))
break; // separate P_{i} and P_{i+1} in column k; stop if nothing changed \}
if $(k=$ column_detail and $i=$ order $) \quad / /$ then last untangle did change
ps_output_family_as_page (p, out_stream, $, k,++$ cur_page,i); // last one
\}
$++k ; \quad / /$ compensate decrement after final test in while loop \}
\}
This code is used in section 22.
24. Option processing. There is one obligatory argument, the rank n Aztec diamond, which should follow any options. To do an exhaustive test for generating all tilings of, the option -x may be specified; otherwise the program will run a random sample and produce PostScript output. The option -X does an exhaustive test and produces PostScript output for all families. If the option -t is given, any display of a disjoint family will be followed by the corresponding tiling of the Aztec diamond, while -n will suppress output of the path family. The option -s with (obligatory) numeric value m will produce m intermediate snapshots of not yet disjoint families during the construction; the same result can also be obtained by specifying " n / m " in place of n. An option -c with numeric value k will produce a detailed sequence of all stages of processing column k. A random seed to be used can be fixed by giving it as argument to a -r flag. An output file may be specified as final argument (if not, any PostScript output will go to cout).
```
\#include <unistd.h>
\#include <cctype>
\(\langle\) Process options 24\(\rangle \equiv\)
    \{ opterr \(\Leftarrow 0 ; \quad / /\) clear error status
        while \(((c \Leftarrow \operatorname{getopt}(\arg c, \operatorname{argv}\), "xXtns:c:r:")) \(\neq-1)\)
            switch (c)
            \{
            case 'x': do_ps \(\Leftarrow\) false; \(\quad / /\) fall through
            case 'X': exhaustive \(\Leftarrow\) true; break;
            case 't': do_dominoes \(\Leftarrow\) true; break;
            case 'n': do_family \(\Leftarrow\) false; break;
            case 's': case 'c': case 'r':
                \{ unsigned int \& \(d s t \Leftarrow *(c=\) 's' ? \& snapshots : \(c=\) 'c'? \& column_detail : \&random_seed);
                    std::stringstream \(\arg (\) optarg \() ; \arg \gg d s t\);
                if (arg.fail())
```



```
                \}
            \}
            break;
        case '?'
            if (optopt \(=\) 's' or optopt \(=\) ' C ' or optopt \(=\) 'r')
```



```
                else \(\left\{\right.\) std::cerr \(\ll\) "Unknown option \(_{\sqcup}\) " \(\ll \operatorname{char}(\) optopt \() \ll " . \backslash \mathrm{n} " ;\) std \(\left.:: \operatorname{exit}(1) ;\right\}\)
            default: std::abort();
            \}
```



```
        std::stringstream \(\arg (\operatorname{argv}[\) optind ++\(]) ;\) arg \(\gg\) order;
        if \((\arg . f a i l())\)
```



```
        char \(c\); \(\arg \gg c\);
        if \((c=\) ' \(/\) ')
        \(\{\) arg \(\gg\) snapshots;
            if \((\arg . f a i l())\)
```



```
        \}
        if \((\) do_ps and optind \(<\operatorname{argc})\{\) std::stringstream \(\arg (\operatorname{argv}[o p t i n d++]) ; \arg \gg\) file_name_base; \(\}\)
        if (optind \(\neq\) argc)
            \{ std::cerr <<"Foundப" < argc - optind <<"ьtrailing \(\downarrow\) arguments \(\backslash n " ;\) std::exit(1); \}
    \}
```

