
§1 AZTEC AN AZTEC DIAMOND BIJECTION 1

1. An Aztec diamond bijection. This little program is meant to verify an algorithmic bijection,
proposed by Frédéric Bosio, between on one hand families of certain lattice paths across a n×n square, and

on the other hand triangular arrays of side length n of Boolean values (giving n(n+1)
2 bits in all). It also

produces PostScript output for configurations obtained by this procedure, possibly generated at random
To fix ideas geometrically, we use swapped Cartesian coordinates: the first coordinate increases upwards

and the second to the right. Therefore the first coordinate determines the “row” of a point, and the second
coordinate its “column”, as in matrices, but columns grow upwards. When producing PostScript output, we
shall take care to inverse the order of coordinates.

〈Type definitions 2 〉
〈Function definitions 3 〉

2 A CLASS FOR PATH FAMILIES AZTEC §2

2. A class for path families. Our lattice paths will come in families of n, path Pi for 0 ≤ i < n
going from (0, i) on the vertical axis to (i, 0), on the horizontal axis, with steps that either increase the first
coordinate, or decrease the second, or both. Path P0 has no steps, but occupies the point (0, 0); all paths
in our family are supposed to be disjoint at the end of the construction. Path Pi is determined by i bits in
B[i] and i+ 1 natural numbers in D[i]: the former describe whether the step between columns j and j + 1
is horizontal (value 0, false) or diagonal (value 1, true) for 0 ≤ j < i, while the latter count the number of
vertical steps in column j, 0 ≤ j ≤ i. We provide step(i, j) as a read-only way to refer to B[i][j] viewed as
value in {0, 1}; it is the level decrease in path Pi going from column j to j +1. The sum of all values in B[i]
and D[i], which are associated to Pi, should be i (this is tested among other things by the valid method),
so that along that path the second coordinate decreases for i to 0.
We provide basic manipulators untangle , that (under specific conditions) modifies Pi and Pi+1 in a special

way that will ensure they become disjoint, and that the original paths can be recovered from the modified
one, and its inverse operation cliffify (so called because it moves any vertical steps in column k from Pi+1

to Pi, which when iterated down to k = i will make Pk end with a sheer vertical drop). The latter requires
and modifies the values of two additional quantities that it would otherwise need to laboriously calculate
each time each time, namely the levels h0 and h1 where the paths Pi and Pi+1 enter into column k.
To produce output from a family we provide the methods flex points for display as a path family, which

lists all points where paths start, end, or change direction, and Aztec tiling for display as a tiling of the
Aztec diamond, which lists the orientations of all dominoes listed according to their black squares.

#include <vector>

#include <iostream>

〈Type definitions 2 〉 ≡
typedef std ::vector〈unsigned〉 vec;
typedef std ::vector〈bool〉 bitvec;
typedef std ::vector〈bitvec〉 triangle;
class family

{ unsigned n;
triangle B; // B[i][j] gives direction of Pi when leaving column j
std ::vector〈vec〉 D; // D[i][j] counts vertical steps of Pi in column j

public:
family(unsigned nn); // nn determines max path ()
family(const triangle &tri); // set from triangle tri of bits

unsigned int n paths () const { return n; }
unsigned int max path () const { return n− 1; }
unsigned int step (unsigned int i, unsigned int j) const
{ assert (i > j); return unsigned(B[i][j]); }
bool operator 6= (const family &y) const;
bool valid () const;
bool disjoint (unsigned i) const; // whether paths Pi and Pi+1 are disjoint

bool untangle (unsigned i, unsigned k); // paths Pi, Pi+1 up to column k; anything changed?
void cliffify (unsigned i, unsigned k, unsigned &h0, unsigned &h1); // inverse

std ::vector〈std ::vector〈std ::pair〈unsigned,unsigned〉〉〉 flex points () const;
std ::vector〈vec〉 Aztec tiling () const; // convert to (n− 1)× n matrix of domino orientations

};

See also section 13.

This code is used in section 1.

§3 AZTEC A CLASS FOR PATH FAMILIES 3

3. When constructing a family value, the vectors B[i] and D[i] for path Pi are dimensioned to allow
column indices form 0 to i, exclusive for B and inclusive for D. In practice one will always have D[i][0] = 0
so that we could do with one entry less for each vector D[i], but it is not worth the complications this causes
to do so. More generally each path that reaches column j will decrease its second coordinate by at most j
up to that column inclusive, so that all paths are Schröder paths. Externally we use as value to parameterise
this class the size of the square across which the paths run (of which the end points of Pn−1 span a diagonal,
and which is the value of max path ()), that is nn = n− 1, and it is therefore that number that is passed to
the constructor. The number nn is also the order of the corresponding Aztec diamond.

〈Function definitions 3 〉 ≡
family::family(unsigned nn) : n(nn + 1), B(n), D(n)
{ for (unsigned i ⇐ 0; i < n; i++)

{ B[i].resize (i, true); D[i].resize (i+ 1, 0); }
}

See also sections 4, 5, 6, 7, 8, 9, 12, 14, 15, 16, 17, 18, 25, and 26.

This code is used in section 1.

4. When constructing from a triangular array of Boolean values, with array i having size i for 0 ≤ i < n,
these values are used to determine the path from (0, i) in column 0 until reaching column i, taking horizontal
steps and diagonal steps only; for each false value the step will be horizontal, and diagonal for a true value.
A number of vertical steps equal to the number of horizontal steps remains at the end in column i.

