An interface evolution problem for axisymmetric
stressed pore channels
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Abstract. The aim of this paper is the mathematical study of the time evolution of a stressed
pore channel in an axisymmetric configuration. Under some conditions, morphological in-
stabilities may appear at the material-vacuum interface. Assuming some formal asymptotic
assumptions, we derive a nonlinear parabolic PDE (19) governing the cylindrical surface evo-
lution. Local existence and unicity of the solution of this PDE are shown and we also perform
some numerical computations (with different parameters and initial condition), using a pseudo—
spectral Galerkin method, yielding different behaviours for the solution to (19). In particular,

we numerically observe what appears to be a finite time pinch—off.
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1 Introduction, presentation of the problem

We consider an axis revolution crystal structure, undergoing stresses with the same symmetry
axis. The stress-induced morphological instabilites at the surface of the pore channel [1] are
for instance observed when the production process induces a pore distribution that condition
the physical and mechanical properties of the materials. Pores have been artificially introduced
in titanium ion-implanted sapphire substrates [2] and were observed to heal during high—
temperature annealing.

In the mathematical modeling, assuming the load field presents the same axial symmetry as
the structure, the full three-dimensional problem (in (r, z,6) cylindrical coordinates) can be
reduced to a 2D problem in (7, 2) coordinates. In figure 1 is presented a cylindrical pore of

length ¢ and of radius ¢ in a matrix of shear modulus p and of Poisson coefficient v. The
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evolution equation for the surface is derived in [1] and reads

g—: = D(l + rﬁ)%vi <E,' + ’Y’C) sur Q,«(T), (1)

where

® (,(r) is the part of the pore which boundary T', is defined by
Iy ={(r,2); r=r(z,7)},
The lateral boundaries are given by
To=A{(r,2); 2=0} et Iy ={(r,2); z=1(}.

e r =1(f,2,t) is the interface radius. It is a function of time ¢, cylindrical angle 6 and of axial
coordinate z. 5

r
The partial derivative — will be denoted r,.

2
e V2 is the surface Laplacian operator [3, 4] defined by :

—— 41y 0 g d +2 1+720 1 0 @)
S q|oz q 0z q 00 00 q 00 q 02)]
with ¢ = \/r2(1 +72) + 72 and ry = %

e [C is the total curvature K = k; + ko with :

1 —T,,

Kl = ———— Ky 'i= ———. 3
' ry/1+ 12 2T (1 +r2)32 (3)
e D is the temperature-dependent diffusion coefficient of the surface atoms.

e v denotes the free energy of the surface.

o £ is the elastic energy of the structure, defined for all points of €2,(;).
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;

Figure 1: Interface evolution for axisymmetric pore channel under uniaxial constraint oy.

A first approach consisted in a theoretical study in absence of constraints [6, 7]. The authors

of [6, 7] exploited the results of their experiments, that examined the case of fluids instabilities



occuring at the surfaces of cylindrical waterobjects. They demonstrated that instabilities of
cylindrical waterobjects occur for fluctuations with wavelenghts higher than the circumference
of the cylinder. After these seminal ideas, similar results have been obtained in the case
of solids by Nichols and Mullins [8, 4]. They concerned cylindrical trunks (stems). These
authors then generalised their results to cylindrical solid pores and precipitates. They were
particulary interested by the free—surface morphological evolution of cylindrical objects, by
surface or volume diffusion, in the case where the driving force is the surface energy gradient.
A computation of the energy variation [5] has also demonstrated that the development of
instability is energy—favourable. In [6, 7, 8, 4], the presence of constraints inside the material has
not been taken into account. To our knowledge Colin, Grilhé and Junqua [1] have been the first
ones to handle the evolution of pores by surface diffusion when the matrix is under constraint.
Their treated the case of one, constant, uniaxial constraint oy, in the axisymmetrical case. But
they also extended the formalism to materials underlying a two—dimensional constraint field,
e.g. wiskers and composite fibres; they limited their investigations to structures with cylindrical
symmetry [9]. In [1, 10], the crystal structure matrix is loaded with a constant and mono-axial
constraint og and sinusoidal fluctuations are introduced in the lateral surfaces, parallel to Oz.
The authors make an energy variation calculation, then a surface kinetic analysis, to caracterize
the interface evolution. The lateral surface of the pore is found to be unstable for wavelengths
larger than a critical value A, that depends on the initial constraint oy. For small values of
09, the influence on A, is weak and the instability is mainly monitored by the surface energy.
For large values of gy, A\, becomes very small relative to the pore radius. The growth of the
instability becomes much faster. This analysis allows one to determine the control parameters
for maintaining the stability of the surface, so that the energy variation remains positive (see
[10]). To caracterize Rayleigh instabilities, the authors minimize the energy on the surface and
the cylindrical pore evolves to spherical cavities (sockets). The determination of the kinetics
of the time evolution of roughnesses by diffusion of pores on surfaces under constraints is also
done. Numerical computations show that the new critical wavelenght diminishes when the
constraint is higher. In [11, 12], Colin et al. are interested in the shape evolution of cylindrical
conducting wires under axial and radial constraints. Instabilities occur simultaneously on the
lateral surfaces. The results are similar to those observed during experiments where roughnesses
emerge at the interface, on tantale wires in a copper matrix.

