- 1. On rappelle que la composée de deux applications affines est toujours affine; en particulier, cela munit l'ensemble $\operatorname{End}(\mathcal{A})$ des applications affines $\mathcal{A} \to \mathcal{A}$ d'une loi de composition interne. Or, le sous-ensemble $\operatorname{Aut}(\mathcal{A})$ de $\operatorname{End}(\mathcal{A})$ des automorphismes de l'espace affine \mathcal{A} , c'est-à-dire des isomorphismes affines $\mathcal{A} \to \mathcal{A}$, est tel que chaque élément a par définition une application réciproque, et la composée $g \circ f$ de deux automorphismes f, g de \mathcal{A} admet comme réciproque $f^{-1} \circ g^{-1}$ d'où $g \circ f \in \operatorname{Aut}(\mathcal{A})$; ainsi $\operatorname{Aut}(\mathcal{A})$ est muni d'une structure de groupe, appelé le groupe affine de \mathcal{A} , aussi noté $\operatorname{GA}(\mathcal{A})$. L'application qui associe à chaque $f \in \operatorname{Aut}(\mathcal{A})$ l'application linéaire $\overrightarrow{f} : E \to E$, où $E = \overrightarrow{A}$ est la direction de \mathcal{A} , définit une homomorphisme de groupes $L : \operatorname{GA}(\mathcal{A}) \to \operatorname{GL}(E)$.
 - a. Montrer que le noyau $\operatorname{Ker}(L)$ est formé par l'ensemble des translations $\mathbf{T}(\mathcal{A}) = \{t_{\vec{x}} \mid \vec{x} \in E\},\$ et que par conséquent $\mathbf{T}(\mathcal{A})$ est un sous-groupe distingué de $\mathbf{GA}(\mathcal{A})$.
 - $\sqrt{\text{Pour une translation } t_{\vec{x}} \text{ et } A, B \in \mathcal{A} \text{ on a } \overline{t_{\vec{x}}(A)t_{\vec{x}}(B)} = \overline{(A+\vec{x})(B+\vec{x})} = \overrightarrow{AB}, \text{ d'où } t_{\vec{x}} \in \mathbf{GA}(\mathcal{A})}$ avec $\overrightarrow{t_{\vec{x}}} = I$, donc $t_{\vec{x}} \in \mathrm{Ker}(L)$. Réciproquement si $f \in \mathrm{Ker}(L)$, fixons $A \in \mathcal{A}$ et posons $\vec{x} = \overline{Af(A)}$, alors pour tout $B \in \mathcal{A}$ on a $f(B) = f(A) + \overline{f(AB)} = f(A) + \overline{AB} = B + \overline{Af(A)} = B + \overline{x}$, et $f = t_{\vec{x}}$.
 - b. Montrer que de façon plus générale, pour tout sous-groupe distingué N de $\mathbf{GL}(E)$, l'image réciproque $L^{-1}(N)$ est une sous-groupe distingué de $\mathbf{GA}(A)$ qui contient $\mathbf{T}(A)$.
 - √ C'est un fait général du théorie de groupes que l'image réciproque d'un sous-groupe distingué par un morphisme de groupes est un sous-groupe distingué qui contient le noyau du morphisme. Pour le montrer spécifiquement dans ce cas, considérons la composition de L avec la projection canonique $\pi: \mathbf{GL}(E) \to \mathbf{GL}(E)/N$; l'image réciproque $L^{-1}(N)$ est le noyau de cette composition (car $f \in L^{-1}(N)$ veut dire $L(f) \in N$ et donc $\pi(L(f)) = \overline{e} = \{N\}$), et donc un sous-groupe distingué, qui contient visiblement $\mathbf{T}(A)$.
 - c. Dans le point précédent on peut prendre $N = \{I, -I\}$ (on suppose ici que l'identité I est distinct de -I, c'est-à-dire dim $E \neq 0$ et le corps K sur lequel E est espace vectoriel n'est pas de caractéristique 2). Montrer que dans ce cas $L^{-1}(N)$ est la réunion de $\mathbf{T}(A)$ et l'ensemble des symétries centrales, c'est-à-dire les homothéties de A de rapport -1 et de centre quelconque.