#include <algorithm>

〈Function definitions 3 〉 +≡
family::family(const triangle &tri) : n(tri .size ()), B(tri), D(n)
{ for (unsigned i ⇐ 0; i < n; ++i)

{ D[i].resize (i+ 1); std ::fill (D[i].begin (), D[i].end ()− 1, 0); // set off-diagonal entries of D to 0
unsigned s ⇐ i;
for (unsigned j ⇐ 0; j < i; ++j)

s −⇐ step(i, j); // count horizontal steps (total minus diagonal ones)
D[i][i] ⇐ s; // number of vertical steps at end of Pi matches that of horizontal ones

}
}

5. The method disjoint tells whether a pair of successive paths Pi, Pi+1, have no points in common. The
method valid tells whether the whole family is valid, which means all paths are disjoint, and end at level 0.

〈Function definitions 3 〉 +≡
bool family::disjoint (unsigned i) const
{ unsigned s ⇐ 0, t ⇐ D[i+ 1][0]; // in fact t = 0, but morally it is D[i+ 1][0]

for (unsigned j ⇐ 0; j < i and t ≤ s; ++j)
{ t +⇐ step(i+ 1, j) +D[i+ 1][j + 1]; s +⇐ D[i][j] + step(i, j); }

return t ≤ s; // if at any point we have t > s, we return false immediately
}

bool family::valid () const
{ for (unsigned i ⇐ 0; i < n; ++i)

{ if (i < n− 1 and not disjoint (i)) return false;
unsigned s ⇐ D[i][0];
for (unsigned j ⇐ 0; j < i; ++j) s +⇐ step(i, j) +D[i][j + 1];
if (s 6= i) return false;

}
return true;

}

4 A CLASS FOR PATH FAMILIES AZTEC §6

6. The method untangle below is the first element used to define the bijection: it modifies a pair of
successive paths Pi, Pi+1, such that afterwards disjoint (i) holds, provided Pi and Pi+1 were already disjoint
beyond column k (this explains the name untangle , but it must satisfy much more than this, in particular
the method should be invertible). It is not intended to be used on paths of general form: it is assumed
that no vertical steps are present in these paths in columns j < k, and for Pi+1 none in column k either.
Moreover, it is assumed that Pi has enough vertical steps in column k, namely at least the value of depth
as computed at the end of the function below. Only columns up to column k are considered or altered in
this method. After the method has operated some vertical steps of path Pi in column k will be transfered
to path Pi+1, while remaining in column k; their number is the final value of depth , whence the mentioned
condition is necessary to ensure that Pi remains a valid path.

If one considers the paths up to the point where they first enter column k, they only have horizontal
and diagonal steps, and by taking the difference between the two paths, we classify the situation in three
types based on the value of step(i + 1, j) − step(i, j) ∈ {−1, 0,+1}. When this value is equal to +1 the
paths approach, or if already crossed increase their crossing: path i is horizontal and Pi+1 diagonal. When
this difference is 0, the paths evolve in parallel: either both are horizontal or both are diagonal. And
when the value is −1 the paths move apart or if currently crossed decrease their amount of crossing: Pi is
diagonal and Pi+1 horizontal. Define the “current crossing” in column j to be the sum of these differences
step(i+ 1, j′)− step(i, j′) for 0 ≤ j′ < j. The variable depth records the maximal crossing level seen so far.
Calling untangle (i, k) will interchange, only for those steps where depth increases (necessarily a situation
where step(i+1, j) = 1 and step(i, j) = 0), the directions of the steps in both paths, so Pi becomes diagonal
and Pi+1 becomes horizontal at these places.

#include <cassert>

〈Function definitions 3 〉 +≡
bool family::untangle (unsigned i, unsigned k)
{ assert (k ≤ i);

signed int cur ⇐ 0; unsigned int depth ⇐ 0;
for (unsigned j ⇐ 0; j < k; ++j)
{ cur +⇐ step(i+ 1, j)− step(i, j);
if (cur > signed(depth))
{ depth ⇐ cur ; // increase depth whenever cur rises above it
B[i][j] ⇐ true; B[i+ 1][j] ⇐ false; // Pi gets a diagonal step, Pi+1 a horizontal step

}
}
assert (depth ≤ D[i][k]); // we did not remove more vertical steps than were present in Pi

assert (D[i+ 1][k] = 0); // and none were present in Pi+1

D[i][k] −⇐ depth ; D[i+ 1][k] ⇐ depth ; // transfer depth vertical steps to Pi+1

return depth > 0;
}

§7 AZTEC A CLASS FOR PATH FAMILIES 5

7. The method cliffify is the inverse operation of untangle , whenever one of them is called with the necessary
conditions satisfied (this implies in particular the conditions for the other operation will be satisfied whenever
one operation has finished). Like for the call untangle (i, k), when calling cliffify (i, k, h0, h1) it is assumed
that any vertical steps that occur in paths Pi or Pi+1 are in columns j ≥ k (but now vertical steps in
column k can appear both in Pi and in Pi+1). Moreover Pi and Pi+1 are assumed to be disjoint initially,
up to column k inclusive. The call will not inspect of modify anything in columns j > k; after the call the
vertical steps in column k appear only in Pi (while their total number does not change), but the paths Pi

and in Pi+1 may intersect in any of the columns j ≤ k (and they will intersect if any modification was made,
which happens if and only if there were any vertical steps of Pi+1 in column k).
The idea for defining cliffify is simple: the final value of depth in the call untangle (i, k) is saved as the

number of vertical steps of Pi+1 in column k, and if we can retrace the values of depth for all previous columns,
then it will be easy to restore the paths Pi and Pi+1 to their state before applying untangle (i, k). Every time
depth was increased in untangle (i, k), say at column j, the positive quantity

∑
j′<j(step(i+1, j′)−step(i, j′))

rises when replacing j by j + 1, and it will never descend to the value it had at j when further increasing j.
This means that when scanning in the reverse direction, and assuming we have computed in cur and depth

the values of this summation respectively of the variable depth as they were in the forward direction at j+1,
we can easily spot when depth needs decreasing when advancing (downwards) to j, namely if cur = depth

and step(i + 1, j) − step(i, j) = −1. If we decrease depth only in that case, and change cur by adding
step(i+1, j)− step(i, j) in all cases, then we shall find the correct values of cur and depth for each column,
and moreover cur ≥ depth after every iteration. Note that contrary to depth , the variable cur does not
retrace the values of the variable of the same name in untangle ; in particular we can take cur to be unsigned
here, but not in untangle . Since cur becomes 0 at j = 0, one is bound to find depth decreasing all the way
down to 0 at some point. It is clear that nothing will change to the paths anymore once depth = 0, so we
return from this method immediately when that happens.

