Existence and finite—time blow—up for the solution to
a thin—film surface evolution problem

M. Boutat!, Y. D’Angelo?, S. Hilout? V. Lods'

Abstract. The aim of this paper is to study the evolution of the surface of a crystal structure,
constituted by a linearly elastic substrate and a thin film. After appropriate scalings, a for-

mal asymptotical expansion of the displacement, under some asumptions, yields the following

oh 0?2 L0,

where 6 is a coefficient related to the crystal, and h(¢, x) describes the spatial evolution of the

nonlinear PDE

film surface. We give here some results about the finite-time blow—up and prove the existence
and uniqueness of a solution in L2(0, t,; H2,.(0,1))NL>(0,t,; H2,,(0,1)). We also present some

per per

numerical computations confirming the blow—up scenario.
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1 Introduction

In this work, we consider a constrained crystal structure constituted by an elastic rigid substrate
and a free solid film. We are interested in the evolution of the surface of the film in the absence
of vapor deposition. This study is related to the modelling of form instabilities for the film,
that can be explained by the deformation of the free face as the film thickness exceeds a critical
value. This morphological instability is known as Asaro—Tiller—Grinfeld instability [15, 7].
The physical model is developed in [16]. The present mathematical analysis is based on the
elasticity equations verified by the solid and on the nonlinear evolution equation describing the
film instability (cf. eq. (38)).

In [16], the authors present the details of this model; they analyze the linear stability for the

solution to the evolution equation for the surface film in two dimensions of space, and in the

Laboratoire d’Applications des Mathématiques, Université de Poitiers, Boulevard Marie et Pierre
Curie, Téléport 2, BP 30179, 86962 Futuroscope Chasseneuil cedex, France

2Laboratoire de Combustion et de Détonique, UPR 9028 CNRS, ENSMA, BP 109, 86960 Futuro-
scope, France.

3Département de Mathématiques Appliquées et Informatique, Faculté des Sciences et Techniques,
BP 523, 23000 Béni-Mellal, Maroc.



neighborhood of the critical thickness value. A mathematical analysis of this model is developed
in [11, 12]; the authors impose some restrictive assumptions on the model, in the sense that
the elastic displacement does not intervene in the evolution equation of the film. The elastic

energy hence becomes a function of the free boundary of the solid.

The paper is organized as follows. In section 2 is exposed the mathematical modelling, that
in particular introduces some assumptions on the crystal to obtain a formal expansion of the
displacement of the elastic structure, after some appropriate scalings. In section 3 is given the
proof of the blow—up in finite time for the solution to the problem (38); to this aim, a positive
eigenfunction of the membrane problem is made use of. In section 4, we show that (38) admits
a local unique solution ; this result is obtained thank to fixed point Picard’s theorem. In section

5, we perform some numerical simulations that confirm the above theoretical results.

2 Mathematical modelling

2.1 Basic equations

Let us consider a solid, made up of a film and of an elastic rigid substrate. At time 7, the mesh

of this solid occupies an area Q;(7) defined by

Fi00,00] % [0,0] % [0,1)] — IR
(1,7,9) — f(7,7,9)

and
Qp(1) = {(x,y,Z), 0<z<l;0<y<ly—-o00<z< f(ﬂx,y)} (3)

The border between the film and the free surface is denoted by
Ip(r) ={(z,y,2), z=[f(r,z,y)} (4)

The side surfaces are given by
Po={(,9,2), 2=0}, Ti={(z,y,2), =0} D={(r92), =4} (5
The film is constituted by the points of Q/(7) verifying
a<z< f(r,a,y) (6)

where a is a strictly positive real, assumed to independent of time. The difference between

interatomic distances causes a deformation given by

eo:aF—aSI (7)

ag



where ar and a; are interatomic distances related to the film and the substrate respectively.
Hooke’s law allows us to determine the associated constraints tensor (i.e. the applied stress)
1 =+ Vg
0y = 2Uup——€ 8
0 KF 1= 20y 0 (8)
where up, vp are the Lamé and Poisson coefficients of the film at time 7. This tensor generates
an elastic displacement ur and ug respectively inside the film and the substrate. We assume

that the structure is linearly elastic.

This displacement is the solution of the linear elasticity equations

[ div o(u) = 0 in Qp(7)
op(up)ng = 00-Np on I¢(7)
< e(u) — 0 when z — —oo 9)
Up = Usg on I,
| or(up).np = os(us).ng on r,

with © = up in the film and u = wu, in the substrate; ny and ng are the external unit normal
vectors, to film and substrate respectively; I'; denotes the interface film/substrate.

By Hooke’s law, the tensor of the constraints in the solid is given by

14

o(u) = 2,u<1 — 2VTr(e(u))I + 6(u)>
= AT'r(e(u))I + 2pe(u)

(10)

where p is the shear modulus and v is the Poisson’s ratio. The linearized deformation tensor

is given by

e(u) = %(vuqtvuT) (11)

To close the system, one needs a boundary condition on side surfaces. To this aim, we impose
the elastic displacement and the amplitude f to be periodic on the sides of Qf(7), i.e., on I'y
and I';.

We also assume the substrate to be infinite in the z—direction. Then e(u) — —oc when z — —o0

is replaced by us = 0 on I'g. System (9) then becomes

(

div o(u) = 0 in Q1)
o(up)np = ognp on I'p(7)
< Usg = 0 on I (12)
Up = Usg on I,
op(up)np = os(us).ms on T,
L u/r, = u/ry




According to the model detailed in [16], the evolution of the free face amplitude of displacement

f is governed by the equation

where

oL =D+ 1 9s Ptz (Bl h+ k)

* 7 is the surface energy.

_(Of of
* V[f= (8_x’8_y

) is the gradient of f towards the space variable (z,y).

*VSf:

- v/ f is the surface gradient and /2 = v/,.s
3

1+ [ vf?

* E(u; f) is the elastic energy of the solid defined in any point of Q(7) given by

B )= (ot o). (o))

(13)

(14)

* K (u; f) is the reference-state curvature of the film (see [16]). This curvature depends on f

and on the displacement @ = u/p ;() along the evolution surface.

* D is a diffusion coefficient depending on the temperature.

2.2 Simplifying assumptions

We suppose that the solid constitued by the film and the substrate is infinite in the y—direction.

