1. Sur le corps \mathbf{Q} on considère la matrice

$$M = \begin{pmatrix} 0 & 1 & -1 & 2 \\ 0 & 1 & 0 & 1 \\ 1 & -1 & -2 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- a. Calculer le polynôme caractéristique χ_M et les valeurs propres de M. Conclure que M est trigonalisable sur \mathbf{Q} .
 - $\sqrt{\text{Le déterminant }\chi_M=\det(XI_4-M)\text{ se développe facilement par la dernière ligne et ensuite par la seconde ligne, pour donner <math>\chi_M=(X-1)^2(X^2+2X+1)=(X-1)^2(X+1)^2$. Ce polynôme est scindé sur \mathbf{Q} , donc la matrice M est trigonalisable sur \mathbf{Q} .
- b. Pourquoi M n'est pas diagonalisable ?
 - \sqrt{Si} M était diagonalisable, alors le polynôme minimal μ_M de M serait scindé à racines simples (et avec les même racines 1, -1 que χ_M) ce qui force $\mu_M = (X-1)(X+1) = X^2 1$. Or un simple calcul montre $M^2 \neq I_4$, donc $X^2 1$ n'est pas annulateur de M; par conséquent M ne peut pas être diagonalisable. Un autre argument possible est de calculer l'espace propre pour $\lambda = 1$ ou pour $\lambda = -1$; en fait ni l'un ni l'autre n'a la dimension 2 requise (à savoir la multiplicité de λ comme racine de χ_M) pour que M soit diagonalisable.
- c. Déterminer les sous-espaces caractéristiques, et une matrice triangulaire supérieure T semblable à M, en précisant une relation de similitude entre M et T à l'aide d'une matrice (inversible) P. Le calcul de P^{-1} n'est pas demandé.
 - $\sqrt{}$ Les espaces propres pour $\lambda=1$ et pour $\lambda=-1$ sont respectivement engendrés par les vecteurs propres $b_1=(1,1,0,0)$ et $b_3=(1,0,1,0)$. Les sous-espaces caractéristiques contiennent chacun strictement l'espace propre correspondant, et les vecteurs suivants complètent une base des espaces caractéristiques $b_2=(1,0,0,1)$ respectivement $b_4=(1,0,0,0)$. Comme on vérifie que $(M-I_4)\cdot b_2=b_1$ et que $(M+I_4)\cdot b_4=b_3$, le changement de base vers la base $\mathcal{B}=[b_1,b_2,b_3,b_4]$ rendra M triangulaire supérieur, plus précisément

$$T = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

On aura alors la relation de similitude $T = P^{-1}MP$, où P est la matrice de passage de la base canonique vers \mathcal{B} , dont les colonnes sont formées par les coordonnées des vecteurs b_j dans la base canonique :

$$P = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

2. Le but de cette partie est de montrer que pour tout endomorphisme ϕ d'un K-espace vectoriel E de dimension finie, il existe une base \mathcal{B} de E telle que la matrice de ϕ par rapport à cette base prenne la forme en blocs

$$\operatorname{Mat}_{\mathcal{B}}(\phi) = \begin{pmatrix} R & 0 \\ 0 & S \end{pmatrix}$$
 avec des matrices carrées R nilpotente et S inversible.

(Une matrice carrée R est nilpotente si $R^k = 0$ pour un certain $k \in \mathbb{N}$.) La possibilité de blocs de taille nulle n'est pas exclue, donc il est possible que R ou S soit à elle seule $\operatorname{Mat}_{\mathcal{B}}(\phi)$ toute entière.