High—order perturbation analysis and numerical simulations of the nonlinear equation governing
the morphological change of the cylinder surface can be found in [13, 14] and a linear stability
analysis in the mono-axial constraint case is done in [15, 9] .

In [8, 4], the authors study the morphological stability of a pore surface when an artificial
tension (with zero constraint) is applied. Again, they show the conversion of the cylindrical
pores into spheres, and find that the distance between the spheres depends on the surface

diffusion and on the bulk diffusion. They also show that the interface becomes unstable if the



wavelength becomes larger than the cylinder circumference. In particular, they analyse the
external evolution due to the small amplitude perturbations. In the present work, we use the
model derived in [1], where the cylinder radius evolution is governed by a parabolic PDE. Under
some formal asymptotic assumptions and appropriate scaling laws (to be precised below), this
PDE can be further simplified and hence mathematically analysed and numerically solved. The
paper is organized as follows. In section 2 is derived the evolution equation, after expanding
the elastic energy in terms of the asymptotically small parameter o = r /. The proofs of local
existence and unicity of the solution to the system (21) are given in section 3. In section 4 are
presented some numerical experiments, showing that the solution seems to pinch—off in finite

time for some given initial data. Section 5 contains concluding remarks and perspectives.

2 Elastic energy calculation; derivation of the evolution

equation

As already mentioned, we use a cylindrical coordinate system (r, z,0) with Oz as symmetry
axis. The axial symmetry allows us to write the radius r as a function of z and 7 only :
r =r(z,7) and 7y = 0. In order to ensure the cylinder equilibrium, we assume r to be periodic
on the boundary faces of Q,(7) (I'g and I'y). We further assume x; to be negligible in front of
K9, as in [16]. Equation (1) then reads

Q D o r 0 —T,, L (4)
or  r oz ,/1+r282 1—|—T )3/2 '
We also assume that

r(2,7) > 1o for all z and 7 where ry > 0 is given. (5)

The remaining problem is then to express £ (featured in equation (4)) as a functional of r
derivatives.

The elastic energy of the structure can be expressed as

£ = %(U(u) - 0—0> <s(u) - 50)

1
= o0& + 50’050 (6)

= 5 (“ace<e<u>>) - trace(=(u)?) — ous(u) + 5o0co

where € denotes the linearized deformation tensor

e(u) = =(Vu+' Vu) (7)
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The displacement u verifies the linearized elasticity equations

div o(u) = 0 in Q
op(u)n = ogn on T, , (8)
U/FU = U/Fl

where n = (1;0; —r,) is a vector normal to the interface, o(u) is the linearized constraint tensor,
0p is the initial constraint tensor (assumed to be a constant). The tangential displacement g
is zero since we assume axial symmetry.

After some algebra, and by Hooke’s law, system (8) yields a differential system for the two
displacements u, and wu,:

( *u,.  10u, 1 ) 0?u, M( Pu, 0%,

A+ 2 - — —u,
(A+2p) or? +7" or 7“2u 87“8z+ 022

Ot 1) 0%u, +18u,« L 82uz_r_z . 82uz+282u2+18u2 0
H# ordz 1 0z 022 72 Hr H or? 022 ror )

9)
{ ou, u,  Ou, ou, Ou, (
()\+2’u)8r +)\<7+8z _MTZ<E+8T>_O

v (Y Oy (Ot sy D) L =0
L "=\ or 0z T "\ oz or "9z Te00 =

To solve this system (in order to obtain an expression for the elastic energy E ), we make an
asymptotic expansion of the displacements u, and u,. We assume that the small parameter is

the ratio of the radius to the length of the pore, i.e.
a=r/l<K1. (10)

We then introduce the following scaling laws (change of variables) R = r; Z = az and t =
Dvya’r. Seeking for the displacements u, and u, under the forms u,(r,z) = U;(R,Z) and

u,(r, z) = aUs3(R, Z), we expand the U;’s in terms of o? :
Ui=Ul(R; Z;t) = U + U} +... with i=1and 3, (11)

where the coefficients Uz-j are independent of a. Note that the odd powers of a have zero
coefficients.