This code is used in section 21.
25. Generating triangles of bits. To systematically loop over possible triangle values, the function next will advance to the next value, and return true if this was possible. In order to give a nicer enumeration of the triangles, we shall traverse by weakly increasing number of false values (initially all bits were set to true). To do this we search first for the first false value, then while setting it and immediately following false bits to true, search for the first true value. If it exists, we set it to false, as well a number of initial bits one less than the number of false bits set to true, so that the number of false values remains unchanged. In case we don't find any false values in the first place, or no true values in the second place, we increase the number of false values if possible, and set this number of initial bit to false. Finally if every bit was found to be false, we return false to indicate the end of the iteration.

```
\(\langle\) Function definitions 3\(\rangle+\equiv\)
    bool next (triangle \&tri)
    \{ bool target \(\Leftarrow\) false; unsigned count \(\Leftarrow 0 ; \quad / /\) counts false values changed to true, minus 1
        for (unsigned \(i \Leftarrow 1 ; i<\operatorname{tri} . \operatorname{size}() ;+i\) )
        \(\{\) bitvec \(\&\) trii \(\Leftarrow \operatorname{tri}[i]\);
            for (unsigned \(j \Leftarrow 0 ; j<i ;+j\) )
                    if (not \(\operatorname{trii}[j])\{\operatorname{trii}[j] \Leftarrow\) target \(\Leftarrow\) true; ++ count; \(\} \quad / /\) change false to true and count
                    else if (target) // then we found our true
                        \(\left\{\operatorname{trii}[j] \Leftarrow\right.\) false; -- count; goto phase \(\left.{ }_{2} ;\right\}\)
        \}
            // if we come here we did not find false followed by true
        if \((2 *\) count \(=\operatorname{tri} . \operatorname{size}() *(\operatorname{tri} \operatorname{size}()-1)) \quad / /\) then all bits were false
            return false; // so we've reached the end
        else \(\quad / /\) we found (and set) count bits false, but no following true
            ++ count; // this will increment the number of false bits by 1
    phase \({ }_{2}\) :
        if (count \(=0\) ) return true; \(\quad / /\) we just shifted one false one place further
        for (unsigned \(i \Leftarrow 1 ; i<\operatorname{tri} . \operatorname{size}() ;+i\) )
        \(\{\) bitvec \& trii \(\Leftarrow\) tri \([i]\);
            for (unsigned \(j \Leftarrow 0 ; j<i ;+j\) )
            \(\{\operatorname{trii}[j] \Leftarrow\) false;
                    if ( - count \(=0\) ) return true; \(\quad / /\) we finished setting count bits to false
            \}
        \}
        assert(false); // we should never come here
        return true; // but the compiler may not understand that
    \}
```

26. We also want to be able to generate random values in a triangle. We get random bits by calling std::rand and taking bit number 5 , hoping it will be a bit more random than bit number 0 .
```
#include <cstdlib>
<Function definitions 3\rangle+\equiv
    void randomize (triangle &tri)
    { for (unsigned }i\Leftarrow1;i<\operatorname{tri.size();++i)
        { bitvec & trii }\Leftarrowtri[i]
                for (unsigned j\Leftarrow0;j<i;++j) trii [j]\Leftarrow(std::rand ()&#20) = 0;
        }
}
```


