- 1. On considère un plan affine \mathcal{P} muni d'un repère cartésien $\mathcal{R} = (\mathcal{O}, \vec{\imath}, \vec{\jmath})$. Soit \mathcal{O}' le point dont les coordonnées par rapport à \mathcal{R} sont (3, -1), et soient $\vec{u} = \vec{\imath} 3\vec{\jmath}$, et $\vec{v} = 2\vec{\imath} 5\vec{\jmath}$; alors $\mathcal{R}' = (\mathcal{O}', \vec{u}, \vec{v})$ est un autre repère cartésien (on l'admet).
 - a. Donner les coordonnées par rapport à \mathcal{R} du point P dont les coordonnées par rapport au repère \mathcal{R}' sont (-2,5).
 - $\sqrt{\text{Ce point est }\mathcal{O}' 2\vec{u} + 5\vec{v} \text{ soit }\mathcal{O} + 3\vec{i} \vec{j} 2(\vec{i} 3\vec{j}) + 5(2\vec{i} 5\vec{j})} = \mathcal{O} + 11\vec{i} 20\vec{j} \text{ donc ces coordonnées sont } (11, -20).$
 - b. Donner les coordonnées par rapport à \mathcal{R}' du point Q dont les coordonnées par rapport au repère \mathcal{R} sont (3, -4).
 - $\sqrt{\text{In pourra exprimer d'abord }\vec{\imath}=-5\vec{u}+3\vec{v}\text{ et }\vec{\jmath}=-2\vec{u}+\vec{v},\text{ et puis calculer }\mathcal{O}+3\vec{\imath}-4\vec{\jmath}=\mathcal{O}'+0\vec{\imath}-3\vec{\jmath}=\mathcal{O}'+6\vec{u}-3\vec{v}\text{ donc les coordonnées demandées sont }(6,-3). On pourra également trouver ce résultat par la résolution de l'équation <math>\mathcal{O}'+x'\vec{u}+y'\vec{v}=\mathcal{O}+3\vec{\imath}-4\vec{\jmath}$ qui donne le système linéaire x'+2y'=0,-3x'-5y'=-3 avec comme solution (x',y')=(6,-3).
- 2. On se place dans un plan affine \mathcal{P} muni d'un repère cartésien $\mathcal{R} = (\mathcal{O}, \vec{\imath}, \vec{\jmath})$; les coordonnées par rapport à ce repère sont notées x, y. Soit P le point de coordonnées (2,7), $\vec{v} \in \overrightarrow{\mathcal{P}}$ le vecteur de coordonnées (-2,3), \mathcal{D} la droite d'équation 3x + 5y = -4, et $f: \mathcal{P} \to \mathcal{P}$ l'application affine avec f(P) = P et dont $\begin{pmatrix} 2 & 1 \ 5 & 3 \end{pmatrix}$ est la matrice par rapport à $(\vec{\imath}, \vec{\jmath})$ de l'application linéaire associée \vec{f} . Décrire en coordonnées les objets géométriques suivantes (les calculs nécessaires sont indépendants):
 - a. Le point d'intersection de la droite $\{P + \lambda v \mid \lambda \in \mathbf{R}\}$ avec \mathcal{D} .
 - $\sqrt{\text{On r\'esout }P+\lambda\vec{v}\in\mathcal{D},\text{ c\'est-\`a-dire }3(2-2\lambda)+5(7+3\lambda)=-4\text{ ou }41+9\lambda=-4\text{ ce qui donne comme solution }\lambda=-5\text{ et donc }P+\lambda v=(2,7)-5(-2,3)=(12,-8).}$
 - b. La droite qui est image de \mathcal{D} par la translation par le vecteur \vec{v} (c'est-à-dire $A \mapsto A + \vec{v}$).
 - $\sqrt{}$ Les points de cette droite translatés par $-\vec{v}$ doivent être dans \mathcal{D} , donc on on obtient la droite de l'équation 3(x+2)+5(y-3)=-4, ou 3x+5y=5.
