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766 M. ARNAUDON ET AL.

RESUME. — On étudie la régularité par changement de probabilité
éventuellement singulier, du point de départ d’'une martingale continue
a valeurs dans une variété et de valeur terminale donnée. On prouve en
particulier que si la martingale est a valeurs dans un petit voisinage d'un
point et si le logarithme stochastiqué du changement de probabilité
est dans un espace de Hally pourr < 2 suffisamment grand, alors le
point de départ est différentiable e = 0. On donne en application
une nouvelle preuve du résultat suivant obtenu par Kendall (1994)
avec des méthodes de couplage : les applications continues et finement
harmoniques entre variétés san®. On donne une expression de leur
différentielle qui ne fait pas intervenir de dérivéeElsevier, Paris

1. INTRODUCTION

Throughout this article($2, (F;),>0, F,P) is a filtered probability
space satisfying the usual conditions, such that all real-valued martingales
have a continuous version. Examples of such filtrations include Brownian
filtrations, Walsh filtrations, or filtrationg*;),~o such that there exists
a continuous martingale which has thg;)-predictable representation
property. For simplicity we assume that the probability of elemeniin
isOor 1.

Let W be a smooth manifold and a torsion-free connection ow.

For the sake of calculations we choose occasionally a Riemannian metric
g = (-]) on W with corresponding Riemannian distant:eHowever, in
general we do not assume thétis a metric connection to this or any
other Riemannian metric. Only when we refer explicitly to Riemannian
manifolds we always work with the Levi-Civita connection and the given
metricg.

Recall that &V -valued continuous semimartingdlg ), o is a martin-
gale, if for each real-valued? function f on W,

FO) = f(Yo) — /Vdf(Y)dY ®dY
0

is a real-valued local martingale.
If Y is a semimartingale taking values W, we denote by/VY its
Ito differential (see [7]). There is a canonical decompositibfy =
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MANIFOLD-VALUED MARTINGALES 767

d"y +d"Y into a martingale pa@”Y and a finite variation pad"Y .

The latter is also called the drift. Denote lﬁyk the Christoffel symbols

of the connection. In local coordinates and in terms of the decomposition
dY' =dN' +dA', whereN' is a local martingale and’ a process of
finite variation, we have:

1 . ; 0
d¥Y =(dY'+ Il (Y)d Yf,Y")—,,
(av'+ rimaws.vh)
and so
m i 0 v i 1 i k d
d Y=dNT and dY =(dA" += Fk(Y)d(Y/ Y¥) e (1.1)
1 xl

Formally,d"Y,, d"Y, andd" Y, are tangent vectors at the poirit

For a real- valued local martlngaM let Y, (M), if it exists, be aW-
valued semimartingale with driftd M dY (M) converging almost surely
ast tends to infinity to a fixedw- valued random variabld.. Here
dM dY (M) is the “vector"d{M,Y (M)’ ) . The principal objective of
this article is to find conditions oW under which the map/ — Yo(M)
is Holder continuous or differentiable. The main results (Proposition 3.3
and Theorem 3.5) show that if the processes take their values in a
compact convex subset of W with p-convex geometry, then the
distance betweens(0) and Yo(M) is less thanC| (M, M)%/2|X/» for
some constanC depending only onV and r > 1. Moreover, if W
is sufficiently small andM varies in some Hardy spadg, for r < 2
sufficiently large, thenM — Yo(M) is differentiable atM = 0 and a
formula for its derivative can be given in terms of the geodesic transport
aboveY, (0).

Note that ifM is a real-valued martingale, there exist stopping tiffies
arbitrarily large in probability such tha(M)” is a uniformly integrable
martingale. The semimartingalg M) stopped af” is aP¥-”-martingale
whereP”T = £(M)T . IP. Hence, Proposition 3.3 and Theorem 3.5 cover
regularity results for starting points of martingales under an equivalent
change of probability.

The notion of p-convexity plays a fundamental role. We prove
(Proposition 2.4) that for every > 1 and everyx € W there exist a
neighbourhood of with p-convex geometry.

In order to establish the differentiability of the map+— Yo(M), we
also need (Proposition 2.7) that for every- 0 and everyx € W there
exist a neighbourhood of x such thatL*-norms of the inverse of the
geodesic transport along amrvalued martingale are finite.
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768 M. ARNAUDON ET AL.

In Section 4 the results and estimates from Section 3 are applied to give
an alternative proof of Kendall's result that continuous finely harmonic
maps from a Riemannian manifold to a manifold with a connection, i.e.,
maps which send Brownian motions to local martingales, are smooth.

2. PRELIMINARIES

Let V be a subset of¥. A V-valued martingalel is said to have
exponential moments of ord&p (or simply of order. whenV is a metric
connection tq) if

o]

E [exp(k /(dY | dY))

0

< 0. (2.1)

We use the notatiotl | Y) for [5(dY | dY). By Proposition 2.1.2 of [11]
and the observation that there exists locally a function with negative
Hessian, we have:

LEMMA 2.1.-Letx > 0andx € W. There exists a heighbourhodd
of x such that every -valued martingalel’ has exponential moment of
order \g.

Remark 2.2. — Another consequence of [11], Proposition 2.1.2, is that
if a compact subsét of W has a neighbourhood which carries a function
with positive Hessian, then there exists> 0 such that allV-valued
martingales have exponential moments of order In particular, the
quadratic variation oW -valued martingales has moments of any order,
which are bounded by a constant depending only on the order aid on

DEFINITION 2.3.—(1) Let p > 1. We say thatW has p-convex
geometry if there exist @2 function on W with positive Hessian, a
convex functiomy: W x W — R,, smooth outside the diagonal and
vanishing precisely on the diagonal, i.g;,1({0}) = {(x,x), x € W},
and a Riemannian distanc& on W such thatcs? < v < C87 with
constantd < c < C.