Hence the vector displacement f and the elastic displacement become independent on the y

coordinate. The reference-state curvature introduced in [16] is given by

where

and

K f) = 5 (770 @) - @)+ )

H? =1+ (f"? - 2((@1)’ + f’(ﬂz)')

U (T; ;g) = u, (7—; x; f(; x)) with 7 = 1, 20r3,

af

fzaa

I 8111 . aul af Bul . ’ Bul

(1) T 9r  ox +8x'8z _ell(uF)+f'8z’
- ,_8@3_8U3 ,8U3_8U3 ’

) =50 =% T3 =3 T/ emlur)

(15)

(16)

(17)
(18)
(19)

(20)



Like in [16], we assume that

B = (i) + f'(us) (21)
is negligible, compared to 1 + (f’)?. The curvature K (u; f) can thus be approached by
_f// _f//
K(f) = = (22)

HY (14 (1))
We now have to determine the energy F(u; f). The elastic energy can be written as follows

B(u;f) = %(a(u)l— O'(]) : (e(U) - e0> (23)

- Souco+ OE
" 5F = %)\ (Tr(e(u))> T (e)?) — oo (u). (24)
Thus, we obtain

5F = % [A (eu(u) + 633(u))2 +ou <e§1(u) + 22, (u) + €2, (u)ﬂ Coonen  (25)

In order to determine 0 E, one can express ej3(ur) ; €33(up) and ey;(up) as functions of B.
The derivation of the expression of JF is detailed in appendix A. It can be expressed as
CLogu fP(uf® + (A +2p)  Boonp(A+2p = Af?) = 20 (M + p) B?

,u()\ -+ 2#) <1 4 f/2>2 :u()‘ + 2#)(1 + le)z (26)

The difficulty now is to calculate B.

E =

2.3 An asymptotic expansion of the energy

The general expression for B, given by equation (21), can be expanded as

B =ej +2f'e13 + e (27)

where e;; denotes, to simplify, the components of the linearized elasticity tensor e(u). We

assume that the film length [; is large compared to its height. So, we introduce the following

scalings
( 1
T = —-X
«Q
z = A
f(r.z) = h(t,X)

. B (28)
Ul(t:xaz - aUl(TaX:Z)
ug(t,x,z) = Us(r,X,Z)

a4t
T = —_—
\ D’Y



where o = %

The aim is now to expand the scaled components U;. After some algebraic manipulations, we

can see that we can search an expansion with respect to the powers of o? :

Uy =U)+ Ul + ... (29)
Then, it comes
f e = aZ%
) oU aXaU
_ bt B
¢ 2613 = Oé(aZ+aX> (30)
oUs
[ P 9z
and we deduce the term B :
. 8U1 8U1 8U3 2 aUB

In Appendix B are given the details of the procedure that allowed us to compute the asymptot-
ical expansion for the U;’s, B, K’ and §F in terms of the small parameter o and of the spatial
derivatives h®) of the scaled displacement amplitude h. Once these are obtained, one can first
make use of the following expression for the surface Laplacian in the same terms of a and h*)
1 82 flfl/ a

14 f?|0x 14 f20x (32)

1 82 ( ) 3 hXhXX 0 ( )

= o’ —————.

1+ a?h% 8X2 1+ a?h% 0X

These expression can then be substituted into the governing equation for f

of

5= =D+ )2 2 (OE + yK') (33)
to give
oh 1 1 0? o?hxh 0
4 2 5 XItXX
nya =D(1+« hX) T a2h2 [ B3 (0FE + K) 7%2 B3 (5E+7K )] (34)

By replacing 0 F' and K’ by their respective values, we obtain

oh 0? [a’o?
o Dygy = Daz[a)ﬁ( p (Mot 518 )_azvh”>

0
0X

Since « is assumed to be small, equating the leading terms finally yields

a’of Ly 2
—Q hXhXX ’ (thX + §hX) — ’YhXX (35)

2

oh 0? o5 o
5 = T axe <(1_%h)hXX_27 h ) (36)




2
0, . . . . .
Let us denote # = —% and z instead of X in the sequel. Then we obtain the evolution equation

T
for the scaled amplitude in its simplified form :

oh 0? , 0
5% = "5 ((1 L ) (37)

We now consider the problem with initial and boundary conditions

2
oh 0 <(1 — Oh)h" — gh’2> in ]0, T[x(0,1)

ot~ ox?
h(.,t) is a periodic function on (0,1), h®)(¢,0) = h*¥)(¢,1) = 0 for k = 0 and 2 (38)
h(0,.) = hg is a given periodic function on (0,1).
ith h(®) (¢ —akht do0=o;
with 1O (1,2) = 52 (1,2) and 6 = o3 /oy
Let us now specify the functional framework. Let introduce the space
Hr(0,1) ={f € H™0,1), f9(0)=f91)fori=0,1,...,m—1} (39)
where H™(0, 1) denotes the usual Sobolev space of index m, for m > 1.
For t, > 0, we consider the space V, defined by
V = L*(0,t,;Q) N L=(0,t,; HZ,.(0,1)), (40)

where ) is a closed space of H? (0,1). The space V is endowed with the norm

per

1 1 3
| vlly= </ / *(t,x)dzdt + sup </ UHQ(t;x)dI—F/ v3(t, :E)d:v)) . (41)
te(0,t4) 0 0

The symbol X = {v €V, || v ||y< R} denotes the closed ball of V of radius R > 0.
Let S be the application of X in X such that for all v € X, S is defined by Sv = h with A

1
solution to the problem, where 5 > 2’

h
g—t = —hW(1 = Gv) + 300" + 200" — Bh + Bu in |0, T[x(0,1)
kh
h(t,.) is a periodic function on (0, 1), A (t,z) = %(t’ x) (42)
h(O, ) - h().

Remark 2.1 By using the change of variable u =1 — 0h, we can write the thin film equation

oh__ & ((1—9h)h” gh ) (43)

as

ot~ Ox?

under the following form

au 8
e Y (3) n
i . (uu + 2uu ) (44)



Equation (44) is hence of the form

g—? = —a% (u”u(3) + au™ tuu” + fu" '3> (45)

withn=1, a=2 and § = 0.
The stationary solutions of (45) are discussed in [10]. In our case, with our boundary conditions

(cf. (38)), the unique stationary solution is identically 0.