 - c. Le point $f(\mathcal{O})$ (image de l'origine \mathcal{O} par f).
 - $\sqrt{On\ a\ f(\mathcal{O})} = f(P + \overrightarrow{PO}) = f(P) + \overrightarrow{f}(\overrightarrow{PO}) = P \overrightarrow{f}(\overrightarrow{OP})\ car\ f(P) = P.$ Cela devient en coordonnées $\binom{2}{7} \binom{2}{5} \frac{1}{3} \cdot \binom{2}{7} = \binom{-9}{-24}$.
 - d. La droite $f(\mathcal{D})$ (image de \mathcal{D} par f). [Il peut être utile d'écrire \mathcal{D} sous forme paramétrée d'abord.]
 - √ Suivant l'indication on écrit (par exemple) $\mathcal{D} = \{A + \lambda \vec{w} \mid \lambda \in \mathbf{R}\}$ où $A = \binom{2}{-2}$ et $\vec{w} = \binom{5}{-3}$, alors de transformer cette description en $f(D) = \{f(A) + \lambda \overrightarrow{f}(\vec{w}) \mid \lambda \in \mathbf{R}\}$. Ensuite on calcule le point $f(A) = f(\mathcal{O}) + \overrightarrow{f}(\overrightarrow{\mathcal{O}A}) = \binom{-9}{-24} + \binom{2}{4} = \binom{-7}{-20}$, (on aurait pu le calculer directement $f(A) = f(P) = \overrightarrow{f}(\overrightarrow{PA})$ comme dans la question précédente) et $\overrightarrow{f}(\vec{w}) = \binom{2}{5} \frac{1}{3} \cdot \binom{5}{-3} = \binom{7}{16}$) donc on obtient $f(D) = \{\binom{-7}{-20} + \lambda \binom{7}{16} \mid \lambda \in \mathbf{R}\}$, une droite aussi donnée par l'équation 16x 7y = 28.
- **3.** Soit \mathcal{P} un plan euclidien, muni d'un repère euclidien $\mathcal{R} = (\mathcal{O}, \vec{\imath}, \vec{\jmath})$ (donc $(\vec{\imath}, \vec{\jmath})$ est orthonormée).
 - a. Décrire par une équation cartésienne la droite passant par le point de coordonnées (1,7) et orthogonale au vecteur $3\vec{\imath}-2\vec{\jmath}$.
 - $\sqrt{\text{Les équations de droites orthogonales au vecteur } 3\vec{\imath} 2\vec{\jmath} \text{ sont de la forme } 3x 2y = c, \text{ et pour que } (x,y) = (1,7) \text{ soit solution de cette équation il faut } 3 \times 1 2 \times 7 = c \text{ donc } c = -11. \text{ Une équation cherchée est donc } 3x 2y = -11 \text{ ou } 3x 2y + 11 = 0.}$
 - b. Décrire par une équation cartésienne le cercle \mathcal{C} de diamètre [A, B], où $A, B \in \mathcal{P}$ sont les points dont les coordonnées par rapport à \mathcal{R} sont (5,3) respectivement (1,-4).
 - $\sqrt{\ }$ Deux méthodes de solution: (1) c'est le cercle de centre bar $(A,B)=(3,-\frac{1}{2})$ et de rayon égale à la distance de ce centre vers A ou B, soit $\sqrt{2^2+(\frac{7}{2})^2}=\frac{\sqrt{65}}{2}$ donc l'équation est $(x-3)^2+(y+\frac{1}{2})^2=\frac{65}{4}$ ou $x^2-6x+y^2+y=7$, et (2) pour que $P\in\mathcal{C}$ il faut et suffit que $\overrightarrow{AP}\cdot\overrightarrow{BP}=0$, donc pour les coordonnées (x,y) de P on obtient $\binom{x-5}{y-3}\cdot\binom{x-1}{y+4}=0$ ce qui donne $x^2-6x+y^2+y=7$