A subset of¥ is said to havep-convex geometry if there exists an open
neighbourhood oV with p-convex geometry.

(2) A subsetV of W is called convex if it has an open neighbourhood
V' such that any two points, y in V' are connected by one and only
one geodesic iv’, which depends smoothly arand y, and entirely lies
inVifxandyareinV.
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MANIFOLD-VALUED MARTINGALES 769

Note p-convex geometry impliep’-convex geometry fop’ > p: if
Y satisfies the conditions in the definition fprconvex geometry, then
YP'/P satisfies the conditions fqr-convex geometry.

Simply connected Riemannian manifolds with nonpositive curvature
have 1-convex geometry. In general, a manifold does not pasenvex
geometry. However, we have the following local result.

PROPOSITION 2.4. —For every x € W and p > 1 there exists a
neighbourhood of with p-convex geometry.

Proposition 2.4 is a direct corollary of a more general result on totally
geodesic submanifolds (compare with [7] 4.59):

PROPOSITION 2.5. —Let W be a totally geodesic submanifold %.
For every pointa € W and p > 1, there exist a neighbourhootl of a
in W, a convex functiory on U such thatf?” is smooth and constants
O<c < Csuchthates?(-, W) < f < Cé”(-,WyonU.

Proof. —For p > 2 the result is proved in [7, 4.59]. Let us assume 1
p < 2.Asin[7, 4.59], we choose coordinates’, ..., x7, y?*tt, ... y")
vanishing together with the Christoffel symbols atsuch that the
equation forW is {x! = ... = x? = 0}. We use Latin letters for indices
ranging from 1 ta; and Greek letters for indices ranging frgm- 1 ton.
Define f = h”/? where

1
h(xl,...,xq,yq+l,...,y") = 5(82+ ||y||2)||x||2.

Clearly f vanishes precisely oW and possibly by reducing it satisfies
e8P (W) < f <C8"(, W)
for some O< ¢ < C.
It is shown in [7] thath is convex forU small ande > O close to O. It

suffices to prove thaft is convex, and since > 1, it is enough to check
this on{h > 0}. But on{h > 0},

P, pje-1 2—p
Vdf ==h? (th——dh dh).
! 2 2h ®
Hence, forf to be convey, it is sufficient to verify that of@ > 0} the

bilinear formb defined by
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770 M. ARNAUDON ET AL.
b=vdh—>"Pangan
B 2h

is positive. As in [7] it suffices to check the matrix

1 1
2 Gt
H= 1 1

— by —— bag
or «,
ellxll 1112

to be positive or{i > 0}. But a Taylor expansion of the entries reveals

—@-py )|C|2 +0(1) o(D)
H = 2
i Fl 1
o(1) Sup — Eiingﬂx +0(1)

Itis easy to see that the 0-order term of the matrix with Latin index entries
is greater thar(p — 1) Id. Regards the matrix with Greek index entries,
since W is totally geodesic the!“’ﬂ vanish onWw, hence|1“’ | < Cllx]l,

and for ¢ sufficiently small, the 0-order term of this matrlx is greater
thang’ld with &’ > 0. This implies thatf is convex in a neighbourhood
ofa. O

In the case of Riemannian manifolds, Picard establishes a relation
betweenp, the radius of small geodesic balls and an upper bound for
the sectional curvatures ([12], proof of Proposition 3.6): if all sectional
curvatures are bounded aboveky- 0, then a regular geodesic ball with
radius smaller tharafT_q, g > 1, hasp-convex geometry wherg is the
conjugate exponent tp, and martingales with values in this geodesic ball
have exponential moments of ord€g /2.

The torsion-free connectio¥ on W induces a torsion-free connection
V¢ onTW called the complete lift o% and characterized by the fact that
its geodesics are the Jacobi fields Yosee [15]), or by the fact that the
Ve-martingales i’ W are exactly the derivatives &f-martingales il
depending differentiably on a parameter (see [2]).

The connectiorV induces another connectiof* on 7 W, called the
horizontal lift of V, which in general has nonvanishing torsion and is
characterized by the fact that.if is a 7 W-valued semimartingale with
projection X = w(J) € W, then the parallel transpoy/s ,w along J
(with respect tdv") of a vectorw = w'e" @ w"'in T;,TW = V,, & Hy,
is given by
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-1
/b w =050 /o, 0 (i) (W) @AYy 0 /o, 0 (hS) T (W),

where v:7*TW — V and h¥:n*TW — H are, respectively, the
vertical and horizontal lift,//,, the parallel transport along with
respect tov.

DEFINITION 2.6.—Let Y be a semimartingale taking values .
The geodesic transpor®y;, 0 < s (also called deformed parallel
transport or Dohrn—Guerra parallel translatignis the linear map from
Ty,W to Ty, W such that

(i) ©q is the identity map oy, W

(i) for w € Ty,W the Itd differentiald"* ©q . (w) is the horizontal lift

of dVY above®q ,(w).