〈Function definitions 3 〉 +≡
void family::cliffify (unsigned i, unsigned k, unsigned &h0, unsigned &h1)
{ assert (k ≤ i);

unsigned depth ⇐ D[i+ 1][k]; // pick up final value of depth
unsigned cur ⇐ h1 − h0 − 1;
assert (h1 > h0 and depth ≤ cur); // Pi and Pi+1 are initially disjoint in column k
if (depth = 0) return; // nothing needs to be done in this case
D[i+ 1][k] ⇐ 0; D[i][k] +⇐ depth ; // transfer depth vertical steps to Pi

h1 −⇐ depth ; h0 +⇐ depth ; // and adapt the entry points into column k correspondingly
for (unsigned j ⇐ k; j−− > 0;)
{ cur +⇐ step(i+ 1, j)− step(i, j);
if (cur < depth)
{ depth ⇐ cur ; // decrease depth when cur first descends below it

B[i][j] ⇐ false; B[i+ 1][j] ⇐ true; // Pi gets a horizontal step, Pi+1 a diagonal step
if (depth = 0) return; // and if it reaches 0, nothing is left to do

}
}
assert (cur = 0); // shouldn’t be reached, since depth also descended to 0, causing return

}

6 A CLASS FOR PATH FAMILIES AZTEC §8

8. The function to disjoint takes a configuration as obtained after constructing from a triangle of bits,
and transforms it into a disjoint family of paths; the main purpose of our program is to test that this is
indeed the case, and that the original configuration can be recovered from it. Since it is known from a

determinant evaluation that there are exactly 2(
n

2) disjoint families of paths of the kind we consider, this
one-sided verification shows that we do indeed have a bijection.
For integrating path Pk into the partial family {Pk+1, . . . , Pn−1}, already made disjoint, it suffices to call

untangle (k, k), untangle (k + 1, k), . . . , untangle (n − 1, k). All of these calls stop at column k, and the call
untangle (i, k) may move some vertical steps in column k from path Pi to path Pi+1. The result of this call
is certainly to make Pi and Pi+1 disjoint; the one point to prove is that it cannot make Pi−1 and Pi (which
were disjoint at that point) intersecting again, which we shall do below.
The method to cliffs is a straightforward inverse of to disjoint . While in to disjoint any further action in

the inner loop serves to “repair” the effect of the previous action, so that we can stop once nothing happens,
this is not the case with to cliffs , where on the contrary action increases during the inner loop.

〈Function definitions 3 〉 +≡
void to disjoint (family &f)
{ unsigned n ⇐ f.n paths ();

for (unsigned k ⇐ n− 1; k−− > 0;) // treat columns from the last down to first
for (unsigned i ⇐ k; i < n− 1; ++i)
{ if (not f.untangle (i, k))

break; // separate Pi and Pi+1 in column k; stop if nothing changed
if (i > k) assert (f.disjoint (i− 1)); // no ricochet of Pi into Pi−1

}
assert (f.valid ());

}
void to cliffs (family &f)
{ assert (f.valid ());

unsigned n ⇐ f.n paths (); vec h(n);
for (unsigned k ⇐ 0; k < n− 1; ++k)
for (unsigned i ⇐ n; i−− > k;)
{ h[i] ⇐ k = 0 ? i : h[i]− f.step(i, k − 1); // there should be no vertical steps in column k − 1

if (i < n− 1) f.cliffify (i, k, h[i], h[i+ 1]); // move vertical steps in column k from Pi+1 to Pi

}
}

9. Finally we shall need to test for inequality of families, which is easy.

〈Function definitions 3 〉 +≡
bool family::operator 6= (const family &y) const
{ return B 6= y.B or D 6= y.D; }

§10 AZTEC A PROOF THAT DISJOINTNESS IS ACHIEVED 7

10. A proof that disjointness is achieved. It is fairly obvious that calling untangle (i) achieves
disjointness of Pi and Pi+1 in all columns j < k, since in that method cur measures, at iteration j, the
amount by which this condition is violated initially, and both paths are moved away from each other in that
column by the value of depth ≥ cur at that iteration (so the violation is doubly corrected). However the
bijectivity (and well-definedness) of the construction requires that after calling untangle (k, k), untangle (k+1,
k), . . . , untangle (n− 1, k) in the inner loop of to disjoint above (or an initial part of those, the last of which
returns false to indicate that it changed nothing), the paths Pk, . . . , Pn−1 are disjoint. This proof has two
parts, one that establishes a somewhat sharpened version of the disjointness property that the call untangle (i,
k) obtains, and a second part that uses this to show that after the pair of calls untangle (i, k); untangle (i+1,
k), the paths Pi and Pi+1 are (still) disjoint up to column k inclusive.

Let numbers i ≥ k be fixed, and assume our family is in a state in which untangle (i, k) may be called,
namely with D[i][k] ≥

∑
j′<j(step(i+ 1, j′)− step(i, j)) for all j ≤ k, and D[i+ 1][k] = 0. Put

aj = i−
∑

j′<j

step(i, j′) and bj = i+ 1−
∑

j′<j

step(i+ 1, j′) for 0 ≤ j ≤ k,

the levels at which Pi and Pi+1 initially enter column j, and let a′j , b
′

j be the corresponding values after
untangle (i, k) is called. Then one has

a′j < bj ≤ b′j and a′j ≤ aj < b′j for 0 ≤ j ≤ k.