Introducing the notation h(t, Z) = r(r, z), system (9) can be then re-written as

( 0*U 10U 1 0?U. 02U
O\ + 2M)[8R21 + Ea—Rl - ﬁUl} +a? [(/\+“)8R83Z +“aZ21} —0
82U1 1 8U1 hZ 82U3 1 8U3 3 82U3
S YUy Pz il 9 —
) O‘{(AJFM)(aRaZ troz) RV TR TR 8R)} Ta {(A“L 2 822] 0
oU U oU. oU oU.

[(/\ + 2“)8—1%1 + AEI] + o [Aa—; - “hZ(a—Zl + 8—R3)] =

oU; 1 oUs  oUy 3 0Us _
\ a[ Ahz(aR +RU1)+“(8R + aZ)+hZao] + o [ (/\+2u)hzaz] =0

(12)



By (11)-(12), one obtains a system in the four unknown U}; U}; Uy and Us;.
Similar calculations (see [17, 16]) yield

o =0

_ 13
U??:%hzln(R) with R > 0. (13)

The two coefficients in U} and U} appear in the a*~term of the expansion of £. Hence, we do
not need to derive them explicitly.
We then obtain

Oy 5 1 ou, W, 0u,

_ L 224 (2 2
= (2)\+M)L(a o g Qo] g ey
W,0Uy 5 A U, 8uz ou, Ou, ou, Ou, ou,
Lo D (= A 2 _
252 ar“(ar+az)+aa 52 +“%z o (14
_ 1 ﬂz i 2 Us o H ﬂ Us
- (2A+“)[(a}2) Tl e (az)]+2 aR}
\ ou, Uy ta ,0UL 3U3 Y 2 U1 0U3 2o 3U3
OR R OR 07 R 07
Using (13), the expansion of £ writes
2|1, 0U3 oUy Ui, 1 40 U3
Y e S P | A o) (S 4 = it |
£-e [2(83) "oz ) T ( UG+ U+ (G (15)

8U3 oUl 119U} aUg oUL U} .
MR R T2azor Trer R T T

Keeping the o?>~term only yieds

B w,oU; 8U3
£=a (2(83) oz

Since
8U§) . —Oohz

OR 1R
= %, n(R)
1

ouy
0z

it comes that
2

1
£ = oﬂ% (hzz In(R) + 5JR—?h?Z).

On the “free” surface R = h(t, Z), we then have

2
20—

1
=« ; <hZZ ln(h) + §h_2h22> . (16)



2
Using (16) and introducing n = &, equation (4) becomes :
Vi

oh 10 0
ot hoZ

ho ((1 — pln(h))hys — g/ﬂh;)} . (17)

To equation (17), we add the two following assumptions

ro < h and h/l < 1. (18)
In the sequel, we shall denote z instead of Z (i.e. Z = z). We also make the following change
1
(— + (,D(t, Z))
of variable h(t,z) =e " . Equation (17) then reads
10¢
2P A oo (3) (4) 19
T (@, @', ", 0, ') (19)
with
A, @, ¢, 0P, 0W) = 0™ + 200 + ¢ 1 809" + 50 p®) + 30"+
1
~(=+¢)
9@@,290” 4 3¢/4 + 2¢<’0/4 +e 7 <gpl¢(3) + (10/2@// 4 Q0”2>
(20)
1
The assumption 7o < h of (18) then writes ¢ > In(rq) — —. We introduce the quantity 7o such
n

1
as Inrg = —. Now, ¢ shoul obey the following PDE problem
U]

—a, = A(QO, Qo,a 90”7 90(3)7 90(4)) sur ]Oa T[X (Oa ]-)
n
©(t,.) is 1-periodic, given on (0,1)
©(0,.) = ¢ is 1-periodic, given on (0,1)
with o, 2) = 221 ).
’ ozk "7
1
Remark 2.1 Condition h/t < 1 of (18) is fulfilled as soon as £ > ¢ + —. Let re—write
n
condition (18) under the form
1

1
@ > In(ry) — ; et > o+ o (22)

In order to study the system (21), we indroduce the periodic Sobolev space

H™ (0,1) = {f € H™0,1), fD0) = fD(1) fori=0,1,...,m — 1}, (23)

per

where H™(0, 1) denotes the usual Sobolev space of index m, for m > 1. We consider for ¢, > 0

(t. will be calculated afterwards) the space H

H = L*(0,t,; H: (0,1)) N L>(0,t,; H>, (0,1)).

per per



The space H is endowed with the norm

1 1
| ¢ lln= (/ / 2(t,2) dzdt + sup [/ ©"(t, 2) dz+/ ©*(t, 2) dz])
te(o,t.) LJo 0

We denote by By(0,£) the closed ball of H of radius & > 0.

o=

3 Local existence and uniqueness

In this section we show the local existence and uniqueness of the solution to system (21) in the
space H. We make use of the fixed—point Picard theorem [18]. Let I' be the application of H
in H defined for any v € H by I'(v) = ¢ where ¢ is solution to the problem