We defined; , = O, for 0< s <t

Let J be aT W-valued semimartingale which projects to a semimartin-
galeY on W. By [2] we have

d(©g:J) =04 e(//0.d(//5ed) +3R(J,dY)dY)
= O (v (@ )"+ L R(J,dY)dY),

where R is the curvature tensor associated Mo Using the relation
betweend" andd”" in Lemma 4.1 of [2], we get

d(©511) = 05t (v a@v 1)""). (2.2)
In local coordinates, adopting the summation convention, Eq. (2.2) can
be written as
d(053), = (052) (T, (V) dY"
+ 3 (DY) + L, (VTG ()d(YE, YY), (2.3)

In the case whert is a martingale, we are able to establish the
existence of moments for the norm@f{ ! alongY:

PROPOSITION 2.7. —Letx € W and A > 0. There exists a neighbour-
hood V of x such that for every-valued martingaleY, the geodesic
transport abover’ satisfies

E| sup [[o;}] <oo, (2.4)

0<s<t<0

where the nornj| @;,1” is defined via the metrig.
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Proof. —Take V included in the domain of a local chart. SinFes a
martingale, we have

dY" =dM" — 3T (Y)d(Y* Y")
in local coordinates, wher®™ is a local martingale. Hence by (2.3),

d(05h), = (051) (I (V) dM" + 3 DI, ()d(Y*, YY), (2.5)

i

This equation, together with Lemma 2.1 and [10], Theorem 3.4.6, gives
the result for an appropriately chos€ndepending on.. 0O

In the case of the Levi-Civita connection on a Riemannian manifold,
the situation is simpler becaug®; ,(w)||?, 0< s < ¢, is a process of
finite variation, and one can give a more guantitative result.

PROPOSITION 2.8. —Let W be a Riemannian manifold and fere W
let K(y) = sup(K’'(y), 0) (respectively—k(y) = inf(—k’(y), 0)) where
K'(y) (respectively—k’(y)) is the supremunfrespectively the infimum
of the sectional curvatures at Then, for anyW-valued semimartingale
Y, the geodesic transpo® along Y can be estimated in terms of the
quadratic variation(Y | Y) of Y as follows

t
1 A
||(~)s,,||<exp<§ / k<Y><dY|dY>>, o<s<t,  (26)

and
1/
o] <exp<§/K(Y)(dY|dY)>, 0<s<t. (2.7)

Proof. —By means of [2], see (4.30), we have for afiy-measurable
random variablev in Ty W

d||O; wwl|* = —(O; sw, R(Oy qw,dY)dY ).
Now with the bounds for the sectional curvatures we obtain
k(Y)Y 105wl ?(dY |dY) > d|O; swl? > —K (V) |O; cw|?(dY | dY).

Hence
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t
||w||2exp< / k(Y)(dY | dY>> > 10, ,w]?

> ||w||2exp<—/K<Y)<dY | dY>>

which gives the claim. O

WhenY is Brownian motion the bounds in (2.6) and (2.7) can be given
in terms of Ricci curvature as well known.

COROLLARY 2.9. —LetW be a Riemannian manifold arid a regular
geodesic ball inW with radius smaller thanr/(2\/Kq), g > 1, where
K > 0is an upper bound for the sectional curvatures. Then, with respect
to the Levi-Civita connection, the geodesic transport along@malued
martingale satisfies
sup O} e L. (2.8)

0<s<r<oo

Proof. —Just note that & -valued martingale has exponential moments
of orderK¢/2 by [12], and use (2.7). O

3. VARIATIONS OF MARTINGALES WITH PRESCRIBED
TERMINAL VALUE BY A CHANGE OF PROBABILITY

In the sequel we will say that a process has a random variable
asterminal valueif it convergesP-a.s. toL ast tends to infinity. The
aim of this section is to establish regularity results for initial values
of martingales with prescribed terminal value when the probability is
allowed to vary. To formulate the main result of this article we first give
some definitions and lemmas.

LEMMA AND DEFINITION 3.1.-Let M be a real-valued local mar-
tingale andZ a W-valued semimartingale. The following two conditions
are equivalent

(i) The semimartingaleZ has drift —dM dZ where dMdZ is

the “vector” with the componentsi(M, Z) in a system of
coordinates.

(i) The stopped semimartingal®’ is a Q” -martingale whereQ” =

EMT) - P for every stopping tim&" such that the stochastic
exponentiall (M) is a uniformly integrable martingale.
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774 M. ARNAUDON ET AL.

If one of these conditions is satisfied we say thas a Q-martingale
with Q = £(M) - P even if there is no probability equivalent Bosuch
that Z is a martingale, and the notio® = £(M) - P will mean that
a probability Q is defined on the subalgebras; where it coincides
with Q7.

Proof. —Since there exists a sequenc€g,),cy converging almost
surely to infinity such that for every e N, £(M™) is a uniformly in-
tegrable martingale, one can assume #1@t) is a uniformly integrable
martingale and hence th@t= £(M) - P defines a probability equivalent
to P. Now, as a consequence of Girsanov’s theorem, we have that the re-
lation between the drift of with respect t& (denoted by?HY Z) and with
respect taQ (denoted byig Z) is

dyZ=dyZ+dMdZ.

This gives the equivalence of (i) and (ii).0

LEMMA 3.2.—-LetM be areal-valued martingale such th@/, M),
< 1a.s. Assume tha¥ has convex geometry and [Etbe a semimartin-
gale with values in a compact subsétof W and with drift —dZdM.
Then, for every > 0, there exists a constait(V, r) > 0 such that

zI1Z)¥2], < cv,n. 3.1)

Proof. —-SetG = £(M). Then

1/(2r) 120
} E[Gw(Z | 2)L]"®.

1
1/2 _—
Iz 1242, <E| -
Now by Lemma 3.17 is aG - P-martingale. SincéV has convex geom-
etry one can construct a function with positive Hessian on a neighbour-
hood of V. Hence according to Remark 2.2, quadratic variations of mar-
tingales inV have uniformly bounded.® norms fors > 0. This reveals
the last term to be bounded. The second term is obviously bounded (e.g.,
[13, Proposition 1.15, p. 318]).O0

Forr > 1 let H, be the set of real valued martingalés such that
My=0and
IM1g, = [|(M, MY,
is finite. Then(H,, || - ||5,) is @ Banach space.
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In the sequel, ifS is a real valued process amda stopping time, we
write S7 for sup , S;.