This follows from the fact that the value depth j of depth in untangle (i, k) after its possible adjustment in
iteration j of the inner loop, satisfies depth j > aj − bj as well as depth j ≥ 0, and that the call untangle (i, k)
sets a′j = aj − depth j and b′j = bj + depth j .

11. The inequality a′j < b′j shows that untangle (i, k) has succeeded in making Pi and Pi+1 disjoint. We
wish to prove that the next call untangle (i+1, k), which may lower Pi+1, cannot cause them to be intersecting
again. Let cj = i+2−

∑
j′<j step(i+2, j′) be the level at which Pi+2 initially enters column j, for 0 ≤ j ≤ k.

The assumption that Pi+1 and Pi+2 are disjoint in column j at that time gives bj+1 ≤ cj . Let depth j as above

denote the value of this variable in column j during the call of untangle (i, k), and depth ′

j its corresponding
value during the call of untangle (i+ 1, k). One has b′j = bj + depth j , and the level b′′j at which Pi+1 enters

column j after the call of untangle (i+1, k) is given by b′′j = b′j −depth ′

j . If we can prove depth ′

j ≤ depth j for

0 ≤ j ≤ k, then it will follow that a′j < bj ≤ bj + depth j − depth ′

j = b′′j , which means that Pi and Pi+1 are

disjoint in columns j < k after the call untangle (i+ 1, k). One has depth 0 = 0 = depth ′

0, so we may assume
that j > 0, and by induction on j that depth ′

j−1 ≤ depth j−1. Now the algorithm of untangle (i + 1, k) sets

depth ′

j = max(depth ′

j−1, b
′

j+1−cj), and by the induction hypothesis one has depth ′

j−1 ≤ depth j−1 ≤ depth j ,
so it remains to prove that b′j +1− cj ≤ depth j . But since b′j = bj + depth j this is equivalent to bj +1 ≤ cj ,
the initial disjointness of Pi+1 and Pi+2 mentioned above.

So Pi and Pi+1 are disjoint in columns j < k after the call untangle (i+1, k), and will remain so after any
further calls untangle (i′, k) with i′ > i+1. In column k the concern is slightly different due to the presence of
vertical steps. The level at which path Pi+1 leaves this column is unchanged, so provided that untangle (i, k)
makes Pi and Pi+1 disjoint in column k and that untangle (i+ 1, k) leaves Pi+1 a valid path, the paths will
remain disjoint. For the first point, a′k < bk shows that after untangle (i, k), path Pi enters column k below
the level where Pi+1 originally entered it, which is the level where it (still) leaves that column, by the initial
condition D[i + 1][k] = 0 (no vertical steps in Pi+1). The call untangle (i, k) makes D[i + 1][k] = depth k,
and depth ′

k ≤ depthk shows that the initial condition for untangle (i + 1, k) (at least as many vertical steps
present as are to be removed) is satisfied: Pi+1 remains a valid path. Finally this initial condition is also
met for the first call untangle (k, k) of the sequence, because one has D[k][k] = ak = a′k + depthk ≥ depth k.

8 EXPORTING PATHS AS SEQUENCES OF VERTICES AZTEC §12

12. Exporting paths as sequences of vertices. For the purpose of producing graphic output, we
generate lists of vertices from which the paths can be drawn. We need only starting and ending vertices,
and intermediate vertices where the direction changes.

〈Function definitions 3 〉 +≡
std ::vector〈std ::vector〈std ::pair〈unsigned,unsigned〉〉〉 family::flex points () const
{ std ::vector〈std ::vector〈std ::pair〈unsigned,unsigned〉〉〉 result (n);
for (unsigned i ⇐ 0; i < n; ++i)
{ result [i].reserve (i = 0 ? 2 : 2 ∗ i+ 1); // maximum number needed

result [i].push back (std ::make pair (i, 0 u)); // starting point
unsigned level ⇐ i;
for (unsigned j ⇐ 1; j ≤ i; ++j)
{ level −⇐ step(i, j − 1);
if (D[i][j] > 0 or j = i or B[i][j − 1] 6= B[i][j]) // do nothing if continuing straight on
{ result [i].push back (std ::make pair (level , j)); // trace horizontal or diagonal segment

if (D[i][j] > 0) result [i].push back (std ::make pair (level −⇐ D[i][j], j)); // vertical
}

}
assert (level = 0);
if (i = 0) // add separate ending point, so drawing will give a dot
result [i].push back (std ::make pair (0 u, 0 u)); // ending point

}
return result ;

}

§13 AZTEC CONVERTING TO TILINGS OF THE AZTEC DIAMOND 9

13. Converting to tilings of the Aztec diamond. So far everything we have done is in terms of
paths. There is however a straightforward correspondence between disjoint families of paths and tilings of
the Aztec diamond by dominoes. The Aztec diamond of order m (we shall take m = n− 1) is the union of 4
(rectangular) “triangles” of m+1

2 squares each, touching each other along their straight sides. To efficiently
encode domino tilings, we view the squares as coloured in checkerboard fashion, and tell for each black
square with which of its four white neighbours it is paired up. The set of black squares forms a m× (m+1)
rectangular grid tilted 45◦. We shall imagine the Aztec diamond itself rotated so that the rectangle has it
longer side horizontal, in which case the dominoes go in diagonal directions. It turns out that the 4 possible
directions of dominoes correspond in the path family setting to the following four possible statuses of a grid
point (not on the arrival line) with respect to the path family: (0) no path runs through the point, (1) a
path goes through the point, parting in horizontal direction, (2) a path passes parting in vertical direction,
and (3) a path passes parting in diagonal direction. This explains our following definition.