0

ot
o(t,.) is a periodic function on (0, 1)

©@ v, 0" 0" 0@ @) on 10, T[x(0,1)
(24)
©(0,.) = ¢ is a initial periodic data in (0,1)

where

(¢, @(4)avav’avl’av(3),v(4)) = n ’U<,0(4) + 2003 "2 8u"20" + Svv'v®) + v+

~+[v)
9uv2y II+3UI4+QUUI4+€ 77 (UI’U(?’)—I—UI?U”—I—UIQ)}
_80(4) + /U(4) — QO _|_ (3]
(25)
The expression for IT is deduced from that for A, defined by (20). It then becomes possible
to use fixed—point theorem for I'. The result of local existence and unicity of the solution to

problem (21) is then as follows

Theorem 3.1 Under condition (22), for any strictly positive initial data py € HY,.(0,1) such

per

that || o ||ms. 01)< &, the problem (21) has one local solution ([O,t*), <,0> in H.

per

In order to show theorem 3.1, we first prove two lemmas. The first one verifies that I' is well
defined under a condition involving &, £, and the initial data ¢y. The second shows that I can

be a contraction, under an additional condition.

Lemma 3.1 Let the assumptions of theorem 3.1 hold. Then there exists a constant ¢ > 0 such
that for any (t., &) (t. >0 and £ > 0) satisfying

1

1 199(€+€) - 2 >

At,en |97 + 1168 4 867 4 360 4 3¢ 4 1163 + 1467 4 3¢ | + 8.6+ || wo ||§,56T(071)§ £,

the application T is well defined to By(0,€) in Bx/(0,&).



Lemma 3.2 Let the assumptions of theorem 3.1 hold. Then there exists a constant k (0 < k <
1) depending on t, and & such that for all vy, vy in By(0,&), the application T satisfies

[ T(v1) = T(o2) |[< K[ or —va | .

We prove lemmas 3.1 and 3.1 using a priori estimates [19]. The Galerkin method [20] then

gives the existence and uniqueness for the solution to system (21).

Proof of lemma 3.1. Let v and ¢ in H be such that I'(v) = ¢ then ¢ satisfies the sys-

tem 3
a_f =T(p, o, 0,0, 0" 0@ W), (26)
ie.,
890 4 1,.(3 "2 12,1 1,,(3 "2 12,11 14
Fn = nvgo()+21)v()+v + 802" + 5vv'v®) 4+ 3vv"? + v + v+

(27)

~

1
—(= + |v])
vt +e T v

Let multiply the two terms of (27) by ¢ and by ¢ and integrate between 0 and ¢

L 9 v 1
/ oWz +/ oW dz +/ ©"dz =
0 ot 0 0

1 1 1 1
n [/ oW vdz + 2/ W' B®dz + / oWy 4 8/ oW dz+
0 0 0 0
1 1 1 1
5/ oWov'v®dz + 3/ oW dz + 9/ eWuvv"dz + 3/ e Wotdz+
0 0 0 0

1
1 1 —(—+ |U|) 1 1
2/ <p(4)m/4dz+/ oWe M <v'v(3) +v'21)"+v”2> dz] +/ <p(4)v(4)dz+/ oWudz
0 0 0 0

= [El + 2E2 + E3 + 8E4 + 5E5 + 3E6 + 9E7 + 3E8 + 2E9 + E10 + E11 + E12:| + E13 + E14
(28)

v 420" 4 v”2>] — oW 4@ —p 4o

where

1 1 1
E; :/ eWodz; B, :/ eWo'v®dz; s :/ @Dy
0 0 0
1 1 1
E4:/ eWvv"dz;  Ej :/ eWor'v®dz;  Eg :/ eWov"dz
0 0 0

1 1 1
E, = / ¢(4)le2vlldz; Ey = / 80(4)Ul4dz; Ey = / ¢(4)le4dz
0 0 0
N ) L (=4 )
Exo :/ eWe 1 Vv¥dz; By :/ eWe M V0" dz
0 0

N 1) ! !
Es :/ eWe M v"?dz; s :/ oWoWdz: By :/ oWudz.
0 0 0
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Similary
1 1 1
dp
/ P4z + / ©*dz + / ©"dz = n|Fy +2F, + Fy + 8F, + 5F5 + 3F; + 9F;+
8t 0 0 (29)

3Fg +2Fy + Fig+ Fiy + Fio| + Fiz + Fiy

where F; (1 < i < 14) is an expression with the same form as F;, replacing ¢ by ¢.