4. Soit \mathcal{P} un plan affine muni d'un repère affine $\mathcal{R}=(A,B,C)$ (un triangle). On rappelle que les coordonnées barycentriques (x,y,z) d'un point $S\in\mathcal{P}$ sont des nombres réels, soumis à la contrainte x+y+z=1, pour lesquels S=bar((x,A),(y,B),(z,C)). On abrégera cette relation $S=(x,y,z)_{\mathcal{R}}$ a. Rappeler une formule donnée dans le cours qui exprime la condition que trois points $(x_1,y_1,z_1)_{\mathcal{R}}$, $(x_2,y_2,z_2)_{\mathcal{R}}$, et $(x_3,y_3,z_3)_{\mathcal{R}}$, sont alignés.

$$\sqrt{}$$

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} = 0$$

- b. On choisit des points P sur la droite (BC), Q sur la droite (CA), et R sur la droite (AB), en évitant chaque fois les points A, B, C eux-mêmes $(\text{donc } \{P, Q, R\} \cap \{A, B, C\} = \emptyset)$. Montrer que $P = (0, \lambda, 1 \lambda)_{\mathcal{R}}, Q : (1 \mu, 0, \mu)_{\mathcal{R}}$ et $R : (\nu, 1 \nu, 0)_{\mathcal{R}}$ pour certains $\lambda, \mu, \nu \in \mathbb{R} \setminus \{0, 1\}$.
 - √ Il s'agit essentiellement de montrer qu'un point est sur (BC) si et seulement si sa première coordonnée barycentrique (x) est nulle, car la contrainte x+y+z=1 entraîne alors que ses coordonnées sont $(0,\lambda,1-\lambda)$ pour un certain $\lambda \in \mathbf{R}$, et les cas $\lambda=1$ et $\lambda=0$ correspondent aux points B respectivement C qui sont à éviter (pour les droites (CA) et (AB) les arguments sont similaires, mais pour la seconde respectivement troisième coordonnée). Divers arguments peuvent justifier l'équivalence cherchée: (1) une équation linéaire non triviale en coordonnées barycentriques définit une droite, et celle définie par x=0 contient $B=(0,1,0)_{\mathcal{R}}$ et $C=(0,0,1)_{\mathcal{R}}$, donc c'est forcément (BC); (2) les points de (BC) sont ceux de la forme $\mathrm{bar}((\lambda,B),(1-\lambda,C))=\mathrm{bar}((0,A),(\lambda,B),(1-\lambda,C))$, donc de coordonnées barycentriques de la forme $(0,\lambda,1-\lambda)$; (3) $P=(x_1,y_1,z_1)_{\mathcal{R}}$ est aligné avec B et C si l'équation du point a est vérifiée pour $(x_2,y_2,z_2)=(0,1,0)$ et $(x_3,y_3,z_3)=(0,0,1)$, et cette équation devient alors (après développement du déterminant) $x_1=0$.
- c. Montrer que la droite (AP) est égale à $\{(x,y,z)_{\mathcal{R}} \mid x+y+z=1, (\lambda-1)y+\lambda z=0\}$
 - $\sqrt{\text{On applique l'équation du point a avec}}(x_2,y_2,z_2)=(1,0,0) \text{ et } (x_3,y_3,z_3)=(0,\lambda,1-\lambda));$ on trouve après développement l'équation $-y_1(1-\lambda)+z_1\lambda=0$, c'est (équivalent à) l'équation cherchée.

On écrira dans la suite $[a,b,c]_{\mathcal{R}}$ pour une droite ainsi définie par une équation en coordonnées barycentriques $\{(x,y,z)_{\mathcal{R}} \mid x+y+z=1, ax+by+cz=0\}$. Donc $(AP)=[0,\lambda-1,\lambda]_{\mathcal{R}}$ d'après la question précédente. De façon similaire $(B,Q)=[\mu,0,\mu-1]_{\mathcal{R}}$ et $(C,R)=[\nu-1,\nu,0]_{\mathcal{R}}$ (on l'admet).