〈Type definitions 2 〉 +≡
enum { empty , horizontal , vertical , diagonal }; // possible domino directions: NW, NE, SW, SE

14. With this encoding we can convert a disjoint family into a tiling of the Aztec diamond of order
n − 1 = max path () in a straightforward way. The main work needed is tracking the (vertical) level of the
path in column j, which descends from i to 0 as j goes from 0 to i. The current path direction is assigned
as domino orientation to result [level][j].

〈Function definitions 3 〉 +≡
std ::vector〈vec〉 family::Aztec tiling () const
{ assert (valid ()); // this ensures no overwriting and level ≥ 0 below
std ::vector〈vec〉 result (n);
if (n = 0) return result ; // you never know
std ::fill (result .begin () + 1, result .end (),vec(n, empty)); // result [0] remains empty
for (unsigned i ⇐ 0; i < n; ++i)
{ assert (i = n− 1 or disjoint (i));
unsigned level ⇐ i;
for (unsigned j ⇐ 0; j < i; ++j)
{ result [level][j] ⇐ B[i][j] ? diagonal : horizontal ; level −⇐ step(i, j);

for (unsigned k ⇐ 0; k < D[i][j + 1]; ++k) result [level −−][j + 1] ⇐ vertical ;
}
assert (level = 0); // double-check that Pi reached the bottom level

}
return result ;

}

10 POSTSCRIPT PRODUCING FUNCTIONS AZTEC §15

15. PostScript producing functions. To illustrate the family of paths constructed, we provide output
in PostScript format. The following simple function provide necessary starting and ending code for pages.

〈Function definitions 3 〉 +≡
void ps start page (std ::ostream &f, unsigned no)
{ f ≪ "%%Page: " ≪ no ≪ ’ ’ ≪ no ≪ "\nsave\n"; }
void ps end page (std ::ostream &f)
{ f ≪ "\nrestore\nshowpage\n\n"; }

16. Drawing a path is straightforward, using a vector of coordinate pairs as provided by the flex points

method. It is at the point where we switch to the Cartesian coordinate ordering (column coordinate first)
used in PostScript.

〈Function definitions 3 〉 +≡
void ps output path (const std ::vector〈std ::pair〈unsigned,unsigned〉〉 &p, std ::ostream &f)
{ f ≪ "newpath\n" ≪ p[0].second ≪ ’ ’ ≪ p[0].first ≪ " moveto\n";

for (unsigned j ⇐ 1; j < p.size (); ++j) f ≪ p[j].second ≪ ’ ’ ≪ p[j].first ≪ " lineto\n";
f ≪ "stroke\n";

}

17. We make a complete Postscript page, and do worry a bit about scale: we make the page 500 big-points
wide, which is about 17.5 cm. We also allow some variation in the display format, to take into account
the column k up to which the paths have been made disjoint: the paths with index less than k, which may
intersect mutually and with the others, are printed in light gray. When k = 0, all paths will therefore print
black. If in addition the optional argument highlight is set, then paths with index less than k are not printed
at all, and path highlight is made red to highlight it.

〈Function definitions 3 〉 +≡
void ps output family as page

(const family &p, std ::ostream &f, unsigned k, unsigned pageno , unsigned highlight ⇐
∼0 u)

{ ps start page (f, pageno);
float scale ⇐ 500.0/(p.max path () + 2);
f ≪ scale ≪ ’ ’ ≪ scale ≪ " scale 1 1 translate 0.1 setlinewidth\n\n";
std ::vector〈std ::vector〈std ::pair〈unsigned,unsigned〉〉〉 points ⇐ p.flex points ();
if (highlight = ∼0 u and k > 0)
{ f ≪ "gsave 0.75 setgray\n"; // set to light gray
for (unsigned i ⇐ 0; i < k; ++i) ps output path (points [i], f);
f ≪ "grestore\n";

}
for (unsigned i ⇐ k; i < points .size (); ++i)
if (i 6= highlight) ps output path (points [i], f);

if (k ≤ highlight and highlight < points .size ()) // highlighted path last, so on top
{ f ≪ "gsave red\n"; // switch to red

ps output path (points [highlight], f); f ≪ "grestore\n";
}
ps end page (f);

}

§18 AZTEC POSTSCRIPT PRODUCING FUNCTIONS 11

18. The Aztec tiling method to produces a (n− 1)× n matrix of domino orientations, used below to draw
each domino in its correct place. The Aztec diamond is tilted, so that its black squares form a non-tilted
(n − 1) × n rectangular grid; it corresponds to the grid points traversed by the path family, excluding the
points of arrival of the paths. More precisely for a titled black square b, we shall place such a grid point
on the midpoint Mb of its northwest edge. The midpoints of the other three sides of b are not grid points,
but by reflecting M in each of them give rise to grid points situated east, southeast or south of M . The
orientations horizontal , diagonal and vertical at M describe the domino containing the segment from Mb to
its reflected image, formed by b and its white neighbour in the corresponding direction; the final orientation
empty corresponds to the domino formed by the two squares separated by the edge on which Mb itself lies.
The function below outputs the coordinates (i− 1

4 , j+
1
4) of the centre of the black square b (with diagonal

of length 1) of which Mb = (i, j) lies on the northwest edge, followed by an indication of the direction of the
domino with respect to this square, which will actually name a PostScript operator defined appropriately.