27. Index.

abort: 24.
arg: $\underline{24}$.
argc: 21, 24 .
argv: 21, 24.
assert: $2,6,7,8,12,14,25$.
Aztec_tiling: 2, 14, 18, 22.
B: $\underline{2}$.
begin: 4, 14.
bitvec: 2, 25, 26 .
bool: $\underline{5}, \underline{6}, \underline{9}, \underline{25}$.
c: $\underline{21}, \underline{24}$.
c_str: 21.
cerr: 21, 24.
chunk_output: $\underline{23}$.
cliffify: 2, 7, 8 .
close: 21.
column_detail: 21, 22, 23, 24.
compass: 18.
count: 21, 25.
cout: 21, 22, 24.
cur: $\underline{6}, \underline{7}, 10$.
cur_page: 20, 21, 22, 23.
$D: \quad \underline{2}$.
depth: $\underline{6}, \underline{7}, 10$.
diagonal: 13, 14, 18.
disjoint: $2,5,6,8,14$.
do_dominoes: 21, 22, 24 .
do_family: 21, 22, 24 .
do_ps: 21, 22, 24.
dst: $\underline{24}$.
empty: 13, 14, 18, 21.
end: 4, 14.
endl: 22.
exhaustive: 21, 24 .
exit: 21, 24.
$f: \underline{8}, \underline{15}, \underline{16}, \underline{17}, \underline{18}$.
fail: 24 .
family: $\underline{2}, \underline{3}, \underline{4}, 5,6,7,8,9,10,12,14,17,22$.
file_name_base: 21, 24.
fill: 4, 14 .
first: 16.
flex_points: 2, 12, 16, 17.
getopt: 24.
group: $\underline{23}$.
$h: \quad \underline{8}$.
highlight: 17.
horizontal: 13, 14, 18.
$h_{0}: \quad \underline{2}, \underline{7}$.
$h_{1}: \underline{2}, \underline{7}$.
$i: \underline{2}, \underline{3}, \underline{4}, \underline{5}, \underline{6}, \underline{7}, \underline{8}, \underline{12}, \underline{14}, \underline{17}, \underline{18}, \underline{21}, \underline{23}, \underline{25}, \underline{26}$. int: $\underline{21}$.
ios_base: 21.
is_open: 21.
isdigit: 24.
$j: \underline{2}, \underline{4}, \underline{5}, \underline{6}, \underline{7}, \underline{12}, \underline{14}, \underline{16}, \underline{18}, \underline{25}, \underline{26}$.
$k: \underline{2}, \underline{6}, \underline{7}, \underline{8}, \underline{14}, \underline{17}, \underline{23}$.
level: 12, 14.
main: 21.
make_pair: 12.
max_path: 2, 3, 14, 17.
$n: \underline{2}, \underline{8}, \underline{18}$.
n_paths: 2,8 .
next: 21, 25.
next_stop: $2 \underline{23}$.
$n n: \quad \underline{2}, \underline{3}$.
no: 15, 18.
ofstream: 21.
open: 21.
optarg: 24.
opterr: 24.
optind: 24.
optopt: 24.
order: 21, 23, 24.
orient: 18.
os: 21.
ostream: $15,16,17,18,21$.
ostringstream: 21.
out: 21.
out_file: $\underline{21}$.
out_stream: 19, 20, 21, 22, 23.
$p: \underline{16}, \underline{17}, \underline{22}$.
pageno: 17.
pair: $2,12,16,17$.
phase $_{2}$: 25 .
points: 17.
ps_end_page: 15, 17, 18.
ps_output_family_as_page: 17, 22, 23.
ps_output_path: 16, 17.
ps_start_page: 15, 17, 18.
ps_write_dominoes: 18, 22.
push_back: 12.
q : $\underline{22}$.
rand: 26.
random_seed: 21, 24.
randomize: 21, 26.
reserve: 12.
resize: 3, 4, 21.
result: 12, 14.
$s: \quad \underline{4}, \underline{5}$.
scale: 17, 18.
second: 16.
seed_set: $\underline{21}$.
size: $4,16,17,18,25,26$.
snapshots: 21, 22, 23, 24 .
srand: 21.
std: $2,4, \underline{12}, \underline{14}, 15,16,17,18,21,22,24,26$.
step: $2,4,5,6,7,8,12,14$.
str: 21.
string: 21.
stringstream: 24.
t : $\underline{5}$.
target: 25 .
time: 21.
to_cliffs: 8, 22.
to_disjoint: 8, 10, 22, 23.
tri: $\underline{2}, \underline{4}, \underline{21}, 22, \underline{25}, \underline{26}$.
triangle: $\underline{2}, 4,8,21,25,26$.
trii: 25, $\underline{26}$.
unsigned: $\underline{2}$.
untangle: $2,6,7,8,10,11,23$.
valid: $2,5,8,14,22$.
vec: $\underline{2}, 8,14,18$.
vector: $2,12,14,16,17,18$.
vertical: 13, 14, 18.
void: $\underline{7}, \underline{8}, \underline{15}, \underline{16}, \underline{17}, \underline{18}, \underline{26}$.
$y: \underline{2}, \underline{9}$.
\langle Function definitions $3,4,5,6,7,8,9,12,14,15,16,17,18,25,26\rangle \quad$ Used in section 1.
〈Perform conversion of tri to disjoint family and back 22\rangle Used in section 21.
〈Perform untangling of p with intermediate output at snapshots different steps，and maybe at column column＿detail 23\rangle Used in section 22.
〈Process options 24〉 Used in section 21.
\langle Type definitions 2，13〉 Used in section 1.
〈Write preamble of PostScript file to out＿stream 19〉 Used in section 21.
〈Write trailer of PostScript file to out＿stream 20〉 Used in section 21.

AZTEC

Section Page Page
An Aztec diamond bijection 1
A class for path families 2
A proof that disjointness is achieved 10 7
Exporting paths as sequences of vertices 12
Converting to tilings of the Aztec diamond 13
PostScript producing functions 15
The main program 21
Option processing 24
Generating triangles of bits 25
Index 27 161

[^0]: \langle Type definitions 2〉
 \langle Function definitions 3\rangle