- a. Pourquoi suffit-il de montrer qu'il existe une décomposition $E = V \oplus W$, somme directe de sous-espaces ϕ -stables, telle que la restriction $\phi|_V$ soit nilpotente et que $\phi|_W$ soit inversible?
 - $\sqrt{}$ Une fois qu'on a une telle décomposition, on pourra choisir dans V et W séparément des bases, qui ensemble formeront une base de E (à cause de la somme directe). Comme chaque composante de la somme est un sous-espace ϕ -stable, la matrice de ϕ par rapport à cette bases sera diagonale en blocs, avec pour chaque bloc diagonal R, S la matrice de la restriction à V respectivement à W de ϕ , par rapport à la base choisie de ce sous-espace. Les propriétés exigées de $\phi|_V$ et $\phi|_W$ se reflètent en les mêmes propriétés de leurs matrices respectives R et S.
- b. Montrer que si un endomorphisme ψ d'un K-espace vectoriel W possède un polynôme annulateur avec terme constant non nul, alors ψ est inversible. [On va l'appliquer pour $\psi = \phi|_W$.]
 - √ L'idée est que dans la relation qui exprime que le polynôme est annulateur, son terme constant u donne le multiple $u\operatorname{Id}_E$ de l'identité, et dans l'ensemble des autres termes on peut mettre ψ en facteur ; si $u \neq 0$ on peut mettre $u\operatorname{Id}_E$ d'un côté de l'équation, diviser par u, et constater que le facteur par lequel ψ est multiplié doit être l'inverse de ψ . Plus formellement, soit $U[\psi] = 0$ avec $u \neq 0$ le terme constant de U. On peut alors écrire U = VX + u (avec V = (U u)/X, la division euclidienne étant exact), et $U[\psi] = 0$ devient alors $u\operatorname{Id}_E = -V[\psi]\psi$. On trouve $\operatorname{Id}_E = -u^{-1}V[\psi]\psi$, et ψ est donc inversible avec inverse $-u^{-1}V[\psi]$.
- c. Soit P le polynôme minimal de ϕ . En décomposant $P = X^k Q$ pour $k \in \mathbb{N}$ tel que Q ne soit pas divisible par X, établir une décomposition comme décrite dans la question a, et conclure.
 - √ La décomposition indiquée est toujours possible (avec éventuellement k=0 donc $X^k=1$, ou à l'autre extrême Q=1) et peut être trouvée à partir de P en itérant l'opération d'extraire un facteur X par division euclidienne, jusqu'à ce que le coefficient constant (du dernier quotient) soit non nul (terminaison garantie par le fait que $P\neq 0$). Alors X^k et Q sont premiers entre eux (car X^k n'a pas de facteurs irréductibles autres que X, et celui-ci ne divise pas Q) et on peut appliquer le lemme des noyaux pour décomposer E en somme directe de $V=\ker(\phi^k)$ et de $W=\ker(Q[\phi])$. On a $(\phi|_V)^k=0$ par définition de V, donc $\phi|_V$ est nilpotent. D'autre part $Q[\phi|_W]=0$ donc d'après la question précédente $\phi|_W$ est inversible. Étant définis comme noyaux de polynômes en ϕ , les sous-espaces V, W sont ϕ -stables (proposition 3.5.1), ce qui complète les propriétés requises.
- 3. Soit E un \mathbf{R} -espace vectoriel, et $\mathcal{E} = [e_1, e_2, e_3]$ une base de E. On considère l'endomorphisme ϕ de E dont la matrice par rapport à \mathcal{E} est

$$A = \begin{pmatrix} 4 & 0 & 3 \\ 1 & -1 & -1 \\ -3 & 0 & -2 \end{pmatrix}.$$

- a. Lequel des vecteurs de la base \mathcal{E} est vecteur propre de ϕ , et pour quelle valeur propre λ ?
 - $\sqrt{\text{Visiblement } e_2 \text{ est un vecteur propre pour } \lambda = -1.}$
- b. Argumenter sans calcul que, pour cette valeur λ , le sous-espace $V = \text{Im}(\phi \lambda I_E)$ est ϕ -stable, et que $\dim(V) \leq 2$.
 - $\sqrt{L'}$ image d'un polynôme en ϕ , ici de $(X \lambda)[\phi] = \phi \lambda I_E$, est toujours un sous-espace ϕ -stable (proposition 3.5.1, encore). Comme $\operatorname{Ker}(\phi \lambda I_E) = \operatorname{Ker}(\phi + I_E)$ contient e_2 il est de dimension au moins 1, et par le théorème du rang le rang de ϕ (c'est-à-dire dim(V)) est alors au plus 2.
- c. Déterminer une base de V.
 - $\sqrt{}$ Les images par $\phi + I_E$ de e_1 , e_2 et e_3 engendrent certainement V, et comme la seconde des trois est nulle, on peut se limiter aux autre deux images: $(5,1,-3)_{\mathcal{E}} = 5e_1 + e_2 3e_3$ et $(3,-1,-1)_{\mathcal{E}} = 3e_1 e_2 e_3$ qui sont visiblement indépendantes. Il forment donc une base.
- d. Déterminer le polynôme minimal $\tilde{\mu}$ de la restriction $\phi|_V$ de ϕ à V, c'est-à-dire le polynôme unitaire $\tilde{\mu}$ du plus bas degré possible tel que $\tilde{\mu}[\phi](v)=0$ pour tout $v\in V$.
 - $\sqrt{Pour} \ v = (3, -1, -1)_{\mathcal{E}} \ on \ a \ A \cdot v = (9, 5, -7)_{\mathcal{E}} \ et \ A^2 \cdot v = (15, 11, -13)_{\mathcal{E}}, \ qui \ vérifient \ v 2A \cdot v + A^2 \cdot v = 0, \ d'où \ (1 2X + X^2)[\phi](v) = 0 \ pour \ ce \ vecteur \ v.$ Mais on sait que le polynôme minimal de $\phi|_V$ est de degré ≤ 2 , donc ce polynôme doit être le polynôme minimal cherché $\tilde{\mu} = 1 2X + X^2$. On peut bien sûr vérifier que $v 2A \cdot v + A^2 \cdot v = 0$ est aussi valable avec v l'autre générateur de V.