〈Function definitions 3 〉 +≡
void ps write dominoes (std ::ostream &f, const std ::vector〈vec〉 &orient , unsigned no)
{ unsigned n ⇐ orient .size (); static char compass [][3] ⇐ { "NW", "NE", "SW", "SE" };

ps start page (f,no);
float scale ⇐ 500.0/(n+ 1);
f ≪ scale ≪ ’ ’ ≪ scale ≪ " scale 1 1 translate 0.1 setlinewidth\n\n";
for (unsigned i ⇐ n; i−− > 1;)

for (unsigned j ⇐ 0; j < n; ++j)
f ≪ j ≪ ".25 " ≪ i− 1 ≪ ".75 " ≪ compass [orient [i][j]] ≪ ’\n’;

ps end page (f);
}

19. The following code will be executed by the main program whenever PostScript output is

〈Write preamble of PostScript file to out stream 19 〉 ≡
{ out stream ≪ "%!PS−Adobe−3.0\n%%Pages: (atend)\n%%BoundingBox: 0 0 500 500\n"

"%%DocumentPaperSizes: a4\n%%EndComments\n\n1 setlinecap\n";
out stream ≪ "/yellow {1 1 0 setrgbcolor} bind def\n"

"/red {1 0 0 setrgbcolor} bind def\n""/green {0 1 0 setrgbcolor} bind def\n"

"/blue {0 0 1 setrgbcolor} bind def\n""/orient % angle\n"

"{rotate .5 sqrt dup scale} bind def\n";
out stream ≪ "/domino\n""{ gsave 0 setlinewidth\n"

" newpath −.5 .5 moveto 2 0 rlineto 0 −1 rlineto −2 0 rlineto closepath\n"

" stroke grestore\n"" newpath 0 .5 moveto 1 −1 rlineto load exec stroke\n"

" newpath 0 −.5 moveto 1 1 rlineto load exec stroke\n"

" newpath −.5 0 moveto 2 0 rlineto load exec stroke}\n"" bind def\n";
out stream ≪ "/NW {gsave translate 135 orient /yellow /green /blue domino"

" grestore} bind def\n"

"/NE {gsave translate 45 orient /blue /yellow /red domino"

" grestore} bind def\n"

"/SW {gsave translate 225 orient /green /red /yellow domino"

" grestore} bind def\n""/SE {gsave translate 315 orient /red /blue /green domino"

" grestore} bind def\n";
}

This code is used in section 21.

20. The following code will be executed at the end by the main program whenever PostScript output is
generated. The variable cur page , used to number pages, at the end contains the numbers of pages produced.

〈Write trailer of PostScript file to out stream 20 〉 ≡
{ out stream ≪ "\n%%Trailer\n%%Pages: " ≪ cur page ≪ "\n%%EOF\n"; }

This code is used in section 21.

12 THE MAIN PROGRAM AZTEC §21

21. The main program. The main program reads the command line to find out what needs to be done.

#include <fstream>

#include <sstream>

#include <ctime>

int main (int argc , char ∗∗argv)
{ bool do family ⇐ true, do dominoes ⇐ false, exhaustive ⇐ false, do ps ⇐ true, seed set ⇐ false;
int c; unsigned int order , snapshots ⇐ 0, column detail ⇐ ∼0, random seed ⇐ 0;
std ::string file name base ; 〈Process options 24 〉
std ::ofstream out file ;
triangle tri (order + 1);
for (unsigned i ⇐ 0; i ≤ order ; ++i) tri [i].resize (i, true);
if (not exhaustive)
{ std ::srand (seed set ? random seed : std ::time (⊙)); // intialise random generator

randomize (tri);
}
if (not file name base .empty ())
{ std ::ostringstream os ; os ≪ file name base ≪ ’−’ ≪ order ;
if (snapshots > 0) os ≪ ’−’ ≪ snapshots ;
os ≪ ".ps"; out file .open (os .str ().c str (), std ::ios base::out);
if (not out file .is open ())
{ std ::cerr ≪ "Cannot open file " ≪ os .str () ≪ " for output.\n"; exit (2); }

}
std ::ostream &out stream (out file .is open () ? out file : std ::cout);
if (do ps) 〈Write preamble of PostScript file to out stream 19 〉
unsigned cur page ⇐ 0;
if (exhaustive)
{ unsigned long long count ⇐ 0;
do

{ std ::cout ≪ ’\r’ ≪ count ++; 〈Perform conversion of tri to disjoint family and back 22 〉
} while (next (tri));

}
else 〈Perform conversion of tri to disjoint family and back 22 〉
if (do ps) 〈Write trailer of PostScript file to out stream 20 〉
if (out file .is open ())
{ out file .close (); std ::cout ≪ "\nSucces!\n"; // If we get here, things went well
}
return 0; // success

}

§22 AZTEC THE MAIN PROGRAM 13

22. The test initialises p from tri , converts to disjoint form and test for validity, converts back again and
tests against the initial configuration. In case snapshots and/or column detail have been set, we shall need
to interrupt our algorithm at various points to produce output, which we shall detail below.

〈Perform conversion of tri to disjoint family and back 22 〉 ≡
{ family p(tri); // encode tri as probably intersecting family

family q ⇐ p; // keep a copy for comparison
if (snapshots > 0 or column detail 6= ∼0 u) 〈Perform untangling of p with intermediate output at

snapshots different steps, and maybe at column column detail 23 〉
else to disjoint (p); // transform into disjoint family
if (not p.valid ()) { std ::cout ≪ " Mapping problem found" ≪ std ::endl ; return 1; }
if (do ps)
{ if (do family) ps output family as page (p, out stream , 0, ++cur page);
if (do dominoes) ps write dominoes (out stream , p.Aztec tiling (), ++cur page);

}
to cliffs (p); // decode it again
if (p 6= q) { std ::cout ≪ " Bijectivity problem found" ≪ std ::endl ; return 2; }

}

This code is used in section 21.

23. If we want to be able to show intermediate stages of the untangling process, then we cannot call
to disjoint . Instead we call the method untangle a number of times, interrupting the output loop for output
snapshots times, including at the very beginning. We must deal with the possibility that snapshots = 0
though (in case column detail has been set); since we cannot divide into 0 chunk, we set a boolean and then
snapshots ⇐ 1 to handle this case.