3 Blow—up

Many techniques * have been used to prove that the solution of a partial differential equation
blows up in a finite time (cf. e.g. [17] or [14]). In this section, we make use of the eigenfunction
method to investigate the finite time blow—up for the solution to system (38). To this aim, we
use the first eigenfunction of the membrane problem. Let introduce the function F', defined on
[0, +o00[ for any ¢ € [0, +oc[ by

F(t) = / o1 (2)h(t, 2)dz (46)

where ¢ is the first eigenfunction associed to the lowest eigenvalue \; of the membrane problem

([18]), i.e., ¢ is solution to the eigenvalue problem
—Awl == )\1§01 in Q= (0, 1)
Y1 = 0 in ) o0 (47)
w1 >0 and / o1(x)dr =1
0

Theorem 3.1 Consider the problem (38), with initial condition hy € H,,(0,1) (hg > 0),

1 2\/—

satisfying / 1(z)ho(z)dx > ——. If h 1 [0, Thnas) X (0,1) — IR is a mazimal local solution
to (38) (Tinax can possibly be mﬁmte} with
he L*0,t; HY (0,1)) N L®(0,t H.(0,1)), YVt < Thas (48)

per per

then h blows up in finite time, i.e., there exists a time t, < T),.. sSuch as

t—ts

/01 o1(2)h(t, x)de—— + 00 (49)

Proof of theorem 3.1. We can check that F' defined by (46) is differentiable and that

Fi(t) = / o1(1) 1, 2)d (50)

4For instance : the concavity method, the comparison method, the logarithmic convexity, the explicit in-

equality methods...



Since h is solution to (38) and ¢/ (0) — ¢} (1) > 0, by integration by part, we can write (50)

under the form

F(t)

Y

_ /01 ¥l (x) <(1 —On" — gh,2>
- A /01 901(333 <(1 — Oh)h" — gh'2>

1
= —)\%/ wl(x)h(t,x)dx+9)\1/ (L hh + o1h*)d
0
2
= —AIF(t) + b2, / (z)R%(t, o d:c+—/

Since ¢ is positive and A\; > 0, it follows that

%

dz

dz

——/ x)h(t, v)dx

x)h*(t, v)dx

FU(t) > ~XiF (1) + 3" / o1 (2)2 (1, 2)da

Jensen’s inequality hence enables to write
1 2
/ o1(x)h(t, z)dm)
0

(o) - ()

< / O3 (x)h*(t, x)dx

< \/5/01 o1(2)h2(t, z)dx

Making use of (52) and (53) leads to

P+ AP0 2 TLF ).

2
If we multiply both sides of (54) by L

d 2 2 2
dt( Mt )) F'()eMt + 22eMT P (1)

then we obtain the following inequality

and make use on the identity

2 2
%(&%(t)) > %e—A?t<eA?tF(t)> .

By denoting
At
X(t) =e " F(t)
equation (56) becomes
2
vy > L At g (g2
2v2

(51)

(52)

(54)

(56)

(57)

(58)
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that implies that X is monotone increasing. Besides, since F'(0) > 0 by assumption, we then
deduce that X (0) and X (¢) are positive for all time ¢. Moreover, by multiplying each sides by

X2 and integrating between 0 and ¢ it comes

6

— A\t
> ﬁ(l —e 717 (59)

XH0) - X ()

which can be written as follows

2v/2X(0)

X(t) = 2 (60)
22 — 0X(0)(1 — e~ A1t
Hence, X blows up in a finite time ¢, > 0 such that
2
2V2 — X (0)(1 — e~ Mbr) =0 (61)
ie.,
1 6X(0) )
ty=—=Ih|—————— ] <4 62
(530 23 2
under the condition
2v/2
X(0) > 2v2 (63)

6
that ends the proof.[J

4 A priori estimates

The main result of this section is the following theorem :

1 28-1
(769 + 3)’ 2(660 + 3)
any initial data hy in H2, (0,1) such that || hg 71, 0)< R, there exists t. > 0, depend-

per

1
Theorem 4.1 Let R = inf (2 ) where § = o /uy and § > 3 Then, for

ing on R, such that problem (38) has one local solution ([O,t*),h> with h € L*(0,t,;Q) N
L>(0,t,; H2,,(0,1)).

per

In order to show theorem 4.1, we made use of fixed point Picard’s theorem [2].
Let us first prove two lemmas. The first lemma to be proved verifies that S is well defined under
a condition involving R, t, and the initial data hg. The second proves that S is a contraction

under an additional condition.

Lemma 4.1 Let suppose that the assumptions of theorem 4.1 hold. Then there exists t, > 0
such that the application S defined by Sv = h with h solution to problem (42) is well defined,
in the sense that, S is defined for all v € X and S sends X in X.
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Proof of lemma 4.1. We here make use of the usual Sobolev’s inequalities [1]. In the sequel,

¢ denotes an arbitrary positive constant. Let v € X and Sv = h then h satisfies (42), i.e
oh

5 = —h (1 = 0v) 4 300v® + 200" — Bh + . (64)
Let us multiply the two terms of (64) by h™ and integrate between 0 and 1
1
/ S %d:p = / R ( — (1 = 6v) + 3000 + 200" — Bh + ﬁv) dz
0 0
1 1 1 1
= - / D2z + 0 / hD2ydz + 36 / A Dy'v® dy + 26 / Ry dy
0 0 . o 0
—3 / R hdz + 3 / h Y vdz
0 0
Then, it comes
1 ah 1
/ Rt ada; + / W24z = OF, + 30E, + 20E; — 3E, + (SEs (65)
0 0

where the Es are defined by
( 1 1
E = / 2 yda, E, = / B0y ®) dy
0 0

1 1
/ K" dz, B, = / Y hdx (66)
0 0

1
E5:/ hvdx
\ 0

We then use Holder and Young inequalities and interpolation in Sobolev spaces to estimate the

\

Es

various expressions.

1 1
Since | B |< / A2 v | de <|| v ||so / hM2dz, we have the following inequality
0 0
1
|Fy <R / A2y, (67)
0
Applying Holder and Young inequalities, we obtain

il = ([ ) ([ o) (68

1 1
< R/ A2dy + — [ (v'o®)%dz,
0 R 0

Moreover, since

1 1 ,
/ (v'v®)dx = ( / (v"%)3 (v®3) 3 dz
0 0

VAN
VR
N

2

S

=)

9

S
N——

IA
=
S—
e

=
_I_
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Using the interpolation inequality, we get

1 5 7
| otar<clo Il o I (70)
0
and
! (3)3 na @) i
0 v Pde < e[| 0" |20 )l v 720, (1)
Consequently

! 5 1 5 T
Bal< R [ 1%t (el Bl I Ruwnammwwhm). 72

Since v € X, we deduce that || v ||r20.1). || v" ||lz2(0.1) and || v |[12¢01)< R and consequently,

we have the following estimate
1
| By [< R / hD2dz + ¢(RS + R) (73)
0

In an analogous way, for E3, we get

B < ( /0 1h<4>2dz>%< /0 l(v”)4dx>% .