Le reste de cette partie peut être fait de façon indépendante ; voir la suggestion (ii) ci-dessous.

- e. Determiner un polynôme unitaire P annulateur de A, c'est-à-dire tel que P[A]=0. [Deux méthodes (au choix) pour trouver un tel P sont suggérées: (i) d'après le lemme 5.1.7 du cours, le polynôme minimal de ϕ est égal à $(X-\lambda)\tilde{\mu}$; (ii) d'après le théorème de Cayley-Hamilton, le polynôme caractéristique de A est un polynôme annulateur de A.]
 - \sqrt{Par} l'une ou l'autre méthode, on trouve $P = (X+1)(X^2-2X+1) = (X+1)(X-1)^2$.
- f. Soit $S \in \mathbf{R}[X]$ un polynôme quelconque, et R son reste dans la division euclidienne par le polynôme P de la question précédente. Montrer que les évaluations de S et R en une racine α de P sont les mêmes : $S[\alpha] = R[\alpha]$. Montrer également que si α est une racine multiple, alors on a aussi la relation correspondante pour leurs polynômes dérivés : $S'[\alpha] = R'[\alpha]$.
 - \sqrt{Par} définition il existe un polynôme Q tel que S = PQ + R et en évaluant en α (ce qui est un morphisme d'anneaux $\mathbf{R}[X] \to \mathbf{R}$) on obtient $S[\alpha] = P[\alpha]Q[\alpha] + R[\alpha] = R[\alpha]$, car $P[\alpha] = 0$. De S = PQ + R on obtient par dérivation S' = P'Q + PQ' + R', et en évaluant en une racine multiple α (pour laquelle $P[\alpha] = P'[\alpha] = 0$) on obtient $S'[\alpha] = P'[\alpha]Q[\alpha] + P[\alpha]Q'[\alpha] + R'[\alpha] = R'[\alpha]$.
- g. Déterminer pour $n \in \mathbf{N}$ le reste dans la division euclidienne de X^n par P.
 - √ On doit avoir $\deg(R)$ < 3 donc posons $R = aX^2 + bX + c$. On utilise le point e pour $S = X^n$ et les deux racines −1,1 de $P = (X+1)(X-1)^2$. On obtient $(-1)^n = X^n[-1] = R[-1] = a b + c$ et $1 = X^n[1] = R[1] = a+b+c$. La racine 1 est double, donc on a aussi $n = nX^{n-1}[1] = R'[1] = 2a+b$. Le système possède maintenant une solution unique, avec $b = (1 (-1)^n)/2 = n \mod 2 \in \{0, 1\}$, $a = (n-b)/2 = \lfloor n/2 \rfloor$ et $c = 1 (n+b)/2 = -\lfloor (n-1)/2 \rfloor$. (Comme réponse, des expressions en termes de $(-1)^n$ auraient suffi, mais les expressions alternatives sont plus faciles à reconnaître numériquement quand on compare les restes R pour différentes valeurs concrètes de n)
- h. Donner une expression pour la puissance A^n de la matrice A (pour tout $n \in \mathbb{N}$).
 - $\sqrt{\text{On aura } A^n = aA^2 + bA + cI \text{ avec les valeurs ci-dessus de } a, b, c. \text{ Compte tenu de la valeur de } A^2}$ qu'on calcule facilement (c'est la matrice ci-dessous pour (a, b, c) = (1, 0, 0)) cela donne

$$A^{n} = \begin{pmatrix} 7a + 4b + c & 0 & 6a + 3b \\ 6a + b & a - b + c & 6a - b \\ -6a - 3b & 0 & -5a - 2b + c \end{pmatrix} = \begin{pmatrix} 3n + 1 & 0 & 3n \\ 3n - 2b & (-1)^{n} & 3n - 4b \\ -3n & 0 & -3n + 1 \end{pmatrix}.$$

4. Soit $(x_1,\ldots,x_n)\in K^n$ et $(y_1,\ldots,y_n)\in K^n$ non nuls, avec $n\geq 2$. On définit une matrice A par

$$A = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} y_1 & y_2 & \cdots & y_n \end{pmatrix} = \begin{pmatrix} x_1 y_1 & x_1 y_2 & \cdots & x_1 y_n \\ x_2 y_1 & x_2 y_2 & \cdots & x_2 y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_n y_1 & x_n y_2 & \cdots & x_n y_n \end{pmatrix}.$$