 - $\sqrt{\text{Soit } f \in L^{-1}(-I)}$, et $A \in \mathcal{A}$; posons C = bar(A, f(A)), alors $\overrightarrow{AC} = \overrightarrow{Cf(A)}$ et C est un point fixe de f car $f(C) = f(A) + \overrightarrow{f(AC)} = f(A) \overrightarrow{AC} = f(A) \overrightarrow{Cf(A)} = C$. Pour tout $\overrightarrow{x} \in E$ on a $f(C + \overrightarrow{x}) = f(C) + \overrightarrow{f(X)} = C \overrightarrow{x}$, d'où f est l'homothétie de rapport -1 et de centre C.
 - d. En notant s_P la symétrie centrale de centre $P \in \mathcal{A}$, montrer que $s_Q \circ s_P = t_{\vec{x}}$ où $\vec{x} = 2\overrightarrow{PQ}$, et conclure que le sous-groupe distingué $L^{-1}(N)$ n'est pas commutatif dans ce cas. Déduire de la relation trouvé également les formules $t_{\vec{x}} \circ s_P = s_{P+\frac{1}{n}\vec{x}}$ et $s_P \circ t_{\vec{x}} = s_{P-\frac{1}{n}\vec{x}}$.
 - $\sqrt{\text{ On a } s_Q \circ s_P(A) = s_Q(P \overrightarrow{PA}) = Q (\overrightarrow{QP} \overrightarrow{PA}) = Q \overrightarrow{QP} + \overrightarrow{PA} = A + 2\overrightarrow{PQ} \text{ pour tout } A \in \mathcal{A}}$ (on aura également pu argumenter $s_Q \circ s_P(A) \in \operatorname{Ker}(L) = \mathbf{T}(\mathcal{A})$ et trouver le vecteur \vec{x} tel que $s_Q \circ s_P = t_{\vec{x}}$ à l'aide de $s_Q \circ s_P(P) = Q \overrightarrow{QP} = P + 2\overrightarrow{PQ}$). Le groupe $L^{-1}(N)$ n'est donc pas commutatif car $2\overrightarrow{PQ} \neq 2\overrightarrow{QP}$. Les symétrie centrales sont des involutions (elles sont leur propre inverse), et en composant l'équation $s_Q \circ s_P = t_{\vec{x}}$ à droite avec s_P ou à gauche avec s_Q on trouve respectivement $s_Q = t_{\vec{x}} \circ s_P$ et $s_P = s_Q \circ t_{\vec{x}}$, valables pour tout P, Q, \vec{x} vérifiant $\vec{x} = 2\overrightarrow{PQ}$. Si l'on fixe P et \vec{x} on aura $Q = P + \frac{1}{2}\vec{x}$, et on obtient $t_{\vec{x}} \circ s_P = s_{P + \frac{1}{2}\vec{x}}$. Pour l'autre équation on fixe Q et \vec{x} , de sorte que $P = Q \frac{1}{2}\vec{x}$, et on obtient $s_Q \circ t_{\vec{x}} = s_{Q \frac{1}{2}\vec{x}}$, ce qui devient l'équation cherchée en oubliant d'abord P, et en suite renommant Q (qui était arbitraire) en P.
 - e. Maintenant on prend dans le point b pour N le sous-groupe $\{\lambda I \mid \lambda \in K^*\}$ (c'est le centre de $\mathbf{GL}(E)$, et donc un sous-groupe distingué). Montrer que dans ce cas $L^{-1}(N)$ est la réunion de $\mathbf{T}(A)$ et l'ensemble des homothéties (c'est le sous-groupe $\mathbf{HT}(A)$ de homothéties-translations).