PROPOSITION 3.3. —Let V be a compact convex subsetWsfwith p-
convex geometry for some> 1. Letr €11, 2[ andr’ € 11, r[. There
exists a constan€ > 0 depending only o, V, r andr’ such that for
everyM € H,, if Y is theV-valued martingale with terminal value and
Z a V-valued semimartingale with driftd Z d M and terminal valud_,
then

Jcr. 2)%,

, <CIMIE". (3-2)

r!

Proof. —Let ¥ : V x V — R, be the convex function appearing in
the definition of p-convex geometry. Thens” < ¥ < A8? on V with
constants Gz a < A. The required estimate (3.2) is equivalent to

W (Y, 2)%
Lett =inf{r > 0, (M, M), > 1} (with infJ = c0). We have

| (Y, D)%, <[ (Y, 2)i Lm0y + ¥ (Y, 2)% L <o)
<|v (Y, 2)%|, + supy || Ly, mye =1y
VxV

o S CIM| b, - (3.3)

, <

r r

r

< v, 2);

p o+ supy [[M|[, .
VxV "

Hence we are left to bound the first term on the right. First, Itd’s formula
for convex functions yields

v (Y, Zo)

T
> U Vsnes Zone) + / Ly s0(dv, dVEV (Y, Z))

AT

1 T
- / Lyw.z0 (V@ VAW d(Y.Z2)®d(Y, Z). (3.4)
SAT

Sincey is convex and the drift ofY, Z) with respect td®is (0, —dM d Z),
we have

Y (Yine, Zond) SE[Y (Yo, Z0) | Fon)

T

[lav. amazyl|7.]. @3

SAT

+E
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776 M. ARNAUDON ET AL.

We get for the first term on the right-hand side of (3.5)

B[ (Yo, Zo) | Fore ||, < SUPY[P[(M, M) oo > 1| Fune]”

r’ r’
I

1/r

< o lsuprP[(M, M) > 1]
' 214

< 7 SUPVE([(M, M) /%]

< C'|M|lg,

by using successively Doob’s inequality and Bienaymé-Tchebichev
inequality. To deal with the second term in (3.5), let

T

D, = ”E[ [ (av.©.amaz)) ’F] *

ONT

’

r

We use successively the fact thatis Lipschitz, Doob’s inequality and
Holder inequality. Choose; > 1 such that'r; < r and letr; be its
conjugate number. Then

D, <supldy||E[(M, M)YA(Z | Z)Y?| Fure]T|

r

/!

’
r—1
r/
r—1

According to Lemma 3.2 the last term is bounded. Thus, finally we get

< supldy||[{M, M)Y?(z | Z)¥?

r/

< supldy||[(M, M)Y2|| . |[(Z | Z)¥?

r'ri r’ri :

lw (¥, 2)t], <CIMlly,. O

Let M € H,. By Y(M) we always mean a semimartingale with drift
—dM dY and terminal valud.. In the rest of this section we want to prove
differentiability of the mapM — Yo(M) at M =0 in H,. The processes
we consider live in a convex s&t, and since convex sets are included in
the domain of an exponential chart, we will identi¥y and its image in
such a chart.

First we need some lemmas.

LEMMA 3.4.—LetV be a compact convex subsetWwfwith p-convex
geometry for some € 11, 2[.

(1) Letr e ]”7“, 2[. There exists a constant > 0 depending only oY
andr such that for evernyM € H,, if Y and Z are as in PropositiorB.3,

Annales de I'Institut Henri PoincaréProbabilités et Statistiques
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then

241
(Z =Y, Z-Y).[|,<CIMIlp, (3.6)

wherer =inf{r > 0, (M, M), > 1} (with inf § = c0).

(2) Let r' €11, ;:L”p[. For all re]sup(%, 22?;{’;),2[ there exists a
constantC > 0 depending only oV, r and r’ such that for every
MeH,,

INZ =Y, Z—=Y).|, <CIMI|5" (3.7)

forall Y, Z andt as in(2).

Proof. —In the calculations below, the elimination of the bracket% of
and Z by taking smaller Holder norms is done in the same way as in the
proof of Proposition 3.3 and will not again be carried out in detail. Set

a=1/p.
(1) Using the facts thap = 52 is convex and

(V®V)dé((A, B), (A, B)) >c|B — Al?,
we obtain by Itd’s formula (3.4)

Kz =Y. Z=Y)l;

< CE + CE[¢ (Y, Z,)]

T
/a(Y, Z)|dMdZ|
0

< CE[supd(v,, Z)(M, M)¥? (7| 2)Y? + CE[(M, M)E+/?]

ST

<8, 2yt | (M, M)H?

o+ ClIMIEe

Hito

r

with 7' < 2p, r” < 2 satisfying2 + £ < 1. This gives by (3.2)
Iz —v,Z=Y) |, <ClIMI?

if sup(% +1, %) < r < 2. This proves the first assertion of the lemma.
(2) By Ité's f’ormula (3.4) we have

T

(Zz-Y,Z-Y), <C ((b(YT, Z,) — /<d¢, (d"y, de)>>. (3.8)
0
\ol. 35, r° 6-1999.