〈Perform untangling of p with intermediate output at snapshots different steps, and maybe at column
column detail 23 〉 ≡

{ bool chunk output ⇐ snapshots > 0;
if (not chunk output) snapshots ⇐ 1;
unsigned k ⇐ order ;
for (unsigned group ⇐ snapshots ; group−− > 0;) // group counts chunks, backwards
{ if (chunk output) ps output family as page (p, out stream , k, ++cur page); // partial output
unsigned next stop ⇐ (group ∗ order + snapshots − 1)/snapshots ; // round up
while (k−− > next stop) // decrease until next stop
{ unsigned i; // declare outside next loop for final test
for (i ⇐ k; i < order ; ++i)
{ if (k = column detail)

ps output family as page (p, out stream , k, ++cur page , i); // partial output
if (not p.untangle (i, k))

break; // separate Pi and Pi+1 in column k; stop if nothing changed
}
if (k = column detail and i = order) // then last untangle did change
ps output family as page (p, out stream , k, ++cur page , i); // last one

}
++k; // compensate decrement after final test in while loop

}
}

This code is used in section 22.

14 OPTION PROCESSING AZTEC §24

24. Option processing. There is one obligatory argument, the rank n Aztec diamond, which should
follow any options. To do an exhaustive test for generating all tilings of, the option −x may be specified;
otherwise the program will run a random sample and produce PostScript output. The option −X does an
exhaustive test and produces PostScript output for all families. If the option −t is given, any display of
a disjoint family will be followed by the corresponding tiling of the Aztec diamond, while −n will suppress
output of the path family. The option −s with (obligatory) numeric value m will produce m intermediate
snapshots of not yet disjoint families during the construction; the same result can also be obtained by
specifying “n/m” in place of n. An option −c with numeric value k will produce a detailed sequence of all
stages of processing column k. A random seed to be used can be fixed by giving it as argument to a −r flag.
An output file may be specified as final argument (if not, any PostScript output will go to cout).

#include <unistd.h>

#include <cctype>

〈Process options 24 〉 ≡
{ opterr ⇐ 0; // clear error status

while ((c ⇐ getopt (argc , argv , "xXtns:c:r:")) 6= −1)
switch (c)
{
case ’x’: do ps ⇐ false; // fall through
case ’X’: exhaustive ⇐ true; break;
case ’t’: do dominoes ⇐ true; break;
case ’n’: do family ⇐ false; break;
case ’s’: case ’c’: case ’r’:
{ unsigned int &dst ⇐ ∗(c = ’s’ ? &snapshots : c = ’c’ ? &column detail : &random seed);
std ::stringstream arg (optarg); arg ≫ dst ;
if (arg .fail ())
{ std ::cerr ≪ "Argument ’" ≪ optarg ≪ "’ of −" ≪ char(c)

≪ (std ::isdigit (optarg [0]) ? " too large\n" : " not numeric\n"); std ::exit (1);
}

}
break;

case ’?’:
if (optopt = ’s’ or optopt = ’c’ or optopt = ’r’)

{ std ::cerr ≪ "Option −" ≪ char(optopt) ≪ " requires an argument\n"; std ::exit (1); }
else { std ::cerr ≪ "Unknown option −" ≪ char(optopt) ≪ ".\n"; std ::exit (1); }

default: std ::abort ();
}

if (optind ≥ argc) { std ::cerr ≪ "No order of Aztec diamond specified\n"; std ::exit (1); }
std ::stringstream arg (argv [optind ++]); arg ≫ order ;
if (arg .fail ())
{ std ::cerr ≪ "Specified order ’" ≪ arg ≪ "’ not numeric\n"; std ::exit (1); }

char c; arg ≫ c;
if (c = ’/’)
{ arg ≫ snapshots ;
if (arg .fail ())
{ std ::cerr ≪ "After /, ’" ≪ arg ≪ "’ not numeric\n"; std ::exit (1); }

}
if (do ps and optind < argc) { std ::stringstream arg (argv [optind ++]); arg ≫ file name base ; }
if (optind 6= argc)
{ std ::cerr ≪ "Found " ≪ argc − optind ≪ " trailing arguments\n"; std ::exit (1); }

}

This code is used in section 21.

§25 AZTEC GENERATING TRIANGLES OF BITS 15

25. Generating triangles of bits. To systematically loop over possible triangle values, the function
next will advance to the next value, and return true if this was possible. In order to give a nicer enumeration
of the triangles, we shall traverse by weakly increasing number of false values (initially all bits were set to
true). To do this we search first for the first false value, then while setting it and immediately following
false bits to true, search for the first true value. If it exists, we set it to false, as well a number of initial
bits one less than the number of false bits set to true, so that the number of false values remains unchanged.
In case we don’t find any false values in the first place, or no true values in the second place, we increase
the number of false values if possible, and set this number of initial bit to false. Finally if every bit was
found to be false, we return false to indicate the end of the iteration.

〈Function definitions 3 〉 +≡
bool next (triangle &tri)
{ bool target ⇐ false; unsigned count ⇐ 0; // counts false values changed to true, minus 1
for (unsigned i ⇐ 1; i < tri .size (); ++i)
{ bitvec &trii ⇐ tri [i];
for (unsigned j ⇐ 0; j < i; ++j)

if (not trii [j]) { trii [j] ⇐ target ⇐ true; ++count ; } // change false to true and count
else if (target) // then we found our true

{ trii [j] ⇐ false; −−count ; goto phase 2; }
}

// if we come here we did not find false followed by true

if (2 ∗ count = tri .size () ∗ (tri .size ()− 1)) // then all bits were false

return false; // so we’ve reached the end
else // we found (and set) count bits false, but no following true

++count ; // this will increment the number of false bits by 1
phase 2:

if (count = 0) return true; // we just shifted one false one place further
for (unsigned i ⇐ 1; i < tri .size (); ++i)
{ bitvec &trii ⇐ tri [i];
for (unsigned j ⇐ 0; j < i; ++j)
{ trii [j] ⇐ false;
if (−−count = 0) return true; // we finished setting count bits to false

}
}
assert (false); // we should never come here
return true; // but the compiler may not understand that

}

26. We also want to be able to generate random values in a triangle. We get random bits by calling
std ::rand and taking bit number 5, hoping it will be a bit more random than bit number 0.