 - \sqrt{II} est clair que si f est l'homothétie de centre $C \in \mathcal{A}$ et de rapport λ , alors $L(f) = \vec{f} = \lambda I$. Il s'agit donc de montrer réciproquement que si $L(f) = \lambda I$ avec $\lambda \neq 1$, alors f est une homothétie, notamment f possède un point fixe unique, son centre (il est nécessaire ici d'exclure les cas $\lambda = 1$ déjà traité dans le point a, car les translations n'ont pas de point fixe). En choisissant un point de base $P \in \mathcal{A}$, on a $f(A) = f(P) + \lambda \overrightarrow{PA}$ pour tout $A \in \mathcal{A}$, et dire que f(C) = C est équivalent à l'équation vectorielle $\overrightarrow{PC} = \overrightarrow{Pf(P)} + \lambda \overrightarrow{PC}$, ce qu'on peut écrire comme $(1 \lambda)\overrightarrow{PC} = \overrightarrow{Pf(P)}$. En coordonnées cette équation donne un système de Cramer, car $(1 \lambda)I$ est inversible, ce qui garantit l'existence d'une solution (point fixe) unique; on remarquera que le point essentiel utilisé

- est que $\vec{f} = \lambda I$ n'ait pas de valeur propre égal à 1. On peut explicitement résoudre l'équation, pour trouver le point fixe $C = P + (1 \lambda)^{-1} \overline{Pf(P)}$. Une fois le centre C trouvé, il est immédiate que $f(A) = C + \lambda \overline{CA}$, c'est-à-dire que f est l'homothétie de centre C et de rapport λ .
- f. En notant $h_{\lambda,P}$ l'homothétie de centre $P \in \mathcal{A}$ et de rapport λ , montrer que $h_{\mu,Q} \circ h_{\lambda,P}$ est une translation si et seulement si $\lambda \mu = 1$, que dans ce cas c'est la translation par $(1 \mu)\overrightarrow{PQ}$, et que dans le cas contraire c'est $h_{\lambda\mu,B}$ où $B = \text{bar}((P,(1-\lambda)\mu),(Q,1-\mu))$.
 - $\sqrt{\text{Comme L est un homomorphisme de groupes, on a $L(h_{\mu,Q} \circ h_{\lambda,P}) = \mu I \circ \lambda I = \lambda \mu I$, et on en déduit que $h_{\mu,Q} \circ h_{\lambda,P} \in \mathbf{T}(\mathcal{A})$ si et seulement si $\lambda \mu = 1$. Si c'est le cas on trouve le vecteur de translation en appliquant la composée à un point quelconque; le choix le plus simple pour ce point est P, pour lequel on a $h_{\mu,Q} \circ h_{\lambda,P}(P) = h_{\mu,Q}(P) = Q + \mu \overrightarrow{QP} = P + (1-\mu)\overrightarrow{PQ}$, et le vecteur cherché est $(1-\mu)\overrightarrow{PQ}$. Si $\lambda \mu \neq 1$, le point précédent montre l'existence d'un centre, et en prenant pour point de base P qui a image $f(P) = P + (1-\mu)\overrightarrow{PQ}$ on peut même appliquer la formule pour le point fixe (en n'oubliant pas qu'il s'agit ici d'une homothétie de rapport $\lambda \mu$): $C = P + (1-\lambda \mu)^{-1}(1-\mu)\overrightarrow{PQ}$, dont on vérifie facilement que c'est le même point que $B = \text{bar}((P,(1-\lambda)\mu),(Q,1-\mu))$. On peut bien sûr aussi vérifier directement que B est un point fixe de $h_{\mu,Q} \circ h_{\lambda,P}$.$
- 2. Application d'un raisonnement utilisant les applications affines: une preuve « peu calculatoire » du théorème de Menelaus. Celui-ci affirme que, pour un triangle ABC et des points $a \in \mathcal{D}_{B,C}$, $b \in \mathcal{D}_{C,A}$ et $c \in \mathcal{D}_{A,B}$ distincts de A,B,C, les points a,b,c sont alignés si et seulement si

$$\frac{\overrightarrow{aB}}{\overrightarrow{aC}} \times \frac{\overrightarrow{bC}}{\overrightarrow{bA}} \times \frac{\overrightarrow{cA}}{\overrightarrow{cB}} = 1. \tag{*}$$

(Vous avez vu une forme alternative de l'énoncé, avec les numérateurs opposés comme $\overrightarrow{Ba}/\overrightarrow{aC}$, et par conséquent le produit égal à -1 au lieu de 1.) Un raisonnement basé uniquement sur l'existence du groupe $\mathbf{HT}(\mathcal{A}) \subseteq \mathbf{GA}(\mathbf{T})$ des homothéties-translations et l'homomorphisme $L: \mathbf{GA}(\mathcal{A}) \to \mathbf{GL}(E)$, peut être donné ainsi. On considère trois homothéties consécutives des centres respectivement a, b, et c, et des rapports choisis tels que la première envoie $B \mapsto C$, la seconde $C \mapsto A$ et la troisième $A \mapsto B$. Alors par construction B est un point fixe de la composition des trois homothéties. Montrer les propriétés suivantes:

- a. Les rapports de ces trois homothéties sont les inverses des trois facteurs dans l'équation (*).