778 M. ARNAUDON ET AL.

To obtain the next estimate it is useful to note that
¢(v,2) =¢i; (v, 2@ — ¥y —y))

where the functionsp;; are smooth. Splitting the second term on the
right-hand side of (3.8) into its martingale and finite variation part and
estimating the.” norms using BDG inequalities gives

[(z=v.Z= V). <C(loe. 2],

+ |[sups?(r,, Z) (v 1 7)¥2 44z | 227

ST

+ |lsups (Y, Z)Z — Y, Z — )22

ST

+ [sups vy, zoy v, ¥z 1 )| ),

s<T

r

where the single terms may be estimated with the same method as above,
using (3.2) and (3.6). Far' < p and 27" <r < 2, the first term on the

right is seen to be less tha{H|M||§g (the difference here with the bound

on the first term on the right-hand side of (3.5) is that we usd.theorm

of the bracket to the powersd. By means of (3.2) the second term is
dominated b)C||M||§,‘j forr' <p and%’ < r < 2, the third term can be

estimated byC||M || for

4 2y 3-
r’<—p and r >su —r, d _p)
3+p p 2=r p

(here we use (3.6), and (3.2) with = 32_—”” together with the observation

that p-convex impliesp’-convex). Finally, the fourth term is less than
ClIM |2 if

2pr’ 2r'(2—
r<p and r>Sup< Pr r( p)>

2+rp— 2r’ 2-r)p
(again by (3.2) now witlp’ = ﬁ). Thus, for allr, ¥’ such that 1< r’ <

Ap
3 and

<u <2r’ r'(3—p) 2pr’ 2r'(2—p)
p @—rp Q+rp—2"" 2—r)p
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we have
WZ—KZ—Y%

L < CIM|%. (3.9)

We conclude with the remark that%;é < 2then

p( 2pr’ 2r'(2— p)> 2r'
su , <=
@+rp—2" 2—=r)p p

Note that (3.9) also holds true jf is replaced byp’ €[p, 2[ anda by
o'=1/p'. O

Forr > 1, a subseV in W and anF¥,.,-measurable random variable
L taking values inv, let D, =D, (V,r) be the set o € H, such that
there exists & -valued semimartingalé (M) with drift —dM dY (M)
and terminal valueL. Note that for compact conveX with convex
geometry, D; includes all M in H, such that&(M) is uniformly
integrable (see [1, Theorem 7.3]).

We are now able to prove the main result.

THEOREM 3.5. —Let x € W. There existsy < 2 such that for every
r € ]ro, 2[ there is a compact convex neighbourho®dof x with the
following property

For any F..-measurableV -valued random variabld., the mapM
Yo(M) from (D, || - |lg,) to V is differentiable atM = 0, and the
derivative is given by

JoM)=E [/@&}dMdeS(O)],
0

where®, , is the geodesic transport alorig (0).

Remark 3.6. — Since a simply connected Riemannian manifold with
nonpositive sectional curvatures has 1-convex geometry, any compact
convex subse¥ of it has also 1-convex geometry and hence satisfies
the conditions of Theorem 3.5.

If W is a Riemannian manifold, then we can tdkdo be any regular
geodesic ball with radius smaller than a constant depending only on
and an upper bound for the sectional curvatures. Moreover it is possible,
using Corollary 2.9, to find an explicit expression fgr

If W is a manifold with connection, since we used Proposition 2.7 in
the proof, we cannot give an explicit expressionAgr
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Proof of Theorem 3.5. Seta = 1/p. Letx € W,r €11, 2[ and letV be
a compact convex neighbourhoodxofvith p-convex geometry for some
p > 1. We will use Propositions 2.7 and 2.4, and determine conditions
onV via the numbep and the integrability of the inverse of the geodesic
transport. The conditions on will be determined in the proof. We
identify againV with its image in an exponential chart.

Let L be anF,-measurableV-valued random variable angf €
D;\{0}. For simplicity we denote by, = Y,(0) the continuousV -
valued martingale with terminal valug, by Z, = Y, (M) the V-valued
semimartingale with terminal value and drift—dM dY (M). Let J’ be
the semimartingale given by

1
J = exp,tZ, = exp,t Y, (M). (3.10)
M|l a, ' M|l a, '

For v € 11, r[, if V is sufficiently small then with the help of
Proposition 2.7 and Lemma 3.2 we can define

M 1 7
J=J< >= E /@—}dMSdYS 7 3.11
T NIMNy, ) IM g, [ |7 (3-11)

and|J;| has aL” norm bounded by a finite constant depending only
onV, r andr’. The process is also the semimartingale ifiW with
projectionY andJ,, = 0. Its drift 4V°J with respect tov¢ is identical to

the vertical lift of—W dM dY:
Hy

dav'J =y, (— dey>. (3.12)

1M &,

The latter is a consequence of [2] Theorem 4.12, which says thiai a
valued semimartingale/ is a Ve-martingale if and only ifz(J) is a
V-martingale anaBOj.lj, is a local martingale. To prove the statement of
the theorem it is sufficient to prove tha} — Jo converges to 0 agM ||
tends to 0.

Let 77y denote the functio W — R, defined by

TPy (w)= lim i1lf(7't'(w) expaw)
B a—0, a>0 gP ’ ’
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wherey is the convex function appearing in the definitionptonvex
geometry. Thel' Py is a convex function with respect ¢ and

Clwl? > TPy (w)] > clw]” (3.13)

for some constants @ ¢ < C. Hence to show thaly — Jo converges to 0
is equivalent to show that?y (J;— Jo) converges to 0. The idea is to use
the fact that/ and J’ are two semimartingales with the same projection
and the same terminal value, and that they have approximatively the same
drift with respect to approximatively the same connection. Under certain
conditions we shall be able to show that their initial values are close.

Let T =inf{r > 0, (M, M), > 1} (with inf@ = o0) as before. It6’s
formula and the convexity df ?+ yield

S
TPy (Jg— Jo) < TPy (J5 — Js) — / dTPy (' = J),d (J = 1))
0

for every stopping times. If p > 1 is sufficiently small, then with (3.13)
and again with the help of Proposition 2.7 we obtain that the random
variablesT?y (J; — Jg) are uniformly integrable. This gives, using an
increasing sequence of stopping times converging to

TPy (Jo— Jo) SE[TPY (J; — Jo)]

+E[/|<dT”W(J’ —0,d"J' =N, (3.14)
0

whered" (J' — J) denotes the drift of/’ — J with respect tov¢, as
defined by (1.1).