1
< R / A%z + — [ (v")*da,
0 R 0

and applying the interpolation inequality yields

1
Ameswwmmﬂwmmmsm% (75)

We hence obtain the following estimate for Ej
1

| B3 [< R / A4z + cRP. (76)
0

Since h is periodic,

1 1
By = / KV hdr = / h"dz. (77)
0 0

o e

1
R h 2d:lc+ /U2d$ (78)
0

For E5, we have

(S

IN

[N
N

=

&’

8

+

=

and the following estimate for Fj

1
| Bs |<R / hM2dz + R. (79)
0
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By (67)-(73)-(76)-(77)-(79) we have

1 ah 1 1 1 1
/ Y —dx + / A4y 4 3 / W?%dx < 6R / hD2dy + 30R / hD2dg 4 30¢(R® + R)
0 0 0 0 0

ot
1 1
+20R / h9%dz + 20cR® + 3R / h9%dx + BR
0 0
(80)
ie.,
1 d 1 1
57 h"de + (1 - 60R — (R) / h2dz + 3 / h"dx < 0c(3RS + 2R® 4+ 3R) + BR. (81)
0 0
Let us multiply the two terms of (64) by h and integrate between 0 and 1, we get
1
/ haait’ de = / h( — h(1 — Bv) 4 3000 + 200" — Bh + m) da
0
1 1 1 1
= — / Y hdz + 0 / Y hodz + 36 / ho'v®dz + 260 / hv"?da
0 0 1 0 1 0
—ﬁ/ h*dx + ﬂ/ hvdx
A 0 0
1.e.
1 8h 1 1
/ hEdZE —|—/ h”QdZE + ﬁ/ h2dl‘ = 9F1 + 39F2 + 29F3 + ﬁF4, (82)
0 0 0
with
1 1
F, = / MYhode, F= / ho'v®da
0 (83)

1
F3:/ hv"*dzx, /hvdx
0 0

Once again, Holder and Young inequalities give

|l < (/ 2dx> (/0 h%%)

1 1
< R 24 v?h3d
/ X + R/o x,

o=

ie.,
1 1
| Fy|< R/ h(4)2dx+R/ hdz. (85)
0 0

As in (73) and (76), we can obtain an estimate for F» and Fj
1
| Fy |< R/ h*dz + c(R° + R), (86)
0

and

1
| F3 |< R/ h*dx + cR®. (87)
0
In a similar way, for Fj, we have

1 3 1 3
| Fy| < (/ h2dx> (/ Ule‘>
o ! U (88)

AN
=
N
e
Q.
8
+
|
ﬁw
Q.

8
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ie.,
1
| Fy |< R/ h*dx + R. (89)
0

And, by (85)-(86)-(87)-(89), we obtain, substituting in (82)

1 ah 1 1 1 1 1
h—dx+/ h”2+ﬁ/ hide < aR/ h(4)2da:+0R/ th:E+30R/ h*da
0 at 0 0 0 0 1 0
+30c(R® + R) + 20R / h*dx + 20cR? (90)
0
1
+BR / h?dx + (R.
0

Hence
1 d 1 1 1 1
S h2dx+ / h"dz+(3—60R— BR) / h?dz—60R / D24z < (3RS +2R*+3R) + 3R.

0 0 0 0

(91)
By (81)-(91), we have

1 1 1 1
Ld /hzder/ h"2dx +(5—693—5R)/ h2dx

1 1
+(1—70R — BR) / h2dz + (B + 1) / W dy < 20c¢(3RS + 2R3 + 3R) + 26R.
0 0

(92)
Let us then notice that

(B+1) /01 h"dx > 0 (93)

If we integrate (92) between 0 and ¢, (0 <t < ¢,),we obtain

1 1 1 t 1
5( / B2(t, )z + / h”?(t,x)dag) + (8- 66R — 3R) / / B2 dadr
0 0 0 0
t 1 1 1 1
+(1—70R — BR) / / h2dxdr < 2t0c(3R® + 2R® + 3R) + 2R + 3 ( / hadx + / thdx)
0 0 0 0

(94)
Let us now assume that
1—-T76R— R > ;
P23 (95)
f—60R — BR > 3
Under conditions (95), we deduce from (94) that
1 1 t gl
/ R (t, x)dx +/ R (t, z)dx +/ / Y2(7, z)dxdr
0 0 0o Jo )
< 4t0c(3R° + 2R? + 3R) + 4tBR + ( / hidx + / h(?dx) (96)
0 0

< 4t,0c(3R° + 2R® + 3R) + 4t.6R + ( / hidx + / h{?d:g).
0 0
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While passing to the supremum for ¢ € (0,¢,) on the left hand side of (96) we obtain the

following estimate

1 1
/ / 2(t,z)dxdt + sup </ R (t, x)daH—/ R (t, x)dx)
te,t) \ Jo 0 (97)

< 4t,0c(3RS + 2R? + 3R) + 4t SR+ || ho ||H2 0,1)

ie.,
| hlla=Il Sv |lx < 4t <9c(3R6 +2R® + 3R) +5R>+ | ho ||§Iger(o,1) . (98)
Since h € X, the radius R must be selected such as the following conditions hold
1
—R(710+6) > =
B—R(60+8) > 3 (99)

pe'r

<0c(3R6 +2R* + 3R) + 5R>+ | ho 72, 0y < B2,

1 1 20—1
which are equivalent, for all § > 3 to the inequalities R = inf (2(79 + ﬂ); 2(6% + ﬂ)) and

4t, <00(3R6+2R3+3R)+5R> < R*— || ho H%I;’W(UJ) (since, by assumption, R >|| ho | g2, (0,1))-

per

By using the a priori estimates, the Galerkin’s method [18] gives the existence and uniqueness
for the solution to system (42), hence S is well defined in X.

Let us now prove the second lemma, stating that S is a contraction.

Lemma 4.2 Under the condition (99), there exists a constant k (0 < k < 1), depending on R

and on t, such that for all vy and vy in X, we have
| Svi = Sva |a< k|| 01 — w2 [|x (100)

Proof of lemma 4.2. Let denote hy = Sv; and hy = Svy. Then, hy and h, are solutions to

(12), for v = v; and v = vy respectively. Let note
h=h; —hy and v =wv; — vy (101)

By usmg the same estimates as in lemma 4.1, we have

ah 1 1 1
/ MO Zdy = — / h2dz 40 / WDy dz — 0 / hY @ vy da
0 ot 0 1 0 0 1

—|—30/ A (ol — ol de + 29/ M2 dg
0

1 1
—26 / R v2de — 3 / W hdx + B / hYvdz,
0 0 0

1
/ K ‘Z—’de + / h%de = 0G, + 360G, + 20G5 + BG, (102)
0 0

ie.,
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where

1 1
G = / WO (V) = hvo)dz,  Go = / O (o — g )da
0 0

1 1
Gs = / AW (W2 — o) dz, G, = / (v — h)dz.
0 0

Moreover, we can write

ah 1 1
/hatdaz - _/ h”QdSE—I—H/ h(h{Y vy — h$Vvy)da
0 0

1 1
+39/ h( o' — vl )dx+20/ h(v)? — vy?)dx
0

—ﬁ/ h2dx+ﬂ/ hvdzx,
0 0

1
/ h dfl? + / h”2df17 + ﬁ/ thfl? = 0H1 + 39H2 + 29H3 + ,8H4,
0

ie.,

where

1 1
H, = / (Yo — B0y dz,  H, = / Ao — vl da
0 0

1 1
H; :/ h(v? — vi?)dz, H, :/ hvdz.
0 0

By Holder and Young inequalities, we have

1 3 1 3
G < ([ nmar) ([ =it )Qdf)
< R/ 2da:+—/ vg) dx.