- d. On considère la question si les droites (AP), (BQ) et CR sont concourantes, c'est-à-dire s'il existe ou non un point S du plan qui est situé sur les trois droites à la fois. En posant un système d'équations linéaire, déduire une condition en λ, μ, ν équivalente à celle disant que les droites (AP), (BQ) et (CR) sont concourantes.
 - $\sqrt{\text{La condition que le point } S = (x, y, z)_{\mathcal{R}}}$ est situé sur la droite $[a, b, c]_{\mathcal{R}}$ veut dire que ax+by+cz=0. Alors dire que S est situé à la fois sur (AP), (BQ) et CR veut dire que le système de trois équations linéaires homogènes de matrice

$$\begin{pmatrix} 0 & \lambda - 1 & \lambda \\ \mu & 0 & \mu - 1 \\ \nu - 1 & \nu & 0 \end{pmatrix}$$

a les coordonnées (x,y,z) de S comme solution. En particulier ce système a une solution non triviale, d'où (le système n'est pas de Cramer, et) le déterminant de cette matrice est nulle. Cela donne l'équation $(\lambda-1)(\mu-1)(\nu-1)+\lambda\mu\nu=0$. (La question n'était pas tout à fait juste, car cette condition n'est par équivalente à l'existence d'un point S: dans des cas exceptionnels le système a des solutions mais aucune qui vérifie x+y+z=1; dans ces cas les trois droites sont parallèles.)

- e. Réorganiser (si besoin) votre condition en une équation de la forme $E_1(\lambda)E_2(\mu)E_3(\nu) = c$: le produit de trois expressions en respectivement λ , μ , et ν vaut une constate c (à détailler quelles expressions et quelle constante). Ce résultat est connu comme le théorème de Ceva.
 - $\sqrt{\text{On peut \'ecrire }\lambda\mu\nu} = -(\lambda 1)(\mu 1)(\nu 1) \text{ en ensuite } \frac{\lambda}{1-\lambda} \times \frac{\mu}{1-\mu} \times \frac{\nu}{1-\nu} = 1.$

- 5. Dans cet exercice on fera référence à la classification des isométries du plan euclidien \mathcal{P} : identité, réflections, rotations, translations, et réflections glissées.
 - a. De quelle nature peut être la composée de deux réflexions dans des droites distinctes ?
 - $\sqrt{\text{C'est soit une translation (si les droites dont parallèles)}}$, soit une rotation (si les droites sont sécantes).
 - b. Montrer que la composée de trois réflexions par rapport à trois droites concourantes $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$ est une réflexion.
 - $\sqrt{}$ Comme c'est une composée d'un nombre impair de réflexions, c'est une isométrie indirecte: soit une réflexion, soit une réflection glissée. Le point d'intersection C des trois droite concourantes étant fixe par la composée des trois réflexions, celle-ci n'est pas une réflection glissée (qui n'a pas de points fixe) mais une réflexion (par une droite qui passe par ce point.
 - c. Décrire l'axe de cette réflexion composée, en terme des axes $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$ des réflexions initiales.
 - $\sqrt{}$ Soit α l'angle de rotation de centre C qui transforme D_1 en \mathcal{D}_2 , alors la composée des deux premières réflexions est une rotation de centre C et d'angle 2α . On peut donc remplacer (D_1, D_2) par toute autre paire de deux autres droites (D_1', D_2') toujours passant par C et avec un angle orienté α entre les deux. En particulier on peut choisir $\mathcal{D}_2' = D_3$, avec \mathcal{D}_1' la droite obtenue par rotation de \mathcal{D}_3 autour de C par un angle $-\alpha$. La composée des réflexions par rapport à \mathcal{D}_1' , $\mathcal{D}_2' = \mathcal{D}_3$ et \mathcal{D}_3 est alors égale à la réflexion par rapport à \mathcal{D}_1' (car les deux dernières réflexions identiques ont pour composée l'identité). Mais cette composée est égale à la composée des réflexions par rapport à $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$, qui est donc une réflexion avec axe \mathcal{D}_1' qu'on vient de décrire.

- 3 - **Fin.**