Forr' el r[,if1 < p <r/r’, we have by Proposition 3|8J'%|,, <
C||M||i,jl and as beforgf | J|%]|,, < C. We get for the first term on the
right of (3.14), under the conditiop < (r + 1) /2, taking the conjugate’
of randr” elp —1,r/r"][,

[Ty (J; = J)] < CE[(1]17 + 17:1) Lir<oc)]
<Cl]" + 101"

r’ 1{T <oo} ||

<C’||Jr/’p + |]T|p r’ERM’ M)gg,w/z]l/r/,

1-p+ "
< My

which goes to 0 a§M || 5, tends to O.
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We are left to find a bound for the second term on the right-hand
side of (3.14). For this purpose we need to introduce a conne&tion
approximatingve¢, for which the drift of /' has a nice expression, and
the canonical involutions: TTW — TTW, given by s(0,0,a) = 9201«
for two-parameter curve@, 1) > a(ty, 1) in W.

Fore > 0, let V¢ be the connection if W induced from the product
connectionvV ® Vin W x W by the map

1 —1
@e (2, ) > P! ).

The driftd¥J’ of J’ with respect to the connectiov® is the vertical lift
of

:—L(exp;l) (Z)(—dM dZ).

Takee = ||M ||y, . Note that the canonical projection : (T W, V¢) —
(W, V) is affine. We deduce thatd" (J' — J)), s(d"" J), sd¥ J'), and
s@""" J'y are Tzv, TW-valued vectors, wherd"* J denotes the drift
of the 1t6 differential ofJ with respect tov¢. This and the equality

s(@d(J =) =sd"J) —s(d"J)
yield
d¥ = =s(s(d" 1) =s(d"J))
=s(s(@""" 1) =@ ) +s@ ) —s(@"" )
=s(s@"" 1) =@ 7))+ @ -a""")r. (3.15)

where the last vector has to be considered as a vertical vector above
J —J.

We now estimate the last term of (3.14) using (3.15). First a calculation
in local coordinates shows that for vertical vectdrs

|dT?y (B)(A)| < C|B|P 1A

Hence from Holder’s inequality, estimate (3.2), we conclude that'fer
1= (its conjugate”” has to be smaller thagt so thatJ’ — J| (="
is mtegrable)

e flarror—nsfotae s
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is bounded by
clmig

. (3.16)

r

T 1 .
x ||o/‘ M ((eXpY ),(Z)(—dM dZ) — (—deY)>

The L” norm in the last expression is less than

Z —dMd(Z -Y
||M|| ). (2)( ( )|

’

r

/‘ expyt), (Z) — Id)( a’MdY)‘

+
IM”H

Now, as a consequence of (3.7) (with close to 2) the first term is

bounded byC||M||;/* for ' < 18, and by (3.2) (withp replaced by
2(1-a)?/a -

ﬁ) the second term is dominated 6y M || ;; if r' <
Hence, when

rp
2p7—3p+2°
r ’ rp
—_— <<,
r+1—p 2p?—3p+2

(3.16) can be estimated t6y|| M || ;, for r < 2 sufficiently large and
p > 1 sufficiently small, which goes to O 91|y, tends to 0.
Finally to estimate the term

we need a bound fa@"" — d"")J’. With (1.1), we observe that

(1-0)?/a

E l/](dTPw(J/ — N, @ =a""my
0

(@7 =d")J' = (" =dV) ) =b(J)d]'dT),

whereb, is a smooth section df*W ® T*W. Sincern; is affine for both
VeandVe, b.(J)(dJ',dJ") is vertical. Now the relations

@t w/x) = (), explen)) = ¢, H(u)

and
dVA] =srsd¥'J, fora>0,
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yield
b (J)dJ',dJ") =shsby (1T (sA7Es(dJ"), sA7ts(dJ)))
=Ab; e A H) (sA s (@), sA T s (d ).

Moreover, on compact sets we hajig| < Ce ([1], proof of Proposi-
tion 3.1). Taker = |J'| ande = | M ||y, . Then we get

\bg(J/)(dJ/,dJ’)\
<Ce(e2d(Z —Y) | d(Z = Y)) + |J')2(dY | dY)). (3.17)
/.<dpr(J/ _. (dvc _ dVHMHHr)]/> ’
0
<CIMI VI IMIA(Z - Y) [(Z - Y)),
(|J’|2>*<Y 1Y),

Taking ;= <r' < 3 — < g if and only if p < %),
the above quantity is, [p)y formula (3 7) Iess than

T

|E

- - - 24—
CllMIl " = e g

which goes to 0 a§M || 5, tends to O forp close to 1. Together with the
convergence to 0 of (3.16), we conclude that/foet 2 sufficiently large
and p > 1 sufficiently small,M — Yy(M) is differentiable atM = 0 in
H, with derivative

o
Jo(M) :E[ / OgydM,dy,
0

|

4. SMOOTHNESS OF CONTINUOUS FINELY HARMONIC
MAPS

Let U andW be two manifolds with torsion-free connectiold and
V%, and let£ be a smooth second order elliptic operatorldnvithout
zero order term. We denote kyyor (-|-) the metric generated bg§ and
by 2b the drift of £ with respect toVU In coordinates/, can be written
asg’ D;; + (2b* — " I};) Dy where(g") is the inverse of the metric and
F" are the Christoffel symbols of the connectigA .
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Recall that a smooth map:U — W is L-harmonic if in local
coordinates

. ou® duP
Lu? ijrr _
Wt s oxi oxJ
where we use Latin index ity and Greek index iW (see [4]). Smooth
L-harmonic maps are particular instances of finely harmonic maps which
are defined as follows:

’

DEFINITION 4.1. -A mapu :U — W is said to be finelyC-harmonic
if u(X) is a W-valued continuous martingale for every-valued
diffusion X with generator; L.