Since X 1
[0 e = [ 00011
0 Jo 1
< 2/ h(4)2v§dz+2/ W% 2dy
< 2R2/ hM2dg 4+ 2R? || v ||%,
0
we obtain 1
| Gy |< 3R/ 24y + 2R | v 1%,
0
and

1 1
| H, |< R/ h2dx+2R/ A2dy 4+ 2R || v ||% -
0 0

In a similar way, we also have

1 : 1 1
|Gy | < (/ h(4)2d:17> </ (Uiv?) — vévg”))Qdm)
0 0
1 1

1
< R/ D24y 4 —/ (Wl — vl 2dz.
0 R Jq

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)
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Since we can verify that
1 1
3 3 3
/0 (Wl — v lde = /0 (W@ + ool da (112)
< 2R% || v %

we obtain the following estimates for G5 and H,

1
Gy |< R/ W24z 4 2Re || v |2, (113)
0
1
| Hy |< R/ h*dx +2Rce || v ||% - (114)
0
Moreover, we deduce
1 3/ [l 3
|G3| < ( h(4)2dx> (/ ’U”4d56>
{0 | 0 (115)
< R / A%y + — [ (v — vl)'da
0 R 0
Since
1 1
4 4
Jet=mtie = [Cvtae < el sl v o -
< cR || v %
it comes |
Gy |< R/ W24+ Re |l v |5 . (117)
0

Similarly, we can get the following estimates

Hy| < (/lhzda:>;</1(v'1'2 o2)? dx)é

< R/ h2dx+—/ (v} + vh)?d

(118)
< R/ hdx + —/ dz
< R/ h2dx+4R/ v"dz.
0 0
The estimate of Hj is hence given
1
| H3 |< R/ h*dx + 4R || v ||% . (119)
0
Since h is periodic,
1 1 1
G, = / Y (v — h)dx = / W"%dx + / A Wydx
0 0 0
1 1 171
< —/ h”2da:+R/ h(4)2dx+—/ v2da (120)
0 0, R Jo

IN

1
1

/h"2dx+R/ A2y + = || v ||% -
; R
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Lastly, by using Holder’s and Young’s inequalities, we can estimate H, :
Ly 1 2
0

Using (109)-(113)-(117)-(120) we obtain an estimate for (102)

1 8h 1 1 1
/ h<4)adaz+ / KV2dz < 36R / M2z + 20R || v ||% +30R / RD2dy
0 0 0 0

1
+60Rc || v ||% +29R/ Y24z 4+ 20Re || v ||% (122)
0

1 1
—5/ R dx +ﬁR/ A2y 4 s v .
0 0 R
Again (110)-(114)-(119)-(121) yield the following estimate for (105)

1 h 1 1 1 1
/ ha—daH—/ h”Qd:r+ﬂ/ hldx < aR/ h2dx+20R/ hM2dz 4 20R || v ||%
0 at 0 0 0 0
1 1
+30R/ h*dx + 60R || v ||% +29R/ h*dzx
0 0

1
+80R v 3 +5R [ Wzt Lo [
0
(123)
Consequently, (122) and (123) give

1 1 1 1 1 1
—i</ thH/ h”%) +/ h(4)2dx+/ h"2dx+ﬁ/ h?dx < (124)
th 0 0 0 0 0

2 1 1
Eﬁ) | v % +(60R+5R)/ hzdx—ﬁ/o h"?dz. (125)

0

1
R(100+/3)/ hM2dz+ (120 R+140c R+
0

Let us notice that .
(B + 1)/ h"dx > 0 (126)
0

thus we obtain

1d 1 1 1
~— h*d h"d — R(66 h*d
O e R G T

2
+<1 — R(100 + 5)) / hM2dy < <0R(12 + 14¢) + Eﬁ) | v % .
0
(127)
According to condition (99), we have
1
B—R(60+5) > 5 (128)

thus we can simplify expression (127)

1d 1 1 1 )
— /th:H/ h"dz ) + (1 — R(100 + ) /h(4)2d:r§ 9R(12—|—14c)+—ﬁ | vl% -
2dt 0 0 0 R

(129)
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We integrate (129) between 0 and ¢, (0 < ¢t < t,) and we know that hg = hig — hgy = 0, then

;/ R (t, x)dx+1/ R (t, x)dx
<1_ 109+5)// 2(r, o) dadr < <0R(12+14c)+%) lvl2  (130)
< t, <0R(12+14c)+%> v % .

If we assume that

1— R(100 + ) > (131)

DO | —

(130) becomes

1 1 t 9
/ h2(t,x)dx+/ R (t, :E)d:H—/ / h2 (1 x)dxdr < 2t, <0R(12+14c)+£> | v 5, (132)
0 0 0 Jo

while passing to the supremum for ¢ € (0, ¢,) on the left hand side of (132), we have the following

estlmate

e 1 1
/ / 2(t, x)dxdt + sup </ hQ(t,x)da:+/ h"Q(t,x)daz> <
te(0,t.) \Jo 0

(93(12+14c)+—) vl . (133)

Consequently, S is a contraction as soon as the following condition is satisfied

k=2t (93(12 + 14c) + %) <1. (134)

Let us now make the following remarks :

Remark 4.1 *

1. S is well defined and contracting if conditions (99)-(131)-(134) hold, i.e.,

(11— R(100+ B) > =

5 R(60+6) > 5

\V]

6 3 , , (135)
At, | 9c(3R° +2R* + 3R) + R )+ || ho ||, 0.)< R

2t, <9R(12 + 14¢) + %) < 1.

2. If condition (135) holds, then the fized point Picard’s theorem [2] allows us to conclude
that there exists an unique solution h to (38) with h € L*(0,t,;Q) N L™(0,t,; H2,(0,1)).

per
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Corollary 4.1 There exists a time t, > 0, depending on R and on initial data hy such as if
h = ho + 8h is a local solution to (38) with

h € L*(0,t,; H: (0,1)) N L>(0,t.; H?, (0,1)). (136)

R per ) U3 per

Then oh is a local solution to the problem

89 82 1! 9 12 82 n" " ! 1 .