We use Holder, Young and interpolation inequalities in the same way as in [16], to estimate the
different expressions. We then obtain the following estimations for the right hand side for (28)
and (29)

1 1 1
/ o™ ?;Odz + / ©M2dz + / ¢ 2z <
0 t 0
1
(19n(€+ &) + 2¢) / M2z + en {959 + 1168+ 86" 4+ 3R% + 3¢ 4+ 11€% + 1462 + 35] +2¢ (30)
0
We can re-write (30) as
1 00 1 o
/ o 5 P20z + (1 —199(€2 + &) — 25)/ <p(4)2dz+/ ¢ 2dz <
0 0 0
cn [959 + 1168 4+ 867 + 365 + 3¢ + 1163 + 1462 + 35] +2¢ (31)
In an analogous way, we can estimate the right hand side of (29) as

1 a 1 1 "
/goa dz+/ <p2dz+/g02dz§
t 0 0

1 1
(199(€ + €) + 26) / Sz + e / S0t
0 0

cn [959 + 1168 4+ 867 + 3¢5 + 3¢ + 1163 + 1462 + 35] +2¢
Moreover, we write (32) under the form
1 8 1 1 .
/ > ar+ (1 19n(g2+§)—25)/ <p2dz+/ ¢ 2dz <
0 0
ng/ 2dz + en {9{9 + 1168 + 867 + 360 + 3¢ + 11€% + 1462 + 35] +2¢ (33)
Adding (31) and (33), we obtain

1d 1 1 1 1 1
5 a0 (/ o2dz +/ go"gdz> +/ M2z +/ o dz + 2/ @ 2dz <
t\ Jo 0 0 0 0

1 1
(199(E + €) + 26 + ) / W2 4 (199(E? + €) + 2) / St

(34)
2 [959 + 1168 4+ 867 + 360 4 3¢* + 1163 + 142 + 35] 4+ 4¢
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1
Let us then notice that / ¢"*dz > 0. Then we estimate (34) as
0

d 1 1 1
%%</0 g02d2+/0 go"gdz> (1—19n(&+ &) — 26 — n§)/0 202+

1
(1 - 199(€ 4 £) — 2) /0 Sz <

2em [959 + 1168 4+ 867 + 365 + 3¢ + 1163 + 1462 + 35] + 4¢ (35)
Let then assume that the following condition (36) holds
1
L= 109(+€) - 26> (36)

Integrating (35) between 0 and ¢ (0 < ¢ < ¢,) and using (36) then yield
1
/gp(t,z)dz+/ ”Qtzdz+// (1,2)dzdr <
0 0

4ten [959 + 116°% + 867+ 3¢° 4+ 3¢ + 116% + 148 + 36} + 8t + (Il o 172001) + | 00 172001) <

4t.cn {95%1158+8§7+3§6+3§4+11§3+14§2+3§} +8t.£+ (| wo lI72000) + | ©0 1Z2000)) (37)

While passing to the supremum for ¢ € (0,%.) on the left hand side of (37), we obtain the

following estimate
Ie 3=] T () 13<

At,cn {959 + 116% 4 8¢7 4 3¢% + 3¢* + 1163 4 1462 + 35] +8t&+ [l wo 2, 00 (38)
We can choose (t,,&) such that ¢, > 0, £ > 0 and (¢, &) is solution to the following system

1
1—19n(8% + &) =26 > 3
(39)

4t,cn [959 + 1168 4+ 867 + 360 4 3¢ + 1163 + 14£% + 35] + 8.4 || vo ||§,gy(071)§ £

Since T is well defined to B (0,£&) in By (0,§). O

Remark 3.1 We use the Faedo—Galerkin method [20] with the same a priori estimates than in
the proof of lemma 3.1, for proving the existence of the solution to system (24).

Proof of lemma 3.2. Let denote vy, vo, @1 and s in H such that T'(v1) = @1 and T'(vy) = .
Let note v = v; — vy and ¢ = 1 — pa.  is solution to system (24), i.e.,

agol_[

at (()07 ()0(4)7,05/017 U’I,U(3),U(4)), (40)
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or, explicity,

9%
ot

4 4 3 3
- {(M ) ) + 200 ® — o) + (o1 — 0l2) + (P! — Pl +

5100l — vpvhul®) 4 3(v10!2 — vul2) + (v v — var2el) + 3(VIE — i)+

1
—(=+ v
7 |1|)<

14 4 1,,(3) 2,01 "2
2(v vt —vvlt) + e vivy” +ofe] + ol ) —

e

1
SL
o

ohol 4+ o2l + v§’2>] — oW W — 4w
(41)
Let multiply the two sides of (41) respectively by ¢ and ¢ and integrate between 0 and ¢ we

ha}fe 5 ) .
/ @(4)a_g0dz +/ 90(4)2dz+/ ¢"dz =
0 t 0 0

1 1 1
n[ / oD (010D — vy dz + 2 / oD (o — wo®)dz + / oD (W — o)
0 0 0
1
8 / SO — 2ul)dz + 5 / oD (010} — vy dat
0 0