Note that ifu is finely £-harmonic andp is a C? positive function
onU thenu is also finelyp?£-harmonic. This can be proved with a time
change as in [14] Section 4.

In [8] it was shown how to construct continuous finely harmonic maps
as solutions to small image Dirichlet problems, and in [9] the author
proved via coupling techniques that continuous finely harmonic maps are
in fact smooth andZ-harmonic. The aim of this section is to derive the
last result, as well as an explicit formula for the derivative, via changes
of probability from the methods of this paper.

First we need some constructions. LetU — W be a continuous
finely £-harmonic map. Fix a small open geodesic Ballin U such
that u(V’) C V whereV satisfies the conclusions of Theorem 3.5 for
somer < 2 and hasp-convex geometry for some=2 p > 1. Letd be
the dimension ofU. Via an exponential chart we can identif§/ with
the open ballB(0, /2) about 0 of radiusr/2 in R? (note thatr/2 is
not assumed to be the radius ¥f as a Riemannian geodesic ball). For

x eRY, let
d
r(x) =, _(x)?
i=1

n:B(0,7/2) - R,

and define

tanr(x)
r(x)

’

with the convention;(0) = 0. The mapn is a smooth diffeomorphism.
Forx € V’, setp(x) = cosr(x).
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We consider a family(X (x)),cy. of diffusions onV’ with generator
%gozﬁ andXy(x) = x for x € V’, constructed as solutions of the 1td SDE

d"" X = o(X)A(X)dB + *(X)b(X) dt, (4.1)

whereA € I'(RY ® TU) is such thatA(x) :R? — T, U is invertible and
A(x)A*(x) = g~(x) for eachx (here we identifyR¢ and its dual space),
andB is anR?-valued Brownian motion.

In the coordinates of the exponential chart as defined above, (4.1) is
equivalent to

dX'=@(X)A (X)dB + ¢?*(X)c' (X) dt, (4.2)

wherec' (x) = b’ (x) — I'j; (x) A (x)) A (x). The coefficientsA’, ¢ and
all their derivatives are bounded. According to [14], for alle V’
the diffusion processX(x) has infinite lifetime and converges a.s.
to a random variableX .. (x) taking its values indV’. Let Z(z) =
n(X (n71(z))) for z € R?. This is a diffusion inR? with infinite lifetime
which solves

dZ'=A(Z)dB +C'(Z)dt, (4.3)

where in terms of = n(x),

i

A (2) = p(x) az. Al (x),
x/
(2)=¢? 0z’ 1 0% j k
€@ =620 (5 10+ 5 5 ALOAL)).

Itis then a straightforward calculation to verify that there exists a constant
C > 0 such that for all, i, z,

AL ()| < C(r(z) +1), ICi(2)| < C(r(z) +1),

all derivatives of — A(z), z — C(z) andz — A~%(z) of order larger or
equal to 1 are bounded, and atse> .A~1(z) is bounded. Hence, using
[10, Corollary 4.6.7], we obtain that for every compact subsaif R¢,

p > 0,t > 0 and every multiindey,

. 311
SUpE |sug —— Z,
s<? zeg (3z)# @)
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Leth:R, — [0, 1] be a smooth decreasing function such #h@ = 1
and h(tr) = 0 for somer > 0. Fix x e V' andv € T,V'. We define
Fy(v) = n(x) + h(s)dn(v) and Z¥ = Z,(F,(v)), X' = n~X(Z?). The
processZ? satisfies the equation

dZ! = A(Z)dB, +C(ZY) ds + (Tr,w) Z)s (h(s) dn(v)) ds.

As in [2] (see also [6]) we make a change of probability usty=
E(M?Y) where

MY = —/<./4_1(Z;})(TFS(U)Z)S (iz(s) dn(v)) ’dBS>Rd' (4.5)

0

UnderP¥ = G*- P (defined as in 3.1 on the subalgebras whereT is a
stopping time such thaiGV)7 is a uniformly integrable martingale}
has the same generator ZsunderP. Hence undei’, the processx”
has generatofp2L. We denote byV (v) the local martingaleX |, _ M.
For (v) = x fixed, the map — N (v) is linear, and we have

N@)=— / (AYNZ,@D)T.2)s (h(s) dn)) | dBy)gar  (4.6)

0

Note that this also writes as

o h(s)
N() = rxs(x))«TxX)s(v)!A(Xs(x))dBQ- 4.7)

LEMMA 4.2. —For every compact subséf of V' andr > 1, there
existC > 0 such that for alv € TU with 7 (v) € K and norm less thaf,
the following estimates haold

1/2
[(M". M%)

H(Ilvll <||vll>)*

In particular, for everyr > 1 and x € K fixed, the mapl, U — H,,
vi—> MV is differentiable ab = 0.

< Clvll (4.8)

and

< Clv|l. (4.9)

Proof. —Let K be a compact subset &' and letK’ be a compact
subset ofR? containing all then(x) 4+ h(s)dn(v) with x € K, s > 0,
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v e T, U satisfying|lv|| < 1. By the boundedness of~* anddn on K,
together with the fact thdt(z) = 0, we get from (4.5)

t
(MY, M")_, gconsl|v||2/supHTSZ(z)szs
0 z€K’

which implies (4.8) by means of (4.4).
We are left to prove (4.9). With a similar calculation, using (4.6), the
boundedness ofi~! and (4.4) with|8| < 2, we can bound th&” norm

of the bracket o ﬂ‘ﬁ—” - N(p) forr>0. O

THEOREM 4.3. —A continuous finelyZ-harmonic map:: U — W is
smooth.

Proof. ~We proceed in three steps. First we show tias differen-
tiable, secondly we show thatis C! and at the end we show thatis
smooth.