% o (1—0g)g" — 29 +9w hog" + hog + hog' | + f in ]0, T[x]0, 1]

g(t,.) is a periodic function on (0, 1) (137)

9(0,.) =0
with

2 74 00 . 172
oh €L (07 tik’ Hper(oa 1)) nL (Oa tim Hper(oa 1)) (138)
and where
0 P

Proof of corollary 4.1. The proof is the same as that of theorem 4.1. It is sufficient to
consider the application ¢ defined in X on X for any v € X by ¢v = g where g is solution of

problem
| % = —gW(1 = 0v) + 30v'v™ + 200" — Bg + Bv + 40hjv” + 30hgv®) + 30h§
< +0hgv® +0h{ v+ f i ]0,7(x]0,1] (140)
g(.,t) is a periodic function on (0, 1)
| 7(0,.) =0,

1
where (3 > 7 We use the same a priori estimates of lemmas 4.1 and 4.2 for the term
M _ 1,.(3) n2
g (1 — bv) + 36v"v" 4 20v Bg + Bv + f, (141)
and the Holder and Young inequalities and interpolation in Sobolev spaces for the term

461" + 3000 + 3080 + 0hov™) + 01, (142)

5 Some numerical experiments

In order to validate the above theoretical results, we numerically solved the system (38) with
different initial conditions hy. Since the problem is periodic in space, we adopted a pseudo—
spectral method coupled with an exponential scheme in time [8, 19]. The nonlinear partial
differential equation verified by the scaled amplitude h(z,t) is of the form

oh

5 = L(h) + N (h) (143)
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where £ and A represent linear and nonlinear spatial operators, respectively. If we expand the

solution h(z,t) to (38) in the Fourier space®

h(z,t) = hy(t) exp(kz) (144)

k>0
where h,(t) € C are the Fourier coefficients of h(z,t). Equation (143) hence becomes

oh .
a—tk = L % hp + Ny (145)

The above expression is then advanced in time, from time n to n+ 1. Denoting ét the timestep
size, we have
A = B exp(Li6t) + NI(exp(Lydt) — 1)/ Ly (146)

This temporal scheme is based on a discrete version of the variable-parameter method, that
would solve exactly a linear equation. The nonlinear term N is computed at each timestep in
the direct space, then in the Fourier space, by a discrete fast transform. We choose to use a
constant 0t and equidistributed collocation points. For the computation of the nonlinear term,

we applied the simple and popular Orszag 2/3 de—aliasing rule [13, 4].

5.1 Preliminary benchmark

In order to validate the numerical procedure, we first successfully applied it to a benchmark
where an analytical solution can be found. Namely, we numerically solved the viscous Burg-

ers’equation [3], that contains a linear (viscous) and a nonlinear (quadratic) flux term :

1
U + 5(“2):6 = Ugy (147)

and where ug(x) = u(x,t = 0) is given. It is then well known that a Hopf-Cole transformation

[5, 9] u = —2v, /v yields a heat equation for v.

5.2 First test—case

We first tried to solve system (38) for an initial ho(z) = h(z,t = 0) chosen equal to
ho(x) = ap(sin(2x) + M) (148)

with ag = 0.4. The M additive coefficient in equation (148) is aimed to insure the pointwise
positivity of the initial condition hgy. It is chosen equal to M = 1.1. We shall see in the
sequel that this condition is not crucial and will not change the qualitative behaviour of the

solution. For the boundary conditions, we only impose periodicity on [—m; 7] (instead of (0;1),

5For the sake of simplicity, we assumed that the solution h(z,t) is 27—periodic in space, instead of 1-periodic.
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for simplicity) and we did not take into account the (somewhat restrictive) zero condition on
the second derivative. Moreover, following condition (63), we numerically determined (thanks
to a dichotomy procedure) the critical value 6
For 6 > 0.t

the mean value < hg > of the initial condition hg(x).

crit Of the parameter 6 featured in system (38).

the solution A(z,t) blows up in finite time. For 6 < 6 the solution shrinks to

crit»
Actually, the precise numerical computed value for the critical coefficient 6..;; is not only
depending on hgy as expected, but was also found to be slightly dependent on the number of
collocation points and even (but less sensitively) on the timestep size. After some preliminary
trials in the different cases, and also for the sake of consistency of all the numerical results,
we choose the number of collocation points for all our numerical computations to be 8192.
The timestep size is also chosen constant and identical for all the numerical tests, fixed to
dt = 1073. These values allowed to keep the above numerical artefact negligible and gave
sufficiently accurate results for all the treated cases, at a reasonable CPU cost. Figure 1 shows
the early time evolution of the solution h(x,t). All the computations for this case (figures 1
to 5) were performed with a numerical value of § = 1.728825, very close to the critical value.
Indeed, for § = 1.728824, the behaviour changes drastically and the solution shrinks to the

(approximate) mean value of the initial condition.

5.3 Second test—case

After this first round of calculations, we then tried to avoid pure sinusoids as initial conditions.
Since the pseudo-spectral method have spectral precision when handling C* functions, we still
imposed the initial condition to be smooth, but this time with a rather “shaked” pattern, shown
in figure 6.

This function is arbitrarily given by

hy(z) = af(sin [x — sin 8z + sind(x + ¢1) + 2sin3(z + ¢2)] + 1/3sin 17z + 2/3sin 7Tz + M")

(149)

with ¢y = —2.7657654675 and ¢y = 1.8754858580 chosen “randomly”. The value of the constant

M" can be chosen such as hjj(z) be positive, or such as the mean value of hf(x) be zero (and

hence lose positivity for the initial condition, see section 5.1).

In this section, we shall only consider the positive case, and choose M" = 2.4 to insure it. For

af, = 0.4, the value of  is fixed to 0.776218262, just above its critical value (for = 0.775913239,

we observed no blowing). Again, the number of collocation points is still equal to 8192, and

the timestep size is again 6t = 1073,

Sample results can be found on figures 7 and 8. The qualitative behaviour is quite similar to

the pure sinusoidal case.

Moreover, despite the visual spikes (around z ~ +2.1 of figure 8), the solution remains smooth.
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Remark 5.1 In the pure sinusoidal case, we also tried to run some computations without the
positivity condition, i.e. for M = 0 and ho(x) = «apsin(2x) (see section 5.2). Qualitatively,
there still exists a critical value 0,.;4 such as the solution blows up for 0 > 0 ... This critical
value seems to be (exactly!) related to the amplitude oy of the initial pattern. The relation is

astonishingly as simple as
ol iy = constant = 0 .ip(0g = 1) = K (150)

Notice that for the positive case (equation (148) for M = 1.1), the seemingly exact relationship
150 s also valid. Interestingly, we observed the same behaviour (i.e. that relationship (150)

still holds) even in the case of an initial “shaky” pattern of the kind given by equation (149).