- a. Montrer que toute paire de colonnes de A est liée, et que A est donc de rang 1.
 - $\sqrt{Si}\ y_j=0$ alors la colonne j est entièrement nulle, et donc liée avec n'importe quel autre vecteur. Sinon la colonne j' est multiple de la colonne j par un facteur $y_{j'}/y_j$ (car $(y_{j'}/y_j)(x_iy_j)=x_iy_{j'}$ pour tout i), ce qui montre que dan ce cas les deux sont liées aussi. Ainsi aucune famille de plus d'une colonne est libre, et le rang r vérifie $r \leq 1$. Autre argument possible pour $r \leq 1$: toutes les colonnes sont dans l'espace de dimension 1 engendré par (x_1,\ldots,x_n) . Par hypothèse au moins un coefficient x_iy_j est non nul, donc $A \neq 0$ et r > 0, par conséquent r = 1.
- b. Conclure que $\lambda=0$ est une valeur propre de A, et déterminer la dimension de l'espace propre $V_0=\ker(A-0I)$ associé à cette valeur propre.
 - \sqrt{Par} le théorème du rang, $\dim(V_0) = \dim(\ker(A)) = n r = n 1 \ge 1$ car $n \ge 2$; en particulier $\lambda = 0$ est bien une valeur propre de A.
- c. On choisit une base de V_0 , et on l'étend à une base \mathcal{B} de K^n . Décrire la forme globale de la matrice A' qui exprime (l'endomorphisme de K^n correspondant à) A par rapport à la base \mathcal{B} , et en déduire que $\chi_A = X^{n-1}(X-c)$ pour un certain $c \in K$.
 - √ La base de V_0 est formée de n-1 vecteurs, et complétée par un seul vecteurs. Les premiers n-1 vecteurs étant dans ker A leur image par A est nulle, et les premières n-1 colonnes de $M = \operatorname{Mat}_{\mathcal{B}}(A)$ sont donc nulles. Le déterminant donnant $\chi_A = \det(XI_n A)$ se développe successivement par les premières n-1 colonnes, et donne $\chi_A = X^{n-1}(X-c)$ où c est le dernier coefficient $M_{n,n}$ de M.

- d. Pourquoi a-t-on $c = tr(A) = x_1y_1 + x_2y_2 + \cdots + x_ny_n$?
 - $\sqrt{\text{Comme les autres coefficients diagonaux de }M\text{ sont nuls, on a }c=0+0\cdots+0+c=\operatorname{tr} M.}$ Mais la trace (qui est moins le coefficient de X^{n-1} dans χ_A) est invariant par changement de base, donc on a aussi $c=\operatorname{tr}(A)=x_1y_1+x_2y_2+\cdots+x_ny_n.}$
- e. Montrer que A est diagonalisable si et seulement si $tr(A) \neq 0$.
 - \sqrt{Si} tr $(A) \neq 0$ alors χ_A possède les deux racines distinctes 0 (de multiplicité n-1) et $c=\operatorname{tr}(A)$ (racine simple), qui sont donc aussi les valeurs propres de A. La dimension de l'espace propre pour $\lambda=0$ est n-1, et la dimension de l'espace propre pour $\lambda=c$ est 1. La somme (toujours directe) de ces espaces propres est de dimension n, donc c'est K^n tout entier et A est donc diagonalisable. Dans le cas $A \neq 0$ le polynôme caractéristique est X^n est $\lambda=0$ est la seule valeur propre. Mais la dimension de son espace propre n'est que n-1, donc dans ce cas A n'est pas diagonalisable.
- f. Soit $a, b \in K$; calculer det(B) pour

$$B = \begin{pmatrix} b & a & a & a & a \\ a & b & a & a & a \\ a & a & b & a & a \\ a & a & a & b & a \\ a & a & a & a & b \end{pmatrix}$$

en écrivant ce déterminant comme une évaluation de χ_A pour une certaine matrice A de rang 1.

 $\sqrt{\text{Avec } x_1 = x_2 = \cdots = x_5 = -1 \text{ et } y_1 = y_2 = \cdots = y_5 = a \text{ on obtient pour } A \text{ la matrice } 5 \times 5 \text{ dont tous les coefficients sont } -a, \text{ en alors } B = (b-a)I - A. \text{ Comme dans ce cas } \operatorname{tr}(A) = -5a, \text{ on trouve } \chi_A = X^4(X+5a) \text{ et } \det(B) = \chi_A[b-a] = (b-a)^4((b-a)+5a) = (b-a)^4(b+4a).$

- 4 - **Fin.**