First step,u is differentiable.With the construction above, for €
V' and v € T,U, we have X3 = n71(n(x) + dn(v)), the process
Y'Y = u(X") is a P’-martingale with values inV, starting atY; =
u(Xg) and terminating at(X2,) which depends only omr(v). Thus,
differentiability of u is a consequence of Theorem 3.5 and Lemma 4.2,
and we have

Tu() = Jo(v) =E U@O—jdm(v)dn], (4.10)
0

where ® is the geodesic transport above This recovers a known
formula, see [5] and [2].

Second stepy is C*. We still identify V' with the open subset
B(0, r/2) of R?. Possibly by reducing’’, the imageu (V") is identified
via a chart with an open subset Bf’ whered’ is the dimension of
W. Let m € N* andr > 1. Recall that for ariR™-valued continuous
semimartingaleZ = Zo + M + A where M is a continuous local
martingale and4 is a process with finite variation, th& norm and the
H, norm of Z are defined as

1Z15, = [supizi1],
>0 L

and
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121y, =

L’

o
12l + 3w MO+ [ laa
i 0

Fix xo € V’. We have to show thdf,« converges td,,u asx tends
to xo. Using local coordinates, we can compute the differencg,nfto
T,,u by means of (4.10). With (4.6) and (4.4) we see thatfih@orms of
N converge and it is sufficient to prove that the stopped procasses
converge toY’(xp) in H, for anyr > 1, and that if®q ,(x) denotes the
geodesic transport abovg(x), then(®g ,l(x))’ converges tq®, ,l(xo))’
in S, for r sufficiently large.

Convergence ofY’(x) to Y'(xp): From (4.8) of Lemma 4.2 and
Proposition 3.3, we conclude thatWf is sufficiently small, thefu (x) —
u(y)| < C(p)lx — y|¥? for somep > 1. But the stopped process (x)
converges taX’(xg) in S, for everyr > 1, henceY’(x) converges to
Y'(xo) in S, for everyr > 1. To transform convergence ifi. into
convergence irf,, we use the fact tha¥ has 2-convex geometry, and
as in (3.8), we write withp = §2:

(Y(x) = Y (x0), Y (x) = Y (x0)),

< C<¢(Yt(x0)’ Yi(x)) — /<d¢, (de(XO),dVY(X))>>-
0

With the same calculation as in the proof of Lemma 3.4, but simpler here
sinceY (xp) andY (x) are martingales, we obtain by induction thatx)
converges td@’(xp) in H, for everyr > 1.

Convergence of@g 1 (x))" to (O +(x0))": With formula (2.5), denot-

ing by 7 (x) the coordinates o(f@&,l(x))' and
sl = [ Thmamnw + 5 [ Do @ art©. v ),
0 0

the difference®; (x) — O (xo) satisfies the equation
d(OF(x) — B (x0)) = O%(x) d (5] (x) — S/ (x0))
+ (64 (x) — 0 (x0) dS/ (x0).  (4.11)

This equation i{ (x) — O¢ (xp) has an explicit solution in terms of the

stochastic exponential @f;) (see [13], Chapter IX, Proposition 2.3, for
the one-dimensional case). By Lemma 2.1, for arbitrary largte S,
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norm of &7 (x) is bounded by a finite constant which does not depend
onx, and the stopped proce(sg’ (x) — S{ (x0))" converges to 0 itH, for
everyr > 1, hence the solution of (4.11) stopped at timmmnverges to 0

in S, for r as large as we want (the size ¥f depends o).

Third stepu is smoothWe proceed by iteration, i.e., by applying step
one and two tal'u and exploiting the fact that ofv € TU, v # 0} the
differential Tu transforms again an elliptic diffusion intoaW-valued
(VW)c-martingale, and so on. More precisely, we argue as follows: Let
X (x)cev, as above, be a family cggozﬁ—diffusions onU constructed as
solutions of the 1t6 SDE

d¥' X = o(X)A(X)dB + % X)b(X) dt. (4.12)

In terms of an independent co@/ of B let
dvX¢= coge)p(X)A(X®)dB + sin(e)p(X*)A(X®)dB’
+@2(X)b(X®)dt, ¢e€R,

be a variation of (4.12). Then, in particulak®(x) is also an%gozﬁ—
diffusion for eache which depends on in a differentiable way and
Xé(x)|e=o= X (x). Forve T.M, v # 0, leta be a curve inJ such that
&(0) =v. Then

a £
X = a—SLZOX (a(e))

is a nondegenerate diffusion @iU starting fromv, which is mapped un-
derTu to the(V¥)¢-martingaleTu 90X = ;—8|8:0u(X8(a(8))) onW. O

Remark4.4. — In the particular setting of Riemannian manifalds¥
(equipped with the Levi-Civita connections) the fact that continuous
finely harmonic mapsy: U — W areC? (and actually smooth) can also
be directly derived from PDE results (like the small-time existence of
solutions to the nonlinear heat equation). Finely harmonic here means
thatuo maps Brownian motions ofi to martingales orW. We proceed
as follows:

Let 1< p < oco. Let V' be a small open (relatively compact) geodesic
ball in U such thatV = ug(V’) has p-convex geometry, say given by
Y = 87. We letug on V' develop under the heat equation, keeping the
boundary conditions fixed:

0
{ —u = StraceVdu,
dat

uly—o =uo, u |0V =ugldV’.
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Fix # > 0 small such that there is a classical solution¥nup to time
t. In particular,u|]10, ] x V'’ is smooth and|[0, ¢] x V' continuous. For
x € V' consider the martingales

Yi=u (X)),  Yi=uo(X;(x)), 0<s<tAo(x),

s

whereo (x) is the first exit time ofX (x) from V’. ThenA := (Y1, Y?)
is a nonnegative bounded submartingale with= 0 for s =t A o (x).
ThusA =0, in particularYol = YOZ. This showsug = u, on V', with the
consequence that is smooth onV’.
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