1 1 1

3/ oD (00" — vavl?)dz + 9/ oW (020" — vyviull)dz + 3/ oW (v — vi)dz+
g R B} L)
(=T U —(= T (V2
2/ oW (v vt — vt dz +/ o™ <e n R v§v§3)>d2—|—
0 0
1 1
! ~(=+ [vn]) (= [va)
/ oW <e N VP —e T vaé’) dz
0

1
! (= =+ [vn) ~(— = [va) L L
+/ oW <e U | v;’2>dz] +/ <p(4)v(4)dz+/ eWudz
0 0 0

=7 |:G1 + 2G2 + G3 + 8G4 + 5G5 + 3G6 + 9G7 + 3G8 + 2G9 + Gm + G11 + G12:| + G13 + G14
(42)

where

1 1 )
G, = / 90(4)(7)180%1) —v2g0§4))dz; Gy = / (10(4) ('Ui'z)§3) _vévéii))dz; Gy = / (10(4)(011/2 —UéIQ)dZ
0 0 .
1 1
Gy = / oW (WP — vul)dz; Gy = / oD (0,010 — o)z
0 0
! 1
Go= [ e~z Gr= [ O] — s
0 0

1 1
Gs = / W (Wt —vhdz; Gy = / oW (v it — vyvlt)dz
0 0

L) = + [ua])
—(— T |l —(= T U2
Gho :/ W <e N ol —e 1 v;vé3)>d2
0



1 1
a1
GH:/ eWle M v — e vy vy |dz

0
LIS
(= T |t —(= T U2
G12:/ @(4)<e Y V)2 — v;'2>dz
0
1

oy dz:

G13=/
0

In an analogous way, we can write

1 1 1
9,
/@£d2+/ <,02dz+/ O"dz =
o Ot 0 0
' (4)
n{/ e(viey
0
1

12 1 12 1
8/ p(vyv) — vy v,
0

1

2 1 2.1

9/ o(v1v7 V] — VoUs Uy
0

LG )
_(— U1
/w(e U v
0 1

0

1
L=+ ul)
[ e
0

:’17|:H1 +2H2+H3+8H4+5H5+3H6+9H7+3H8+2H9+H10+H11 +H12:| +H13—|—H14

1
— )z +2 [ pief?
1 1
)dz + 5/ (w0t — vl ol dz + 3/ o(v1v]?
0 0

1 1
)dz + 3/ ot —vihdz + 2/ o(vv) — vovtt)dz+
0 0

—(— + |vg
e

1
G14:/ <p(4)vdz.
0

n2

1
— vy )dz + / P — v5")+
0

"2

— VoUy )dz+

(= [va])

—e Uév§3)>dz+
(= [va])

—e vfué’) dz+

) 1 1
v§'2> dz] +/ gov(4)dz+/ pudz
0 0

13

(43)

where H; (1 < i < 14) are expressions with the same functionnal form as G, by replacing ™

by ¢.

Again, we use the Holder, Young and interpolation inequalities in the same manner as in [16]

to estimate the different expressions. For the term G, we can write

Go

; E 4 o)
_(— V1
0

where

L o))
(3)1)’6_( o dz:

Uy

Gl()l

1
/ o
0

1
G102 :/ WMy
0

1

1 (3) s

)a

1
—(= + [va|)
dz

G101 + Gio2 + Gigs

1
Gios :/ 90(4)7);’”(3)6
0

1 1
=t lul) )
e n — € n ) dZ

(44)
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We have

1 1 1
(= +nl) ==+ |ve]) ~(= + |v2])
e N —e 7 = e 7N

o~ (o] = Jva]) _ 1‘
< e|U| -1 (45)

= 6|U|

vl _ 1‘ < eloljy|

For the exponential terms, we use (45). Since we obtain estimates to expressions (42) and (43)

in the following

1 9 1 v 1
/ <,0(4)8—de +/ @(4)2dz+/ ¢ 2dz < (44n€ + 25)/ ©M2dz+
0 5 0 0 0
7 | v |5 +n [25 + &% 4 e’ 41260+ (46)

236&3¢ 4+ 120€°¢ + 68E7¢ + §3C€4£:| | v l3

1 Sy 1 T 1
/ go—dz+/ <,02dz+/ ¢ 2dz < (4477§+2§)/ O dz+
o Ot 5 0 0 0
z | v |2, +n [25 + et 4 et 11260+ (47)

236&3¢ 4+ 120€°¢ + 68E7¢ + §3C€4€:| | v 3

Consequently
1d 1 1 1 . 1
5 </ ordz +/ go"de) + / ©*dz + 2/ ¢ 2dz +/ W2y <

t\ Jo 0 0 0 0

1 1 4
(44n€ + 2¢) / e W2dz + (44n€ + 2¢) / ©’dz + £ | v |5 +2n [2{ + 53645 + 65646 + 128c+
0 0