6 Concluding Remarks

In this paper, we hence prove the existence, unicity and finite—time blow—up for the solution to
a problem describing the evolution of the free surface of a film (problem (38)). The numerical
findings are coherent with the theoretical results, and even suggest that our (technical) mathe-
matical assumptions might be weakened, like the positivity condition for the initial pattern, or
the zero boundary condition for the second space derivative of h. We confirmed the existence
of a critical value of the parameter § appearing in problem (38) : for # above this critical value
crit» the solution shkinks to the

mean value of the initail pattern. The numerical computations also suggest that this critical

Ocrit » the solution actually blows up in finite time; for 6 < 0

value may be very simply linked to the amplitude of the initial pattern (see (150)).

For this modelling, further investigations may be envisaged : i) directly computing the displace-
ment of the free surface by use of a finite element method; ii) modifying the modelling to allow
multi-valuedness for the function describing the free surface. To accomplish ii), a preliminary

step may consist in studying the axisymmetric case, like in [6].
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APPENDIX

A Derivation of the expression for the energy /F

The boundary condition on I'y(7) can be written as follows

a(uF)nF = 0g-NF (151)
where .
np=—— —f;1 152
- —— f,Q( / ) (152)
and

o(up) = \I'r <e(u)>1 + 2pe(u). (153)

Since only the component gg1; of the tensor oy is not equal to zero byassumption, we deduce

the following equations

—)\f1633 + 2/1,613 = —O'(]Hf’ + ()\ + 2/1)]”611 (154)
(A+2p)ess — 2uflers = —Aeq.
Consequently, we obtain ej3(u) and es3(u) as functions of ey (u), f and B on I'f(7).
( A+2
1 ~0on Mfl+4()\+,u)f/€11
€3 = 5 2
< 2 (A 2u) = Af (155)
O'(]llfl2 + ()\ — ()\ —+ 2”)fl2> €11
€33 = —
[ (A+2) — Af?

We now have to determine eq;(ur) as a function of B. Let us recall that B is given as follows

B = (i)' + f'(ts)', (156)

where
&(T, x) = u<7,x,f(7, x)), (157)
and dii ou,  Of 9
Ut _py = gl 9 gt gt

Moreover, we can write

Ou _,, ~_ Ous (159)

5. BT o
and

8U3 ’

(i)' = 5= + f'eaa, (160)
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which leads to the equality

0 0
B = (?7/1)/ + fl(ﬂg)l =e€11 + f <2€13 - %) + f ﬂ + f €33 = €11 + 2]”613 —+ f12€33 (161)
hence
€11 = B - 2f1613 - f12633. (162)

By subsituting e;3 and e33 with their respective expressions, we obtain

0011f'2<)\+2u+,uf'2> +,u<)\+2,u—)\f’2>B

e (ur) = 3 (163)
,u()\ + 2,u> (1 + f’2>
Consequently, we can calculate the energy as a function of B
1 2
5E = 5 |:)\ <€11 + 633) + 2,U, <€%1 + 26%3 + 6§3>:| — 0011€11
1 (Uonfl2 + QMB> (fﬂ/won + o011 (A +2p) — 2Bpu(A + M))
) 2 (164)

,u()\ + 2,u> (1 + f’2>
CLogy fA(uf? + (A +2p)  Booup(A+ 2 — Af?) — 20 (A + N)BQ.

2 (A +2p) (1 + f’2>2 (A +2p) (1 + f)?

B Derivation of the asymptotic expressions for the U,’s,
B, K' and 0F

Hooke’s law can be written as follows, by using scalings (30),

( oU- oU.
Jg11 = Oé2<)\+2 )8—)(1—}‘)\6—;
ou,  oU.
< 013 = M@(a—zl + a—;> (165)
oU, oUs3
= a’l—— 2u | —.
\ 033 A8X+<)\+ M) YA
The partial derivatives of the o;; are then given by
( 0?Us 3 0*U,
Do = 0dgez T <A TR oxe
P 02 02U, 6 Us
o= M\ Gxaz T axe
\ aQUl 82U3 (166)
G = o < 022 axaz)
02U, 0?U.
= a?) A+2
| Do = %57 ( * “) o7
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Thus, the linearized elasticity equations

div ou) = 0 in Q(7)
op(up)mp = ognp on I[y(7) (167)
U = 0 on I
can be expanded as
810'11 +83013 = 0 n Qf(T)
0 0 = 0 in ()
10134," 3033 n £(7) (168)
—onf'+o = —oof on Ty(r)
—0'13f,+0'33 = 0 on Ff(T).
By using (166), (168) and the equality f' = ahx, it comes
( 82U1 0?Us 3 02U,
= 2 in Q
0 Oé|: 577 <A+ >8X82 <A+ ,u) GXQ] in Q(7)
0°Us 02U, :
A+2 A Q
[( * )az2] [ X2 +< +“>axaz} in- €(7)
oUu oU-
\ 0= |: )\hX +M<—1+—>+Ugh)(:| —|—Oé _hX<)\+2M> BXI} on Ff(T)
oUs oU, oU;  0Us
A+2 A—— — ph — r
o= [+ b ()] e
L alU; =U3 =0 on TI.
(169)
We then use the formal expansions
u = UY W+ ...
1 1 + o 1 + (170)
U3 = U:? + Csz?} +
The equtions (169), (170) allow to calculate
Uy; Uy U3 Uy, (171)
For instance, UY satisfies the system
o0*UY .
()\ + 2,u> 57z 0 in Q(7)
ouUy 172
<)\+2u>a—z3 = 0 on Ty(r) (172)
Uy = 0 on T,

and U solves the equations



UL (N U
97° 920X
ous (o0 U B
07 +“<az * ax) +oohx =
Uy =

—Ahx

We can then determine U; (with the order o? )

UL QU 92U
A+2 ) -+ (A :
* “) ag2+“aox2+ +’“(‘) 0X07
<A+2“>a—Z+Aa—X_“hX<a—Z+a—X
Us

and, U} (with the order o?) is solution of the system

0 in Qf(’/‘)

0 on I'y(7)

PPU  §U]} Ul
)\ 9 1 1 )\ 3
)X TR +< 1) oxoz
U? oUl  oU} U}
—hx|[A+2 ! ! ) — Ay ==
X( * “)ax*“(az+ax> Y
Uy
Thus, we can deduce that
o = 0
e = ~Dhez
1/ 2+ !
K\ 0o 2 0o 2
Ui = - —hxxZ? - hh ni ) Z
’ 2<A+2u>u - 1A+2u< X X)
Ul = ZR+ -7%S