 - $\sqrt{\sin h_{a,\lambda}(B)} = C$ on a $\overrightarrow{aC} = \lambda \overrightarrow{aB}$ et donc $\lambda = \overrightarrow{aC}/\overrightarrow{aB}$; les autres cas sont similaires. On remarquera que le fait que A, B, et C sont distincts implique qu'aucun de ces rapports ne peut être 1.
- b. La composée des trois homothéties est soit l'identité, soit une homothétie de centre B et de rapport distinct de 1, et le premier cas se produit si et seulement si (*) est vérifié.
 - \sqrt{La} composée h vérifie $h \in \mathbf{HT}(\mathcal{A})$ et h(B) = B. Si L(h) = 1 on a $h \in \mathbf{T}(\mathcal{A})$ et donc h = I. Si $L(h) \neq 1$ on a montré que c'est une homothétie rapport distinct de 1, et B est visiblement son centre. On a $L(h_{c,\nu} \circ L(h_{b,\mu} \circ h_{a,\lambda}) = \lambda \mu \nu I$, et d'après le point précédent (*) équivaut à $\lambda \mu \nu = 1$.
- c. L'image d'une droite \mathcal{D} par une homothétie (de rapport distinct de 1) est toujours une droite parallèle à \mathcal{D} , et elle coïncide avec \mathcal{D} si et seulement si le centre de l'homothétie se trouve sur \mathcal{D} .
 - $\sqrt{Pour h \in \mathbf{HT}(\mathcal{A})}$, L(h) est une multiple non nul de I et conserve donc la direction $\overrightarrow{\mathcal{D}}$. Choisissant $P \in \mathcal{D}$, on aura donc $h(\mathcal{D}) = \mathcal{D}$ si et seulement si $h(P) \in \mathcal{D}$. Pour $h = h_{C,\alpha}$ avec $\alpha \neq 1$, c'est clairement le cas si $C \in \mathcal{D}$; réciproquement comme $C = \mathrm{bar}((P,\alpha),(h(P),-1))$ il est nécessaire pour $h(P) \in \mathcal{D}$ que $C \in \mathcal{D}$.
- d. L'image de $\mathcal{D}_{a,b}$ par la composée des deux premières homothéties est égale à la droite $\mathcal{D}_{a,b}$ elle-même, et son image par la troisième homothétie est égale à $\mathcal{D}_{a,b}$ si et seulement si $c \in \mathcal{D}_{a,b}$.
 - $\sqrt{}$ Comme les centres a, b des deux premières homothéties sont sur la droite $\mathcal{D}_{a,b}$, ces homothéties envoient $\mathcal{D}_{a,b}$ sur elle-même; d'après le point précédent la troisième le fera également si et seulement si son centre c se trouve aussi sur $\mathcal{D}_{a,b}$.
- e. Conclure.
 - \sqrt{Si} (*) est vérifié la composée des trois homothéties est l'identité d'après le point b, et le point précédent montre qu'alors $c \in \mathcal{D}_{a,b}$ donc a, b, et c sont alignés. Réciproquement si (*) n'est pas vérifié, la composée est une homothétie de centre B et rapport distinct de 1, et comme $B \notin \mathcal{D}_{a,b}$ (car $b \in \mathcal{D}_{A,C} \setminus \{C\}$ n'est pas sur $\mathcal{D}_{B,C} = \mathcal{D}_{B,a}$) le point c montre qu'elle n'envoie pas $\mathcal{D}_{a,b}$ sur elle-même, donc $c \notin \mathcal{D}_{a,b}$.