9236&3¢ + 1206%¢ + 68€7¢ + 530645} v |2,
(48)
1
Since / ¢"?dz > 0, we can write
0

1d 1 1 1
§£</ ©ldz +/ <,0"2dz> + (1 — (44n& + 2§)> / O dz+
0 Jo 0

(1  (4dne + 25)) /0 024 < E +2n(26 + 6% + 568 1+ 12¢0+ (49)

236&3¢ + 1206%¢ + 68E7¢ + {30645)] | v 13

Moreover, let the following technical condition hold

(50)

DO | —

1— (44n€ +2¢) =
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Then, we can re—write (49) in the following

1d 1 1 1
5%(/ oidz +/ <,0"2dz> + <1 — (44né + 2§)> / eW2dz <
0 0 0

E + o (26 + S + et 4128+ (51)

236&3¢ + 120€%¢ + 68E7¢ + {30645)] | v 13

Since pg = 10 — Y20 = 0, and if one integrates (51) between 0 and ¢, (0 < ¢ < t,), one obtains

1 11 t el
%/ ©*(t,x) dz + 5/ O (t, ) dz + <1 — (44n€ + 2§)> / / @(4)2(7', r)dzdr <
0 0 o Jo

t E + 2n(2€ + 3688 4 5688 4 19604
236&3¢ 4+ 120€%¢ + 68&7c + 536645)_ | v l3 (52)

< t, E +2n(2¢ + S S D

236£3¢ + 12085 + 68¢7c + E3ce’€) | || v 12,

Condition (50) implies

1
/ gp%t,x)dz—l—/ "2(t, x) dz+// (1,2)dzdr <
0 0

2t, E +29(26 + €2¢% 4 e’ 4 126¢ + 23663 + 12067 + 68¢7e + 53664&)} ol 53

Passing to the supremum for ¢ € (0,t,) on the left hand side of inequality (53), we obtain the

followmg estimate

e 1 1
/ / 2(t,z)dzdt + sup (/ g02(t,x)dz+/ go"%t,x)dz) <
te(0,t.) \ Jo 0

4
21, {Z 226 + %64 + 568 1126 + 23663 ¢ + 12065 + 687¢ + E3ce™S )} lvl2 — (54)
Consequently, ' is a contraction as soon as the following condition holds true.

k=2t (% 226 + €368 + €568 4 12¢0 + 23683 + 1206%¢ + 68¢7c + E3ceS )) <1 (55)
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4 Numerical experiments

Since the problem is assumed spatially periodic, we use here a pseudo—spectral method coupled
with an exponential scheme that breaks down to a classical forward Euler time scheme, for zero
wave number [21, 22]).

In the sequel, we numerically evidence what appears to be a finite time pinch—off of the solution

to equation (17)) for some given initial data hq.

4.1 Spatial discretization

Let consider equation (17) with h(z,t) supposed 2r—periodic. Equation (17) can be written in

the form
oh
o + L(h) =N (h) (56)
where £ and N are the linear and non-linear operators of system (17) :
_ o

and
N(h) = n(lnh) B® +n|h~t(Inh) B'A® + 2K hG) + h=2h'h®) — AR—3K2h" + h~1h"2 4

h—Qh/IQ 4 2h—4hl4 o h—lhlh(3)
(58)

Periodic boundary conditions and given initial data yield
h(0,t) = h(27m,t), teR,,

h(z,0) = ho(z), =z € (0,2m).

The solution to (17) is approximated as a truncated series in the Fourier basis functions
{(Pr)rez, Pr(2) = ™}

hy(zt) = Py(h(z,t) = Y hi(t)@s(2),

kel

where Iy = [1 — EX 5], the hy, are the spectral coefficients. We require the orthogonality of
the residue for all functions of Sy who make up the vectorial space generated by (®y)gez. In
Fourier space, we can write

oh .

a—tk = Lyhy, + Ny, (59)

where N} is the k—th Fourier coefficient of the non-linear term of (56).
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4.2 Time discretization

Let dt = t,1 — t, be the (constant) time step size The exponential scheme in time

Lot 1

hrtt = fp ER0 4 N
Ly

(60)

is based on a discrete version of the variable parameter method, that would exactly solve a
linear equation. The non-linear term N is computed at each timestep in the direct space,
then in the Fourier space, by a discrete fast transform. This first—order in time method can be
generalized up to fourth—order, following a Runge-Kutta strategy (ETD or ELP schemes, see
e.g. [23, 24, 25]. In the present qualitative study, we limit ourselves to first order. By choosing
a relatively small timestep size, we ensure both stability and sufficient precision.