12y
Ul = ZT+§UZ2+6VZ3

27

(173)

(174)

(175)

(176)
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with
R = S (thX + h§(>
A+2u
A4\ o
S = —h
(/\ + 2u> poo
T —00(BA+2u+2) , 00(4/\+3u+3)hh b Aoy B3
XXX — xhxx — ——F%—=
2(A + 2p) (A + 2p) HOH20) g
U = 3hxhxx+hhxxx>
()\ + 2,u>
(2)\ + 3,u>
V == hXXX-
()\ + 2u>
We finally obtain the expansions
— 1 1
Uy=U)+a°Ul +---= %hXZ +a? (ZT + 5UZ2 + EVZ?*) +... (178)
1
U3:U§)+a2U31+---:a2<ZR+§ZQS>+... (179)

4

By neglecting the term in o”, we deduce that

oUy oUu,  0Us 0Us
B — 271 2h ) 4 2h2 4
“ox ¢ X(az * ax) ¥z
oU oU oU. oU.
= a2<a—);+hxazl+hxa—;+h§(a;
oU ,OU! ou? oU} oUY oU. ou? oU.
-« (axl Tatgy Ty tothaGa thx i atha i + ik o+ ol 823>
= aU0+h 8U0+h a—UO+h28U£
- \ax Ty thegx thigy )
(180)
Since U = 0, we deduce
oU? oU?
_ 2 1 1
b= “ <8X hx az)
. 9 —00 —O0q
= « —thx+hx(—hx) (181)

_ 220 (ZhXX + K2 )
0

We know that on I'¢(7), Z = h thus B becomes

B= 2(;” (thX + 1?2 ) (182)
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and

—f" _052hXX
K' = = : (183)
1+ %7 (1+a2h%)?
2 12 12
5B — __laﬂf <f :U’+()‘+2:U’)> _BUON()‘+2,U/_)‘]NQ)_2N2()‘+M)B2

2 p(A+2p)(1+ f2)? p(A +2p) (1 + f12)2

osa’h (uazl@( + (A + 2,u)> (184)

-1 " a?0d(hhxx + h%) (A + 2u — Aa?h%)
2 p(N+2p) (1 + a?h%)? p(N+20) (1 + a?h%)?
2()\ + /L)Oé40'3(thX + hg()2
pO 20 (L 0252

While taking that the term of order a?, it remains

SE — a2<;1 ogh’ (A +2p) 03(A+2u)(hhxx+h§))
B 2 (A +2p)(1 +2a2h§()2 ) (X +2p) (1 + a2h%)?
~1
= a2<7@h§(+%(hhm+h§()>

H (185)
1 2 2
= Oéz L—@hi + %thX:|
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Captions to the figures

Figure 1 : Time evolution for the solution h(x,t) to system (38) with a sinusoidal positive initial
condition (equation (148)). The initial pattern is plotted in dotted line. The represented times are
(in timestep unit) 5, 10, 15, 20, 25, 30, 35, 45, 55, 65, 75, 85, 95, 105 and 115, respectively.

Figure 2 : Time evolution (continued) for the solution h(z,t) to system (38) with a sinusoidal positive

initial condition (equation (148)). The represented times are now (in timestep unit) 135 to 139.

Figure 3 : Solutions h(z,t) to system (38) with a sinusoidal positive initial condition (equation (148))
at times 0.140 (top) and 0.141 (bottom).

Figure 4 : Solutions h(z,t) to system (38) with a sinusoidal positive initial condition (equation (148))
at times 0.143 (top) and 0.144 (bottom). Notice the huge difference in the amplitudes separated by a
single time step, indicating that the solution is blowing up. The computation was interrupted at time
0.144.

Figure 5 : Zoom of the solutions h(x,t) to system (38) with a sinusoidal positive initial condition
(equation (148)) at times 0.139 (top) and 0.144 (bottom). The collocation points are marked as
symbols (+). Notice that even in the vicinity of the visual “spikes” of figures 2 or 4, the solution
remains very smooth. The number of collocation points hence appears to be sufficient to correctly

describe the solution.

Figure 6 : Initial positive pattern for the second round of computations, given by (149) and M" = 2.4,
ap = 0.4.

Figure 7 : Early time evolution of the solution to system (38) with an initial condition (dotted line)
given by (149) and M"™ = 2.4, o = 0.4.

Figure 8 : Last computed pattern at time 0.083. Same run as in figure 7.
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Figure 1: Time evolution for the solution h(z,t) to system (38) with a sinusoidal positive initial

condition (equation (148)). The initial pattern is plotted in dotted line. The represented times
are (in timestep unit) 5, 10, 15, 20, 25, 30, 35, 45, 55, 65, 75, 85, 95, 105 and 115, respectively.
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Figure 2: Time evolution (continued) for the solution h(x,t) to system (38) with a sinusoidal
positive initial condition (equation (148)). The represented times are now (in timestep unit)
135 to 139.
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Figure 3: Solutions h(x,t) to system (38) with a sinusoidal positive initial condition (equation

(148)) at times 0.140 (top) and 0.141 (bottom).



35

100000 T T T T T T

-100000 -

-200000 -

-300000 | E

h(x,t)

-400000 - g

-500000 [ E

-600000 [ E

_ 7000(X) 1 1 1 1 1 1 1

5e+10 T T T T T T

-5e+10 E

-le+ll - E

-1.5e+11 - 4

h(x,t)

-2etll 4

-2.5e+11 - 4

-3etll -

-3.5e+11 1 1 1 1 1 1 1

Figure 4: Solutions h(zx,t) to system (38) with a sinusoidal positive initial condition (equation
(148)) at times 0.143 (top) and 0.144 (bottom). Notice the huge difference in the amplitudes
separated by a single time step, indicating that the solution is blowing up. The computation

was interrupted at time 0.144.
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Figure 5: Zoom of the solutions h(x,t) to system (38) with a sinusoidal positive initial condition
(equation (148)) at times 0.139 (top) and 0.144 (bottom). The collocation points are marked
as symbols (+). Notice that even in the vicinity of the visual “spikes” of figures 2 or 4, the
solution remains very smooth. The number of collocation points hence appears to be sufficient

to correctly describe the solution.
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Figure 6: Initial positive pattern for the second round of computations, given by (149) and
M =24, aj = 0.4.
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Figure 7: Early time evolution of the solution to system (38) with an initial condition (dotted

line) given by (149) and M" = 2.4, of = 0.4.
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Figure 8: Last computed pattern at time 0.083. Same run as in figure 7.
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