#include <cstdlib>

〈Function definitions 3 〉 +≡
void randomize (triangle &tri)
{ for (unsigned i ⇐ 1; i < tri .size (); ++i)

{ bitvec &trii ⇐ tri [i];
for (unsigned j ⇐ 0; j < i; ++j) trii [j] ⇐ (std ::rand () & #20) = 0;

}
}

16 INDEX AZTEC §27

27. Index.

abort : 24.
arg : 24.
argc : 21, 24.
argv : 21, 24.
assert : 2, 6, 7, 8, 12, 14, 25.
Aztec tiling : 2, 14, 18, 22.
B: 2.
begin : 4, 14.
bitvec: 2, 25, 26.
bool: 5, 6, 9, 25.
c: 21, 24.
c str : 21.
cerr : 21, 24.
chunk output : 23.
cliffify : 2, 7, 8.
close : 21.
column detail : 21, 22, 23, 24.
compass : 18.
count : 21, 25.
cout : 21, 22, 24.
cur : 6, 7, 10.
cur page : 20, 21, 22, 23.
D: 2.
depth : 6, 7, 10.
diagonal : 13, 14, 18.
disjoint : 2, 5, 6, 8, 14.
do dominoes : 21, 22, 24.
do family : 21, 22, 24.
do ps : 21, 22, 24.
dst : 24.
empty : 13, 14, 18, 21.
end : 4, 14.
endl : 22.
exhaustive : 21, 24.
exit : 21, 24.
f : 8, 15, 16, 17, 18.
fail : 24.
family: 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 17, 22.
file name base : 21, 24.
fill : 4, 14.
first : 16.
flex points : 2, 12, 16, 17.
getopt : 24.
group : 23.
h: 8.
highlight : 17.
horizontal : 13, 14, 18.
h0: 2, 7.
h1: 2, 7.
i: 2, 3, 4, 5, 6, 7, 8, 12, 14, 17, 18, 21, 23, 25, 26.
int: 21.

ios base: 21.
is open : 21.
isdigit : 24.
j: 2, 4, 5, 6, 7, 12, 14, 16, 18, 25, 26.
k: 2, 6, 7, 8, 14, 17, 23.
level : 12, 14.
main : 21.
make pair : 12.
max path : 2, 3, 14, 17.
n: 2, 8, 18.
n paths : 2, 8.
next : 21, 25.
next stop : 23.
nn : 2, 3.
no : 15, 18.
ofstream: 21.
open : 21.
optarg : 24.
opterr : 24.
optind : 24.
optopt : 24.
order : 21, 23, 24.
orient : 18.
os : 21.
ostream: 15, 16, 17, 18, 21.
ostringstream: 21.
out : 21.
out file : 21.
out stream : 19, 20, 21, 22, 23.
p: 16, 17, 22.
pageno : 17.
pair: 2, 12, 16, 17.
phase 2: 25.
points : 17.
ps end page : 15, 17, 18.
ps output family as page : 17, 22, 23.
ps output path : 16, 17.
ps start page : 15, 17, 18.
ps write dominoes : 18, 22.
push back : 12.
q: 22.
rand : 26.
random seed : 21, 24.
randomize : 21, 26.
reserve : 12.
resize : 3, 4, 21.
result : 12, 14.
s: 4, 5.
scale : 17, 18.
second : 16.
seed set : 21.

§27 AZTEC INDEX 17

size : 4, 16, 17, 18, 25, 26.
snapshots : 21, 22, 23, 24.
srand : 21.
std : 2, 4, 12, 14, 15, 16, 17, 18, 21, 22, 24, 26.
step : 2, 4, 5, 6, 7, 8, 12, 14.
str : 21.
string: 21.
stringstream: 24.
t: 5.
target : 25.
time : 21.
to cliffs : 8, 22.
to disjoint : 8, 10, 22, 23.
tri : 2, 4, 21, 22, 25, 26.
triangle: 2, 4, 8, 21, 25, 26.
trii : 25, 26.
unsigned: 2.
untangle : 2, 6, 7, 8, 10, 11, 23.
valid : 2, 5, 8, 14, 22.
vec: 2, 8, 14, 18.
vector: 2, 12, 14, 16, 17, 18.
vertical : 13, 14, 18.
void: 7, 8, 15, 16, 17, 18, 26.
y: 2, 9.

18 NAMES OF THE MODULES AZTEC

〈Function definitions 3, 4, 5, 6, 7, 8, 9, 12, 14, 15, 16, 17, 18, 25, 26 〉 Used in section 1.

〈Perform conversion of tri to disjoint family and back 22 〉 Used in section 21.

〈Perform untangling of p with intermediate output at snapshots different steps, and maybe at column
column detail 23 〉 Used in section 22.

〈Process options 24 〉 Used in section 21.

〈Type definitions 2, 13 〉 Used in section 1.

〈Write preamble of PostScript file to out stream 19 〉 Used in section 21.

〈Write trailer of PostScript file to out stream 20 〉 Used in section 21.

AZTEC

Section Page
An Aztec diamond bijection . 1 1
A class for path families . 2 2

A proof that disjointness is achieved . 10 7
Exporting paths as sequences of vertices . 12 8
Converting to tilings of the Aztec diamond . 13 9

PostScript producing functions . 15 10
The main program . 21 12
Option processing . 24 14
Generating triangles of bits . 25 15

Index . 27 16