The number N of colocation points was chosen not too large N = 8192, typically), to avoid
losing precision (and obtaining spurious oscillations) when computing high order derivatives
(see the remark about the numerics below). Again, in this qualitative study, no particular
strategy was attempted to cure such a (well-known) problem. But an anti-aliasing simple 2/3

rule [26] was applied when computing the non—linear term.

4.3 First numerical test; dissipation

We first tried to solve system (17) for an initial condition inspired from [14] (see also [27]). For
the initial condition
ho(z) = 1+ 0.05(sin(11z) + sin(10z)) (61)

the computed results for 6t = 107%, N = 8192, = 1 are represented figures 2, left and right.
The observed behaviour, leading to a very quick decay of initial perturbations, is very similar
to those of references [14, 27] obtained with a different axially symmetric surface diffusion

constraint—free modelling.

4.4 Second numerical experiments; pinch—off

After this first experiment, leading to results similar to those of the literature, we tried to solve

system (17) for a different, simpler initial condition. For the initial condition
ho(z) = 10 + sin(2) (62)

the computed results for ¢t = 1072, N = 8192, n = 0.43 are represented figures 3, left and
right. A zoom around the spike of the solution is represented figure 4, showing how quickly the
shape “changes direction”.

These results are qualitatively similar to those obtained in the literature. For instance, Sekerka

and Marinis [28] model the instability of aligned cylindrical rods in a directionally solidified
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Figure 2: On the left, solution h(z,t) to system (17) with the initial data hy (eq. (61)) and
for n = 1; 6t = 1075 and N = 8192. The solution is represented at iterations 0 (initial
condition, dotted line), 50, 100 and 400. On the right, solution at times ¢ = 0 (dotted line)
and £ = 0.001. To ease readibility, the solutions were translated and the difference between the
t = 0.001—solution and 1 was scaled by a factor 100.

eutectic. They numerically follow the instability until the rods pinch off and begin to coarsen.
Coleman, Falk and Moakher [13, 14] showed numerically that Rayleigh unstable cylinders cause
a pinching in finite time if perturbed in an axisymmetric way. A result of continuity was
established by Bernoff, Bertozzi and Witelski [3] who examined the structure of the pinch—
off, showing its self-similar structure. Deckelnick, Dziuk and Elliott [27] were concerned with
the analysis of a finite element discretization, based on the above natural splitting of the
diffusion fourth—order problem, for axially symmetric surfaces. They show the existence and
uniqueness of the discrete solution and also computed some numerical solutions, where the
axially symmetric surface diffusion problem also lead to pinch—off.

A remark about the numerics

The pinch—off behaviour leads to an effective discontinuity on the derivatives of the solution.
Our spectral approximation can then undergo a Gibbs phenomenon and unwanted oscillations
can be obtained in the long-time solution. Classical tentative remedy, like Lanczos-type fil-
tering [29], led to a dissipative behaviour (and a flat shape in the end!). No futher and more

elaborate strategy (like Gottlieb et al’s Fourier-Gegenbauer reconstruction [30]) was attempted.

5 Concluding remarks

In this work, We consider the case of the axisymmetric profile of a pore, taking into account the
effects of elastic strain energy on surface diffusion. Under some formal asymptotic assumptions

and scalings, we can obtain a non-linear fourth—order parabolic PDE. We show local existence
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10.5

10 +
95

Figure 3: On the left, solution h(z,t) to system (17) with the initial data hq (eq. (62)) and for
n = 0.43; §t = 1073 and N = 8192. The solution is represented at times 0 (initial condition,
dotted line), 0.55, 0.6, 0.62, 0.67, 0.75, 0.95, 1.5, 2, 7 and 13. On the right, solution at time
t = 70. Notice that the long-time behaviour yields a very sharp shape (that strongly resembles
a pinch-off) for the solution h(z,1).
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Figure 4: Zoom of the solution h(z,t) to system (17) with the initial data hy (eq. (62)) at time
t = 13 (same run as figure 3). The colocation points are represented as x. The very sharp

(mind the scales) change of direction is worth noticing.
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and uniqueness to the solution of the problem evolution of the surface of this constrained pore.
The shape of cylindrical stressed pore, solution to this PDE (17) depending on a parameter
n (proportional to the square of the applied constraint op) is then numerically examined. To
approach the solution of the system (17), we adopt a pseudo-spectral method associated with
an exponential time scheme. We give some results of the structure of the pinch—off.
Depending on initial condition and on the value of parameter 7, the solution can go to a flat
shape, or on the contrary, may lead to an apparent discontinuity on the derivative, i.e. a
pinch—off behaviour.

These results, leading either to dissipation of initial perturbation or to pinch—off, compare qual-

itatively well with those of the literature obtained with different modelings of surface diffusion.
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